physical.cc (5477:dc04d655315a) physical.cc (5606:6da7a58b0bc8)
1/*
2 * Copyright (c) 2001-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Ron Dreslinski
29 * Ali Saidi
30 */
31
32#include <sys/types.h>
33#include <sys/mman.h>
34#include <errno.h>
35#include <fcntl.h>
36#include <unistd.h>
37#include <zlib.h>
38
39#include <iostream>
40#include <string>
41
42#include "arch/isa_traits.hh"
43#include "base/misc.hh"
44#include "base/random.hh"
45#include "config/full_system.hh"
46#include "mem/packet_access.hh"
47#include "mem/physical.hh"
48#include "sim/eventq.hh"
49#include "sim/host.hh"
50
51using namespace std;
52using namespace TheISA;
53
54PhysicalMemory::PhysicalMemory(const Params *p)
55 : MemObject(p), pmemAddr(NULL), pagePtr(0),
56 lat(p->latency), lat_var(p->latency_var),
57 cachedSize(params()->range.size()), cachedStart(params()->range.start)
58{
59 if (params()->range.size() % TheISA::PageBytes != 0)
60 panic("Memory Size not divisible by page size\n");
61
62 if (params()->null)
63 return;
64
65 int map_flags = MAP_ANON | MAP_PRIVATE;
66 pmemAddr = (uint8_t *)mmap(NULL, params()->range.size(),
67 PROT_READ | PROT_WRITE, map_flags, -1, 0);
68
69 if (pmemAddr == (void *)MAP_FAILED) {
70 perror("mmap");
71 fatal("Could not mmap!\n");
72 }
73
74 //If requested, initialize all the memory to 0
75 if (p->zero)
76 memset(pmemAddr, 0, p->range.size());
77}
78
79void
80PhysicalMemory::init()
81{
82 if (ports.size() == 0) {
83 fatal("PhysicalMemory object %s is unconnected!", name());
84 }
85
86 for (PortIterator pi = ports.begin(); pi != ports.end(); ++pi) {
87 if (*pi)
88 (*pi)->sendStatusChange(Port::RangeChange);
89 }
90}
91
92PhysicalMemory::~PhysicalMemory()
93{
94 if (pmemAddr)
95 munmap((char*)pmemAddr, params()->range.size());
96 //Remove memPorts?
97}
98
99Addr
100PhysicalMemory::new_page()
101{
102 Addr return_addr = pagePtr << LogVMPageSize;
103 return_addr += start();
104
105 ++pagePtr;
106 return return_addr;
107}
108
109int
110PhysicalMemory::deviceBlockSize()
111{
112 //Can accept anysize request
113 return 0;
114}
115
116Tick
117PhysicalMemory::calculateLatency(PacketPtr pkt)
118{
119 Tick latency = lat;
120 if (lat_var != 0)
121 latency += random_mt.random<Tick>(0, lat_var);
122 return latency;
123}
124
125
126
127// Add load-locked to tracking list. Should only be called if the
128// operation is a load and the LOCKED flag is set.
129void
130PhysicalMemory::trackLoadLocked(PacketPtr pkt)
131{
132 Request *req = pkt->req;
133 Addr paddr = LockedAddr::mask(req->getPaddr());
134
135 // first we check if we already have a locked addr for this
136 // xc. Since each xc only gets one, we just update the
137 // existing record with the new address.
138 list<LockedAddr>::iterator i;
139
140 for (i = lockedAddrList.begin(); i != lockedAddrList.end(); ++i) {
141 if (i->matchesContext(req)) {
142 DPRINTF(LLSC, "Modifying lock record: cpu %d thread %d addr %#x\n",
143 req->getCpuNum(), req->getThreadNum(), paddr);
144 i->addr = paddr;
145 return;
146 }
147 }
148
149 // no record for this xc: need to allocate a new one
150 DPRINTF(LLSC, "Adding lock record: cpu %d thread %d addr %#x\n",
151 req->getCpuNum(), req->getThreadNum(), paddr);
152 lockedAddrList.push_front(LockedAddr(req));
153}
154
155
156// Called on *writes* only... both regular stores and
157// store-conditional operations. Check for conventional stores which
158// conflict with locked addresses, and for success/failure of store
159// conditionals.
160bool
161PhysicalMemory::checkLockedAddrList(PacketPtr pkt)
162{
163 Request *req = pkt->req;
164 Addr paddr = LockedAddr::mask(req->getPaddr());
165 bool isLocked = pkt->isLocked();
166
167 // Initialize return value. Non-conditional stores always
168 // succeed. Assume conditional stores will fail until proven
169 // otherwise.
170 bool success = !isLocked;
171
172 // Iterate over list. Note that there could be multiple matching
173 // records, as more than one context could have done a load locked
174 // to this location.
175 list<LockedAddr>::iterator i = lockedAddrList.begin();
176
177 while (i != lockedAddrList.end()) {
178
179 if (i->addr == paddr) {
180 // we have a matching address
181
182 if (isLocked && i->matchesContext(req)) {
183 // it's a store conditional, and as far as the memory
184 // system can tell, the requesting context's lock is
185 // still valid.
186 DPRINTF(LLSC, "StCond success: cpu %d thread %d addr %#x\n",
187 req->getCpuNum(), req->getThreadNum(), paddr);
188 success = true;
189 }
190
191 // Get rid of our record of this lock and advance to next
192 DPRINTF(LLSC, "Erasing lock record: cpu %d thread %d addr %#x\n",
193 i->cpuNum, i->threadNum, paddr);
194 i = lockedAddrList.erase(i);
195 }
196 else {
197 // no match: advance to next record
198 ++i;
199 }
200 }
201
202 if (isLocked) {
203 req->setExtraData(success ? 1 : 0);
204 }
205
206 return success;
207}
208
209
210#if TRACING_ON
211
212#define CASE(A, T) \
213 case sizeof(T): \
214 DPRINTF(MemoryAccess, A " of size %i on address 0x%x data 0x%x\n", \
215 pkt->getSize(), pkt->getAddr(), pkt->get<T>()); \
216 break
217
218
219#define TRACE_PACKET(A) \
220 do { \
221 switch (pkt->getSize()) { \
222 CASE(A, uint64_t); \
223 CASE(A, uint32_t); \
224 CASE(A, uint16_t); \
225 CASE(A, uint8_t); \
226 default: \
227 DPRINTF(MemoryAccess, A " of size %i on address 0x%x\n", \
228 pkt->getSize(), pkt->getAddr()); \
229 } \
230 } while (0)
231
232#else
233
234#define TRACE_PACKET(A)
235
236#endif
237
238Tick
239PhysicalMemory::doAtomicAccess(PacketPtr pkt)
240{
241 assert(pkt->getAddr() >= start() &&
242 pkt->getAddr() + pkt->getSize() <= start() + size());
243
244 if (pkt->memInhibitAsserted()) {
245 DPRINTF(MemoryAccess, "mem inhibited on 0x%x: not responding\n",
246 pkt->getAddr());
247 return 0;
248 }
249
250 uint8_t *hostAddr = pmemAddr + pkt->getAddr() - start();
251
252 if (pkt->cmd == MemCmd::SwapReq) {
253 IntReg overwrite_val;
254 bool overwrite_mem;
255 uint64_t condition_val64;
256 uint32_t condition_val32;
257
258 if (!pmemAddr)
259 panic("Swap only works if there is real memory (i.e. null=False)");
260 assert(sizeof(IntReg) >= pkt->getSize());
261
262 overwrite_mem = true;
263 // keep a copy of our possible write value, and copy what is at the
264 // memory address into the packet
265 std::memcpy(&overwrite_val, pkt->getPtr<uint8_t>(), pkt->getSize());
266 std::memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize());
267
268 if (pkt->req->isCondSwap()) {
269 if (pkt->getSize() == sizeof(uint64_t)) {
270 condition_val64 = pkt->req->getExtraData();
271 overwrite_mem = !std::memcmp(&condition_val64, hostAddr,
272 sizeof(uint64_t));
273 } else if (pkt->getSize() == sizeof(uint32_t)) {
274 condition_val32 = (uint32_t)pkt->req->getExtraData();
275 overwrite_mem = !std::memcmp(&condition_val32, hostAddr,
276 sizeof(uint32_t));
277 } else
278 panic("Invalid size for conditional read/write\n");
279 }
280
281 if (overwrite_mem)
282 std::memcpy(hostAddr, &overwrite_val, pkt->getSize());
283
284 TRACE_PACKET("Read/Write");
285 } else if (pkt->isRead()) {
286 assert(!pkt->isWrite());
287 if (pkt->isLocked()) {
288 trackLoadLocked(pkt);
289 }
290 if (pmemAddr)
291 memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize());
292 TRACE_PACKET("Read");
293 } else if (pkt->isWrite()) {
294 if (writeOK(pkt)) {
295 if (pmemAddr)
296 memcpy(hostAddr, pkt->getPtr<uint8_t>(), pkt->getSize());
297 TRACE_PACKET("Write");
298 }
299 } else if (pkt->isInvalidate()) {
300 //upgrade or invalidate
301 if (pkt->needsResponse()) {
302 pkt->makeAtomicResponse();
303 }
304 } else {
305 panic("unimplemented");
306 }
307
308 if (pkt->needsResponse()) {
309 pkt->makeAtomicResponse();
310 }
311 return calculateLatency(pkt);
312}
313
314
315void
316PhysicalMemory::doFunctionalAccess(PacketPtr pkt)
317{
318 assert(pkt->getAddr() >= start() &&
319 pkt->getAddr() + pkt->getSize() <= start() + size());
320
321
322 uint8_t *hostAddr = pmemAddr + pkt->getAddr() - start();
323
324 if (pkt->isRead()) {
325 if (pmemAddr)
326 memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize());
327 TRACE_PACKET("Read");
328 pkt->makeAtomicResponse();
329 } else if (pkt->isWrite()) {
330 if (pmemAddr)
331 memcpy(hostAddr, pkt->getPtr<uint8_t>(), pkt->getSize());
332 TRACE_PACKET("Write");
333 pkt->makeAtomicResponse();
334 } else if (pkt->isPrint()) {
335 Packet::PrintReqState *prs =
336 dynamic_cast<Packet::PrintReqState*>(pkt->senderState);
337 // Need to call printLabels() explicitly since we're not going
338 // through printObj().
339 prs->printLabels();
340 // Right now we just print the single byte at the specified address.
341 ccprintf(prs->os, "%s%#x\n", prs->curPrefix(), *hostAddr);
342 } else {
343 panic("PhysicalMemory: unimplemented functional command %s",
344 pkt->cmdString());
345 }
346}
347
348
349Port *
350PhysicalMemory::getPort(const std::string &if_name, int idx)
351{
352 // Accept request for "functional" port for backwards compatibility
353 // with places where this function is called from C++. I'd prefer
354 // to move all these into Python someday.
355 if (if_name == "functional") {
356 return new MemoryPort(csprintf("%s-functional", name()), this);
357 }
358
359 if (if_name != "port") {
360 panic("PhysicalMemory::getPort: unknown port %s requested", if_name);
361 }
362
363 if (idx >= ports.size()) {
364 ports.resize(idx+1);
365 }
366
367 if (ports[idx] != NULL) {
368 panic("PhysicalMemory::getPort: port %d already assigned", idx);
369 }
370
371 MemoryPort *port =
372 new MemoryPort(csprintf("%s-port%d", name(), idx), this);
373
374 ports[idx] = port;
375 return port;
376}
377
378
379void
380PhysicalMemory::recvStatusChange(Port::Status status)
381{
382}
383
384PhysicalMemory::MemoryPort::MemoryPort(const std::string &_name,
385 PhysicalMemory *_memory)
1/*
2 * Copyright (c) 2001-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Ron Dreslinski
29 * Ali Saidi
30 */
31
32#include <sys/types.h>
33#include <sys/mman.h>
34#include <errno.h>
35#include <fcntl.h>
36#include <unistd.h>
37#include <zlib.h>
38
39#include <iostream>
40#include <string>
41
42#include "arch/isa_traits.hh"
43#include "base/misc.hh"
44#include "base/random.hh"
45#include "config/full_system.hh"
46#include "mem/packet_access.hh"
47#include "mem/physical.hh"
48#include "sim/eventq.hh"
49#include "sim/host.hh"
50
51using namespace std;
52using namespace TheISA;
53
54PhysicalMemory::PhysicalMemory(const Params *p)
55 : MemObject(p), pmemAddr(NULL), pagePtr(0),
56 lat(p->latency), lat_var(p->latency_var),
57 cachedSize(params()->range.size()), cachedStart(params()->range.start)
58{
59 if (params()->range.size() % TheISA::PageBytes != 0)
60 panic("Memory Size not divisible by page size\n");
61
62 if (params()->null)
63 return;
64
65 int map_flags = MAP_ANON | MAP_PRIVATE;
66 pmemAddr = (uint8_t *)mmap(NULL, params()->range.size(),
67 PROT_READ | PROT_WRITE, map_flags, -1, 0);
68
69 if (pmemAddr == (void *)MAP_FAILED) {
70 perror("mmap");
71 fatal("Could not mmap!\n");
72 }
73
74 //If requested, initialize all the memory to 0
75 if (p->zero)
76 memset(pmemAddr, 0, p->range.size());
77}
78
79void
80PhysicalMemory::init()
81{
82 if (ports.size() == 0) {
83 fatal("PhysicalMemory object %s is unconnected!", name());
84 }
85
86 for (PortIterator pi = ports.begin(); pi != ports.end(); ++pi) {
87 if (*pi)
88 (*pi)->sendStatusChange(Port::RangeChange);
89 }
90}
91
92PhysicalMemory::~PhysicalMemory()
93{
94 if (pmemAddr)
95 munmap((char*)pmemAddr, params()->range.size());
96 //Remove memPorts?
97}
98
99Addr
100PhysicalMemory::new_page()
101{
102 Addr return_addr = pagePtr << LogVMPageSize;
103 return_addr += start();
104
105 ++pagePtr;
106 return return_addr;
107}
108
109int
110PhysicalMemory::deviceBlockSize()
111{
112 //Can accept anysize request
113 return 0;
114}
115
116Tick
117PhysicalMemory::calculateLatency(PacketPtr pkt)
118{
119 Tick latency = lat;
120 if (lat_var != 0)
121 latency += random_mt.random<Tick>(0, lat_var);
122 return latency;
123}
124
125
126
127// Add load-locked to tracking list. Should only be called if the
128// operation is a load and the LOCKED flag is set.
129void
130PhysicalMemory::trackLoadLocked(PacketPtr pkt)
131{
132 Request *req = pkt->req;
133 Addr paddr = LockedAddr::mask(req->getPaddr());
134
135 // first we check if we already have a locked addr for this
136 // xc. Since each xc only gets one, we just update the
137 // existing record with the new address.
138 list<LockedAddr>::iterator i;
139
140 for (i = lockedAddrList.begin(); i != lockedAddrList.end(); ++i) {
141 if (i->matchesContext(req)) {
142 DPRINTF(LLSC, "Modifying lock record: cpu %d thread %d addr %#x\n",
143 req->getCpuNum(), req->getThreadNum(), paddr);
144 i->addr = paddr;
145 return;
146 }
147 }
148
149 // no record for this xc: need to allocate a new one
150 DPRINTF(LLSC, "Adding lock record: cpu %d thread %d addr %#x\n",
151 req->getCpuNum(), req->getThreadNum(), paddr);
152 lockedAddrList.push_front(LockedAddr(req));
153}
154
155
156// Called on *writes* only... both regular stores and
157// store-conditional operations. Check for conventional stores which
158// conflict with locked addresses, and for success/failure of store
159// conditionals.
160bool
161PhysicalMemory::checkLockedAddrList(PacketPtr pkt)
162{
163 Request *req = pkt->req;
164 Addr paddr = LockedAddr::mask(req->getPaddr());
165 bool isLocked = pkt->isLocked();
166
167 // Initialize return value. Non-conditional stores always
168 // succeed. Assume conditional stores will fail until proven
169 // otherwise.
170 bool success = !isLocked;
171
172 // Iterate over list. Note that there could be multiple matching
173 // records, as more than one context could have done a load locked
174 // to this location.
175 list<LockedAddr>::iterator i = lockedAddrList.begin();
176
177 while (i != lockedAddrList.end()) {
178
179 if (i->addr == paddr) {
180 // we have a matching address
181
182 if (isLocked && i->matchesContext(req)) {
183 // it's a store conditional, and as far as the memory
184 // system can tell, the requesting context's lock is
185 // still valid.
186 DPRINTF(LLSC, "StCond success: cpu %d thread %d addr %#x\n",
187 req->getCpuNum(), req->getThreadNum(), paddr);
188 success = true;
189 }
190
191 // Get rid of our record of this lock and advance to next
192 DPRINTF(LLSC, "Erasing lock record: cpu %d thread %d addr %#x\n",
193 i->cpuNum, i->threadNum, paddr);
194 i = lockedAddrList.erase(i);
195 }
196 else {
197 // no match: advance to next record
198 ++i;
199 }
200 }
201
202 if (isLocked) {
203 req->setExtraData(success ? 1 : 0);
204 }
205
206 return success;
207}
208
209
210#if TRACING_ON
211
212#define CASE(A, T) \
213 case sizeof(T): \
214 DPRINTF(MemoryAccess, A " of size %i on address 0x%x data 0x%x\n", \
215 pkt->getSize(), pkt->getAddr(), pkt->get<T>()); \
216 break
217
218
219#define TRACE_PACKET(A) \
220 do { \
221 switch (pkt->getSize()) { \
222 CASE(A, uint64_t); \
223 CASE(A, uint32_t); \
224 CASE(A, uint16_t); \
225 CASE(A, uint8_t); \
226 default: \
227 DPRINTF(MemoryAccess, A " of size %i on address 0x%x\n", \
228 pkt->getSize(), pkt->getAddr()); \
229 } \
230 } while (0)
231
232#else
233
234#define TRACE_PACKET(A)
235
236#endif
237
238Tick
239PhysicalMemory::doAtomicAccess(PacketPtr pkt)
240{
241 assert(pkt->getAddr() >= start() &&
242 pkt->getAddr() + pkt->getSize() <= start() + size());
243
244 if (pkt->memInhibitAsserted()) {
245 DPRINTF(MemoryAccess, "mem inhibited on 0x%x: not responding\n",
246 pkt->getAddr());
247 return 0;
248 }
249
250 uint8_t *hostAddr = pmemAddr + pkt->getAddr() - start();
251
252 if (pkt->cmd == MemCmd::SwapReq) {
253 IntReg overwrite_val;
254 bool overwrite_mem;
255 uint64_t condition_val64;
256 uint32_t condition_val32;
257
258 if (!pmemAddr)
259 panic("Swap only works if there is real memory (i.e. null=False)");
260 assert(sizeof(IntReg) >= pkt->getSize());
261
262 overwrite_mem = true;
263 // keep a copy of our possible write value, and copy what is at the
264 // memory address into the packet
265 std::memcpy(&overwrite_val, pkt->getPtr<uint8_t>(), pkt->getSize());
266 std::memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize());
267
268 if (pkt->req->isCondSwap()) {
269 if (pkt->getSize() == sizeof(uint64_t)) {
270 condition_val64 = pkt->req->getExtraData();
271 overwrite_mem = !std::memcmp(&condition_val64, hostAddr,
272 sizeof(uint64_t));
273 } else if (pkt->getSize() == sizeof(uint32_t)) {
274 condition_val32 = (uint32_t)pkt->req->getExtraData();
275 overwrite_mem = !std::memcmp(&condition_val32, hostAddr,
276 sizeof(uint32_t));
277 } else
278 panic("Invalid size for conditional read/write\n");
279 }
280
281 if (overwrite_mem)
282 std::memcpy(hostAddr, &overwrite_val, pkt->getSize());
283
284 TRACE_PACKET("Read/Write");
285 } else if (pkt->isRead()) {
286 assert(!pkt->isWrite());
287 if (pkt->isLocked()) {
288 trackLoadLocked(pkt);
289 }
290 if (pmemAddr)
291 memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize());
292 TRACE_PACKET("Read");
293 } else if (pkt->isWrite()) {
294 if (writeOK(pkt)) {
295 if (pmemAddr)
296 memcpy(hostAddr, pkt->getPtr<uint8_t>(), pkt->getSize());
297 TRACE_PACKET("Write");
298 }
299 } else if (pkt->isInvalidate()) {
300 //upgrade or invalidate
301 if (pkt->needsResponse()) {
302 pkt->makeAtomicResponse();
303 }
304 } else {
305 panic("unimplemented");
306 }
307
308 if (pkt->needsResponse()) {
309 pkt->makeAtomicResponse();
310 }
311 return calculateLatency(pkt);
312}
313
314
315void
316PhysicalMemory::doFunctionalAccess(PacketPtr pkt)
317{
318 assert(pkt->getAddr() >= start() &&
319 pkt->getAddr() + pkt->getSize() <= start() + size());
320
321
322 uint8_t *hostAddr = pmemAddr + pkt->getAddr() - start();
323
324 if (pkt->isRead()) {
325 if (pmemAddr)
326 memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize());
327 TRACE_PACKET("Read");
328 pkt->makeAtomicResponse();
329 } else if (pkt->isWrite()) {
330 if (pmemAddr)
331 memcpy(hostAddr, pkt->getPtr<uint8_t>(), pkt->getSize());
332 TRACE_PACKET("Write");
333 pkt->makeAtomicResponse();
334 } else if (pkt->isPrint()) {
335 Packet::PrintReqState *prs =
336 dynamic_cast<Packet::PrintReqState*>(pkt->senderState);
337 // Need to call printLabels() explicitly since we're not going
338 // through printObj().
339 prs->printLabels();
340 // Right now we just print the single byte at the specified address.
341 ccprintf(prs->os, "%s%#x\n", prs->curPrefix(), *hostAddr);
342 } else {
343 panic("PhysicalMemory: unimplemented functional command %s",
344 pkt->cmdString());
345 }
346}
347
348
349Port *
350PhysicalMemory::getPort(const std::string &if_name, int idx)
351{
352 // Accept request for "functional" port for backwards compatibility
353 // with places where this function is called from C++. I'd prefer
354 // to move all these into Python someday.
355 if (if_name == "functional") {
356 return new MemoryPort(csprintf("%s-functional", name()), this);
357 }
358
359 if (if_name != "port") {
360 panic("PhysicalMemory::getPort: unknown port %s requested", if_name);
361 }
362
363 if (idx >= ports.size()) {
364 ports.resize(idx+1);
365 }
366
367 if (ports[idx] != NULL) {
368 panic("PhysicalMemory::getPort: port %d already assigned", idx);
369 }
370
371 MemoryPort *port =
372 new MemoryPort(csprintf("%s-port%d", name(), idx), this);
373
374 ports[idx] = port;
375 return port;
376}
377
378
379void
380PhysicalMemory::recvStatusChange(Port::Status status)
381{
382}
383
384PhysicalMemory::MemoryPort::MemoryPort(const std::string &_name,
385 PhysicalMemory *_memory)
386 : SimpleTimingPort(_name), memory(_memory)
386 : SimpleTimingPort(_name, _memory), memory(_memory)
387{ }
388
389void
390PhysicalMemory::MemoryPort::recvStatusChange(Port::Status status)
391{
392 memory->recvStatusChange(status);
393}
394
395void
396PhysicalMemory::MemoryPort::getDeviceAddressRanges(AddrRangeList &resp,
397 bool &snoop)
398{
399 memory->getAddressRanges(resp, snoop);
400}
401
402void
403PhysicalMemory::getAddressRanges(AddrRangeList &resp, bool &snoop)
404{
405 snoop = false;
406 resp.clear();
407 resp.push_back(RangeSize(start(), params()->range.size()));
408}
409
410int
411PhysicalMemory::MemoryPort::deviceBlockSize()
412{
413 return memory->deviceBlockSize();
414}
415
416Tick
417PhysicalMemory::MemoryPort::recvAtomic(PacketPtr pkt)
418{
419 return memory->doAtomicAccess(pkt);
420}
421
422void
423PhysicalMemory::MemoryPort::recvFunctional(PacketPtr pkt)
424{
425 pkt->pushLabel(memory->name());
426
427 if (!checkFunctional(pkt)) {
428 // Default implementation of SimpleTimingPort::recvFunctional()
429 // calls recvAtomic() and throws away the latency; we can save a
430 // little here by just not calculating the latency.
431 memory->doFunctionalAccess(pkt);
432 }
433
434 pkt->popLabel();
435}
436
437unsigned int
438PhysicalMemory::drain(Event *de)
439{
440 int count = 0;
441 for (PortIterator pi = ports.begin(); pi != ports.end(); ++pi) {
442 count += (*pi)->drain(de);
443 }
444
445 if (count)
446 changeState(Draining);
447 else
448 changeState(Drained);
449 return count;
450}
451
452void
453PhysicalMemory::serialize(ostream &os)
454{
455 if (!pmemAddr)
456 return;
457
458 gzFile compressedMem;
459 string filename = name() + ".physmem";
460
461 SERIALIZE_SCALAR(filename);
462
463 // write memory file
464 string thefile = Checkpoint::dir() + "/" + filename.c_str();
465 int fd = creat(thefile.c_str(), 0664);
466 if (fd < 0) {
467 perror("creat");
468 fatal("Can't open physical memory checkpoint file '%s'\n", filename);
469 }
470
471 compressedMem = gzdopen(fd, "wb");
472 if (compressedMem == NULL)
473 fatal("Insufficient memory to allocate compression state for %s\n",
474 filename);
475
476 if (gzwrite(compressedMem, pmemAddr, params()->range.size()) !=
477 params()->range.size()) {
478 fatal("Write failed on physical memory checkpoint file '%s'\n",
479 filename);
480 }
481
482 if (gzclose(compressedMem))
483 fatal("Close failed on physical memory checkpoint file '%s'\n",
484 filename);
485}
486
487void
488PhysicalMemory::unserialize(Checkpoint *cp, const string &section)
489{
490 if (!pmemAddr)
491 return;
492
493 gzFile compressedMem;
494 long *tempPage;
495 long *pmem_current;
496 uint64_t curSize;
497 uint32_t bytesRead;
498 const int chunkSize = 16384;
499
500 string filename;
501
502 UNSERIALIZE_SCALAR(filename);
503
504 filename = cp->cptDir + "/" + filename;
505
506 // mmap memoryfile
507 int fd = open(filename.c_str(), O_RDONLY);
508 if (fd < 0) {
509 perror("open");
510 fatal("Can't open physical memory checkpoint file '%s'", filename);
511 }
512
513 compressedMem = gzdopen(fd, "rb");
514 if (compressedMem == NULL)
515 fatal("Insufficient memory to allocate compression state for %s\n",
516 filename);
517
518 // unmap file that was mmaped in the constructor
519 // This is done here to make sure that gzip and open don't muck with our
520 // nice large space of memory before we reallocate it
521 munmap((char*)pmemAddr, params()->range.size());
522
523 pmemAddr = (uint8_t *)mmap(NULL, params()->range.size(),
524 PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
525
526 if (pmemAddr == (void *)MAP_FAILED) {
527 perror("mmap");
528 fatal("Could not mmap physical memory!\n");
529 }
530
531 curSize = 0;
532 tempPage = (long*)malloc(chunkSize);
533 if (tempPage == NULL)
534 fatal("Unable to malloc memory to read file %s\n", filename);
535
536 /* Only copy bytes that are non-zero, so we don't give the VM system hell */
537 while (curSize < params()->range.size()) {
538 bytesRead = gzread(compressedMem, tempPage, chunkSize);
539 if (bytesRead != chunkSize &&
540 bytesRead != params()->range.size() - curSize)
541 fatal("Read failed on physical memory checkpoint file '%s'"
542 " got %d bytes, expected %d or %d bytes\n",
543 filename, bytesRead, chunkSize,
544 params()->range.size() - curSize);
545
546 assert(bytesRead % sizeof(long) == 0);
547
548 for (int x = 0; x < bytesRead/sizeof(long); x++)
549 {
550 if (*(tempPage+x) != 0) {
551 pmem_current = (long*)(pmemAddr + curSize + x * sizeof(long));
552 *pmem_current = *(tempPage+x);
553 }
554 }
555 curSize += bytesRead;
556 }
557
558 free(tempPage);
559
560 if (gzclose(compressedMem))
561 fatal("Close failed on physical memory checkpoint file '%s'\n",
562 filename);
563
564}
565
566PhysicalMemory *
567PhysicalMemoryParams::create()
568{
569 return new PhysicalMemory(this);
570}
387{ }
388
389void
390PhysicalMemory::MemoryPort::recvStatusChange(Port::Status status)
391{
392 memory->recvStatusChange(status);
393}
394
395void
396PhysicalMemory::MemoryPort::getDeviceAddressRanges(AddrRangeList &resp,
397 bool &snoop)
398{
399 memory->getAddressRanges(resp, snoop);
400}
401
402void
403PhysicalMemory::getAddressRanges(AddrRangeList &resp, bool &snoop)
404{
405 snoop = false;
406 resp.clear();
407 resp.push_back(RangeSize(start(), params()->range.size()));
408}
409
410int
411PhysicalMemory::MemoryPort::deviceBlockSize()
412{
413 return memory->deviceBlockSize();
414}
415
416Tick
417PhysicalMemory::MemoryPort::recvAtomic(PacketPtr pkt)
418{
419 return memory->doAtomicAccess(pkt);
420}
421
422void
423PhysicalMemory::MemoryPort::recvFunctional(PacketPtr pkt)
424{
425 pkt->pushLabel(memory->name());
426
427 if (!checkFunctional(pkt)) {
428 // Default implementation of SimpleTimingPort::recvFunctional()
429 // calls recvAtomic() and throws away the latency; we can save a
430 // little here by just not calculating the latency.
431 memory->doFunctionalAccess(pkt);
432 }
433
434 pkt->popLabel();
435}
436
437unsigned int
438PhysicalMemory::drain(Event *de)
439{
440 int count = 0;
441 for (PortIterator pi = ports.begin(); pi != ports.end(); ++pi) {
442 count += (*pi)->drain(de);
443 }
444
445 if (count)
446 changeState(Draining);
447 else
448 changeState(Drained);
449 return count;
450}
451
452void
453PhysicalMemory::serialize(ostream &os)
454{
455 if (!pmemAddr)
456 return;
457
458 gzFile compressedMem;
459 string filename = name() + ".physmem";
460
461 SERIALIZE_SCALAR(filename);
462
463 // write memory file
464 string thefile = Checkpoint::dir() + "/" + filename.c_str();
465 int fd = creat(thefile.c_str(), 0664);
466 if (fd < 0) {
467 perror("creat");
468 fatal("Can't open physical memory checkpoint file '%s'\n", filename);
469 }
470
471 compressedMem = gzdopen(fd, "wb");
472 if (compressedMem == NULL)
473 fatal("Insufficient memory to allocate compression state for %s\n",
474 filename);
475
476 if (gzwrite(compressedMem, pmemAddr, params()->range.size()) !=
477 params()->range.size()) {
478 fatal("Write failed on physical memory checkpoint file '%s'\n",
479 filename);
480 }
481
482 if (gzclose(compressedMem))
483 fatal("Close failed on physical memory checkpoint file '%s'\n",
484 filename);
485}
486
487void
488PhysicalMemory::unserialize(Checkpoint *cp, const string &section)
489{
490 if (!pmemAddr)
491 return;
492
493 gzFile compressedMem;
494 long *tempPage;
495 long *pmem_current;
496 uint64_t curSize;
497 uint32_t bytesRead;
498 const int chunkSize = 16384;
499
500 string filename;
501
502 UNSERIALIZE_SCALAR(filename);
503
504 filename = cp->cptDir + "/" + filename;
505
506 // mmap memoryfile
507 int fd = open(filename.c_str(), O_RDONLY);
508 if (fd < 0) {
509 perror("open");
510 fatal("Can't open physical memory checkpoint file '%s'", filename);
511 }
512
513 compressedMem = gzdopen(fd, "rb");
514 if (compressedMem == NULL)
515 fatal("Insufficient memory to allocate compression state for %s\n",
516 filename);
517
518 // unmap file that was mmaped in the constructor
519 // This is done here to make sure that gzip and open don't muck with our
520 // nice large space of memory before we reallocate it
521 munmap((char*)pmemAddr, params()->range.size());
522
523 pmemAddr = (uint8_t *)mmap(NULL, params()->range.size(),
524 PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
525
526 if (pmemAddr == (void *)MAP_FAILED) {
527 perror("mmap");
528 fatal("Could not mmap physical memory!\n");
529 }
530
531 curSize = 0;
532 tempPage = (long*)malloc(chunkSize);
533 if (tempPage == NULL)
534 fatal("Unable to malloc memory to read file %s\n", filename);
535
536 /* Only copy bytes that are non-zero, so we don't give the VM system hell */
537 while (curSize < params()->range.size()) {
538 bytesRead = gzread(compressedMem, tempPage, chunkSize);
539 if (bytesRead != chunkSize &&
540 bytesRead != params()->range.size() - curSize)
541 fatal("Read failed on physical memory checkpoint file '%s'"
542 " got %d bytes, expected %d or %d bytes\n",
543 filename, bytesRead, chunkSize,
544 params()->range.size() - curSize);
545
546 assert(bytesRead % sizeof(long) == 0);
547
548 for (int x = 0; x < bytesRead/sizeof(long); x++)
549 {
550 if (*(tempPage+x) != 0) {
551 pmem_current = (long*)(pmemAddr + curSize + x * sizeof(long));
552 *pmem_current = *(tempPage+x);
553 }
554 }
555 curSize += bytesRead;
556 }
557
558 free(tempPage);
559
560 if (gzclose(compressedMem))
561 fatal("Close failed on physical memory checkpoint file '%s'\n",
562 filename);
563
564}
565
566PhysicalMemory *
567PhysicalMemoryParams::create()
568{
569 return new PhysicalMemory(this);
570}