MessageBuffer.cc (11321:02e930db812d) MessageBuffer.cc (11732:e15e445c21a6)
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <cassert>
30
31#include "base/cprintf.hh"
32#include "base/misc.hh"
33#include "base/random.hh"
34#include "base/stl_helpers.hh"
35#include "debug/RubyQueue.hh"
36#include "mem/ruby/network/MessageBuffer.hh"
37#include "mem/ruby/system/RubySystem.hh"
38
39using namespace std;
40using m5::stl_helpers::operator<<;
41
42MessageBuffer::MessageBuffer(const Params *p)
43 : SimObject(p),
44 m_max_size(p->buffer_size), m_time_last_time_size_checked(0),
45 m_time_last_time_enqueue(0), m_time_last_time_pop(0),
46 m_last_arrival_time(0), m_strict_fifo(p->ordered),
47 m_randomization(p->randomization)
48{
49 m_msg_counter = 0;
50 m_consumer = NULL;
51 m_size_last_time_size_checked = 0;
52 m_size_at_cycle_start = 0;
53 m_msgs_this_cycle = 0;
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <cassert>
30
31#include "base/cprintf.hh"
32#include "base/misc.hh"
33#include "base/random.hh"
34#include "base/stl_helpers.hh"
35#include "debug/RubyQueue.hh"
36#include "mem/ruby/network/MessageBuffer.hh"
37#include "mem/ruby/system/RubySystem.hh"
38
39using namespace std;
40using m5::stl_helpers::operator<<;
41
42MessageBuffer::MessageBuffer(const Params *p)
43 : SimObject(p),
44 m_max_size(p->buffer_size), m_time_last_time_size_checked(0),
45 m_time_last_time_enqueue(0), m_time_last_time_pop(0),
46 m_last_arrival_time(0), m_strict_fifo(p->ordered),
47 m_randomization(p->randomization)
48{
49 m_msg_counter = 0;
50 m_consumer = NULL;
51 m_size_last_time_size_checked = 0;
52 m_size_at_cycle_start = 0;
53 m_msgs_this_cycle = 0;
54 m_not_avail_count = 0;
55 m_priority_rank = 0;
56
57 m_stall_msg_map.clear();
58 m_input_link_id = 0;
59 m_vnet_id = 0;
60}
61
62unsigned int
63MessageBuffer::getSize(Tick curTime)
64{
65 if (m_time_last_time_size_checked != curTime) {
66 m_time_last_time_size_checked = curTime;
67 m_size_last_time_size_checked = m_prio_heap.size();
68 }
69
70 return m_size_last_time_size_checked;
71}
72
73bool
74MessageBuffer::areNSlotsAvailable(unsigned int n, Tick current_time)
75{
76
77 // fast path when message buffers have infinite size
78 if (m_max_size == 0) {
79 return true;
80 }
81
82 // determine the correct size for the current cycle
83 // pop operations shouldn't effect the network's visible size
84 // until schd cycle, but enqueue operations effect the visible
85 // size immediately
86 unsigned int current_size = 0;
87
88 if (m_time_last_time_pop < current_time) {
89 // no pops this cycle - heap size is correct
90 current_size = m_prio_heap.size();
91 } else {
92 if (m_time_last_time_enqueue < current_time) {
93 // no enqueues this cycle - m_size_at_cycle_start is correct
94 current_size = m_size_at_cycle_start;
95 } else {
96 // both pops and enqueues occured this cycle - add new
97 // enqueued msgs to m_size_at_cycle_start
98 current_size = m_size_at_cycle_start + m_msgs_this_cycle;
99 }
100 }
101
102 // now compare the new size with our max size
103 if (current_size + n <= m_max_size) {
104 return true;
105 } else {
106 DPRINTF(RubyQueue, "n: %d, current_size: %d, heap size: %d, "
107 "m_max_size: %d\n",
108 n, current_size, m_prio_heap.size(), m_max_size);
109 m_not_avail_count++;
110 return false;
111 }
112}
113
114const Message*
115MessageBuffer::peek() const
116{
117 DPRINTF(RubyQueue, "Peeking at head of queue.\n");
118 const Message* msg_ptr = m_prio_heap.front().get();
119 assert(msg_ptr);
120
121 DPRINTF(RubyQueue, "Message: %s\n", (*msg_ptr));
122 return msg_ptr;
123}
124
125// FIXME - move me somewhere else
126Tick
127random_time()
128{
129 Tick time = 1;
130 time += random_mt.random(0, 3); // [0...3]
131 if (random_mt.random(0, 7) == 0) { // 1 in 8 chance
132 time += 100 + random_mt.random(1, 15); // 100 + [1...15]
133 }
134 return time;
135}
136
137void
138MessageBuffer::enqueue(MsgPtr message, Tick current_time, Tick delta)
139{
140 // record current time incase we have a pop that also adjusts my size
141 if (m_time_last_time_enqueue < current_time) {
142 m_msgs_this_cycle = 0; // first msg this cycle
143 m_time_last_time_enqueue = current_time;
144 }
145
146 m_msg_counter++;
147 m_msgs_this_cycle++;
148
149 // Calculate the arrival time of the message, that is, the first
150 // cycle the message can be dequeued.
151 assert(delta > 0);
152 Tick arrival_time = 0;
153
154 if (!RubySystem::getRandomization() || !m_randomization) {
155 // No randomization
156 arrival_time = current_time + delta;
157 } else {
158 // Randomization - ignore delta
159 if (m_strict_fifo) {
160 if (m_last_arrival_time < current_time) {
161 m_last_arrival_time = current_time;
162 }
163 arrival_time = m_last_arrival_time + random_time();
164 } else {
165 arrival_time = current_time + random_time();
166 }
167 }
168
169 // Check the arrival time
170 assert(arrival_time > current_time);
171 if (m_strict_fifo) {
172 if (arrival_time < m_last_arrival_time) {
173 panic("FIFO ordering violated: %s name: %s current time: %d "
174 "delta: %d arrival_time: %d last arrival_time: %d\n",
175 *this, name(), current_time, delta, arrival_time,
176 m_last_arrival_time);
177 }
178 }
179
180 // If running a cache trace, don't worry about the last arrival checks
181 if (!RubySystem::getWarmupEnabled()) {
182 m_last_arrival_time = arrival_time;
183 }
184
185 // compute the delay cycles and set enqueue time
186 Message* msg_ptr = message.get();
187 assert(msg_ptr != NULL);
188
189 assert(current_time >= msg_ptr->getLastEnqueueTime() &&
190 "ensure we aren't dequeued early");
191
192 msg_ptr->updateDelayedTicks(current_time);
193 msg_ptr->setLastEnqueueTime(arrival_time);
194 msg_ptr->setMsgCounter(m_msg_counter);
195
196 // Insert the message into the priority heap
197 m_prio_heap.push_back(message);
198 push_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
199
200 DPRINTF(RubyQueue, "Enqueue arrival_time: %lld, Message: %s\n",
201 arrival_time, *(message.get()));
202
203 // Schedule the wakeup
204 assert(m_consumer != NULL);
205 m_consumer->scheduleEventAbsolute(arrival_time);
206 m_consumer->storeEventInfo(m_vnet_id);
207}
208
209Tick
210MessageBuffer::dequeue(Tick current_time)
211{
212 DPRINTF(RubyQueue, "Popping\n");
213 assert(isReady(current_time));
214
215 // get MsgPtr of the message about to be dequeued
216 MsgPtr message = m_prio_heap.front();
217
218 // get the delay cycles
219 message->updateDelayedTicks(current_time);
220 Tick delay = message->getDelayedTicks();
221
222 // record previous size and time so the current buffer size isn't
223 // adjusted until schd cycle
224 if (m_time_last_time_pop < current_time) {
225 m_size_at_cycle_start = m_prio_heap.size();
226 m_time_last_time_pop = current_time;
227 }
228
229 pop_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
230 m_prio_heap.pop_back();
231
232 return delay;
233}
234
235void
236MessageBuffer::clear()
237{
238 m_prio_heap.clear();
239
240 m_msg_counter = 0;
241 m_time_last_time_enqueue = 0;
242 m_time_last_time_pop = 0;
243 m_size_at_cycle_start = 0;
244 m_msgs_this_cycle = 0;
245}
246
247void
248MessageBuffer::recycle(Tick current_time, Tick recycle_latency)
249{
250 DPRINTF(RubyQueue, "Recycling.\n");
251 assert(isReady(current_time));
252 MsgPtr node = m_prio_heap.front();
253 pop_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
254
255 Tick future_time = current_time + recycle_latency;
256 node->setLastEnqueueTime(future_time);
257
258 m_prio_heap.back() = node;
259 push_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
260 m_consumer->scheduleEventAbsolute(future_time);
261}
262
263void
264MessageBuffer::reanalyzeList(list<MsgPtr> &lt, Tick schdTick)
265{
266 while (!lt.empty()) {
267 m_msg_counter++;
268 MsgPtr m = lt.front();
269 m->setLastEnqueueTime(schdTick);
270 m->setMsgCounter(m_msg_counter);
271
272 m_prio_heap.push_back(m);
273 push_heap(m_prio_heap.begin(), m_prio_heap.end(),
274 greater<MsgPtr>());
275
276 m_consumer->scheduleEventAbsolute(schdTick);
277 lt.pop_front();
278 }
279}
280
281void
282MessageBuffer::reanalyzeMessages(Addr addr, Tick current_time)
283{
284 DPRINTF(RubyQueue, "ReanalyzeMessages %#x\n", addr);
285 assert(m_stall_msg_map.count(addr) > 0);
286
287 //
288 // Put all stalled messages associated with this address back on the
289 // prio heap. The reanalyzeList call will make sure the consumer is
290 // scheduled for the current cycle so that the previously stalled messages
291 // will be observed before any younger messages that may arrive this cycle
292 //
293 reanalyzeList(m_stall_msg_map[addr], current_time);
294 m_stall_msg_map.erase(addr);
295}
296
297void
298MessageBuffer::reanalyzeAllMessages(Tick current_time)
299{
300 DPRINTF(RubyQueue, "ReanalyzeAllMessages\n");
301
302 //
303 // Put all stalled messages associated with this address back on the
304 // prio heap. The reanalyzeList call will make sure the consumer is
305 // scheduled for the current cycle so that the previously stalled messages
306 // will be observed before any younger messages that may arrive this cycle.
307 //
308 for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
309 map_iter != m_stall_msg_map.end(); ++map_iter) {
310 reanalyzeList(map_iter->second, current_time);
311 }
312 m_stall_msg_map.clear();
313}
314
315void
316MessageBuffer::stallMessage(Addr addr, Tick current_time)
317{
318 DPRINTF(RubyQueue, "Stalling due to %#x\n", addr);
319 assert(isReady(current_time));
320 assert(getOffset(addr) == 0);
321 MsgPtr message = m_prio_heap.front();
322
323 dequeue(current_time);
324
325 //
326 // Note: no event is scheduled to analyze the map at a later time.
327 // Instead the controller is responsible to call reanalyzeMessages when
328 // these addresses change state.
329 //
330 (m_stall_msg_map[addr]).push_back(message);
331}
332
333void
334MessageBuffer::print(ostream& out) const
335{
336 ccprintf(out, "[MessageBuffer: ");
337 if (m_consumer != NULL) {
338 ccprintf(out, " consumer-yes ");
339 }
340
341 vector<MsgPtr> copy(m_prio_heap);
342 sort_heap(copy.begin(), copy.end(), greater<MsgPtr>());
343 ccprintf(out, "%s] %s", copy, name());
344}
345
346bool
347MessageBuffer::isReady(Tick current_time) const
348{
349 return ((m_prio_heap.size() > 0) &&
350 (m_prio_heap.front()->getLastEnqueueTime() <= current_time));
351}
352
54 m_priority_rank = 0;
55
56 m_stall_msg_map.clear();
57 m_input_link_id = 0;
58 m_vnet_id = 0;
59}
60
61unsigned int
62MessageBuffer::getSize(Tick curTime)
63{
64 if (m_time_last_time_size_checked != curTime) {
65 m_time_last_time_size_checked = curTime;
66 m_size_last_time_size_checked = m_prio_heap.size();
67 }
68
69 return m_size_last_time_size_checked;
70}
71
72bool
73MessageBuffer::areNSlotsAvailable(unsigned int n, Tick current_time)
74{
75
76 // fast path when message buffers have infinite size
77 if (m_max_size == 0) {
78 return true;
79 }
80
81 // determine the correct size for the current cycle
82 // pop operations shouldn't effect the network's visible size
83 // until schd cycle, but enqueue operations effect the visible
84 // size immediately
85 unsigned int current_size = 0;
86
87 if (m_time_last_time_pop < current_time) {
88 // no pops this cycle - heap size is correct
89 current_size = m_prio_heap.size();
90 } else {
91 if (m_time_last_time_enqueue < current_time) {
92 // no enqueues this cycle - m_size_at_cycle_start is correct
93 current_size = m_size_at_cycle_start;
94 } else {
95 // both pops and enqueues occured this cycle - add new
96 // enqueued msgs to m_size_at_cycle_start
97 current_size = m_size_at_cycle_start + m_msgs_this_cycle;
98 }
99 }
100
101 // now compare the new size with our max size
102 if (current_size + n <= m_max_size) {
103 return true;
104 } else {
105 DPRINTF(RubyQueue, "n: %d, current_size: %d, heap size: %d, "
106 "m_max_size: %d\n",
107 n, current_size, m_prio_heap.size(), m_max_size);
108 m_not_avail_count++;
109 return false;
110 }
111}
112
113const Message*
114MessageBuffer::peek() const
115{
116 DPRINTF(RubyQueue, "Peeking at head of queue.\n");
117 const Message* msg_ptr = m_prio_heap.front().get();
118 assert(msg_ptr);
119
120 DPRINTF(RubyQueue, "Message: %s\n", (*msg_ptr));
121 return msg_ptr;
122}
123
124// FIXME - move me somewhere else
125Tick
126random_time()
127{
128 Tick time = 1;
129 time += random_mt.random(0, 3); // [0...3]
130 if (random_mt.random(0, 7) == 0) { // 1 in 8 chance
131 time += 100 + random_mt.random(1, 15); // 100 + [1...15]
132 }
133 return time;
134}
135
136void
137MessageBuffer::enqueue(MsgPtr message, Tick current_time, Tick delta)
138{
139 // record current time incase we have a pop that also adjusts my size
140 if (m_time_last_time_enqueue < current_time) {
141 m_msgs_this_cycle = 0; // first msg this cycle
142 m_time_last_time_enqueue = current_time;
143 }
144
145 m_msg_counter++;
146 m_msgs_this_cycle++;
147
148 // Calculate the arrival time of the message, that is, the first
149 // cycle the message can be dequeued.
150 assert(delta > 0);
151 Tick arrival_time = 0;
152
153 if (!RubySystem::getRandomization() || !m_randomization) {
154 // No randomization
155 arrival_time = current_time + delta;
156 } else {
157 // Randomization - ignore delta
158 if (m_strict_fifo) {
159 if (m_last_arrival_time < current_time) {
160 m_last_arrival_time = current_time;
161 }
162 arrival_time = m_last_arrival_time + random_time();
163 } else {
164 arrival_time = current_time + random_time();
165 }
166 }
167
168 // Check the arrival time
169 assert(arrival_time > current_time);
170 if (m_strict_fifo) {
171 if (arrival_time < m_last_arrival_time) {
172 panic("FIFO ordering violated: %s name: %s current time: %d "
173 "delta: %d arrival_time: %d last arrival_time: %d\n",
174 *this, name(), current_time, delta, arrival_time,
175 m_last_arrival_time);
176 }
177 }
178
179 // If running a cache trace, don't worry about the last arrival checks
180 if (!RubySystem::getWarmupEnabled()) {
181 m_last_arrival_time = arrival_time;
182 }
183
184 // compute the delay cycles and set enqueue time
185 Message* msg_ptr = message.get();
186 assert(msg_ptr != NULL);
187
188 assert(current_time >= msg_ptr->getLastEnqueueTime() &&
189 "ensure we aren't dequeued early");
190
191 msg_ptr->updateDelayedTicks(current_time);
192 msg_ptr->setLastEnqueueTime(arrival_time);
193 msg_ptr->setMsgCounter(m_msg_counter);
194
195 // Insert the message into the priority heap
196 m_prio_heap.push_back(message);
197 push_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
198
199 DPRINTF(RubyQueue, "Enqueue arrival_time: %lld, Message: %s\n",
200 arrival_time, *(message.get()));
201
202 // Schedule the wakeup
203 assert(m_consumer != NULL);
204 m_consumer->scheduleEventAbsolute(arrival_time);
205 m_consumer->storeEventInfo(m_vnet_id);
206}
207
208Tick
209MessageBuffer::dequeue(Tick current_time)
210{
211 DPRINTF(RubyQueue, "Popping\n");
212 assert(isReady(current_time));
213
214 // get MsgPtr of the message about to be dequeued
215 MsgPtr message = m_prio_heap.front();
216
217 // get the delay cycles
218 message->updateDelayedTicks(current_time);
219 Tick delay = message->getDelayedTicks();
220
221 // record previous size and time so the current buffer size isn't
222 // adjusted until schd cycle
223 if (m_time_last_time_pop < current_time) {
224 m_size_at_cycle_start = m_prio_heap.size();
225 m_time_last_time_pop = current_time;
226 }
227
228 pop_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
229 m_prio_heap.pop_back();
230
231 return delay;
232}
233
234void
235MessageBuffer::clear()
236{
237 m_prio_heap.clear();
238
239 m_msg_counter = 0;
240 m_time_last_time_enqueue = 0;
241 m_time_last_time_pop = 0;
242 m_size_at_cycle_start = 0;
243 m_msgs_this_cycle = 0;
244}
245
246void
247MessageBuffer::recycle(Tick current_time, Tick recycle_latency)
248{
249 DPRINTF(RubyQueue, "Recycling.\n");
250 assert(isReady(current_time));
251 MsgPtr node = m_prio_heap.front();
252 pop_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
253
254 Tick future_time = current_time + recycle_latency;
255 node->setLastEnqueueTime(future_time);
256
257 m_prio_heap.back() = node;
258 push_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
259 m_consumer->scheduleEventAbsolute(future_time);
260}
261
262void
263MessageBuffer::reanalyzeList(list<MsgPtr> &lt, Tick schdTick)
264{
265 while (!lt.empty()) {
266 m_msg_counter++;
267 MsgPtr m = lt.front();
268 m->setLastEnqueueTime(schdTick);
269 m->setMsgCounter(m_msg_counter);
270
271 m_prio_heap.push_back(m);
272 push_heap(m_prio_heap.begin(), m_prio_heap.end(),
273 greater<MsgPtr>());
274
275 m_consumer->scheduleEventAbsolute(schdTick);
276 lt.pop_front();
277 }
278}
279
280void
281MessageBuffer::reanalyzeMessages(Addr addr, Tick current_time)
282{
283 DPRINTF(RubyQueue, "ReanalyzeMessages %#x\n", addr);
284 assert(m_stall_msg_map.count(addr) > 0);
285
286 //
287 // Put all stalled messages associated with this address back on the
288 // prio heap. The reanalyzeList call will make sure the consumer is
289 // scheduled for the current cycle so that the previously stalled messages
290 // will be observed before any younger messages that may arrive this cycle
291 //
292 reanalyzeList(m_stall_msg_map[addr], current_time);
293 m_stall_msg_map.erase(addr);
294}
295
296void
297MessageBuffer::reanalyzeAllMessages(Tick current_time)
298{
299 DPRINTF(RubyQueue, "ReanalyzeAllMessages\n");
300
301 //
302 // Put all stalled messages associated with this address back on the
303 // prio heap. The reanalyzeList call will make sure the consumer is
304 // scheduled for the current cycle so that the previously stalled messages
305 // will be observed before any younger messages that may arrive this cycle.
306 //
307 for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
308 map_iter != m_stall_msg_map.end(); ++map_iter) {
309 reanalyzeList(map_iter->second, current_time);
310 }
311 m_stall_msg_map.clear();
312}
313
314void
315MessageBuffer::stallMessage(Addr addr, Tick current_time)
316{
317 DPRINTF(RubyQueue, "Stalling due to %#x\n", addr);
318 assert(isReady(current_time));
319 assert(getOffset(addr) == 0);
320 MsgPtr message = m_prio_heap.front();
321
322 dequeue(current_time);
323
324 //
325 // Note: no event is scheduled to analyze the map at a later time.
326 // Instead the controller is responsible to call reanalyzeMessages when
327 // these addresses change state.
328 //
329 (m_stall_msg_map[addr]).push_back(message);
330}
331
332void
333MessageBuffer::print(ostream& out) const
334{
335 ccprintf(out, "[MessageBuffer: ");
336 if (m_consumer != NULL) {
337 ccprintf(out, " consumer-yes ");
338 }
339
340 vector<MsgPtr> copy(m_prio_heap);
341 sort_heap(copy.begin(), copy.end(), greater<MsgPtr>());
342 ccprintf(out, "%s] %s", copy, name());
343}
344
345bool
346MessageBuffer::isReady(Tick current_time) const
347{
348 return ((m_prio_heap.size() > 0) &&
349 (m_prio_heap.front()->getLastEnqueueTime() <= current_time));
350}
351
352void
353MessageBuffer::regStats()
354{
355 m_not_avail_count
356 .name(name() + ".not_avail_count")
357 .desc("Number of times this buffer did not have N slots available")
358 .flags(Stats::nozero);
359}
360
353uint32_t
354MessageBuffer::functionalWrite(Packet *pkt)
355{
356 uint32_t num_functional_writes = 0;
357
358 // Check the priority heap and write any messages that may
359 // correspond to the address in the packet.
360 for (unsigned int i = 0; i < m_prio_heap.size(); ++i) {
361 Message *msg = m_prio_heap[i].get();
362 if (msg->functionalWrite(pkt)) {
363 num_functional_writes++;
364 }
365 }
366
367 // Check the stall queue and write any messages that may
368 // correspond to the address in the packet.
369 for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
370 map_iter != m_stall_msg_map.end();
371 ++map_iter) {
372
373 for (std::list<MsgPtr>::iterator it = (map_iter->second).begin();
374 it != (map_iter->second).end(); ++it) {
375
376 Message *msg = (*it).get();
377 if (msg->functionalWrite(pkt)) {
378 num_functional_writes++;
379 }
380 }
381 }
382
383 return num_functional_writes;
384}
385
386MessageBuffer *
387MessageBufferParams::create()
388{
389 return new MessageBuffer(this);
390}
361uint32_t
362MessageBuffer::functionalWrite(Packet *pkt)
363{
364 uint32_t num_functional_writes = 0;
365
366 // Check the priority heap and write any messages that may
367 // correspond to the address in the packet.
368 for (unsigned int i = 0; i < m_prio_heap.size(); ++i) {
369 Message *msg = m_prio_heap[i].get();
370 if (msg->functionalWrite(pkt)) {
371 num_functional_writes++;
372 }
373 }
374
375 // Check the stall queue and write any messages that may
376 // correspond to the address in the packet.
377 for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
378 map_iter != m_stall_msg_map.end();
379 ++map_iter) {
380
381 for (std::list<MsgPtr>::iterator it = (map_iter->second).begin();
382 it != (map_iter->second).end(); ++it) {
383
384 Message *msg = (*it).get();
385 if (msg->functionalWrite(pkt)) {
386 num_functional_writes++;
387 }
388 }
389 }
390
391 return num_functional_writes;
392}
393
394MessageBuffer *
395MessageBufferParams::create()
396{
397 return new MessageBuffer(this);
398}