Topology.cc (8485:7a9a7f2a3d46) Topology.cc (8645:89929730804b)
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <cassert>
30
31#include "debug/RubyNetwork.hh"
32#include "mem/protocol/MachineType.hh"
33#include "mem/protocol/TopologyType.hh"
34#include "mem/ruby/common/NetDest.hh"
35#include "mem/ruby/network/BasicLink.hh"
36#include "mem/ruby/network/BasicRouter.hh"
37#include "mem/ruby/network/Network.hh"
38#include "mem/ruby/network/Topology.hh"
39#include "mem/ruby/slicc_interface/AbstractController.hh"
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <cassert>
30
31#include "debug/RubyNetwork.hh"
32#include "mem/protocol/MachineType.hh"
33#include "mem/protocol/TopologyType.hh"
34#include "mem/ruby/common/NetDest.hh"
35#include "mem/ruby/network/BasicLink.hh"
36#include "mem/ruby/network/BasicRouter.hh"
37#include "mem/ruby/network/Network.hh"
38#include "mem/ruby/network/Topology.hh"
39#include "mem/ruby/slicc_interface/AbstractController.hh"
40#include "mem/ruby/system/System.hh"
41
42using namespace std;
43
44const int INFINITE_LATENCY = 10000; // Yes, this is a big hack
45
46class BasicRouter;
47
48// Note: In this file, we use the first 2*m_nodes SwitchIDs to
49// represent the input and output endpoint links. These really are
50// not 'switches', as they will not have a Switch object allocated for
51// them. The first m_nodes SwitchIDs are the links into the network,
52// the second m_nodes set of SwitchIDs represent the the output queues
53// of the network.
54
55// Helper functions based on chapter 29 of Cormen et al.
56void extend_shortest_path(Matrix& current_dist, Matrix& latencies,
57 Matrix& inter_switches);
58Matrix shortest_path(const Matrix& weights, Matrix& latencies,
59 Matrix& inter_switches);
60bool link_is_shortest_path_to_node(SwitchID src, SwitchID next,
61 SwitchID final, const Matrix& weights, const Matrix& dist);
62NetDest shortest_path_to_node(SwitchID src, SwitchID next,
63 const Matrix& weights, const Matrix& dist);
64
65Topology::Topology(const Params *p)
66 : SimObject(p)
67{
68 m_print_config = p->print_config;
69 m_number_of_switches = p->routers.size();
70
71 // initialize component latencies record
72 m_component_latencies.resize(0);
73 m_component_inter_switches.resize(0);
74
75 // Total nodes/controllers in network
76 // Must make sure this is called after the State Machine constructors
77 m_nodes = MachineType_base_number(MachineType_NUM);
78 assert(m_nodes > 1);
79
80 if (m_nodes != params()->ext_links.size() &&
81 m_nodes != params()->ext_links.size()) {
82 fatal("m_nodes (%d) != ext_links vector length (%d)\n",
83 m_nodes != params()->ext_links.size());
84 }
85
86 // analyze both the internal and external links, create data structures
87 // Note that the python created links are bi-directional, but that the
88 // topology and networks utilize uni-directional links. Thus each
89 // BasicLink is converted to two calls to add link, on for each direction
90 for (vector<BasicExtLink*>::const_iterator i = params()->ext_links.begin();
91 i != params()->ext_links.end(); ++i) {
92 BasicExtLink *ext_link = (*i);
93 AbstractController *abs_cntrl = ext_link->params()->ext_node;
94 BasicRouter *router = ext_link->params()->int_node;
95
96 // Store the controller and ExtLink pointers for later
97 m_controller_vector.push_back(abs_cntrl);
98 m_ext_link_vector.push_back(ext_link);
99
100 int ext_idx1 = abs_cntrl->params()->cntrl_id;
101 int ext_idx2 = ext_idx1 + m_nodes;
102 int int_idx = router->params()->router_id + 2*m_nodes;
103
104 // create the internal uni-directional links in both directions
105 // the first direction is marked: In
106 addLink(ext_idx1, int_idx, ext_link, LinkDirection_In);
107 // the first direction is marked: Out
108 addLink(int_idx, ext_idx2, ext_link, LinkDirection_Out);
109 }
110
111 for (vector<BasicIntLink*>::const_iterator i = params()->int_links.begin();
112 i != params()->int_links.end(); ++i) {
113 BasicIntLink *int_link = (*i);
114 BasicRouter *router_a = int_link->params()->node_a;
115 BasicRouter *router_b = int_link->params()->node_b;
116
117 // Store the IntLink pointers for later
118 m_int_link_vector.push_back(int_link);
119
120 int a = router_a->params()->router_id + 2*m_nodes;
121 int b = router_b->params()->router_id + 2*m_nodes;
122
123 // create the internal uni-directional links in both directions
124 // the first direction is marked: In
125 addLink(a, b, int_link, LinkDirection_In);
126 // the second direction is marked: Out
127 addLink(b, a, int_link, LinkDirection_Out);
128 }
129}
130
131void
132Topology::init()
133{
134}
135
136
137void
138Topology::initNetworkPtr(Network* net_ptr)
139{
140 for (vector<BasicExtLink*>::const_iterator i = params()->ext_links.begin();
141 i != params()->ext_links.end(); ++i) {
142 BasicExtLink *ext_link = (*i);
143 AbstractController *abs_cntrl = ext_link->params()->ext_node;
144 abs_cntrl->initNetworkPtr(net_ptr);
145 }
146}
147
148void
149Topology::createLinks(Network *net, bool isReconfiguration)
150{
151 // Find maximum switchID
152 SwitchID max_switch_id = 0;
153 for (LinkMap::const_iterator i = m_link_map.begin();
154 i != m_link_map.end(); ++i) {
155 std::pair<int, int> src_dest = (*i).first;
156 max_switch_id = max(max_switch_id, src_dest.first);
157 max_switch_id = max(max_switch_id, src_dest.second);
158 }
159
160 // Initialize weight, latency, and inter switched vectors
161 Matrix topology_weights;
162 int num_switches = max_switch_id+1;
163 topology_weights.resize(num_switches);
164 m_component_latencies.resize(num_switches);
165 m_component_inter_switches.resize(num_switches);
166
167 for (int i = 0; i < topology_weights.size(); i++) {
168 topology_weights[i].resize(num_switches);
169 m_component_latencies[i].resize(num_switches);
170 m_component_inter_switches[i].resize(num_switches);
171
172 for (int j = 0; j < topology_weights[i].size(); j++) {
173 topology_weights[i][j] = INFINITE_LATENCY;
174
175 // initialize to invalid values
176 m_component_latencies[i][j] = -1;
177
178 // initially assume direct connections / no intermediate
179 // switches between components
180 m_component_inter_switches[i][j] = 0;
181 }
182 }
183
184 // Set identity weights to zero
185 for (int i = 0; i < topology_weights.size(); i++) {
186 topology_weights[i][i] = 0;
187 }
188
189 // Fill in the topology weights and bandwidth multipliers
190 for (LinkMap::const_iterator i = m_link_map.begin();
191 i != m_link_map.end(); ++i) {
192 std::pair<int, int> src_dest = (*i).first;
193 BasicLink* link = (*i).second.link;
194 int src = src_dest.first;
195 int dst = src_dest.second;
196 m_component_latencies[src][dst] = link->m_latency;
197 topology_weights[src][dst] = link->m_weight;
198 }
199
200 // Walk topology and hookup the links
201 Matrix dist = shortest_path(topology_weights, m_component_latencies,
202 m_component_inter_switches);
203 for (int i = 0; i < topology_weights.size(); i++) {
204 for (int j = 0; j < topology_weights[i].size(); j++) {
205 int weight = topology_weights[i][j];
206 if (weight > 0 && weight != INFINITE_LATENCY) {
207 NetDest destination_set = shortest_path_to_node(i, j,
208 topology_weights, dist);
209 makeLink(net, i, j, destination_set, isReconfiguration);
210 }
211 }
212 }
213}
214
215void
216Topology::addLink(SwitchID src, SwitchID dest, BasicLink* link,
217 LinkDirection dir)
218{
219 assert(src <= m_number_of_switches+m_nodes+m_nodes);
220 assert(dest <= m_number_of_switches+m_nodes+m_nodes);
221
222 std::pair<int, int> src_dest_pair;
223 LinkEntry link_entry;
224
225 src_dest_pair.first = src;
226 src_dest_pair.second = dest;
227 link_entry.direction = dir;
228 link_entry.link = link;
229 m_link_map[src_dest_pair] = link_entry;
230}
231
232void
233Topology::makeLink(Network *net, SwitchID src, SwitchID dest,
234 const NetDest& routing_table_entry, bool isReconfiguration)
235{
236 // Make sure we're not trying to connect two end-point nodes
237 // directly together
238 assert(src >= 2 * m_nodes || dest >= 2 * m_nodes);
239
240 std::pair<int, int> src_dest;
241 LinkEntry link_entry;
242
243 if (src < m_nodes) {
244 src_dest.first = src;
245 src_dest.second = dest;
246 link_entry = m_link_map[src_dest];
247 net->makeInLink(src, dest - (2 * m_nodes), link_entry.link,
248 link_entry.direction,
249 routing_table_entry,
250 isReconfiguration);
251 } else if (dest < 2*m_nodes) {
252 assert(dest >= m_nodes);
253 NodeID node = dest - m_nodes;
254 src_dest.first = src;
255 src_dest.second = dest;
256 link_entry = m_link_map[src_dest];
257 net->makeOutLink(src - (2 * m_nodes), node, link_entry.link,
258 link_entry.direction,
259 routing_table_entry,
260 isReconfiguration);
261 } else {
262 assert((src >= 2 * m_nodes) && (dest >= 2 * m_nodes));
263 src_dest.first = src;
264 src_dest.second = dest;
265 link_entry = m_link_map[src_dest];
266 net->makeInternalLink(src - (2 * m_nodes), dest - (2 * m_nodes),
267 link_entry.link, link_entry.direction,
268 routing_table_entry, isReconfiguration);
269 }
270}
271
272void
273Topology::printStats(std::ostream& out) const
274{
275 for (int cntrl = 0; cntrl < m_controller_vector.size(); cntrl++) {
276 m_controller_vector[cntrl]->printStats(out);
277 }
278}
279
280void
281Topology::clearStats()
282{
283 for (int cntrl = 0; cntrl < m_controller_vector.size(); cntrl++) {
284 m_controller_vector[cntrl]->clearStats();
285 }
286}
287
288void
289Topology::printConfig(std::ostream& out) const
290{
291 if (m_print_config == false)
292 return;
293
294 assert(m_component_latencies.size() > 0);
295
296 out << "--- Begin Topology Print ---" << endl
297 << endl
298 << "Topology print ONLY indicates the _NETWORK_ latency between two "
299 << "machines" << endl
300 << "It does NOT include the latency within the machines" << endl
301 << endl;
302
303 for (int m = 0; m < MachineType_NUM; m++) {
304 int i_end = MachineType_base_count((MachineType)m);
305 for (int i = 0; i < i_end; i++) {
306 MachineID cur_mach = {(MachineType)m, i};
307 out << cur_mach << " Network Latencies" << endl;
308 for (int n = 0; n < MachineType_NUM; n++) {
309 int j_end = MachineType_base_count((MachineType)n);
310 for (int j = 0; j < j_end; j++) {
311 MachineID dest_mach = {(MachineType)n, j};
312 if (cur_mach == dest_mach)
313 continue;
314
315 int src = MachineType_base_number((MachineType)m) + i;
316 int dst = MachineType_base_number(MachineType_NUM) +
317 MachineType_base_number((MachineType)n) + j;
318 int link_latency = m_component_latencies[src][dst];
319 int intermediate_switches =
320 m_component_inter_switches[src][dst];
321
322 // NOTE switches are assumed to have single
323 // cycle latency
324 out << " " << cur_mach << " -> " << dest_mach
325 << " net_lat: "
326 << link_latency + intermediate_switches << endl;
327 }
328 }
329 out << endl;
330 }
331 }
332
333 out << "--- End Topology Print ---" << endl;
334}
335
336// The following all-pairs shortest path algorithm is based on the
337// discussion from Cormen et al., Chapter 26.1.
338void
339extend_shortest_path(Matrix& current_dist, Matrix& latencies,
340 Matrix& inter_switches)
341{
342 bool change = true;
343 int nodes = current_dist.size();
344
345 while (change) {
346 change = false;
347 for (int i = 0; i < nodes; i++) {
348 for (int j = 0; j < nodes; j++) {
349 int minimum = current_dist[i][j];
350 int previous_minimum = minimum;
351 int intermediate_switch = -1;
352 for (int k = 0; k < nodes; k++) {
353 minimum = min(minimum,
354 current_dist[i][k] + current_dist[k][j]);
355 if (previous_minimum != minimum) {
356 intermediate_switch = k;
357 inter_switches[i][j] =
358 inter_switches[i][k] +
359 inter_switches[k][j] + 1;
360 }
361 previous_minimum = minimum;
362 }
363 if (current_dist[i][j] != minimum) {
364 change = true;
365 current_dist[i][j] = minimum;
366 assert(intermediate_switch >= 0);
367 assert(intermediate_switch < latencies[i].size());
368 latencies[i][j] = latencies[i][intermediate_switch] +
369 latencies[intermediate_switch][j];
370 }
371 }
372 }
373 }
374}
375
376Matrix
377shortest_path(const Matrix& weights, Matrix& latencies, Matrix& inter_switches)
378{
379 Matrix dist = weights;
380 extend_shortest_path(dist, latencies, inter_switches);
381 return dist;
382}
383
384bool
385link_is_shortest_path_to_node(SwitchID src, SwitchID next, SwitchID final,
386 const Matrix& weights, const Matrix& dist)
387{
388 return weights[src][next] + dist[next][final] == dist[src][final];
389}
390
391NetDest
392shortest_path_to_node(SwitchID src, SwitchID next, const Matrix& weights,
393 const Matrix& dist)
394{
395 NetDest result;
396 int d = 0;
397 int machines;
398 int max_machines;
399
400 machines = MachineType_NUM;
401 max_machines = MachineType_base_number(MachineType_NUM);
402
403 for (int m = 0; m < machines; m++) {
404 for (int i = 0; i < MachineType_base_count((MachineType)m); i++) {
405 // we use "d+max_machines" below since the "destination"
406 // switches for the machines are numbered
407 // [MachineType_base_number(MachineType_NUM)...
408 // 2*MachineType_base_number(MachineType_NUM)-1] for the
409 // component network
410 if (link_is_shortest_path_to_node(src, next, d + max_machines,
411 weights, dist)) {
412 MachineID mach = {(MachineType)m, i};
413 result.add(mach);
414 }
415 d++;
416 }
417 }
418
419 DPRINTF(RubyNetwork, "Returning shortest path\n"
420 "(src-(2*max_machines)): %d, (next-(2*max_machines)): %d, "
421 "src: %d, next: %d, result: %s\n",
422 (src-(2*max_machines)), (next-(2*max_machines)),
423 src, next, result);
424
425 return result;
426}
427
428Topology *
429TopologyParams::create()
430{
431 return new Topology(this);
432}
433
40
41using namespace std;
42
43const int INFINITE_LATENCY = 10000; // Yes, this is a big hack
44
45class BasicRouter;
46
47// Note: In this file, we use the first 2*m_nodes SwitchIDs to
48// represent the input and output endpoint links. These really are
49// not 'switches', as they will not have a Switch object allocated for
50// them. The first m_nodes SwitchIDs are the links into the network,
51// the second m_nodes set of SwitchIDs represent the the output queues
52// of the network.
53
54// Helper functions based on chapter 29 of Cormen et al.
55void extend_shortest_path(Matrix& current_dist, Matrix& latencies,
56 Matrix& inter_switches);
57Matrix shortest_path(const Matrix& weights, Matrix& latencies,
58 Matrix& inter_switches);
59bool link_is_shortest_path_to_node(SwitchID src, SwitchID next,
60 SwitchID final, const Matrix& weights, const Matrix& dist);
61NetDest shortest_path_to_node(SwitchID src, SwitchID next,
62 const Matrix& weights, const Matrix& dist);
63
64Topology::Topology(const Params *p)
65 : SimObject(p)
66{
67 m_print_config = p->print_config;
68 m_number_of_switches = p->routers.size();
69
70 // initialize component latencies record
71 m_component_latencies.resize(0);
72 m_component_inter_switches.resize(0);
73
74 // Total nodes/controllers in network
75 // Must make sure this is called after the State Machine constructors
76 m_nodes = MachineType_base_number(MachineType_NUM);
77 assert(m_nodes > 1);
78
79 if (m_nodes != params()->ext_links.size() &&
80 m_nodes != params()->ext_links.size()) {
81 fatal("m_nodes (%d) != ext_links vector length (%d)\n",
82 m_nodes != params()->ext_links.size());
83 }
84
85 // analyze both the internal and external links, create data structures
86 // Note that the python created links are bi-directional, but that the
87 // topology and networks utilize uni-directional links. Thus each
88 // BasicLink is converted to two calls to add link, on for each direction
89 for (vector<BasicExtLink*>::const_iterator i = params()->ext_links.begin();
90 i != params()->ext_links.end(); ++i) {
91 BasicExtLink *ext_link = (*i);
92 AbstractController *abs_cntrl = ext_link->params()->ext_node;
93 BasicRouter *router = ext_link->params()->int_node;
94
95 // Store the controller and ExtLink pointers for later
96 m_controller_vector.push_back(abs_cntrl);
97 m_ext_link_vector.push_back(ext_link);
98
99 int ext_idx1 = abs_cntrl->params()->cntrl_id;
100 int ext_idx2 = ext_idx1 + m_nodes;
101 int int_idx = router->params()->router_id + 2*m_nodes;
102
103 // create the internal uni-directional links in both directions
104 // the first direction is marked: In
105 addLink(ext_idx1, int_idx, ext_link, LinkDirection_In);
106 // the first direction is marked: Out
107 addLink(int_idx, ext_idx2, ext_link, LinkDirection_Out);
108 }
109
110 for (vector<BasicIntLink*>::const_iterator i = params()->int_links.begin();
111 i != params()->int_links.end(); ++i) {
112 BasicIntLink *int_link = (*i);
113 BasicRouter *router_a = int_link->params()->node_a;
114 BasicRouter *router_b = int_link->params()->node_b;
115
116 // Store the IntLink pointers for later
117 m_int_link_vector.push_back(int_link);
118
119 int a = router_a->params()->router_id + 2*m_nodes;
120 int b = router_b->params()->router_id + 2*m_nodes;
121
122 // create the internal uni-directional links in both directions
123 // the first direction is marked: In
124 addLink(a, b, int_link, LinkDirection_In);
125 // the second direction is marked: Out
126 addLink(b, a, int_link, LinkDirection_Out);
127 }
128}
129
130void
131Topology::init()
132{
133}
134
135
136void
137Topology::initNetworkPtr(Network* net_ptr)
138{
139 for (vector<BasicExtLink*>::const_iterator i = params()->ext_links.begin();
140 i != params()->ext_links.end(); ++i) {
141 BasicExtLink *ext_link = (*i);
142 AbstractController *abs_cntrl = ext_link->params()->ext_node;
143 abs_cntrl->initNetworkPtr(net_ptr);
144 }
145}
146
147void
148Topology::createLinks(Network *net, bool isReconfiguration)
149{
150 // Find maximum switchID
151 SwitchID max_switch_id = 0;
152 for (LinkMap::const_iterator i = m_link_map.begin();
153 i != m_link_map.end(); ++i) {
154 std::pair<int, int> src_dest = (*i).first;
155 max_switch_id = max(max_switch_id, src_dest.first);
156 max_switch_id = max(max_switch_id, src_dest.second);
157 }
158
159 // Initialize weight, latency, and inter switched vectors
160 Matrix topology_weights;
161 int num_switches = max_switch_id+1;
162 topology_weights.resize(num_switches);
163 m_component_latencies.resize(num_switches);
164 m_component_inter_switches.resize(num_switches);
165
166 for (int i = 0; i < topology_weights.size(); i++) {
167 topology_weights[i].resize(num_switches);
168 m_component_latencies[i].resize(num_switches);
169 m_component_inter_switches[i].resize(num_switches);
170
171 for (int j = 0; j < topology_weights[i].size(); j++) {
172 topology_weights[i][j] = INFINITE_LATENCY;
173
174 // initialize to invalid values
175 m_component_latencies[i][j] = -1;
176
177 // initially assume direct connections / no intermediate
178 // switches between components
179 m_component_inter_switches[i][j] = 0;
180 }
181 }
182
183 // Set identity weights to zero
184 for (int i = 0; i < topology_weights.size(); i++) {
185 topology_weights[i][i] = 0;
186 }
187
188 // Fill in the topology weights and bandwidth multipliers
189 for (LinkMap::const_iterator i = m_link_map.begin();
190 i != m_link_map.end(); ++i) {
191 std::pair<int, int> src_dest = (*i).first;
192 BasicLink* link = (*i).second.link;
193 int src = src_dest.first;
194 int dst = src_dest.second;
195 m_component_latencies[src][dst] = link->m_latency;
196 topology_weights[src][dst] = link->m_weight;
197 }
198
199 // Walk topology and hookup the links
200 Matrix dist = shortest_path(topology_weights, m_component_latencies,
201 m_component_inter_switches);
202 for (int i = 0; i < topology_weights.size(); i++) {
203 for (int j = 0; j < topology_weights[i].size(); j++) {
204 int weight = topology_weights[i][j];
205 if (weight > 0 && weight != INFINITE_LATENCY) {
206 NetDest destination_set = shortest_path_to_node(i, j,
207 topology_weights, dist);
208 makeLink(net, i, j, destination_set, isReconfiguration);
209 }
210 }
211 }
212}
213
214void
215Topology::addLink(SwitchID src, SwitchID dest, BasicLink* link,
216 LinkDirection dir)
217{
218 assert(src <= m_number_of_switches+m_nodes+m_nodes);
219 assert(dest <= m_number_of_switches+m_nodes+m_nodes);
220
221 std::pair<int, int> src_dest_pair;
222 LinkEntry link_entry;
223
224 src_dest_pair.first = src;
225 src_dest_pair.second = dest;
226 link_entry.direction = dir;
227 link_entry.link = link;
228 m_link_map[src_dest_pair] = link_entry;
229}
230
231void
232Topology::makeLink(Network *net, SwitchID src, SwitchID dest,
233 const NetDest& routing_table_entry, bool isReconfiguration)
234{
235 // Make sure we're not trying to connect two end-point nodes
236 // directly together
237 assert(src >= 2 * m_nodes || dest >= 2 * m_nodes);
238
239 std::pair<int, int> src_dest;
240 LinkEntry link_entry;
241
242 if (src < m_nodes) {
243 src_dest.first = src;
244 src_dest.second = dest;
245 link_entry = m_link_map[src_dest];
246 net->makeInLink(src, dest - (2 * m_nodes), link_entry.link,
247 link_entry.direction,
248 routing_table_entry,
249 isReconfiguration);
250 } else if (dest < 2*m_nodes) {
251 assert(dest >= m_nodes);
252 NodeID node = dest - m_nodes;
253 src_dest.first = src;
254 src_dest.second = dest;
255 link_entry = m_link_map[src_dest];
256 net->makeOutLink(src - (2 * m_nodes), node, link_entry.link,
257 link_entry.direction,
258 routing_table_entry,
259 isReconfiguration);
260 } else {
261 assert((src >= 2 * m_nodes) && (dest >= 2 * m_nodes));
262 src_dest.first = src;
263 src_dest.second = dest;
264 link_entry = m_link_map[src_dest];
265 net->makeInternalLink(src - (2 * m_nodes), dest - (2 * m_nodes),
266 link_entry.link, link_entry.direction,
267 routing_table_entry, isReconfiguration);
268 }
269}
270
271void
272Topology::printStats(std::ostream& out) const
273{
274 for (int cntrl = 0; cntrl < m_controller_vector.size(); cntrl++) {
275 m_controller_vector[cntrl]->printStats(out);
276 }
277}
278
279void
280Topology::clearStats()
281{
282 for (int cntrl = 0; cntrl < m_controller_vector.size(); cntrl++) {
283 m_controller_vector[cntrl]->clearStats();
284 }
285}
286
287void
288Topology::printConfig(std::ostream& out) const
289{
290 if (m_print_config == false)
291 return;
292
293 assert(m_component_latencies.size() > 0);
294
295 out << "--- Begin Topology Print ---" << endl
296 << endl
297 << "Topology print ONLY indicates the _NETWORK_ latency between two "
298 << "machines" << endl
299 << "It does NOT include the latency within the machines" << endl
300 << endl;
301
302 for (int m = 0; m < MachineType_NUM; m++) {
303 int i_end = MachineType_base_count((MachineType)m);
304 for (int i = 0; i < i_end; i++) {
305 MachineID cur_mach = {(MachineType)m, i};
306 out << cur_mach << " Network Latencies" << endl;
307 for (int n = 0; n < MachineType_NUM; n++) {
308 int j_end = MachineType_base_count((MachineType)n);
309 for (int j = 0; j < j_end; j++) {
310 MachineID dest_mach = {(MachineType)n, j};
311 if (cur_mach == dest_mach)
312 continue;
313
314 int src = MachineType_base_number((MachineType)m) + i;
315 int dst = MachineType_base_number(MachineType_NUM) +
316 MachineType_base_number((MachineType)n) + j;
317 int link_latency = m_component_latencies[src][dst];
318 int intermediate_switches =
319 m_component_inter_switches[src][dst];
320
321 // NOTE switches are assumed to have single
322 // cycle latency
323 out << " " << cur_mach << " -> " << dest_mach
324 << " net_lat: "
325 << link_latency + intermediate_switches << endl;
326 }
327 }
328 out << endl;
329 }
330 }
331
332 out << "--- End Topology Print ---" << endl;
333}
334
335// The following all-pairs shortest path algorithm is based on the
336// discussion from Cormen et al., Chapter 26.1.
337void
338extend_shortest_path(Matrix& current_dist, Matrix& latencies,
339 Matrix& inter_switches)
340{
341 bool change = true;
342 int nodes = current_dist.size();
343
344 while (change) {
345 change = false;
346 for (int i = 0; i < nodes; i++) {
347 for (int j = 0; j < nodes; j++) {
348 int minimum = current_dist[i][j];
349 int previous_minimum = minimum;
350 int intermediate_switch = -1;
351 for (int k = 0; k < nodes; k++) {
352 minimum = min(minimum,
353 current_dist[i][k] + current_dist[k][j]);
354 if (previous_minimum != minimum) {
355 intermediate_switch = k;
356 inter_switches[i][j] =
357 inter_switches[i][k] +
358 inter_switches[k][j] + 1;
359 }
360 previous_minimum = minimum;
361 }
362 if (current_dist[i][j] != minimum) {
363 change = true;
364 current_dist[i][j] = minimum;
365 assert(intermediate_switch >= 0);
366 assert(intermediate_switch < latencies[i].size());
367 latencies[i][j] = latencies[i][intermediate_switch] +
368 latencies[intermediate_switch][j];
369 }
370 }
371 }
372 }
373}
374
375Matrix
376shortest_path(const Matrix& weights, Matrix& latencies, Matrix& inter_switches)
377{
378 Matrix dist = weights;
379 extend_shortest_path(dist, latencies, inter_switches);
380 return dist;
381}
382
383bool
384link_is_shortest_path_to_node(SwitchID src, SwitchID next, SwitchID final,
385 const Matrix& weights, const Matrix& dist)
386{
387 return weights[src][next] + dist[next][final] == dist[src][final];
388}
389
390NetDest
391shortest_path_to_node(SwitchID src, SwitchID next, const Matrix& weights,
392 const Matrix& dist)
393{
394 NetDest result;
395 int d = 0;
396 int machines;
397 int max_machines;
398
399 machines = MachineType_NUM;
400 max_machines = MachineType_base_number(MachineType_NUM);
401
402 for (int m = 0; m < machines; m++) {
403 for (int i = 0; i < MachineType_base_count((MachineType)m); i++) {
404 // we use "d+max_machines" below since the "destination"
405 // switches for the machines are numbered
406 // [MachineType_base_number(MachineType_NUM)...
407 // 2*MachineType_base_number(MachineType_NUM)-1] for the
408 // component network
409 if (link_is_shortest_path_to_node(src, next, d + max_machines,
410 weights, dist)) {
411 MachineID mach = {(MachineType)m, i};
412 result.add(mach);
413 }
414 d++;
415 }
416 }
417
418 DPRINTF(RubyNetwork, "Returning shortest path\n"
419 "(src-(2*max_machines)): %d, (next-(2*max_machines)): %d, "
420 "src: %d, next: %d, result: %s\n",
421 (src-(2*max_machines)), (next-(2*max_machines)),
422 src, next, result);
423
424 return result;
425}
426
427Topology *
428TopologyParams::create()
429{
430 return new Topology(this);
431}
432