MessageBuffer.cc (10986:4fbe4b0adb4d) MessageBuffer.cc (11021:e8a6637afa4c)
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <cassert>
30
31#include "base/cprintf.hh"
32#include "base/misc.hh"
33#include "base/random.hh"
34#include "base/stl_helpers.hh"
35#include "debug/RubyQueue.hh"
36#include "mem/ruby/network/MessageBuffer.hh"
37#include "mem/ruby/system/System.hh"
38
39using namespace std;
40using m5::stl_helpers::operator<<;
41
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <cassert>
30
31#include "base/cprintf.hh"
32#include "base/misc.hh"
33#include "base/random.hh"
34#include "base/stl_helpers.hh"
35#include "debug/RubyQueue.hh"
36#include "mem/ruby/network/MessageBuffer.hh"
37#include "mem/ruby/system/System.hh"
38
39using namespace std;
40using m5::stl_helpers::operator<<;
41
42MessageBuffer::MessageBuffer(const string &name)
43 : m_time_last_time_size_checked(0), m_time_last_time_enqueue(0),
44 m_time_last_time_pop(0), m_last_arrival_time(0)
42MessageBuffer::MessageBuffer(const Params *p)
43 : SimObject(p), m_recycle_latency(p->recycle_latency),
44 m_max_size(p->buffer_size), m_time_last_time_size_checked(0),
45 m_time_last_time_enqueue(0), m_time_last_time_pop(0),
46 m_last_arrival_time(0), m_strict_fifo(p->ordered),
47 m_randomization(p->randomization)
45{
46 m_msg_counter = 0;
47 m_consumer = NULL;
48 m_sender = NULL;
49 m_receiver = NULL;
50
48{
49 m_msg_counter = 0;
50 m_consumer = NULL;
51 m_sender = NULL;
52 m_receiver = NULL;
53
51 m_ordering_set = false;
52 m_strict_fifo = true;
53 m_max_size = 0;
54 m_randomization = true;
55 m_size_last_time_size_checked = 0;
56 m_size_at_cycle_start = 0;
57 m_msgs_this_cycle = 0;
58 m_not_avail_count = 0;
59 m_priority_rank = 0;
54 m_size_last_time_size_checked = 0;
55 m_size_at_cycle_start = 0;
56 m_msgs_this_cycle = 0;
57 m_not_avail_count = 0;
58 m_priority_rank = 0;
60 m_name = name;
61
62 m_stall_msg_map.clear();
63 m_input_link_id = 0;
64 m_vnet_id = 0;
65}
66
67unsigned int
68MessageBuffer::getSize()
69{
70 if (m_time_last_time_size_checked != m_receiver->curCycle()) {
71 m_time_last_time_size_checked = m_receiver->curCycle();
72 m_size_last_time_size_checked = m_prio_heap.size();
73 }
74
75 return m_size_last_time_size_checked;
76}
77
78bool
79MessageBuffer::areNSlotsAvailable(unsigned int n)
80{
81
82 // fast path when message buffers have infinite size
83 if (m_max_size == 0) {
84 return true;
85 }
86
87 // determine the correct size for the current cycle
88 // pop operations shouldn't effect the network's visible size
89 // until schd cycle, but enqueue operations effect the visible
90 // size immediately
91 unsigned int current_size = 0;
92
93 if (m_time_last_time_pop < m_sender->clockEdge()) {
94 // no pops this cycle - heap size is correct
95 current_size = m_prio_heap.size();
96 } else {
97 if (m_time_last_time_enqueue < m_sender->curCycle()) {
98 // no enqueues this cycle - m_size_at_cycle_start is correct
99 current_size = m_size_at_cycle_start;
100 } else {
101 // both pops and enqueues occured this cycle - add new
102 // enqueued msgs to m_size_at_cycle_start
103 current_size = m_size_at_cycle_start + m_msgs_this_cycle;
104 }
105 }
106
107 // now compare the new size with our max size
108 if (current_size + n <= m_max_size) {
109 return true;
110 } else {
111 DPRINTF(RubyQueue, "n: %d, current_size: %d, heap size: %d, "
112 "m_max_size: %d\n",
113 n, current_size, m_prio_heap.size(), m_max_size);
114 m_not_avail_count++;
115 return false;
116 }
117}
118
119const Message*
120MessageBuffer::peek() const
121{
122 DPRINTF(RubyQueue, "Peeking at head of queue.\n");
123 assert(isReady());
124
125 const Message* msg_ptr = m_prio_heap.front().get();
126 assert(msg_ptr);
127
128 DPRINTF(RubyQueue, "Message: %s\n", (*msg_ptr));
129 return msg_ptr;
130}
131
132// FIXME - move me somewhere else
133Cycles
134random_time()
135{
136 Cycles time(1);
137 time += Cycles(random_mt.random(0, 3)); // [0...3]
138 if (random_mt.random(0, 7) == 0) { // 1 in 8 chance
139 time += Cycles(100 + random_mt.random(1, 15)); // 100 + [1...15]
140 }
141 return time;
142}
143
144void
145MessageBuffer::enqueue(MsgPtr message, Cycles delta)
146{
59
60 m_stall_msg_map.clear();
61 m_input_link_id = 0;
62 m_vnet_id = 0;
63}
64
65unsigned int
66MessageBuffer::getSize()
67{
68 if (m_time_last_time_size_checked != m_receiver->curCycle()) {
69 m_time_last_time_size_checked = m_receiver->curCycle();
70 m_size_last_time_size_checked = m_prio_heap.size();
71 }
72
73 return m_size_last_time_size_checked;
74}
75
76bool
77MessageBuffer::areNSlotsAvailable(unsigned int n)
78{
79
80 // fast path when message buffers have infinite size
81 if (m_max_size == 0) {
82 return true;
83 }
84
85 // determine the correct size for the current cycle
86 // pop operations shouldn't effect the network's visible size
87 // until schd cycle, but enqueue operations effect the visible
88 // size immediately
89 unsigned int current_size = 0;
90
91 if (m_time_last_time_pop < m_sender->clockEdge()) {
92 // no pops this cycle - heap size is correct
93 current_size = m_prio_heap.size();
94 } else {
95 if (m_time_last_time_enqueue < m_sender->curCycle()) {
96 // no enqueues this cycle - m_size_at_cycle_start is correct
97 current_size = m_size_at_cycle_start;
98 } else {
99 // both pops and enqueues occured this cycle - add new
100 // enqueued msgs to m_size_at_cycle_start
101 current_size = m_size_at_cycle_start + m_msgs_this_cycle;
102 }
103 }
104
105 // now compare the new size with our max size
106 if (current_size + n <= m_max_size) {
107 return true;
108 } else {
109 DPRINTF(RubyQueue, "n: %d, current_size: %d, heap size: %d, "
110 "m_max_size: %d\n",
111 n, current_size, m_prio_heap.size(), m_max_size);
112 m_not_avail_count++;
113 return false;
114 }
115}
116
117const Message*
118MessageBuffer::peek() const
119{
120 DPRINTF(RubyQueue, "Peeking at head of queue.\n");
121 assert(isReady());
122
123 const Message* msg_ptr = m_prio_heap.front().get();
124 assert(msg_ptr);
125
126 DPRINTF(RubyQueue, "Message: %s\n", (*msg_ptr));
127 return msg_ptr;
128}
129
130// FIXME - move me somewhere else
131Cycles
132random_time()
133{
134 Cycles time(1);
135 time += Cycles(random_mt.random(0, 3)); // [0...3]
136 if (random_mt.random(0, 7) == 0) { // 1 in 8 chance
137 time += Cycles(100 + random_mt.random(1, 15)); // 100 + [1...15]
138 }
139 return time;
140}
141
142void
143MessageBuffer::enqueue(MsgPtr message, Cycles delta)
144{
147 assert(m_ordering_set);
148
149 // record current time incase we have a pop that also adjusts my size
150 if (m_time_last_time_enqueue < m_sender->curCycle()) {
151 m_msgs_this_cycle = 0; // first msg this cycle
152 m_time_last_time_enqueue = m_sender->curCycle();
153 }
154
155 m_msg_counter++;
156 m_msgs_this_cycle++;
157
158 // Calculate the arrival time of the message, that is, the first
159 // cycle the message can be dequeued.
160 assert(delta > 0);
161 Tick current_time = m_sender->clockEdge();
162 Tick arrival_time = 0;
163
164 if (!RubySystem::getRandomization() || !m_randomization) {
165 // No randomization
166 arrival_time = current_time + delta * m_sender->clockPeriod();
167 } else {
168 // Randomization - ignore delta
169 if (m_strict_fifo) {
170 if (m_last_arrival_time < current_time) {
171 m_last_arrival_time = current_time;
172 }
173 arrival_time = m_last_arrival_time +
174 random_time() * m_sender->clockPeriod();
175 } else {
176 arrival_time = current_time +
177 random_time() * m_sender->clockPeriod();
178 }
179 }
180
181 // Check the arrival time
182 assert(arrival_time > current_time);
183 if (m_strict_fifo) {
184 if (arrival_time < m_last_arrival_time) {
185 panic("FIFO ordering violated: %s name: %s current time: %d "
186 "delta: %d arrival_time: %d last arrival_time: %d\n",
145 // record current time incase we have a pop that also adjusts my size
146 if (m_time_last_time_enqueue < m_sender->curCycle()) {
147 m_msgs_this_cycle = 0; // first msg this cycle
148 m_time_last_time_enqueue = m_sender->curCycle();
149 }
150
151 m_msg_counter++;
152 m_msgs_this_cycle++;
153
154 // Calculate the arrival time of the message, that is, the first
155 // cycle the message can be dequeued.
156 assert(delta > 0);
157 Tick current_time = m_sender->clockEdge();
158 Tick arrival_time = 0;
159
160 if (!RubySystem::getRandomization() || !m_randomization) {
161 // No randomization
162 arrival_time = current_time + delta * m_sender->clockPeriod();
163 } else {
164 // Randomization - ignore delta
165 if (m_strict_fifo) {
166 if (m_last_arrival_time < current_time) {
167 m_last_arrival_time = current_time;
168 }
169 arrival_time = m_last_arrival_time +
170 random_time() * m_sender->clockPeriod();
171 } else {
172 arrival_time = current_time +
173 random_time() * m_sender->clockPeriod();
174 }
175 }
176
177 // Check the arrival time
178 assert(arrival_time > current_time);
179 if (m_strict_fifo) {
180 if (arrival_time < m_last_arrival_time) {
181 panic("FIFO ordering violated: %s name: %s current time: %d "
182 "delta: %d arrival_time: %d last arrival_time: %d\n",
187 *this, m_name, current_time,
183 *this, name(), current_time,
188 delta * m_sender->clockPeriod(),
189 arrival_time, m_last_arrival_time);
190 }
191 }
192
193 // If running a cache trace, don't worry about the last arrival checks
194 if (!RubySystem::getWarmupEnabled()) {
195 m_last_arrival_time = arrival_time;
196 }
197
198 // compute the delay cycles and set enqueue time
199 Message* msg_ptr = message.get();
200 assert(msg_ptr != NULL);
201
202 assert(m_sender->clockEdge() >= msg_ptr->getLastEnqueueTime() &&
203 "ensure we aren't dequeued early");
204
205 msg_ptr->updateDelayedTicks(m_sender->clockEdge());
206 msg_ptr->setLastEnqueueTime(arrival_time);
207 msg_ptr->setMsgCounter(m_msg_counter);
208
209 // Insert the message into the priority heap
210 m_prio_heap.push_back(message);
211 push_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
212
213 DPRINTF(RubyQueue, "Enqueue arrival_time: %lld, Message: %s\n",
214 arrival_time, *(message.get()));
215
216 // Schedule the wakeup
217 assert(m_consumer != NULL);
218 m_consumer->scheduleEventAbsolute(arrival_time);
219 m_consumer->storeEventInfo(m_vnet_id);
220}
221
222Cycles
223MessageBuffer::dequeue()
224{
225 DPRINTF(RubyQueue, "Popping\n");
226 assert(isReady());
227
228 // get MsgPtr of the message about to be dequeued
229 MsgPtr message = m_prio_heap.front();
230
231 // get the delay cycles
232 message->updateDelayedTicks(m_receiver->clockEdge());
233 Cycles delayCycles =
234 m_receiver->ticksToCycles(message->getDelayedTicks());
235
236 // record previous size and time so the current buffer size isn't
237 // adjusted until schd cycle
238 if (m_time_last_time_pop < m_receiver->clockEdge()) {
239 m_size_at_cycle_start = m_prio_heap.size();
240 m_time_last_time_pop = m_receiver->clockEdge();
241 }
242
243 pop_heap(m_prio_heap.begin(), m_prio_heap.end(),
244 greater<MsgPtr>());
245 m_prio_heap.pop_back();
246
247 return delayCycles;
248}
249
250void
251MessageBuffer::clear()
252{
253 m_prio_heap.clear();
254
255 m_msg_counter = 0;
256 m_time_last_time_enqueue = Cycles(0);
257 m_time_last_time_pop = 0;
258 m_size_at_cycle_start = 0;
259 m_msgs_this_cycle = 0;
260}
261
262void
263MessageBuffer::recycle()
264{
265 DPRINTF(RubyQueue, "Recycling.\n");
266 assert(isReady());
267 MsgPtr node = m_prio_heap.front();
268 pop_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
269
270 node->setLastEnqueueTime(m_receiver->clockEdge(m_recycle_latency));
271 m_prio_heap.back() = node;
272 push_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
273 m_consumer->
274 scheduleEventAbsolute(m_receiver->clockEdge(m_recycle_latency));
275}
276
277void
278MessageBuffer::reanalyzeList(list<MsgPtr> &lt, Tick schdTick)
279{
280 while(!lt.empty()) {
281 m_msg_counter++;
282 MsgPtr m = lt.front();
283 m->setLastEnqueueTime(schdTick);
284 m->setMsgCounter(m_msg_counter);
285
286 m_prio_heap.push_back(m);
287 push_heap(m_prio_heap.begin(), m_prio_heap.end(),
288 greater<MsgPtr>());
289
290 m_consumer->scheduleEventAbsolute(schdTick);
291 lt.pop_front();
292 }
293}
294
295void
296MessageBuffer::reanalyzeMessages(const Address& addr)
297{
298 DPRINTF(RubyQueue, "ReanalyzeMessages %s\n", addr);
299 assert(m_stall_msg_map.count(addr) > 0);
300 Tick curTick = m_receiver->clockEdge();
301
302 //
303 // Put all stalled messages associated with this address back on the
304 // prio heap. The reanalyzeList call will make sure the consumer is
305 // scheduled for the current cycle so that the previously stalled messages
306 // will be observed before any younger messages that may arrive this cycle
307 //
308 reanalyzeList(m_stall_msg_map[addr], curTick);
309 m_stall_msg_map.erase(addr);
310}
311
312void
313MessageBuffer::reanalyzeAllMessages()
314{
315 DPRINTF(RubyQueue, "ReanalyzeAllMessages\n");
316 Tick curTick = m_receiver->clockEdge();
317
318 //
319 // Put all stalled messages associated with this address back on the
320 // prio heap. The reanalyzeList call will make sure the consumer is
321 // scheduled for the current cycle so that the previously stalled messages
322 // will be observed before any younger messages that may arrive this cycle.
323 //
324 for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
325 map_iter != m_stall_msg_map.end(); ++map_iter) {
326 reanalyzeList(map_iter->second, curTick);
327 }
328 m_stall_msg_map.clear();
329}
330
331void
332MessageBuffer::stallMessage(const Address& addr)
333{
334 DPRINTF(RubyQueue, "Stalling due to %s\n", addr);
335 assert(isReady());
336 assert(addr.getOffset() == 0);
337 MsgPtr message = m_prio_heap.front();
338
339 dequeue();
340
341 //
342 // Note: no event is scheduled to analyze the map at a later time.
343 // Instead the controller is responsible to call reanalyzeMessages when
344 // these addresses change state.
345 //
346 (m_stall_msg_map[addr]).push_back(message);
347}
348
349void
350MessageBuffer::print(ostream& out) const
351{
352 ccprintf(out, "[MessageBuffer: ");
353 if (m_consumer != NULL) {
354 ccprintf(out, " consumer-yes ");
355 }
356
357 vector<MsgPtr> copy(m_prio_heap);
358 sort_heap(copy.begin(), copy.end(), greater<MsgPtr>());
184 delta * m_sender->clockPeriod(),
185 arrival_time, m_last_arrival_time);
186 }
187 }
188
189 // If running a cache trace, don't worry about the last arrival checks
190 if (!RubySystem::getWarmupEnabled()) {
191 m_last_arrival_time = arrival_time;
192 }
193
194 // compute the delay cycles and set enqueue time
195 Message* msg_ptr = message.get();
196 assert(msg_ptr != NULL);
197
198 assert(m_sender->clockEdge() >= msg_ptr->getLastEnqueueTime() &&
199 "ensure we aren't dequeued early");
200
201 msg_ptr->updateDelayedTicks(m_sender->clockEdge());
202 msg_ptr->setLastEnqueueTime(arrival_time);
203 msg_ptr->setMsgCounter(m_msg_counter);
204
205 // Insert the message into the priority heap
206 m_prio_heap.push_back(message);
207 push_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
208
209 DPRINTF(RubyQueue, "Enqueue arrival_time: %lld, Message: %s\n",
210 arrival_time, *(message.get()));
211
212 // Schedule the wakeup
213 assert(m_consumer != NULL);
214 m_consumer->scheduleEventAbsolute(arrival_time);
215 m_consumer->storeEventInfo(m_vnet_id);
216}
217
218Cycles
219MessageBuffer::dequeue()
220{
221 DPRINTF(RubyQueue, "Popping\n");
222 assert(isReady());
223
224 // get MsgPtr of the message about to be dequeued
225 MsgPtr message = m_prio_heap.front();
226
227 // get the delay cycles
228 message->updateDelayedTicks(m_receiver->clockEdge());
229 Cycles delayCycles =
230 m_receiver->ticksToCycles(message->getDelayedTicks());
231
232 // record previous size and time so the current buffer size isn't
233 // adjusted until schd cycle
234 if (m_time_last_time_pop < m_receiver->clockEdge()) {
235 m_size_at_cycle_start = m_prio_heap.size();
236 m_time_last_time_pop = m_receiver->clockEdge();
237 }
238
239 pop_heap(m_prio_heap.begin(), m_prio_heap.end(),
240 greater<MsgPtr>());
241 m_prio_heap.pop_back();
242
243 return delayCycles;
244}
245
246void
247MessageBuffer::clear()
248{
249 m_prio_heap.clear();
250
251 m_msg_counter = 0;
252 m_time_last_time_enqueue = Cycles(0);
253 m_time_last_time_pop = 0;
254 m_size_at_cycle_start = 0;
255 m_msgs_this_cycle = 0;
256}
257
258void
259MessageBuffer::recycle()
260{
261 DPRINTF(RubyQueue, "Recycling.\n");
262 assert(isReady());
263 MsgPtr node = m_prio_heap.front();
264 pop_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
265
266 node->setLastEnqueueTime(m_receiver->clockEdge(m_recycle_latency));
267 m_prio_heap.back() = node;
268 push_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
269 m_consumer->
270 scheduleEventAbsolute(m_receiver->clockEdge(m_recycle_latency));
271}
272
273void
274MessageBuffer::reanalyzeList(list<MsgPtr> &lt, Tick schdTick)
275{
276 while(!lt.empty()) {
277 m_msg_counter++;
278 MsgPtr m = lt.front();
279 m->setLastEnqueueTime(schdTick);
280 m->setMsgCounter(m_msg_counter);
281
282 m_prio_heap.push_back(m);
283 push_heap(m_prio_heap.begin(), m_prio_heap.end(),
284 greater<MsgPtr>());
285
286 m_consumer->scheduleEventAbsolute(schdTick);
287 lt.pop_front();
288 }
289}
290
291void
292MessageBuffer::reanalyzeMessages(const Address& addr)
293{
294 DPRINTF(RubyQueue, "ReanalyzeMessages %s\n", addr);
295 assert(m_stall_msg_map.count(addr) > 0);
296 Tick curTick = m_receiver->clockEdge();
297
298 //
299 // Put all stalled messages associated with this address back on the
300 // prio heap. The reanalyzeList call will make sure the consumer is
301 // scheduled for the current cycle so that the previously stalled messages
302 // will be observed before any younger messages that may arrive this cycle
303 //
304 reanalyzeList(m_stall_msg_map[addr], curTick);
305 m_stall_msg_map.erase(addr);
306}
307
308void
309MessageBuffer::reanalyzeAllMessages()
310{
311 DPRINTF(RubyQueue, "ReanalyzeAllMessages\n");
312 Tick curTick = m_receiver->clockEdge();
313
314 //
315 // Put all stalled messages associated with this address back on the
316 // prio heap. The reanalyzeList call will make sure the consumer is
317 // scheduled for the current cycle so that the previously stalled messages
318 // will be observed before any younger messages that may arrive this cycle.
319 //
320 for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
321 map_iter != m_stall_msg_map.end(); ++map_iter) {
322 reanalyzeList(map_iter->second, curTick);
323 }
324 m_stall_msg_map.clear();
325}
326
327void
328MessageBuffer::stallMessage(const Address& addr)
329{
330 DPRINTF(RubyQueue, "Stalling due to %s\n", addr);
331 assert(isReady());
332 assert(addr.getOffset() == 0);
333 MsgPtr message = m_prio_heap.front();
334
335 dequeue();
336
337 //
338 // Note: no event is scheduled to analyze the map at a later time.
339 // Instead the controller is responsible to call reanalyzeMessages when
340 // these addresses change state.
341 //
342 (m_stall_msg_map[addr]).push_back(message);
343}
344
345void
346MessageBuffer::print(ostream& out) const
347{
348 ccprintf(out, "[MessageBuffer: ");
349 if (m_consumer != NULL) {
350 ccprintf(out, " consumer-yes ");
351 }
352
353 vector<MsgPtr> copy(m_prio_heap);
354 sort_heap(copy.begin(), copy.end(), greater<MsgPtr>());
359 ccprintf(out, "%s] %s", copy, m_name);
355 ccprintf(out, "%s] %s", copy, name());
360}
361
362bool
363MessageBuffer::isReady() const
364{
365 return ((m_prio_heap.size() > 0) &&
366 (m_prio_heap.front()->getLastEnqueueTime() <= m_receiver->clockEdge()));
367}
368
369bool
370MessageBuffer::functionalRead(Packet *pkt)
371{
372 // Check the priority heap and read any messages that may
373 // correspond to the address in the packet.
374 for (unsigned int i = 0; i < m_prio_heap.size(); ++i) {
375 Message *msg = m_prio_heap[i].get();
376 if (msg->functionalRead(pkt)) return true;
377 }
378
379 // Read the messages in the stall queue that correspond
380 // to the address in the packet.
381 for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
382 map_iter != m_stall_msg_map.end();
383 ++map_iter) {
384
385 for (std::list<MsgPtr>::iterator it = (map_iter->second).begin();
386 it != (map_iter->second).end(); ++it) {
387
388 Message *msg = (*it).get();
389 if (msg->functionalRead(pkt)) return true;
390 }
391 }
392 return false;
393}
394
395uint32_t
396MessageBuffer::functionalWrite(Packet *pkt)
397{
398 uint32_t num_functional_writes = 0;
399
400 // Check the priority heap and write any messages that may
401 // correspond to the address in the packet.
402 for (unsigned int i = 0; i < m_prio_heap.size(); ++i) {
403 Message *msg = m_prio_heap[i].get();
404 if (msg->functionalWrite(pkt)) {
405 num_functional_writes++;
406 }
407 }
408
409 // Check the stall queue and write any messages that may
410 // correspond to the address in the packet.
411 for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
412 map_iter != m_stall_msg_map.end();
413 ++map_iter) {
414
415 for (std::list<MsgPtr>::iterator it = (map_iter->second).begin();
416 it != (map_iter->second).end(); ++it) {
417
418 Message *msg = (*it).get();
419 if (msg->functionalWrite(pkt)) {
420 num_functional_writes++;
421 }
422 }
423 }
424
425 return num_functional_writes;
426}
356}
357
358bool
359MessageBuffer::isReady() const
360{
361 return ((m_prio_heap.size() > 0) &&
362 (m_prio_heap.front()->getLastEnqueueTime() <= m_receiver->clockEdge()));
363}
364
365bool
366MessageBuffer::functionalRead(Packet *pkt)
367{
368 // Check the priority heap and read any messages that may
369 // correspond to the address in the packet.
370 for (unsigned int i = 0; i < m_prio_heap.size(); ++i) {
371 Message *msg = m_prio_heap[i].get();
372 if (msg->functionalRead(pkt)) return true;
373 }
374
375 // Read the messages in the stall queue that correspond
376 // to the address in the packet.
377 for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
378 map_iter != m_stall_msg_map.end();
379 ++map_iter) {
380
381 for (std::list<MsgPtr>::iterator it = (map_iter->second).begin();
382 it != (map_iter->second).end(); ++it) {
383
384 Message *msg = (*it).get();
385 if (msg->functionalRead(pkt)) return true;
386 }
387 }
388 return false;
389}
390
391uint32_t
392MessageBuffer::functionalWrite(Packet *pkt)
393{
394 uint32_t num_functional_writes = 0;
395
396 // Check the priority heap and write any messages that may
397 // correspond to the address in the packet.
398 for (unsigned int i = 0; i < m_prio_heap.size(); ++i) {
399 Message *msg = m_prio_heap[i].get();
400 if (msg->functionalWrite(pkt)) {
401 num_functional_writes++;
402 }
403 }
404
405 // Check the stall queue and write any messages that may
406 // correspond to the address in the packet.
407 for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
408 map_iter != m_stall_msg_map.end();
409 ++map_iter) {
410
411 for (std::list<MsgPtr>::iterator it = (map_iter->second).begin();
412 it != (map_iter->second).end(); ++it) {
413
414 Message *msg = (*it).get();
415 if (msg->functionalWrite(pkt)) {
416 num_functional_writes++;
417 }
418 }
419 }
420
421 return num_functional_writes;
422}
423
424MessageBuffer *
425MessageBufferParams::create()
426{
427 return new MessageBuffer(this);
428}