Topology.cc (11096:efaacec43726) Topology.cc (11320:42ecb523c64a)
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <cassert>
30
31#include "base/trace.hh"
32#include "debug/RubyNetwork.hh"
33#include "mem/ruby/common/NetDest.hh"
34#include "mem/ruby/network/BasicLink.hh"
35#include "mem/ruby/network/Topology.hh"
36#include "mem/ruby/slicc_interface/AbstractController.hh"
37
38using namespace std;
39
40const int INFINITE_LATENCY = 10000; // Yes, this is a big hack
41
42// Note: In this file, we use the first 2*m_nodes SwitchIDs to
43// represent the input and output endpoint links. These really are
44// not 'switches', as they will not have a Switch object allocated for
45// them. The first m_nodes SwitchIDs are the links into the network,
46// the second m_nodes set of SwitchIDs represent the the output queues
47// of the network.
48
49Topology::Topology(uint32_t num_routers,
50 const vector<BasicExtLink *> &ext_links,
51 const vector<BasicIntLink *> &int_links)
52 : m_nodes(ext_links.size()), m_number_of_switches(num_routers),
53 m_ext_link_vector(ext_links), m_int_link_vector(int_links)
54{
55 // Total nodes/controllers in network
56 assert(m_nodes > 1);
57
58 // analyze both the internal and external links, create data structures
59 // Note that the python created links are bi-directional, but that the
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <cassert>
30
31#include "base/trace.hh"
32#include "debug/RubyNetwork.hh"
33#include "mem/ruby/common/NetDest.hh"
34#include "mem/ruby/network/BasicLink.hh"
35#include "mem/ruby/network/Topology.hh"
36#include "mem/ruby/slicc_interface/AbstractController.hh"
37
38using namespace std;
39
40const int INFINITE_LATENCY = 10000; // Yes, this is a big hack
41
42// Note: In this file, we use the first 2*m_nodes SwitchIDs to
43// represent the input and output endpoint links. These really are
44// not 'switches', as they will not have a Switch object allocated for
45// them. The first m_nodes SwitchIDs are the links into the network,
46// the second m_nodes set of SwitchIDs represent the the output queues
47// of the network.
48
49Topology::Topology(uint32_t num_routers,
50 const vector<BasicExtLink *> &ext_links,
51 const vector<BasicIntLink *> &int_links)
52 : m_nodes(ext_links.size()), m_number_of_switches(num_routers),
53 m_ext_link_vector(ext_links), m_int_link_vector(int_links)
54{
55 // Total nodes/controllers in network
56 assert(m_nodes > 1);
57
58 // analyze both the internal and external links, create data structures
59 // Note that the python created links are bi-directional, but that the
60 // topology and networks utilize uni-directional links. Thus each
60 // topology and networks utilize uni-directional links. Thus each
61 // BasicLink is converted to two calls to add link, on for each direction
62 for (vector<BasicExtLink*>::const_iterator i = ext_links.begin();
63 i != ext_links.end(); ++i) {
64 BasicExtLink *ext_link = (*i);
65 AbstractController *abs_cntrl = ext_link->params()->ext_node;
66 BasicRouter *router = ext_link->params()->int_node;
67
68 int machine_base_idx = MachineType_base_number(abs_cntrl->getType());
69 int ext_idx1 = machine_base_idx + abs_cntrl->getVersion();
70 int ext_idx2 = ext_idx1 + m_nodes;
71 int int_idx = router->params()->router_id + 2*m_nodes;
72
73 // create the internal uni-directional links in both directions
74 // the first direction is marked: In
75 addLink(ext_idx1, int_idx, ext_link, LinkDirection_In);
76 // the first direction is marked: Out
77 addLink(int_idx, ext_idx2, ext_link, LinkDirection_Out);
78 }
79
80 for (vector<BasicIntLink*>::const_iterator i = int_links.begin();
81 i != int_links.end(); ++i) {
82 BasicIntLink *int_link = (*i);
83 BasicRouter *router_a = int_link->params()->node_a;
84 BasicRouter *router_b = int_link->params()->node_b;
85
86 // Store the IntLink pointers for later
87 m_int_link_vector.push_back(int_link);
88
89 int a = router_a->params()->router_id + 2*m_nodes;
90 int b = router_b->params()->router_id + 2*m_nodes;
91
92 // create the internal uni-directional links in both directions
93 // the first direction is marked: In
94 addLink(a, b, int_link, LinkDirection_In);
95 // the second direction is marked: Out
96 addLink(b, a, int_link, LinkDirection_Out);
97 }
98}
99
100void
101Topology::createLinks(Network *net)
102{
103 // Find maximum switchID
104 SwitchID max_switch_id = 0;
105 for (LinkMap::const_iterator i = m_link_map.begin();
106 i != m_link_map.end(); ++i) {
107 std::pair<SwitchID, SwitchID> src_dest = (*i).first;
108 max_switch_id = max(max_switch_id, src_dest.first);
61 // BasicLink is converted to two calls to add link, on for each direction
62 for (vector<BasicExtLink*>::const_iterator i = ext_links.begin();
63 i != ext_links.end(); ++i) {
64 BasicExtLink *ext_link = (*i);
65 AbstractController *abs_cntrl = ext_link->params()->ext_node;
66 BasicRouter *router = ext_link->params()->int_node;
67
68 int machine_base_idx = MachineType_base_number(abs_cntrl->getType());
69 int ext_idx1 = machine_base_idx + abs_cntrl->getVersion();
70 int ext_idx2 = ext_idx1 + m_nodes;
71 int int_idx = router->params()->router_id + 2*m_nodes;
72
73 // create the internal uni-directional links in both directions
74 // the first direction is marked: In
75 addLink(ext_idx1, int_idx, ext_link, LinkDirection_In);
76 // the first direction is marked: Out
77 addLink(int_idx, ext_idx2, ext_link, LinkDirection_Out);
78 }
79
80 for (vector<BasicIntLink*>::const_iterator i = int_links.begin();
81 i != int_links.end(); ++i) {
82 BasicIntLink *int_link = (*i);
83 BasicRouter *router_a = int_link->params()->node_a;
84 BasicRouter *router_b = int_link->params()->node_b;
85
86 // Store the IntLink pointers for later
87 m_int_link_vector.push_back(int_link);
88
89 int a = router_a->params()->router_id + 2*m_nodes;
90 int b = router_b->params()->router_id + 2*m_nodes;
91
92 // create the internal uni-directional links in both directions
93 // the first direction is marked: In
94 addLink(a, b, int_link, LinkDirection_In);
95 // the second direction is marked: Out
96 addLink(b, a, int_link, LinkDirection_Out);
97 }
98}
99
100void
101Topology::createLinks(Network *net)
102{
103 // Find maximum switchID
104 SwitchID max_switch_id = 0;
105 for (LinkMap::const_iterator i = m_link_map.begin();
106 i != m_link_map.end(); ++i) {
107 std::pair<SwitchID, SwitchID> src_dest = (*i).first;
108 max_switch_id = max(max_switch_id, src_dest.first);
109 max_switch_id = max(max_switch_id, src_dest.second);
109 max_switch_id = max(max_switch_id, src_dest.second);
110 }
111
112 // Initialize weight, latency, and inter switched vectors
113 int num_switches = max_switch_id+1;
114 Matrix topology_weights(num_switches,
115 vector<int>(num_switches, INFINITE_LATENCY));
116 Matrix component_latencies(num_switches,
117 vector<int>(num_switches, -1));
118 Matrix component_inter_switches(num_switches,
119 vector<int>(num_switches, 0));
120
121 // Set identity weights to zero
122 for (int i = 0; i < topology_weights.size(); i++) {
123 topology_weights[i][i] = 0;
124 }
125
126 // Fill in the topology weights and bandwidth multipliers
127 for (LinkMap::const_iterator i = m_link_map.begin();
128 i != m_link_map.end(); ++i) {
129 std::pair<int, int> src_dest = (*i).first;
130 BasicLink* link = (*i).second.link;
131 int src = src_dest.first;
132 int dst = src_dest.second;
133 component_latencies[src][dst] = link->m_latency;
134 topology_weights[src][dst] = link->m_weight;
135 }
110 }
111
112 // Initialize weight, latency, and inter switched vectors
113 int num_switches = max_switch_id+1;
114 Matrix topology_weights(num_switches,
115 vector<int>(num_switches, INFINITE_LATENCY));
116 Matrix component_latencies(num_switches,
117 vector<int>(num_switches, -1));
118 Matrix component_inter_switches(num_switches,
119 vector<int>(num_switches, 0));
120
121 // Set identity weights to zero
122 for (int i = 0; i < topology_weights.size(); i++) {
123 topology_weights[i][i] = 0;
124 }
125
126 // Fill in the topology weights and bandwidth multipliers
127 for (LinkMap::const_iterator i = m_link_map.begin();
128 i != m_link_map.end(); ++i) {
129 std::pair<int, int> src_dest = (*i).first;
130 BasicLink* link = (*i).second.link;
131 int src = src_dest.first;
132 int dst = src_dest.second;
133 component_latencies[src][dst] = link->m_latency;
134 topology_weights[src][dst] = link->m_weight;
135 }
136
136
137 // Walk topology and hookup the links
138 Matrix dist = shortest_path(topology_weights, component_latencies,
139 component_inter_switches);
140
141 for (int i = 0; i < topology_weights.size(); i++) {
142 for (int j = 0; j < topology_weights[i].size(); j++) {
143 int weight = topology_weights[i][j];
144 if (weight > 0 && weight != INFINITE_LATENCY) {
145 NetDest destination_set =
146 shortest_path_to_node(i, j, topology_weights, dist);
147 makeLink(net, i, j, destination_set);
148 }
149 }
150 }
151}
152
153void
137 // Walk topology and hookup the links
138 Matrix dist = shortest_path(topology_weights, component_latencies,
139 component_inter_switches);
140
141 for (int i = 0; i < topology_weights.size(); i++) {
142 for (int j = 0; j < topology_weights[i].size(); j++) {
143 int weight = topology_weights[i][j];
144 if (weight > 0 && weight != INFINITE_LATENCY) {
145 NetDest destination_set =
146 shortest_path_to_node(i, j, topology_weights, dist);
147 makeLink(net, i, j, destination_set);
148 }
149 }
150 }
151}
152
153void
154Topology::addLink(SwitchID src, SwitchID dest, BasicLink* link,
154Topology::addLink(SwitchID src, SwitchID dest, BasicLink* link,
155 LinkDirection dir)
156{
157 assert(src <= m_number_of_switches+m_nodes+m_nodes);
158 assert(dest <= m_number_of_switches+m_nodes+m_nodes);
155 LinkDirection dir)
156{
157 assert(src <= m_number_of_switches+m_nodes+m_nodes);
158 assert(dest <= m_number_of_switches+m_nodes+m_nodes);
159
159
160 std::pair<int, int> src_dest_pair;
161 LinkEntry link_entry;
162
163 src_dest_pair.first = src;
164 src_dest_pair.second = dest;
165 link_entry.direction = dir;
166 link_entry.link = link;
167 m_link_map[src_dest_pair] = link_entry;
168}
169
170void
171Topology::makeLink(Network *net, SwitchID src, SwitchID dest,
172 const NetDest& routing_table_entry)
173{
174 // Make sure we're not trying to connect two end-point nodes
175 // directly together
176 assert(src >= 2 * m_nodes || dest >= 2 * m_nodes);
177
178 std::pair<int, int> src_dest;
160 std::pair<int, int> src_dest_pair;
161 LinkEntry link_entry;
162
163 src_dest_pair.first = src;
164 src_dest_pair.second = dest;
165 link_entry.direction = dir;
166 link_entry.link = link;
167 m_link_map[src_dest_pair] = link_entry;
168}
169
170void
171Topology::makeLink(Network *net, SwitchID src, SwitchID dest,
172 const NetDest& routing_table_entry)
173{
174 // Make sure we're not trying to connect two end-point nodes
175 // directly together
176 assert(src >= 2 * m_nodes || dest >= 2 * m_nodes);
177
178 std::pair<int, int> src_dest;
179 LinkEntry link_entry;
179 LinkEntry link_entry;
180
181 if (src < m_nodes) {
182 src_dest.first = src;
183 src_dest.second = dest;
184 link_entry = m_link_map[src_dest];
185 net->makeInLink(src, dest - (2 * m_nodes), link_entry.link,
186 link_entry.direction, routing_table_entry);
187 } else if (dest < 2*m_nodes) {
188 assert(dest >= m_nodes);
189 NodeID node = dest - m_nodes;
190 src_dest.first = src;
191 src_dest.second = dest;
192 link_entry = m_link_map[src_dest];
193 net->makeOutLink(src - (2 * m_nodes), node, link_entry.link,
194 link_entry.direction, routing_table_entry);
195 } else {
196 assert((src >= 2 * m_nodes) && (dest >= 2 * m_nodes));
197 src_dest.first = src;
198 src_dest.second = dest;
199 link_entry = m_link_map[src_dest];
200 net->makeInternalLink(src - (2 * m_nodes), dest - (2 * m_nodes),
201 link_entry.link, link_entry.direction,
202 routing_table_entry);
203 }
204}
205
206// The following all-pairs shortest path algorithm is based on the
207// discussion from Cormen et al., Chapter 26.1.
208void
209Topology::extend_shortest_path(Matrix &current_dist, Matrix &latencies,
210 Matrix &inter_switches)
211{
212 bool change = true;
213 int nodes = current_dist.size();
214
215 while (change) {
216 change = false;
217 for (int i = 0; i < nodes; i++) {
218 for (int j = 0; j < nodes; j++) {
219 int minimum = current_dist[i][j];
220 int previous_minimum = minimum;
221 int intermediate_switch = -1;
222 for (int k = 0; k < nodes; k++) {
223 minimum = min(minimum,
224 current_dist[i][k] + current_dist[k][j]);
225 if (previous_minimum != minimum) {
226 intermediate_switch = k;
227 inter_switches[i][j] =
228 inter_switches[i][k] +
229 inter_switches[k][j] + 1;
230 }
231 previous_minimum = minimum;
232 }
233 if (current_dist[i][j] != minimum) {
234 change = true;
235 current_dist[i][j] = minimum;
236 assert(intermediate_switch >= 0);
237 assert(intermediate_switch < latencies[i].size());
238 latencies[i][j] = latencies[i][intermediate_switch] +
239 latencies[intermediate_switch][j];
240 }
241 }
242 }
243 }
244}
245
246Matrix
247Topology::shortest_path(const Matrix &weights, Matrix &latencies,
248 Matrix &inter_switches)
249{
250 Matrix dist = weights;
251 extend_shortest_path(dist, latencies, inter_switches);
252 return dist;
253}
254
255bool
256Topology::link_is_shortest_path_to_node(SwitchID src, SwitchID next,
257 SwitchID final, const Matrix &weights,
258 const Matrix &dist)
259{
260 return weights[src][next] + dist[next][final] == dist[src][final];
261}
262
263NetDest
264Topology::shortest_path_to_node(SwitchID src, SwitchID next,
265 const Matrix &weights, const Matrix &dist)
266{
267 NetDest result;
268 int d = 0;
269 int machines;
270 int max_machines;
271
272 machines = MachineType_NUM;
273 max_machines = MachineType_base_number(MachineType_NUM);
274
275 for (int m = 0; m < machines; m++) {
276 for (NodeID i = 0; i < MachineType_base_count((MachineType)m); i++) {
277 // we use "d+max_machines" below since the "destination"
278 // switches for the machines are numbered
279 // [MachineType_base_number(MachineType_NUM)...
280 // 2*MachineType_base_number(MachineType_NUM)-1] for the
281 // component network
282 if (link_is_shortest_path_to_node(src, next, d + max_machines,
283 weights, dist)) {
284 MachineID mach = {(MachineType)m, i};
285 result.add(mach);
286 }
287 d++;
288 }
289 }
290
291 DPRINTF(RubyNetwork, "Returning shortest path\n"
292 "(src-(2*max_machines)): %d, (next-(2*max_machines)): %d, "
293 "src: %d, next: %d, result: %s\n",
294 (src-(2*max_machines)), (next-(2*max_machines)),
295 src, next, result);
296
297 return result;
298}
180
181 if (src < m_nodes) {
182 src_dest.first = src;
183 src_dest.second = dest;
184 link_entry = m_link_map[src_dest];
185 net->makeInLink(src, dest - (2 * m_nodes), link_entry.link,
186 link_entry.direction, routing_table_entry);
187 } else if (dest < 2*m_nodes) {
188 assert(dest >= m_nodes);
189 NodeID node = dest - m_nodes;
190 src_dest.first = src;
191 src_dest.second = dest;
192 link_entry = m_link_map[src_dest];
193 net->makeOutLink(src - (2 * m_nodes), node, link_entry.link,
194 link_entry.direction, routing_table_entry);
195 } else {
196 assert((src >= 2 * m_nodes) && (dest >= 2 * m_nodes));
197 src_dest.first = src;
198 src_dest.second = dest;
199 link_entry = m_link_map[src_dest];
200 net->makeInternalLink(src - (2 * m_nodes), dest - (2 * m_nodes),
201 link_entry.link, link_entry.direction,
202 routing_table_entry);
203 }
204}
205
206// The following all-pairs shortest path algorithm is based on the
207// discussion from Cormen et al., Chapter 26.1.
208void
209Topology::extend_shortest_path(Matrix &current_dist, Matrix &latencies,
210 Matrix &inter_switches)
211{
212 bool change = true;
213 int nodes = current_dist.size();
214
215 while (change) {
216 change = false;
217 for (int i = 0; i < nodes; i++) {
218 for (int j = 0; j < nodes; j++) {
219 int minimum = current_dist[i][j];
220 int previous_minimum = minimum;
221 int intermediate_switch = -1;
222 for (int k = 0; k < nodes; k++) {
223 minimum = min(minimum,
224 current_dist[i][k] + current_dist[k][j]);
225 if (previous_minimum != minimum) {
226 intermediate_switch = k;
227 inter_switches[i][j] =
228 inter_switches[i][k] +
229 inter_switches[k][j] + 1;
230 }
231 previous_minimum = minimum;
232 }
233 if (current_dist[i][j] != minimum) {
234 change = true;
235 current_dist[i][j] = minimum;
236 assert(intermediate_switch >= 0);
237 assert(intermediate_switch < latencies[i].size());
238 latencies[i][j] = latencies[i][intermediate_switch] +
239 latencies[intermediate_switch][j];
240 }
241 }
242 }
243 }
244}
245
246Matrix
247Topology::shortest_path(const Matrix &weights, Matrix &latencies,
248 Matrix &inter_switches)
249{
250 Matrix dist = weights;
251 extend_shortest_path(dist, latencies, inter_switches);
252 return dist;
253}
254
255bool
256Topology::link_is_shortest_path_to_node(SwitchID src, SwitchID next,
257 SwitchID final, const Matrix &weights,
258 const Matrix &dist)
259{
260 return weights[src][next] + dist[next][final] == dist[src][final];
261}
262
263NetDest
264Topology::shortest_path_to_node(SwitchID src, SwitchID next,
265 const Matrix &weights, const Matrix &dist)
266{
267 NetDest result;
268 int d = 0;
269 int machines;
270 int max_machines;
271
272 machines = MachineType_NUM;
273 max_machines = MachineType_base_number(MachineType_NUM);
274
275 for (int m = 0; m < machines; m++) {
276 for (NodeID i = 0; i < MachineType_base_count((MachineType)m); i++) {
277 // we use "d+max_machines" below since the "destination"
278 // switches for the machines are numbered
279 // [MachineType_base_number(MachineType_NUM)...
280 // 2*MachineType_base_number(MachineType_NUM)-1] for the
281 // component network
282 if (link_is_shortest_path_to_node(src, next, d + max_machines,
283 weights, dist)) {
284 MachineID mach = {(MachineType)m, i};
285 result.add(mach);
286 }
287 d++;
288 }
289 }
290
291 DPRINTF(RubyNetwork, "Returning shortest path\n"
292 "(src-(2*max_machines)): %d, (next-(2*max_machines)): %d, "
293 "src: %d, next: %d, result: %s\n",
294 (src-(2*max_machines)), (next-(2*max_machines)),
295 src, next, result);
296
297 return result;
298}