physical.cc (11793:ef606668d247) physical.cc (12776:410b60d8a397)
1/*
1/*
2 * Copyright (c) 2012, 2014 ARM Limited
2 * Copyright (c) 2012, 2014, 2018 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Hansson
38 */
39
40#include "mem/physical.hh"
41
42#include <fcntl.h>
43#include <sys/mman.h>
44#include <sys/types.h>
45#include <sys/user.h>
46#include <unistd.h>
47#include <zlib.h>
48
49#include <cerrno>
50#include <climits>
51#include <cstdio>
52#include <iostream>
53#include <string>
54
55#include "base/trace.hh"
56#include "debug/AddrRanges.hh"
57#include "debug/Checkpoint.hh"
58#include "mem/abstract_mem.hh"
59
60/**
61 * On Linux, MAP_NORESERVE allow us to simulate a very large memory
62 * without committing to actually providing the swap space on the
63 * host. On FreeBSD or OSX the MAP_NORESERVE flag does not exist,
64 * so simply make it 0.
65 */
66#if defined(__APPLE__) || defined(__FreeBSD__)
67#ifndef MAP_NORESERVE
68#define MAP_NORESERVE 0
69#endif
70#endif
71
72using namespace std;
73
74PhysicalMemory::PhysicalMemory(const string& _name,
75 const vector<AbstractMemory*>& _memories,
76 bool mmap_using_noreserve) :
77 _name(_name), rangeCache(addrMap.end()), size(0),
78 mmapUsingNoReserve(mmap_using_noreserve)
79{
80 if (mmap_using_noreserve)
81 warn("Not reserving swap space. May cause SIGSEGV on actual usage\n");
82
83 // add the memories from the system to the address map as
84 // appropriate
85 for (const auto& m : _memories) {
86 // only add the memory if it is part of the global address map
87 if (m->isInAddrMap()) {
88 memories.push_back(m);
89
90 // calculate the total size once and for all
91 size += m->size();
92
93 // add the range to our interval tree and make sure it does not
94 // intersect an existing range
95 fatal_if(addrMap.insert(m->getAddrRange(), m) == addrMap.end(),
96 "Memory address range for %s is overlapping\n",
97 m->name());
98 } else {
99 // this type of memory is used e.g. as reference memory by
100 // Ruby, and they also needs a backing store, but should
101 // not be part of the global address map
102 DPRINTF(AddrRanges,
103 "Skipping memory %s that is not in global address map\n",
104 m->name());
105
106 // sanity check
107 fatal_if(m->getAddrRange().interleaved(),
108 "Memory %s that is not in the global address map cannot "
109 "be interleaved\n", m->name());
110
111 // simply do it independently, also note that this kind of
112 // memories are allowed to overlap in the logic address
113 // map
114 vector<AbstractMemory*> unmapped_mems{m};
115 createBackingStore(m->getAddrRange(), unmapped_mems,
116 m->isConfReported(), m->isInAddrMap(),
117 m->isKvmMap());
118 }
119 }
120
121 // iterate over the increasing addresses and chunks of contiguous
122 // space to be mapped to backing store, create it and inform the
123 // memories
124 vector<AddrRange> intlv_ranges;
125 vector<AbstractMemory*> curr_memories;
126 for (const auto& r : addrMap) {
127 // simply skip past all memories that are null and hence do
128 // not need any backing store
129 if (!r.second->isNull()) {
130 // if the range is interleaved then save it for now
131 if (r.first.interleaved()) {
132 // if we already got interleaved ranges that are not
133 // part of the same range, then first do a merge
134 // before we add the new one
135 if (!intlv_ranges.empty() &&
136 !intlv_ranges.back().mergesWith(r.first)) {
137 AddrRange merged_range(intlv_ranges);
138
139 AbstractMemory *f = curr_memories.front();
140 for (const auto& c : curr_memories)
141 if (f->isConfReported() != c->isConfReported() ||
142 f->isInAddrMap() != c->isInAddrMap() ||
143 f->isKvmMap() != c->isKvmMap())
144 fatal("Inconsistent flags in an interleaved "
145 "range\n");
146
147 createBackingStore(merged_range, curr_memories,
148 f->isConfReported(), f->isInAddrMap(),
149 f->isKvmMap());
150
151 intlv_ranges.clear();
152 curr_memories.clear();
153 }
154 intlv_ranges.push_back(r.first);
155 curr_memories.push_back(r.second);
156 } else {
157 vector<AbstractMemory*> single_memory{r.second};
158 createBackingStore(r.first, single_memory,
159 r.second->isConfReported(),
160 r.second->isInAddrMap(),
161 r.second->isKvmMap());
162 }
163 }
164 }
165
166 // if there is still interleaved ranges waiting to be merged, go
167 // ahead and do it
168 if (!intlv_ranges.empty()) {
169 AddrRange merged_range(intlv_ranges);
170
171 AbstractMemory *f = curr_memories.front();
172 for (const auto& c : curr_memories)
173 if (f->isConfReported() != c->isConfReported() ||
174 f->isInAddrMap() != c->isInAddrMap() ||
175 f->isKvmMap() != c->isKvmMap())
176 fatal("Inconsistent flags in an interleaved "
177 "range\n");
178
179 createBackingStore(merged_range, curr_memories,
180 f->isConfReported(), f->isInAddrMap(),
181 f->isKvmMap());
182 }
183}
184
185void
186PhysicalMemory::createBackingStore(AddrRange range,
187 const vector<AbstractMemory*>& _memories,
188 bool conf_table_reported,
189 bool in_addr_map, bool kvm_map)
190{
191 panic_if(range.interleaved(),
192 "Cannot create backing store for interleaved range %s\n",
193 range.to_string());
194
195 // perform the actual mmap
196 DPRINTF(AddrRanges, "Creating backing store for range %s with size %d\n",
197 range.to_string(), range.size());
198 int map_flags = MAP_ANON | MAP_PRIVATE;
199
200 // to be able to simulate very large memories, the user can opt to
201 // pass noreserve to mmap
202 if (mmapUsingNoReserve) {
203 map_flags |= MAP_NORESERVE;
204 }
205
206 uint8_t* pmem = (uint8_t*) mmap(NULL, range.size(),
207 PROT_READ | PROT_WRITE,
208 map_flags, -1, 0);
209
210 if (pmem == (uint8_t*) MAP_FAILED) {
211 perror("mmap");
212 fatal("Could not mmap %d bytes for range %s!\n", range.size(),
213 range.to_string());
214 }
215
216 // remember this backing store so we can checkpoint it and unmap
217 // it appropriately
218 backingStore.emplace_back(range, pmem,
219 conf_table_reported, in_addr_map, kvm_map);
220
221 // point the memories to their backing store
222 for (const auto& m : _memories) {
223 DPRINTF(AddrRanges, "Mapping memory %s to backing store\n",
224 m->name());
225 m->setBackingStore(pmem);
226 }
227}
228
229PhysicalMemory::~PhysicalMemory()
230{
231 // unmap the backing store
232 for (auto& s : backingStore)
233 munmap((char*)s.pmem, s.range.size());
234}
235
236bool
237PhysicalMemory::isMemAddr(Addr addr) const
238{
239 // see if the address is within the last matched range
240 if (rangeCache != addrMap.end() && rangeCache->first.contains(addr)) {
241 return true;
242 } else {
243 // lookup in the interval tree
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Hansson
38 */
39
40#include "mem/physical.hh"
41
42#include <fcntl.h>
43#include <sys/mman.h>
44#include <sys/types.h>
45#include <sys/user.h>
46#include <unistd.h>
47#include <zlib.h>
48
49#include <cerrno>
50#include <climits>
51#include <cstdio>
52#include <iostream>
53#include <string>
54
55#include "base/trace.hh"
56#include "debug/AddrRanges.hh"
57#include "debug/Checkpoint.hh"
58#include "mem/abstract_mem.hh"
59
60/**
61 * On Linux, MAP_NORESERVE allow us to simulate a very large memory
62 * without committing to actually providing the swap space on the
63 * host. On FreeBSD or OSX the MAP_NORESERVE flag does not exist,
64 * so simply make it 0.
65 */
66#if defined(__APPLE__) || defined(__FreeBSD__)
67#ifndef MAP_NORESERVE
68#define MAP_NORESERVE 0
69#endif
70#endif
71
72using namespace std;
73
74PhysicalMemory::PhysicalMemory(const string& _name,
75 const vector<AbstractMemory*>& _memories,
76 bool mmap_using_noreserve) :
77 _name(_name), rangeCache(addrMap.end()), size(0),
78 mmapUsingNoReserve(mmap_using_noreserve)
79{
80 if (mmap_using_noreserve)
81 warn("Not reserving swap space. May cause SIGSEGV on actual usage\n");
82
83 // add the memories from the system to the address map as
84 // appropriate
85 for (const auto& m : _memories) {
86 // only add the memory if it is part of the global address map
87 if (m->isInAddrMap()) {
88 memories.push_back(m);
89
90 // calculate the total size once and for all
91 size += m->size();
92
93 // add the range to our interval tree and make sure it does not
94 // intersect an existing range
95 fatal_if(addrMap.insert(m->getAddrRange(), m) == addrMap.end(),
96 "Memory address range for %s is overlapping\n",
97 m->name());
98 } else {
99 // this type of memory is used e.g. as reference memory by
100 // Ruby, and they also needs a backing store, but should
101 // not be part of the global address map
102 DPRINTF(AddrRanges,
103 "Skipping memory %s that is not in global address map\n",
104 m->name());
105
106 // sanity check
107 fatal_if(m->getAddrRange().interleaved(),
108 "Memory %s that is not in the global address map cannot "
109 "be interleaved\n", m->name());
110
111 // simply do it independently, also note that this kind of
112 // memories are allowed to overlap in the logic address
113 // map
114 vector<AbstractMemory*> unmapped_mems{m};
115 createBackingStore(m->getAddrRange(), unmapped_mems,
116 m->isConfReported(), m->isInAddrMap(),
117 m->isKvmMap());
118 }
119 }
120
121 // iterate over the increasing addresses and chunks of contiguous
122 // space to be mapped to backing store, create it and inform the
123 // memories
124 vector<AddrRange> intlv_ranges;
125 vector<AbstractMemory*> curr_memories;
126 for (const auto& r : addrMap) {
127 // simply skip past all memories that are null and hence do
128 // not need any backing store
129 if (!r.second->isNull()) {
130 // if the range is interleaved then save it for now
131 if (r.first.interleaved()) {
132 // if we already got interleaved ranges that are not
133 // part of the same range, then first do a merge
134 // before we add the new one
135 if (!intlv_ranges.empty() &&
136 !intlv_ranges.back().mergesWith(r.first)) {
137 AddrRange merged_range(intlv_ranges);
138
139 AbstractMemory *f = curr_memories.front();
140 for (const auto& c : curr_memories)
141 if (f->isConfReported() != c->isConfReported() ||
142 f->isInAddrMap() != c->isInAddrMap() ||
143 f->isKvmMap() != c->isKvmMap())
144 fatal("Inconsistent flags in an interleaved "
145 "range\n");
146
147 createBackingStore(merged_range, curr_memories,
148 f->isConfReported(), f->isInAddrMap(),
149 f->isKvmMap());
150
151 intlv_ranges.clear();
152 curr_memories.clear();
153 }
154 intlv_ranges.push_back(r.first);
155 curr_memories.push_back(r.second);
156 } else {
157 vector<AbstractMemory*> single_memory{r.second};
158 createBackingStore(r.first, single_memory,
159 r.second->isConfReported(),
160 r.second->isInAddrMap(),
161 r.second->isKvmMap());
162 }
163 }
164 }
165
166 // if there is still interleaved ranges waiting to be merged, go
167 // ahead and do it
168 if (!intlv_ranges.empty()) {
169 AddrRange merged_range(intlv_ranges);
170
171 AbstractMemory *f = curr_memories.front();
172 for (const auto& c : curr_memories)
173 if (f->isConfReported() != c->isConfReported() ||
174 f->isInAddrMap() != c->isInAddrMap() ||
175 f->isKvmMap() != c->isKvmMap())
176 fatal("Inconsistent flags in an interleaved "
177 "range\n");
178
179 createBackingStore(merged_range, curr_memories,
180 f->isConfReported(), f->isInAddrMap(),
181 f->isKvmMap());
182 }
183}
184
185void
186PhysicalMemory::createBackingStore(AddrRange range,
187 const vector<AbstractMemory*>& _memories,
188 bool conf_table_reported,
189 bool in_addr_map, bool kvm_map)
190{
191 panic_if(range.interleaved(),
192 "Cannot create backing store for interleaved range %s\n",
193 range.to_string());
194
195 // perform the actual mmap
196 DPRINTF(AddrRanges, "Creating backing store for range %s with size %d\n",
197 range.to_string(), range.size());
198 int map_flags = MAP_ANON | MAP_PRIVATE;
199
200 // to be able to simulate very large memories, the user can opt to
201 // pass noreserve to mmap
202 if (mmapUsingNoReserve) {
203 map_flags |= MAP_NORESERVE;
204 }
205
206 uint8_t* pmem = (uint8_t*) mmap(NULL, range.size(),
207 PROT_READ | PROT_WRITE,
208 map_flags, -1, 0);
209
210 if (pmem == (uint8_t*) MAP_FAILED) {
211 perror("mmap");
212 fatal("Could not mmap %d bytes for range %s!\n", range.size(),
213 range.to_string());
214 }
215
216 // remember this backing store so we can checkpoint it and unmap
217 // it appropriately
218 backingStore.emplace_back(range, pmem,
219 conf_table_reported, in_addr_map, kvm_map);
220
221 // point the memories to their backing store
222 for (const auto& m : _memories) {
223 DPRINTF(AddrRanges, "Mapping memory %s to backing store\n",
224 m->name());
225 m->setBackingStore(pmem);
226 }
227}
228
229PhysicalMemory::~PhysicalMemory()
230{
231 // unmap the backing store
232 for (auto& s : backingStore)
233 munmap((char*)s.pmem, s.range.size());
234}
235
236bool
237PhysicalMemory::isMemAddr(Addr addr) const
238{
239 // see if the address is within the last matched range
240 if (rangeCache != addrMap.end() && rangeCache->first.contains(addr)) {
241 return true;
242 } else {
243 // lookup in the interval tree
244 const auto& r = addrMap.find(addr);
244 const auto& r = addrMap.contains(addr);
245 if (r == addrMap.end()) {
246 // not in the cache, and not in the tree
247 return false;
248 }
249 // the range is in the tree, update the cache
250 rangeCache = r;
251 return true;
252 }
253}
254
255AddrRangeList
256PhysicalMemory::getConfAddrRanges() const
257{
258 // this could be done once in the constructor, but since it is unlikely to
259 // be called more than once the iteration should not be a problem
260 AddrRangeList ranges;
261 vector<AddrRange> intlv_ranges;
262 for (const auto& r : addrMap) {
263 if (r.second->isConfReported()) {
264 // if the range is interleaved then save it for now
265 if (r.first.interleaved()) {
266 // if we already got interleaved ranges that are not
267 // part of the same range, then first do a merge
268 // before we add the new one
269 if (!intlv_ranges.empty() &&
270 !intlv_ranges.back().mergesWith(r.first)) {
271 ranges.push_back(AddrRange(intlv_ranges));
272 intlv_ranges.clear();
273 }
274 intlv_ranges.push_back(r.first);
275 } else {
276 // keep the current range
277 ranges.push_back(r.first);
278 }
279 }
280 }
281
282 // if there is still interleaved ranges waiting to be merged,
283 // go ahead and do it
284 if (!intlv_ranges.empty()) {
285 ranges.push_back(AddrRange(intlv_ranges));
286 }
287
288 return ranges;
289}
290
291void
292PhysicalMemory::access(PacketPtr pkt)
293{
294 assert(pkt->isRequest());
295 Addr addr = pkt->getAddr();
296 if (rangeCache != addrMap.end() && rangeCache->first.contains(addr)) {
297 rangeCache->second->access(pkt);
298 } else {
299 // do not update the cache here, as we typically call
300 // isMemAddr before calling access
245 if (r == addrMap.end()) {
246 // not in the cache, and not in the tree
247 return false;
248 }
249 // the range is in the tree, update the cache
250 rangeCache = r;
251 return true;
252 }
253}
254
255AddrRangeList
256PhysicalMemory::getConfAddrRanges() const
257{
258 // this could be done once in the constructor, but since it is unlikely to
259 // be called more than once the iteration should not be a problem
260 AddrRangeList ranges;
261 vector<AddrRange> intlv_ranges;
262 for (const auto& r : addrMap) {
263 if (r.second->isConfReported()) {
264 // if the range is interleaved then save it for now
265 if (r.first.interleaved()) {
266 // if we already got interleaved ranges that are not
267 // part of the same range, then first do a merge
268 // before we add the new one
269 if (!intlv_ranges.empty() &&
270 !intlv_ranges.back().mergesWith(r.first)) {
271 ranges.push_back(AddrRange(intlv_ranges));
272 intlv_ranges.clear();
273 }
274 intlv_ranges.push_back(r.first);
275 } else {
276 // keep the current range
277 ranges.push_back(r.first);
278 }
279 }
280 }
281
282 // if there is still interleaved ranges waiting to be merged,
283 // go ahead and do it
284 if (!intlv_ranges.empty()) {
285 ranges.push_back(AddrRange(intlv_ranges));
286 }
287
288 return ranges;
289}
290
291void
292PhysicalMemory::access(PacketPtr pkt)
293{
294 assert(pkt->isRequest());
295 Addr addr = pkt->getAddr();
296 if (rangeCache != addrMap.end() && rangeCache->first.contains(addr)) {
297 rangeCache->second->access(pkt);
298 } else {
299 // do not update the cache here, as we typically call
300 // isMemAddr before calling access
301 const auto& m = addrMap.find(addr);
301 const auto& m = addrMap.contains(addr);
302 assert(m != addrMap.end());
303 m->second->access(pkt);
304 }
305}
306
307void
308PhysicalMemory::functionalAccess(PacketPtr pkt)
309{
310 assert(pkt->isRequest());
311 Addr addr = pkt->getAddr();
312 if (rangeCache != addrMap.end() && rangeCache->first.contains(addr)) {
313 rangeCache->second->functionalAccess(pkt);
314 } else {
315 // do not update the cache here, as we typically call
316 // isMemAddr before calling functionalAccess
302 assert(m != addrMap.end());
303 m->second->access(pkt);
304 }
305}
306
307void
308PhysicalMemory::functionalAccess(PacketPtr pkt)
309{
310 assert(pkt->isRequest());
311 Addr addr = pkt->getAddr();
312 if (rangeCache != addrMap.end() && rangeCache->first.contains(addr)) {
313 rangeCache->second->functionalAccess(pkt);
314 } else {
315 // do not update the cache here, as we typically call
316 // isMemAddr before calling functionalAccess
317 const auto& m = addrMap.find(addr);
317 const auto& m = addrMap.contains(addr);
318 assert(m != addrMap.end());
319 m->second->functionalAccess(pkt);
320 }
321}
322
323void
324PhysicalMemory::serialize(CheckpointOut &cp) const
325{
326 // serialize all the locked addresses and their context ids
327 vector<Addr> lal_addr;
328 vector<ContextID> lal_cid;
329
330 for (auto& m : memories) {
331 const list<LockedAddr>& locked_addrs = m->getLockedAddrList();
332 for (const auto& l : locked_addrs) {
333 lal_addr.push_back(l.addr);
334 lal_cid.push_back(l.contextId);
335 }
336 }
337
338 SERIALIZE_CONTAINER(lal_addr);
339 SERIALIZE_CONTAINER(lal_cid);
340
341 // serialize the backing stores
342 unsigned int nbr_of_stores = backingStore.size();
343 SERIALIZE_SCALAR(nbr_of_stores);
344
345 unsigned int store_id = 0;
346 // store each backing store memory segment in a file
347 for (auto& s : backingStore) {
348 ScopedCheckpointSection sec(cp, csprintf("store%d", store_id));
349 serializeStore(cp, store_id++, s.range, s.pmem);
350 }
351}
352
353void
354PhysicalMemory::serializeStore(CheckpointOut &cp, unsigned int store_id,
355 AddrRange range, uint8_t* pmem) const
356{
357 // we cannot use the address range for the name as the
358 // memories that are not part of the address map can overlap
359 string filename = name() + ".store" + to_string(store_id) + ".pmem";
360 long range_size = range.size();
361
362 DPRINTF(Checkpoint, "Serializing physical memory %s with size %d\n",
363 filename, range_size);
364
365 SERIALIZE_SCALAR(store_id);
366 SERIALIZE_SCALAR(filename);
367 SERIALIZE_SCALAR(range_size);
368
369 // write memory file
370 string filepath = CheckpointIn::dir() + "/" + filename.c_str();
371 gzFile compressed_mem = gzopen(filepath.c_str(), "wb");
372 if (compressed_mem == NULL)
373 fatal("Can't open physical memory checkpoint file '%s'\n",
374 filename);
375
376 uint64_t pass_size = 0;
377
378 // gzwrite fails if (int)len < 0 (gzwrite returns int)
379 for (uint64_t written = 0; written < range.size();
380 written += pass_size) {
381 pass_size = (uint64_t)INT_MAX < (range.size() - written) ?
382 (uint64_t)INT_MAX : (range.size() - written);
383
384 if (gzwrite(compressed_mem, pmem + written,
385 (unsigned int) pass_size) != (int) pass_size) {
386 fatal("Write failed on physical memory checkpoint file '%s'\n",
387 filename);
388 }
389 }
390
391 // close the compressed stream and check that the exit status
392 // is zero
393 if (gzclose(compressed_mem))
394 fatal("Close failed on physical memory checkpoint file '%s'\n",
395 filename);
396
397}
398
399void
400PhysicalMemory::unserialize(CheckpointIn &cp)
401{
402 // unserialize the locked addresses and map them to the
403 // appropriate memory controller
404 vector<Addr> lal_addr;
405 vector<ContextID> lal_cid;
406 UNSERIALIZE_CONTAINER(lal_addr);
407 UNSERIALIZE_CONTAINER(lal_cid);
408 for (size_t i = 0; i < lal_addr.size(); ++i) {
318 assert(m != addrMap.end());
319 m->second->functionalAccess(pkt);
320 }
321}
322
323void
324PhysicalMemory::serialize(CheckpointOut &cp) const
325{
326 // serialize all the locked addresses and their context ids
327 vector<Addr> lal_addr;
328 vector<ContextID> lal_cid;
329
330 for (auto& m : memories) {
331 const list<LockedAddr>& locked_addrs = m->getLockedAddrList();
332 for (const auto& l : locked_addrs) {
333 lal_addr.push_back(l.addr);
334 lal_cid.push_back(l.contextId);
335 }
336 }
337
338 SERIALIZE_CONTAINER(lal_addr);
339 SERIALIZE_CONTAINER(lal_cid);
340
341 // serialize the backing stores
342 unsigned int nbr_of_stores = backingStore.size();
343 SERIALIZE_SCALAR(nbr_of_stores);
344
345 unsigned int store_id = 0;
346 // store each backing store memory segment in a file
347 for (auto& s : backingStore) {
348 ScopedCheckpointSection sec(cp, csprintf("store%d", store_id));
349 serializeStore(cp, store_id++, s.range, s.pmem);
350 }
351}
352
353void
354PhysicalMemory::serializeStore(CheckpointOut &cp, unsigned int store_id,
355 AddrRange range, uint8_t* pmem) const
356{
357 // we cannot use the address range for the name as the
358 // memories that are not part of the address map can overlap
359 string filename = name() + ".store" + to_string(store_id) + ".pmem";
360 long range_size = range.size();
361
362 DPRINTF(Checkpoint, "Serializing physical memory %s with size %d\n",
363 filename, range_size);
364
365 SERIALIZE_SCALAR(store_id);
366 SERIALIZE_SCALAR(filename);
367 SERIALIZE_SCALAR(range_size);
368
369 // write memory file
370 string filepath = CheckpointIn::dir() + "/" + filename.c_str();
371 gzFile compressed_mem = gzopen(filepath.c_str(), "wb");
372 if (compressed_mem == NULL)
373 fatal("Can't open physical memory checkpoint file '%s'\n",
374 filename);
375
376 uint64_t pass_size = 0;
377
378 // gzwrite fails if (int)len < 0 (gzwrite returns int)
379 for (uint64_t written = 0; written < range.size();
380 written += pass_size) {
381 pass_size = (uint64_t)INT_MAX < (range.size() - written) ?
382 (uint64_t)INT_MAX : (range.size() - written);
383
384 if (gzwrite(compressed_mem, pmem + written,
385 (unsigned int) pass_size) != (int) pass_size) {
386 fatal("Write failed on physical memory checkpoint file '%s'\n",
387 filename);
388 }
389 }
390
391 // close the compressed stream and check that the exit status
392 // is zero
393 if (gzclose(compressed_mem))
394 fatal("Close failed on physical memory checkpoint file '%s'\n",
395 filename);
396
397}
398
399void
400PhysicalMemory::unserialize(CheckpointIn &cp)
401{
402 // unserialize the locked addresses and map them to the
403 // appropriate memory controller
404 vector<Addr> lal_addr;
405 vector<ContextID> lal_cid;
406 UNSERIALIZE_CONTAINER(lal_addr);
407 UNSERIALIZE_CONTAINER(lal_cid);
408 for (size_t i = 0; i < lal_addr.size(); ++i) {
409 const auto& m = addrMap.find(lal_addr[i]);
409 const auto& m = addrMap.contains(lal_addr[i]);
410 m->second->addLockedAddr(LockedAddr(lal_addr[i], lal_cid[i]));
411 }
412
413 // unserialize the backing stores
414 unsigned int nbr_of_stores;
415 UNSERIALIZE_SCALAR(nbr_of_stores);
416
417 for (unsigned int i = 0; i < nbr_of_stores; ++i) {
418 ScopedCheckpointSection sec(cp, csprintf("store%d", i));
419 unserializeStore(cp);
420 }
421
422}
423
424void
425PhysicalMemory::unserializeStore(CheckpointIn &cp)
426{
427 const uint32_t chunk_size = 16384;
428
429 unsigned int store_id;
430 UNSERIALIZE_SCALAR(store_id);
431
432 string filename;
433 UNSERIALIZE_SCALAR(filename);
434 string filepath = cp.cptDir + "/" + filename;
435
436 // mmap memoryfile
437 gzFile compressed_mem = gzopen(filepath.c_str(), "rb");
438 if (compressed_mem == NULL)
439 fatal("Can't open physical memory checkpoint file '%s'", filename);
440
441 // we've already got the actual backing store mapped
442 uint8_t* pmem = backingStore[store_id].pmem;
443 AddrRange range = backingStore[store_id].range;
444
445 long range_size;
446 UNSERIALIZE_SCALAR(range_size);
447
448 DPRINTF(Checkpoint, "Unserializing physical memory %s with size %d\n",
449 filename, range_size);
450
451 if (range_size != range.size())
452 fatal("Memory range size has changed! Saw %lld, expected %lld\n",
453 range_size, range.size());
454
455 uint64_t curr_size = 0;
456 long* temp_page = new long[chunk_size];
457 long* pmem_current;
458 uint32_t bytes_read;
459 while (curr_size < range.size()) {
460 bytes_read = gzread(compressed_mem, temp_page, chunk_size);
461 if (bytes_read == 0)
462 break;
463
464 assert(bytes_read % sizeof(long) == 0);
465
466 for (uint32_t x = 0; x < bytes_read / sizeof(long); x++) {
467 // Only copy bytes that are non-zero, so we don't give
468 // the VM system hell
469 if (*(temp_page + x) != 0) {
470 pmem_current = (long*)(pmem + curr_size + x * sizeof(long));
471 *pmem_current = *(temp_page + x);
472 }
473 }
474 curr_size += bytes_read;
475 }
476
477 delete[] temp_page;
478
479 if (gzclose(compressed_mem))
480 fatal("Close failed on physical memory checkpoint file '%s'\n",
481 filename);
482}
410 m->second->addLockedAddr(LockedAddr(lal_addr[i], lal_cid[i]));
411 }
412
413 // unserialize the backing stores
414 unsigned int nbr_of_stores;
415 UNSERIALIZE_SCALAR(nbr_of_stores);
416
417 for (unsigned int i = 0; i < nbr_of_stores; ++i) {
418 ScopedCheckpointSection sec(cp, csprintf("store%d", i));
419 unserializeStore(cp);
420 }
421
422}
423
424void
425PhysicalMemory::unserializeStore(CheckpointIn &cp)
426{
427 const uint32_t chunk_size = 16384;
428
429 unsigned int store_id;
430 UNSERIALIZE_SCALAR(store_id);
431
432 string filename;
433 UNSERIALIZE_SCALAR(filename);
434 string filepath = cp.cptDir + "/" + filename;
435
436 // mmap memoryfile
437 gzFile compressed_mem = gzopen(filepath.c_str(), "rb");
438 if (compressed_mem == NULL)
439 fatal("Can't open physical memory checkpoint file '%s'", filename);
440
441 // we've already got the actual backing store mapped
442 uint8_t* pmem = backingStore[store_id].pmem;
443 AddrRange range = backingStore[store_id].range;
444
445 long range_size;
446 UNSERIALIZE_SCALAR(range_size);
447
448 DPRINTF(Checkpoint, "Unserializing physical memory %s with size %d\n",
449 filename, range_size);
450
451 if (range_size != range.size())
452 fatal("Memory range size has changed! Saw %lld, expected %lld\n",
453 range_size, range.size());
454
455 uint64_t curr_size = 0;
456 long* temp_page = new long[chunk_size];
457 long* pmem_current;
458 uint32_t bytes_read;
459 while (curr_size < range.size()) {
460 bytes_read = gzread(compressed_mem, temp_page, chunk_size);
461 if (bytes_read == 0)
462 break;
463
464 assert(bytes_read % sizeof(long) == 0);
465
466 for (uint32_t x = 0; x < bytes_read / sizeof(long); x++) {
467 // Only copy bytes that are non-zero, so we don't give
468 // the VM system hell
469 if (*(temp_page + x) != 0) {
470 pmem_current = (long*)(pmem + curr_size + x * sizeof(long));
471 *pmem_current = *(temp_page + x);
472 }
473 }
474 curr_size += bytes_read;
475 }
476
477 delete[] temp_page;
478
479 if (gzclose(compressed_mem))
480 fatal("Close failed on physical memory checkpoint file '%s'\n",
481 filename);
482}