Topology.cc (11663:cf870cd20cfc) Topology.cc (11664:2365e9e396f7)
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <cassert>
30
31#include "base/trace.hh"
32#include "debug/RubyNetwork.hh"
33#include "mem/ruby/common/NetDest.hh"
34#include "mem/ruby/network/BasicLink.hh"
35#include "mem/ruby/network/Topology.hh"
36#include "mem/ruby/slicc_interface/AbstractController.hh"
37
38using namespace std;
39
40const int INFINITE_LATENCY = 10000; // Yes, this is a big hack
41
42// Note: In this file, we use the first 2*m_nodes SwitchIDs to
43// represent the input and output endpoint links. These really are
44// not 'switches', as they will not have a Switch object allocated for
45// them. The first m_nodes SwitchIDs are the links into the network,
46// the second m_nodes set of SwitchIDs represent the the output queues
47// of the network.
48
49Topology::Topology(uint32_t num_routers,
50 const vector<BasicExtLink *> &ext_links,
51 const vector<BasicIntLink *> &int_links)
52 : m_nodes(ext_links.size()), m_number_of_switches(num_routers),
53 m_ext_link_vector(ext_links), m_int_link_vector(int_links)
54{
55 // Total nodes/controllers in network
56 assert(m_nodes > 1);
57
58 // analyze both the internal and external links, create data structures.
59 // The python created external links are bi-directional,
60 // and the python created internal links are uni-directional.
61 // The networks and topology utilize uni-directional links.
62 // Thus each external link is converted to two calls to addLink,
63 // one for each direction.
64 //
65 // External Links
66 for (vector<BasicExtLink*>::const_iterator i = ext_links.begin();
67 i != ext_links.end(); ++i) {
68 BasicExtLink *ext_link = (*i);
69 AbstractController *abs_cntrl = ext_link->params()->ext_node;
70 BasicRouter *router = ext_link->params()->int_node;
71
72 int machine_base_idx = MachineType_base_number(abs_cntrl->getType());
73 int ext_idx1 = machine_base_idx + abs_cntrl->getVersion();
74 int ext_idx2 = ext_idx1 + m_nodes;
75 int int_idx = router->params()->router_id + 2*m_nodes;
76
77 // create the internal uni-directional links in both directions
78 // ext to int
79 addLink(ext_idx1, int_idx, ext_link);
80 // int to ext
81 addLink(int_idx, ext_idx2, ext_link);
82 }
83
84 // Internal Links
85 for (vector<BasicIntLink*>::const_iterator i = int_links.begin();
86 i != int_links.end(); ++i) {
87 BasicIntLink *int_link = (*i);
88 BasicRouter *router_src = int_link->params()->src_node;
89 BasicRouter *router_dst = int_link->params()->dst_node;
90
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <cassert>
30
31#include "base/trace.hh"
32#include "debug/RubyNetwork.hh"
33#include "mem/ruby/common/NetDest.hh"
34#include "mem/ruby/network/BasicLink.hh"
35#include "mem/ruby/network/Topology.hh"
36#include "mem/ruby/slicc_interface/AbstractController.hh"
37
38using namespace std;
39
40const int INFINITE_LATENCY = 10000; // Yes, this is a big hack
41
42// Note: In this file, we use the first 2*m_nodes SwitchIDs to
43// represent the input and output endpoint links. These really are
44// not 'switches', as they will not have a Switch object allocated for
45// them. The first m_nodes SwitchIDs are the links into the network,
46// the second m_nodes set of SwitchIDs represent the the output queues
47// of the network.
48
49Topology::Topology(uint32_t num_routers,
50 const vector<BasicExtLink *> &ext_links,
51 const vector<BasicIntLink *> &int_links)
52 : m_nodes(ext_links.size()), m_number_of_switches(num_routers),
53 m_ext_link_vector(ext_links), m_int_link_vector(int_links)
54{
55 // Total nodes/controllers in network
56 assert(m_nodes > 1);
57
58 // analyze both the internal and external links, create data structures.
59 // The python created external links are bi-directional,
60 // and the python created internal links are uni-directional.
61 // The networks and topology utilize uni-directional links.
62 // Thus each external link is converted to two calls to addLink,
63 // one for each direction.
64 //
65 // External Links
66 for (vector<BasicExtLink*>::const_iterator i = ext_links.begin();
67 i != ext_links.end(); ++i) {
68 BasicExtLink *ext_link = (*i);
69 AbstractController *abs_cntrl = ext_link->params()->ext_node;
70 BasicRouter *router = ext_link->params()->int_node;
71
72 int machine_base_idx = MachineType_base_number(abs_cntrl->getType());
73 int ext_idx1 = machine_base_idx + abs_cntrl->getVersion();
74 int ext_idx2 = ext_idx1 + m_nodes;
75 int int_idx = router->params()->router_id + 2*m_nodes;
76
77 // create the internal uni-directional links in both directions
78 // ext to int
79 addLink(ext_idx1, int_idx, ext_link);
80 // int to ext
81 addLink(int_idx, ext_idx2, ext_link);
82 }
83
84 // Internal Links
85 for (vector<BasicIntLink*>::const_iterator i = int_links.begin();
86 i != int_links.end(); ++i) {
87 BasicIntLink *int_link = (*i);
88 BasicRouter *router_src = int_link->params()->src_node;
89 BasicRouter *router_dst = int_link->params()->dst_node;
90
91 PortDirection src_outport = int_link->params()->src_outport;
92 PortDirection dst_inport = int_link->params()->dst_inport;
93
91 // Store the IntLink pointers for later
92 m_int_link_vector.push_back(int_link);
93
94 int src = router_src->params()->router_id + 2*m_nodes;
95 int dst = router_dst->params()->router_id + 2*m_nodes;
96
97 // create the internal uni-directional link from src to dst
94 // Store the IntLink pointers for later
95 m_int_link_vector.push_back(int_link);
96
97 int src = router_src->params()->router_id + 2*m_nodes;
98 int dst = router_dst->params()->router_id + 2*m_nodes;
99
100 // create the internal uni-directional link from src to dst
98 addLink(src, dst, int_link);
101 addLink(src, dst, int_link, src_outport, dst_inport);
99 }
100}
101
102void
103Topology::createLinks(Network *net)
104{
105 // Find maximum switchID
106 SwitchID max_switch_id = 0;
107 for (LinkMap::const_iterator i = m_link_map.begin();
108 i != m_link_map.end(); ++i) {
109 std::pair<SwitchID, SwitchID> src_dest = (*i).first;
110 max_switch_id = max(max_switch_id, src_dest.first);
111 max_switch_id = max(max_switch_id, src_dest.second);
112 }
113
114 // Initialize weight, latency, and inter switched vectors
115 int num_switches = max_switch_id+1;
116 Matrix topology_weights(num_switches,
117 vector<int>(num_switches, INFINITE_LATENCY));
118 Matrix component_latencies(num_switches,
119 vector<int>(num_switches, -1));
120 Matrix component_inter_switches(num_switches,
121 vector<int>(num_switches, 0));
122
123 // Set identity weights to zero
124 for (int i = 0; i < topology_weights.size(); i++) {
125 topology_weights[i][i] = 0;
126 }
127
128 // Fill in the topology weights and bandwidth multipliers
129 for (LinkMap::const_iterator i = m_link_map.begin();
130 i != m_link_map.end(); ++i) {
131 std::pair<int, int> src_dest = (*i).first;
132 BasicLink* link = (*i).second.link;
133 int src = src_dest.first;
134 int dst = src_dest.second;
135 component_latencies[src][dst] = link->m_latency;
136 topology_weights[src][dst] = link->m_weight;
137 }
138
139 // Walk topology and hookup the links
140 Matrix dist = shortest_path(topology_weights, component_latencies,
141 component_inter_switches);
142
143 for (int i = 0; i < topology_weights.size(); i++) {
144 for (int j = 0; j < topology_weights[i].size(); j++) {
145 int weight = topology_weights[i][j];
146 if (weight > 0 && weight != INFINITE_LATENCY) {
147 NetDest destination_set =
148 shortest_path_to_node(i, j, topology_weights, dist);
149 makeLink(net, i, j, destination_set);
150 }
151 }
152 }
153}
154
155void
102 }
103}
104
105void
106Topology::createLinks(Network *net)
107{
108 // Find maximum switchID
109 SwitchID max_switch_id = 0;
110 for (LinkMap::const_iterator i = m_link_map.begin();
111 i != m_link_map.end(); ++i) {
112 std::pair<SwitchID, SwitchID> src_dest = (*i).first;
113 max_switch_id = max(max_switch_id, src_dest.first);
114 max_switch_id = max(max_switch_id, src_dest.second);
115 }
116
117 // Initialize weight, latency, and inter switched vectors
118 int num_switches = max_switch_id+1;
119 Matrix topology_weights(num_switches,
120 vector<int>(num_switches, INFINITE_LATENCY));
121 Matrix component_latencies(num_switches,
122 vector<int>(num_switches, -1));
123 Matrix component_inter_switches(num_switches,
124 vector<int>(num_switches, 0));
125
126 // Set identity weights to zero
127 for (int i = 0; i < topology_weights.size(); i++) {
128 topology_weights[i][i] = 0;
129 }
130
131 // Fill in the topology weights and bandwidth multipliers
132 for (LinkMap::const_iterator i = m_link_map.begin();
133 i != m_link_map.end(); ++i) {
134 std::pair<int, int> src_dest = (*i).first;
135 BasicLink* link = (*i).second.link;
136 int src = src_dest.first;
137 int dst = src_dest.second;
138 component_latencies[src][dst] = link->m_latency;
139 topology_weights[src][dst] = link->m_weight;
140 }
141
142 // Walk topology and hookup the links
143 Matrix dist = shortest_path(topology_weights, component_latencies,
144 component_inter_switches);
145
146 for (int i = 0; i < topology_weights.size(); i++) {
147 for (int j = 0; j < topology_weights[i].size(); j++) {
148 int weight = topology_weights[i][j];
149 if (weight > 0 && weight != INFINITE_LATENCY) {
150 NetDest destination_set =
151 shortest_path_to_node(i, j, topology_weights, dist);
152 makeLink(net, i, j, destination_set);
153 }
154 }
155 }
156}
157
158void
156Topology::addLink(SwitchID src, SwitchID dest, BasicLink* link)
159Topology::addLink(SwitchID src, SwitchID dest, BasicLink* link,
160 PortDirection src_outport_dirn,
161 PortDirection dst_inport_dirn)
157{
158 assert(src <= m_number_of_switches+m_nodes+m_nodes);
159 assert(dest <= m_number_of_switches+m_nodes+m_nodes);
160
161 std::pair<int, int> src_dest_pair;
162 LinkEntry link_entry;
163
164 src_dest_pair.first = src;
165 src_dest_pair.second = dest;
166 link_entry.link = link;
162{
163 assert(src <= m_number_of_switches+m_nodes+m_nodes);
164 assert(dest <= m_number_of_switches+m_nodes+m_nodes);
165
166 std::pair<int, int> src_dest_pair;
167 LinkEntry link_entry;
168
169 src_dest_pair.first = src;
170 src_dest_pair.second = dest;
171 link_entry.link = link;
172 link_entry.src_outport_dirn = src_outport_dirn;
173 link_entry.dst_inport_dirn = dst_inport_dirn;
167 m_link_map[src_dest_pair] = link_entry;
168}
169
170void
171Topology::makeLink(Network *net, SwitchID src, SwitchID dest,
172 const NetDest& routing_table_entry)
173{
174 // Make sure we're not trying to connect two end-point nodes
175 // directly together
176 assert(src >= 2 * m_nodes || dest >= 2 * m_nodes);
177
178 std::pair<int, int> src_dest;
179 LinkEntry link_entry;
180
181 if (src < m_nodes) {
182 src_dest.first = src;
183 src_dest.second = dest;
184 link_entry = m_link_map[src_dest];
185 net->makeExtInLink(src, dest - (2 * m_nodes), link_entry.link,
186 routing_table_entry);
187 } else if (dest < 2*m_nodes) {
188 assert(dest >= m_nodes);
189 NodeID node = dest - m_nodes;
190 src_dest.first = src;
191 src_dest.second = dest;
192 link_entry = m_link_map[src_dest];
193 net->makeExtOutLink(src - (2 * m_nodes), node, link_entry.link,
194 routing_table_entry);
195 } else {
196 assert((src >= 2 * m_nodes) && (dest >= 2 * m_nodes));
197 src_dest.first = src;
198 src_dest.second = dest;
199 link_entry = m_link_map[src_dest];
200 net->makeInternalLink(src - (2 * m_nodes), dest - (2 * m_nodes),
201 link_entry.link,
174 m_link_map[src_dest_pair] = link_entry;
175}
176
177void
178Topology::makeLink(Network *net, SwitchID src, SwitchID dest,
179 const NetDest& routing_table_entry)
180{
181 // Make sure we're not trying to connect two end-point nodes
182 // directly together
183 assert(src >= 2 * m_nodes || dest >= 2 * m_nodes);
184
185 std::pair<int, int> src_dest;
186 LinkEntry link_entry;
187
188 if (src < m_nodes) {
189 src_dest.first = src;
190 src_dest.second = dest;
191 link_entry = m_link_map[src_dest];
192 net->makeExtInLink(src, dest - (2 * m_nodes), link_entry.link,
193 routing_table_entry);
194 } else if (dest < 2*m_nodes) {
195 assert(dest >= m_nodes);
196 NodeID node = dest - m_nodes;
197 src_dest.first = src;
198 src_dest.second = dest;
199 link_entry = m_link_map[src_dest];
200 net->makeExtOutLink(src - (2 * m_nodes), node, link_entry.link,
201 routing_table_entry);
202 } else {
203 assert((src >= 2 * m_nodes) && (dest >= 2 * m_nodes));
204 src_dest.first = src;
205 src_dest.second = dest;
206 link_entry = m_link_map[src_dest];
207 net->makeInternalLink(src - (2 * m_nodes), dest - (2 * m_nodes),
208 link_entry.link,
202 routing_table_entry);
209 routing_table_entry,
210 link_entry.src_outport_dirn,
211 link_entry.dst_inport_dirn);
203 }
204}
205
206// The following all-pairs shortest path algorithm is based on the
207// discussion from Cormen et al., Chapter 26.1.
208void
209Topology::extend_shortest_path(Matrix &current_dist, Matrix &latencies,
210 Matrix &inter_switches)
211{
212 bool change = true;
213 int nodes = current_dist.size();
214
215 while (change) {
216 change = false;
217 for (int i = 0; i < nodes; i++) {
218 for (int j = 0; j < nodes; j++) {
219 int minimum = current_dist[i][j];
220 int previous_minimum = minimum;
221 int intermediate_switch = -1;
222 for (int k = 0; k < nodes; k++) {
223 minimum = min(minimum,
224 current_dist[i][k] + current_dist[k][j]);
225 if (previous_minimum != minimum) {
226 intermediate_switch = k;
227 inter_switches[i][j] =
228 inter_switches[i][k] +
229 inter_switches[k][j] + 1;
230 }
231 previous_minimum = minimum;
232 }
233 if (current_dist[i][j] != minimum) {
234 change = true;
235 current_dist[i][j] = minimum;
236 assert(intermediate_switch >= 0);
237 assert(intermediate_switch < latencies[i].size());
238 latencies[i][j] = latencies[i][intermediate_switch] +
239 latencies[intermediate_switch][j];
240 }
241 }
242 }
243 }
244}
245
246Matrix
247Topology::shortest_path(const Matrix &weights, Matrix &latencies,
248 Matrix &inter_switches)
249{
250 Matrix dist = weights;
251 extend_shortest_path(dist, latencies, inter_switches);
252 return dist;
253}
254
255bool
256Topology::link_is_shortest_path_to_node(SwitchID src, SwitchID next,
257 SwitchID final, const Matrix &weights,
258 const Matrix &dist)
259{
260 return weights[src][next] + dist[next][final] == dist[src][final];
261}
262
263NetDest
264Topology::shortest_path_to_node(SwitchID src, SwitchID next,
265 const Matrix &weights, const Matrix &dist)
266{
267 NetDest result;
268 int d = 0;
269 int machines;
270 int max_machines;
271
272 machines = MachineType_NUM;
273 max_machines = MachineType_base_number(MachineType_NUM);
274
275 for (int m = 0; m < machines; m++) {
276 for (NodeID i = 0; i < MachineType_base_count((MachineType)m); i++) {
277 // we use "d+max_machines" below since the "destination"
278 // switches for the machines are numbered
279 // [MachineType_base_number(MachineType_NUM)...
280 // 2*MachineType_base_number(MachineType_NUM)-1] for the
281 // component network
282 if (link_is_shortest_path_to_node(src, next, d + max_machines,
283 weights, dist)) {
284 MachineID mach = {(MachineType)m, i};
285 result.add(mach);
286 }
287 d++;
288 }
289 }
290
291 DPRINTF(RubyNetwork, "Returning shortest path\n"
292 "(src-(2*max_machines)): %d, (next-(2*max_machines)): %d, "
293 "src: %d, next: %d, result: %s\n",
294 (src-(2*max_machines)), (next-(2*max_machines)),
295 src, next, result);
296
297 return result;
298}
212 }
213}
214
215// The following all-pairs shortest path algorithm is based on the
216// discussion from Cormen et al., Chapter 26.1.
217void
218Topology::extend_shortest_path(Matrix &current_dist, Matrix &latencies,
219 Matrix &inter_switches)
220{
221 bool change = true;
222 int nodes = current_dist.size();
223
224 while (change) {
225 change = false;
226 for (int i = 0; i < nodes; i++) {
227 for (int j = 0; j < nodes; j++) {
228 int minimum = current_dist[i][j];
229 int previous_minimum = minimum;
230 int intermediate_switch = -1;
231 for (int k = 0; k < nodes; k++) {
232 minimum = min(minimum,
233 current_dist[i][k] + current_dist[k][j]);
234 if (previous_minimum != minimum) {
235 intermediate_switch = k;
236 inter_switches[i][j] =
237 inter_switches[i][k] +
238 inter_switches[k][j] + 1;
239 }
240 previous_minimum = minimum;
241 }
242 if (current_dist[i][j] != minimum) {
243 change = true;
244 current_dist[i][j] = minimum;
245 assert(intermediate_switch >= 0);
246 assert(intermediate_switch < latencies[i].size());
247 latencies[i][j] = latencies[i][intermediate_switch] +
248 latencies[intermediate_switch][j];
249 }
250 }
251 }
252 }
253}
254
255Matrix
256Topology::shortest_path(const Matrix &weights, Matrix &latencies,
257 Matrix &inter_switches)
258{
259 Matrix dist = weights;
260 extend_shortest_path(dist, latencies, inter_switches);
261 return dist;
262}
263
264bool
265Topology::link_is_shortest_path_to_node(SwitchID src, SwitchID next,
266 SwitchID final, const Matrix &weights,
267 const Matrix &dist)
268{
269 return weights[src][next] + dist[next][final] == dist[src][final];
270}
271
272NetDest
273Topology::shortest_path_to_node(SwitchID src, SwitchID next,
274 const Matrix &weights, const Matrix &dist)
275{
276 NetDest result;
277 int d = 0;
278 int machines;
279 int max_machines;
280
281 machines = MachineType_NUM;
282 max_machines = MachineType_base_number(MachineType_NUM);
283
284 for (int m = 0; m < machines; m++) {
285 for (NodeID i = 0; i < MachineType_base_count((MachineType)m); i++) {
286 // we use "d+max_machines" below since the "destination"
287 // switches for the machines are numbered
288 // [MachineType_base_number(MachineType_NUM)...
289 // 2*MachineType_base_number(MachineType_NUM)-1] for the
290 // component network
291 if (link_is_shortest_path_to_node(src, next, d + max_machines,
292 weights, dist)) {
293 MachineID mach = {(MachineType)m, i};
294 result.add(mach);
295 }
296 d++;
297 }
298 }
299
300 DPRINTF(RubyNetwork, "Returning shortest path\n"
301 "(src-(2*max_machines)): %d, (next-(2*max_machines)): %d, "
302 "src: %d, next: %d, result: %s\n",
303 (src-(2*max_machines)), (next-(2*max_machines)),
304 src, next, result);
305
306 return result;
307}