packet.hh (12349:47f454120200) packet.hh (12351:17eaa27bef22)
1/*
2 * Copyright (c) 2012-2017 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 * Steve Reinhardt
43 * Ali Saidi
44 * Andreas Hansson
45 * Nikos Nikoleris
46 */
47
48/**
49 * @file
50 * Declaration of the Packet class.
51 */
52
53#ifndef __MEM_PACKET_HH__
54#define __MEM_PACKET_HH__
55
56#include <bitset>
57#include <cassert>
58#include <list>
59
60#include "base/cast.hh"
61#include "base/compiler.hh"
62#include "base/flags.hh"
63#include "base/logging.hh"
64#include "base/printable.hh"
65#include "base/types.hh"
66#include "mem/request.hh"
67#include "sim/core.hh"
68
69class Packet;
70typedef Packet *PacketPtr;
71typedef uint8_t* PacketDataPtr;
72typedef std::list<PacketPtr> PacketList;
1/*
2 * Copyright (c) 2012-2017 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 * Steve Reinhardt
43 * Ali Saidi
44 * Andreas Hansson
45 * Nikos Nikoleris
46 */
47
48/**
49 * @file
50 * Declaration of the Packet class.
51 */
52
53#ifndef __MEM_PACKET_HH__
54#define __MEM_PACKET_HH__
55
56#include <bitset>
57#include <cassert>
58#include <list>
59
60#include "base/cast.hh"
61#include "base/compiler.hh"
62#include "base/flags.hh"
63#include "base/logging.hh"
64#include "base/printable.hh"
65#include "base/types.hh"
66#include "mem/request.hh"
67#include "sim/core.hh"
68
69class Packet;
70typedef Packet *PacketPtr;
71typedef uint8_t* PacketDataPtr;
72typedef std::list<PacketPtr> PacketList;
73typedef uint64_t PacketId;
73
74class MemCmd
75{
76 friend class Packet;
77
78 public:
79 /**
80 * List of all commands associated with a packet.
81 */
82 enum Command
83 {
84 InvalidCmd,
85 ReadReq,
86 ReadResp,
87 ReadRespWithInvalidate,
88 WriteReq,
89 WriteResp,
90 WritebackDirty,
91 WritebackClean,
92 WriteClean, // writes dirty data below without evicting
93 CleanEvict,
94 SoftPFReq,
95 HardPFReq,
96 SoftPFResp,
97 HardPFResp,
98 WriteLineReq,
99 UpgradeReq,
100 SCUpgradeReq, // Special "weak" upgrade for StoreCond
101 UpgradeResp,
102 SCUpgradeFailReq, // Failed SCUpgradeReq in MSHR (never sent)
103 UpgradeFailResp, // Valid for SCUpgradeReq only
104 ReadExReq,
105 ReadExResp,
106 ReadCleanReq,
107 ReadSharedReq,
108 LoadLockedReq,
109 StoreCondReq,
110 StoreCondFailReq, // Failed StoreCondReq in MSHR (never sent)
111 StoreCondResp,
112 SwapReq,
113 SwapResp,
114 MessageReq,
115 MessageResp,
116 MemFenceReq,
117 MemFenceResp,
118 CleanSharedReq,
119 CleanSharedResp,
120 CleanInvalidReq,
121 CleanInvalidResp,
122 // Error responses
123 // @TODO these should be classified as responses rather than
124 // requests; coding them as requests initially for backwards
125 // compatibility
126 InvalidDestError, // packet dest field invalid
127 BadAddressError, // memory address invalid
128 FunctionalReadError, // unable to fulfill functional read
129 FunctionalWriteError, // unable to fulfill functional write
130 // Fake simulator-only commands
131 PrintReq, // Print state matching address
132 FlushReq, //request for a cache flush
133 InvalidateReq, // request for address to be invalidated
134 InvalidateResp,
135 NUM_MEM_CMDS
136 };
137
138 private:
139 /**
140 * List of command attributes.
141 */
142 enum Attribute
143 {
144 IsRead, //!< Data flows from responder to requester
145 IsWrite, //!< Data flows from requester to responder
146 IsUpgrade,
147 IsInvalidate,
148 IsClean, //!< Cleans any existing dirty blocks
149 NeedsWritable, //!< Requires writable copy to complete in-cache
150 IsRequest, //!< Issued by requester
151 IsResponse, //!< Issue by responder
152 NeedsResponse, //!< Requester needs response from target
153 IsEviction,
154 IsSWPrefetch,
155 IsHWPrefetch,
156 IsLlsc, //!< Alpha/MIPS LL or SC access
157 HasData, //!< There is an associated payload
158 IsError, //!< Error response
159 IsPrint, //!< Print state matching address (for debugging)
160 IsFlush, //!< Flush the address from caches
161 FromCache, //!< Request originated from a caching agent
162 NUM_COMMAND_ATTRIBUTES
163 };
164
165 /**
166 * Structure that defines attributes and other data associated
167 * with a Command.
168 */
169 struct CommandInfo
170 {
171 /// Set of attribute flags.
172 const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
173 /// Corresponding response for requests; InvalidCmd if no
174 /// response is applicable.
175 const Command response;
176 /// String representation (for printing)
177 const std::string str;
178 };
179
180 /// Array to map Command enum to associated info.
181 static const CommandInfo commandInfo[];
182
183 private:
184
185 Command cmd;
186
187 bool
188 testCmdAttrib(MemCmd::Attribute attrib) const
189 {
190 return commandInfo[cmd].attributes[attrib] != 0;
191 }
192
193 public:
194
195 bool isRead() const { return testCmdAttrib(IsRead); }
196 bool isWrite() const { return testCmdAttrib(IsWrite); }
197 bool isUpgrade() const { return testCmdAttrib(IsUpgrade); }
198 bool isRequest() const { return testCmdAttrib(IsRequest); }
199 bool isResponse() const { return testCmdAttrib(IsResponse); }
200 bool needsWritable() const { return testCmdAttrib(NeedsWritable); }
201 bool needsResponse() const { return testCmdAttrib(NeedsResponse); }
202 bool isInvalidate() const { return testCmdAttrib(IsInvalidate); }
203 bool isEviction() const { return testCmdAttrib(IsEviction); }
204 bool isClean() const { return testCmdAttrib(IsClean); }
205 bool fromCache() const { return testCmdAttrib(FromCache); }
206
207 /**
208 * A writeback is an eviction that carries data.
209 */
210 bool isWriteback() const { return testCmdAttrib(IsEviction) &&
211 testCmdAttrib(HasData); }
212
213 /**
214 * Check if this particular packet type carries payload data. Note
215 * that this does not reflect if the data pointer of the packet is
216 * valid or not.
217 */
218 bool hasData() const { return testCmdAttrib(HasData); }
219 bool isLLSC() const { return testCmdAttrib(IsLlsc); }
220 bool isSWPrefetch() const { return testCmdAttrib(IsSWPrefetch); }
221 bool isHWPrefetch() const { return testCmdAttrib(IsHWPrefetch); }
222 bool isPrefetch() const { return testCmdAttrib(IsSWPrefetch) ||
223 testCmdAttrib(IsHWPrefetch); }
224 bool isError() const { return testCmdAttrib(IsError); }
225 bool isPrint() const { return testCmdAttrib(IsPrint); }
226 bool isFlush() const { return testCmdAttrib(IsFlush); }
227
228 Command
229 responseCommand() const
230 {
231 return commandInfo[cmd].response;
232 }
233
234 /// Return the string to a cmd given by idx.
235 const std::string &toString() const { return commandInfo[cmd].str; }
236 int toInt() const { return (int)cmd; }
237
238 MemCmd(Command _cmd) : cmd(_cmd) { }
239 MemCmd(int _cmd) : cmd((Command)_cmd) { }
240 MemCmd() : cmd(InvalidCmd) { }
241
242 bool operator==(MemCmd c2) const { return (cmd == c2.cmd); }
243 bool operator!=(MemCmd c2) const { return (cmd != c2.cmd); }
244};
245
246/**
247 * A Packet is used to encapsulate a transfer between two objects in
248 * the memory system (e.g., the L1 and L2 cache). (In contrast, a
249 * single Request travels all the way from the requester to the
250 * ultimate destination and back, possibly being conveyed by several
251 * different Packets along the way.)
252 */
253class Packet : public Printable
254{
255 public:
256 typedef uint32_t FlagsType;
257 typedef ::Flags<FlagsType> Flags;
258
259 private:
260
261 enum : FlagsType {
262 // Flags to transfer across when copying a packet
263 COPY_FLAGS = 0x0000003F,
264
265 // Does this packet have sharers (which means it should not be
266 // considered writable) or not. See setHasSharers below.
267 HAS_SHARERS = 0x00000001,
268
269 // Special control flags
270 /// Special timing-mode atomic snoop for multi-level coherence.
271 EXPRESS_SNOOP = 0x00000002,
272
273 /// Allow a responding cache to inform the cache hierarchy
274 /// that it had a writable copy before responding. See
275 /// setResponderHadWritable below.
276 RESPONDER_HAD_WRITABLE = 0x00000004,
277
278 // Snoop co-ordination flag to indicate that a cache is
279 // responding to a snoop. See setCacheResponding below.
280 CACHE_RESPONDING = 0x00000008,
281
282 // The writeback/writeclean should be propagated further
283 // downstream by the receiver
284 WRITE_THROUGH = 0x00000010,
285
286 // Response co-ordination flag for cache maintenance
287 // operations
288 SATISFIED = 0x00000020,
289
290 /// Are the 'addr' and 'size' fields valid?
291 VALID_ADDR = 0x00000100,
292 VALID_SIZE = 0x00000200,
293
294 /// Is the data pointer set to a value that shouldn't be freed
295 /// when the packet is destroyed?
296 STATIC_DATA = 0x00001000,
297 /// The data pointer points to a value that should be freed when
298 /// the packet is destroyed. The pointer is assumed to be pointing
299 /// to an array, and delete [] is consequently called
300 DYNAMIC_DATA = 0x00002000,
301
302 /// suppress the error if this packet encounters a functional
303 /// access failure.
304 SUPPRESS_FUNC_ERROR = 0x00008000,
305
306 // Signal block present to squash prefetch and cache evict packets
307 // through express snoop flag
308 BLOCK_CACHED = 0x00010000
309 };
310
311 Flags flags;
312
313 public:
314 typedef MemCmd::Command Command;
315
316 /// The command field of the packet.
317 MemCmd cmd;
318
74
75class MemCmd
76{
77 friend class Packet;
78
79 public:
80 /**
81 * List of all commands associated with a packet.
82 */
83 enum Command
84 {
85 InvalidCmd,
86 ReadReq,
87 ReadResp,
88 ReadRespWithInvalidate,
89 WriteReq,
90 WriteResp,
91 WritebackDirty,
92 WritebackClean,
93 WriteClean, // writes dirty data below without evicting
94 CleanEvict,
95 SoftPFReq,
96 HardPFReq,
97 SoftPFResp,
98 HardPFResp,
99 WriteLineReq,
100 UpgradeReq,
101 SCUpgradeReq, // Special "weak" upgrade for StoreCond
102 UpgradeResp,
103 SCUpgradeFailReq, // Failed SCUpgradeReq in MSHR (never sent)
104 UpgradeFailResp, // Valid for SCUpgradeReq only
105 ReadExReq,
106 ReadExResp,
107 ReadCleanReq,
108 ReadSharedReq,
109 LoadLockedReq,
110 StoreCondReq,
111 StoreCondFailReq, // Failed StoreCondReq in MSHR (never sent)
112 StoreCondResp,
113 SwapReq,
114 SwapResp,
115 MessageReq,
116 MessageResp,
117 MemFenceReq,
118 MemFenceResp,
119 CleanSharedReq,
120 CleanSharedResp,
121 CleanInvalidReq,
122 CleanInvalidResp,
123 // Error responses
124 // @TODO these should be classified as responses rather than
125 // requests; coding them as requests initially for backwards
126 // compatibility
127 InvalidDestError, // packet dest field invalid
128 BadAddressError, // memory address invalid
129 FunctionalReadError, // unable to fulfill functional read
130 FunctionalWriteError, // unable to fulfill functional write
131 // Fake simulator-only commands
132 PrintReq, // Print state matching address
133 FlushReq, //request for a cache flush
134 InvalidateReq, // request for address to be invalidated
135 InvalidateResp,
136 NUM_MEM_CMDS
137 };
138
139 private:
140 /**
141 * List of command attributes.
142 */
143 enum Attribute
144 {
145 IsRead, //!< Data flows from responder to requester
146 IsWrite, //!< Data flows from requester to responder
147 IsUpgrade,
148 IsInvalidate,
149 IsClean, //!< Cleans any existing dirty blocks
150 NeedsWritable, //!< Requires writable copy to complete in-cache
151 IsRequest, //!< Issued by requester
152 IsResponse, //!< Issue by responder
153 NeedsResponse, //!< Requester needs response from target
154 IsEviction,
155 IsSWPrefetch,
156 IsHWPrefetch,
157 IsLlsc, //!< Alpha/MIPS LL or SC access
158 HasData, //!< There is an associated payload
159 IsError, //!< Error response
160 IsPrint, //!< Print state matching address (for debugging)
161 IsFlush, //!< Flush the address from caches
162 FromCache, //!< Request originated from a caching agent
163 NUM_COMMAND_ATTRIBUTES
164 };
165
166 /**
167 * Structure that defines attributes and other data associated
168 * with a Command.
169 */
170 struct CommandInfo
171 {
172 /// Set of attribute flags.
173 const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
174 /// Corresponding response for requests; InvalidCmd if no
175 /// response is applicable.
176 const Command response;
177 /// String representation (for printing)
178 const std::string str;
179 };
180
181 /// Array to map Command enum to associated info.
182 static const CommandInfo commandInfo[];
183
184 private:
185
186 Command cmd;
187
188 bool
189 testCmdAttrib(MemCmd::Attribute attrib) const
190 {
191 return commandInfo[cmd].attributes[attrib] != 0;
192 }
193
194 public:
195
196 bool isRead() const { return testCmdAttrib(IsRead); }
197 bool isWrite() const { return testCmdAttrib(IsWrite); }
198 bool isUpgrade() const { return testCmdAttrib(IsUpgrade); }
199 bool isRequest() const { return testCmdAttrib(IsRequest); }
200 bool isResponse() const { return testCmdAttrib(IsResponse); }
201 bool needsWritable() const { return testCmdAttrib(NeedsWritable); }
202 bool needsResponse() const { return testCmdAttrib(NeedsResponse); }
203 bool isInvalidate() const { return testCmdAttrib(IsInvalidate); }
204 bool isEviction() const { return testCmdAttrib(IsEviction); }
205 bool isClean() const { return testCmdAttrib(IsClean); }
206 bool fromCache() const { return testCmdAttrib(FromCache); }
207
208 /**
209 * A writeback is an eviction that carries data.
210 */
211 bool isWriteback() const { return testCmdAttrib(IsEviction) &&
212 testCmdAttrib(HasData); }
213
214 /**
215 * Check if this particular packet type carries payload data. Note
216 * that this does not reflect if the data pointer of the packet is
217 * valid or not.
218 */
219 bool hasData() const { return testCmdAttrib(HasData); }
220 bool isLLSC() const { return testCmdAttrib(IsLlsc); }
221 bool isSWPrefetch() const { return testCmdAttrib(IsSWPrefetch); }
222 bool isHWPrefetch() const { return testCmdAttrib(IsHWPrefetch); }
223 bool isPrefetch() const { return testCmdAttrib(IsSWPrefetch) ||
224 testCmdAttrib(IsHWPrefetch); }
225 bool isError() const { return testCmdAttrib(IsError); }
226 bool isPrint() const { return testCmdAttrib(IsPrint); }
227 bool isFlush() const { return testCmdAttrib(IsFlush); }
228
229 Command
230 responseCommand() const
231 {
232 return commandInfo[cmd].response;
233 }
234
235 /// Return the string to a cmd given by idx.
236 const std::string &toString() const { return commandInfo[cmd].str; }
237 int toInt() const { return (int)cmd; }
238
239 MemCmd(Command _cmd) : cmd(_cmd) { }
240 MemCmd(int _cmd) : cmd((Command)_cmd) { }
241 MemCmd() : cmd(InvalidCmd) { }
242
243 bool operator==(MemCmd c2) const { return (cmd == c2.cmd); }
244 bool operator!=(MemCmd c2) const { return (cmd != c2.cmd); }
245};
246
247/**
248 * A Packet is used to encapsulate a transfer between two objects in
249 * the memory system (e.g., the L1 and L2 cache). (In contrast, a
250 * single Request travels all the way from the requester to the
251 * ultimate destination and back, possibly being conveyed by several
252 * different Packets along the way.)
253 */
254class Packet : public Printable
255{
256 public:
257 typedef uint32_t FlagsType;
258 typedef ::Flags<FlagsType> Flags;
259
260 private:
261
262 enum : FlagsType {
263 // Flags to transfer across when copying a packet
264 COPY_FLAGS = 0x0000003F,
265
266 // Does this packet have sharers (which means it should not be
267 // considered writable) or not. See setHasSharers below.
268 HAS_SHARERS = 0x00000001,
269
270 // Special control flags
271 /// Special timing-mode atomic snoop for multi-level coherence.
272 EXPRESS_SNOOP = 0x00000002,
273
274 /// Allow a responding cache to inform the cache hierarchy
275 /// that it had a writable copy before responding. See
276 /// setResponderHadWritable below.
277 RESPONDER_HAD_WRITABLE = 0x00000004,
278
279 // Snoop co-ordination flag to indicate that a cache is
280 // responding to a snoop. See setCacheResponding below.
281 CACHE_RESPONDING = 0x00000008,
282
283 // The writeback/writeclean should be propagated further
284 // downstream by the receiver
285 WRITE_THROUGH = 0x00000010,
286
287 // Response co-ordination flag for cache maintenance
288 // operations
289 SATISFIED = 0x00000020,
290
291 /// Are the 'addr' and 'size' fields valid?
292 VALID_ADDR = 0x00000100,
293 VALID_SIZE = 0x00000200,
294
295 /// Is the data pointer set to a value that shouldn't be freed
296 /// when the packet is destroyed?
297 STATIC_DATA = 0x00001000,
298 /// The data pointer points to a value that should be freed when
299 /// the packet is destroyed. The pointer is assumed to be pointing
300 /// to an array, and delete [] is consequently called
301 DYNAMIC_DATA = 0x00002000,
302
303 /// suppress the error if this packet encounters a functional
304 /// access failure.
305 SUPPRESS_FUNC_ERROR = 0x00008000,
306
307 // Signal block present to squash prefetch and cache evict packets
308 // through express snoop flag
309 BLOCK_CACHED = 0x00010000
310 };
311
312 Flags flags;
313
314 public:
315 typedef MemCmd::Command Command;
316
317 /// The command field of the packet.
318 MemCmd cmd;
319
320 const PacketId id;
321
319 /// A pointer to the original request.
320 const RequestPtr req;
321
322 private:
323 /**
324 * A pointer to the data being transfered. It can be differnt
325 * sizes at each level of the heirarchy so it belongs in the
326 * packet, not request. This may or may not be populated when a
327 * responder recieves the packet. If not populated it memory should
328 * be allocated.
329 */
330 PacketDataPtr data;
331
332 /// The address of the request. This address could be virtual or
333 /// physical, depending on the system configuration.
334 Addr addr;
335
336 /// True if the request targets the secure memory space.
337 bool _isSecure;
338
339 /// The size of the request or transfer.
340 unsigned size;
341
342 /**
343 * Track the bytes found that satisfy a functional read.
344 */
345 std::vector<bool> bytesValid;
346
347 public:
348
349 /**
350 * The extra delay from seeing the packet until the header is
351 * transmitted. This delay is used to communicate the crossbar
352 * forwarding latency to the neighbouring object (e.g. a cache)
353 * that actually makes the packet wait. As the delay is relative,
354 * a 32-bit unsigned should be sufficient.
355 */
356 uint32_t headerDelay;
357
358 /**
359 * Keep track of the extra delay incurred by snooping upwards
360 * before sending a request down the memory system. This is used
361 * by the coherent crossbar to account for the additional request
362 * delay.
363 */
364 uint32_t snoopDelay;
365
366 /**
367 * The extra pipelining delay from seeing the packet until the end of
368 * payload is transmitted by the component that provided it (if
369 * any). This includes the header delay. Similar to the header
370 * delay, this is used to make up for the fact that the
371 * crossbar does not make the packet wait. As the delay is
372 * relative, a 32-bit unsigned should be sufficient.
373 */
374 uint32_t payloadDelay;
375
376 /**
377 * A virtual base opaque structure used to hold state associated
378 * with the packet (e.g., an MSHR), specific to a MemObject that
379 * sees the packet. A pointer to this state is returned in the
380 * packet's response so that the MemObject in question can quickly
381 * look up the state needed to process it. A specific subclass
382 * would be derived from this to carry state specific to a
383 * particular sending device.
384 *
385 * As multiple MemObjects may add their SenderState throughout the
386 * memory system, the SenderStates create a stack, where a
387 * MemObject can add a new Senderstate, as long as the
388 * predecessing SenderState is restored when the response comes
389 * back. For this reason, the predecessor should always be
390 * populated with the current SenderState of a packet before
391 * modifying the senderState field in the request packet.
392 */
393 struct SenderState
394 {
395 SenderState* predecessor;
396 SenderState() : predecessor(NULL) {}
397 virtual ~SenderState() {}
398 };
399
400 /**
401 * Object used to maintain state of a PrintReq. The senderState
402 * field of a PrintReq should always be of this type.
403 */
404 class PrintReqState : public SenderState
405 {
406 private:
407 /**
408 * An entry in the label stack.
409 */
410 struct LabelStackEntry
411 {
412 const std::string label;
413 std::string *prefix;
414 bool labelPrinted;
415 LabelStackEntry(const std::string &_label, std::string *_prefix);
416 };
417
418 typedef std::list<LabelStackEntry> LabelStack;
419 LabelStack labelStack;
420
421 std::string *curPrefixPtr;
422
423 public:
424 std::ostream &os;
425 const int verbosity;
426
427 PrintReqState(std::ostream &os, int verbosity = 0);
428 ~PrintReqState();
429
430 /**
431 * Returns the current line prefix.
432 */
433 const std::string &curPrefix() { return *curPrefixPtr; }
434
435 /**
436 * Push a label onto the label stack, and prepend the given
437 * prefix string onto the current prefix. Labels will only be
438 * printed if an object within the label's scope is printed.
439 */
440 void pushLabel(const std::string &lbl,
441 const std::string &prefix = " ");
442
443 /**
444 * Pop a label off the label stack.
445 */
446 void popLabel();
447
448 /**
449 * Print all of the pending unprinted labels on the
450 * stack. Called by printObj(), so normally not called by
451 * users unless bypassing printObj().
452 */
453 void printLabels();
454
455 /**
456 * Print a Printable object to os, because it matched the
457 * address on a PrintReq.
458 */
459 void printObj(Printable *obj);
460 };
461
462 /**
463 * This packet's sender state. Devices should use dynamic_cast<>
464 * to cast to the state appropriate to the sender. The intent of
465 * this variable is to allow a device to attach extra information
466 * to a request. A response packet must return the sender state
467 * that was attached to the original request (even if a new packet
468 * is created).
469 */
470 SenderState *senderState;
471
472 /**
473 * Push a new sender state to the packet and make the current
474 * sender state the predecessor of the new one. This should be
475 * prefered over direct manipulation of the senderState member
476 * variable.
477 *
478 * @param sender_state SenderState to push at the top of the stack
479 */
480 void pushSenderState(SenderState *sender_state);
481
482 /**
483 * Pop the top of the state stack and return a pointer to it. This
484 * assumes the current sender state is not NULL. This should be
485 * preferred over direct manipulation of the senderState member
486 * variable.
487 *
488 * @return The current top of the stack
489 */
490 SenderState *popSenderState();
491
492 /**
493 * Go through the sender state stack and return the first instance
494 * that is of type T (as determined by a dynamic_cast). If there
495 * is no sender state of type T, NULL is returned.
496 *
497 * @return The topmost state of type T
498 */
499 template <typename T>
500 T * findNextSenderState() const
501 {
502 T *t = NULL;
503 SenderState* sender_state = senderState;
504 while (t == NULL && sender_state != NULL) {
505 t = dynamic_cast<T*>(sender_state);
506 sender_state = sender_state->predecessor;
507 }
508 return t;
509 }
510
511 /// Return the string name of the cmd field (for debugging and
512 /// tracing).
513 const std::string &cmdString() const { return cmd.toString(); }
514
515 /// Return the index of this command.
516 inline int cmdToIndex() const { return cmd.toInt(); }
517
518 bool isRead() const { return cmd.isRead(); }
519 bool isWrite() const { return cmd.isWrite(); }
520 bool isUpgrade() const { return cmd.isUpgrade(); }
521 bool isRequest() const { return cmd.isRequest(); }
522 bool isResponse() const { return cmd.isResponse(); }
523 bool needsWritable() const
524 {
525 // we should never check if a response needsWritable, the
526 // request has this flag, and for a response we should rather
527 // look at the hasSharers flag (if not set, the response is to
528 // be considered writable)
529 assert(isRequest());
530 return cmd.needsWritable();
531 }
532 bool needsResponse() const { return cmd.needsResponse(); }
533 bool isInvalidate() const { return cmd.isInvalidate(); }
534 bool isEviction() const { return cmd.isEviction(); }
535 bool isClean() const { return cmd.isClean(); }
536 bool fromCache() const { return cmd.fromCache(); }
537 bool isWriteback() const { return cmd.isWriteback(); }
538 bool hasData() const { return cmd.hasData(); }
539 bool hasRespData() const
540 {
541 MemCmd resp_cmd = cmd.responseCommand();
542 return resp_cmd.hasData();
543 }
544 bool isLLSC() const { return cmd.isLLSC(); }
545 bool isError() const { return cmd.isError(); }
546 bool isPrint() const { return cmd.isPrint(); }
547 bool isFlush() const { return cmd.isFlush(); }
548
549 //@{
550 /// Snoop flags
551 /**
552 * Set the cacheResponding flag. This is used by the caches to
553 * signal another cache that they are responding to a request. A
554 * cache will only respond to snoops if it has the line in either
555 * Modified or Owned state. Note that on snoop hits we always pass
556 * the line as Modified and never Owned. In the case of an Owned
557 * line we proceed to invalidate all other copies.
558 *
559 * On a cache fill (see Cache::handleFill), we check hasSharers
560 * first, ignoring the cacheResponding flag if hasSharers is set.
561 * A line is consequently allocated as:
562 *
563 * hasSharers cacheResponding state
564 * true false Shared
565 * true true Shared
566 * false false Exclusive
567 * false true Modified
568 */
569 void setCacheResponding()
570 {
571 assert(isRequest());
572 assert(!flags.isSet(CACHE_RESPONDING));
573 flags.set(CACHE_RESPONDING);
574 }
575 bool cacheResponding() const { return flags.isSet(CACHE_RESPONDING); }
576 /**
577 * On fills, the hasSharers flag is used by the caches in
578 * combination with the cacheResponding flag, as clarified
579 * above. If the hasSharers flag is not set, the packet is passing
580 * writable. Thus, a response from a memory passes the line as
581 * writable by default.
582 *
583 * The hasSharers flag is also used by upstream caches to inform a
584 * downstream cache that they have the block (by calling
585 * setHasSharers on snoop request packets that hit in upstream
586 * cachs tags or MSHRs). If the snoop packet has sharers, a
587 * downstream cache is prevented from passing a dirty line upwards
588 * if it was not explicitly asked for a writable copy. See
589 * Cache::satisfyCpuSideRequest.
590 *
591 * The hasSharers flag is also used on writebacks, in
592 * combination with the WritbackClean or WritebackDirty commands,
593 * to allocate the block downstream either as:
594 *
595 * command hasSharers state
596 * WritebackDirty false Modified
597 * WritebackDirty true Owned
598 * WritebackClean false Exclusive
599 * WritebackClean true Shared
600 */
601 void setHasSharers() { flags.set(HAS_SHARERS); }
602 bool hasSharers() const { return flags.isSet(HAS_SHARERS); }
603 //@}
604
605 /**
606 * The express snoop flag is used for two purposes. Firstly, it is
607 * used to bypass flow control for normal (non-snoop) requests
608 * going downstream in the memory system. In cases where a cache
609 * is responding to a snoop from another cache (it had a dirty
610 * line), but the line is not writable (and there are possibly
611 * other copies), the express snoop flag is set by the downstream
612 * cache to invalidate all other copies in zero time. Secondly,
613 * the express snoop flag is also set to be able to distinguish
614 * snoop packets that came from a downstream cache, rather than
615 * snoop packets from neighbouring caches.
616 */
617 void setExpressSnoop() { flags.set(EXPRESS_SNOOP); }
618 bool isExpressSnoop() const { return flags.isSet(EXPRESS_SNOOP); }
619
620 /**
621 * On responding to a snoop request (which only happens for
622 * Modified or Owned lines), make sure that we can transform an
623 * Owned response to a Modified one. If this flag is not set, the
624 * responding cache had the line in the Owned state, and there are
625 * possibly other Shared copies in the memory system. A downstream
626 * cache helps in orchestrating the invalidation of these copies
627 * by sending out the appropriate express snoops.
628 */
629 void setResponderHadWritable()
630 {
631 assert(cacheResponding());
632 assert(!responderHadWritable());
633 flags.set(RESPONDER_HAD_WRITABLE);
634 }
635 bool responderHadWritable() const
636 { return flags.isSet(RESPONDER_HAD_WRITABLE); }
637
638 /**
639 * A writeback/writeclean cmd gets propagated further downstream
640 * by the receiver when the flag is set.
641 */
642 void setWriteThrough()
643 {
644 assert(cmd.isWrite() &&
645 (cmd.isEviction() || cmd == MemCmd::WriteClean));
646 flags.set(WRITE_THROUGH);
647 }
648 void clearWriteThrough() { flags.clear(WRITE_THROUGH); }
649 bool writeThrough() const { return flags.isSet(WRITE_THROUGH); }
650
651 /**
652 * Set when a request hits in a cache and the cache is not going
653 * to respond. This is used by the crossbar to coordinate
654 * responses for cache maintenance operations.
655 */
656 void setSatisfied()
657 {
658 assert(cmd.isClean());
659 assert(!flags.isSet(SATISFIED));
660 flags.set(SATISFIED);
661 }
662 bool satisfied() const { return flags.isSet(SATISFIED); }
663
664 void setSuppressFuncError() { flags.set(SUPPRESS_FUNC_ERROR); }
665 bool suppressFuncError() const { return flags.isSet(SUPPRESS_FUNC_ERROR); }
666 void setBlockCached() { flags.set(BLOCK_CACHED); }
667 bool isBlockCached() const { return flags.isSet(BLOCK_CACHED); }
668 void clearBlockCached() { flags.clear(BLOCK_CACHED); }
669
670 // Network error conditions... encapsulate them as methods since
671 // their encoding keeps changing (from result field to command
672 // field, etc.)
673 void
674 setBadAddress()
675 {
676 assert(isResponse());
677 cmd = MemCmd::BadAddressError;
678 }
679
680 void copyError(Packet *pkt) { assert(pkt->isError()); cmd = pkt->cmd; }
681
682 Addr getAddr() const { assert(flags.isSet(VALID_ADDR)); return addr; }
683 /**
684 * Update the address of this packet mid-transaction. This is used
685 * by the address mapper to change an already set address to a new
686 * one based on the system configuration. It is intended to remap
687 * an existing address, so it asserts that the current address is
688 * valid.
689 */
690 void setAddr(Addr _addr) { assert(flags.isSet(VALID_ADDR)); addr = _addr; }
691
692 unsigned getSize() const { assert(flags.isSet(VALID_SIZE)); return size; }
693
694 Addr getOffset(unsigned int blk_size) const
695 {
696 return getAddr() & Addr(blk_size - 1);
697 }
698
699 Addr getBlockAddr(unsigned int blk_size) const
700 {
701 return getAddr() & ~(Addr(blk_size - 1));
702 }
703
704 bool isSecure() const
705 {
706 assert(flags.isSet(VALID_ADDR));
707 return _isSecure;
708 }
709
710 /**
711 * Accessor function to atomic op.
712 */
713 AtomicOpFunctor *getAtomicOp() const { return req->getAtomicOpFunctor(); }
714 bool isAtomicOp() const { return req->isAtomic(); }
715
716 /**
717 * It has been determined that the SC packet should successfully update
718 * memory. Therefore, convert this SC packet to a normal write.
719 */
720 void
721 convertScToWrite()
722 {
723 assert(isLLSC());
724 assert(isWrite());
725 cmd = MemCmd::WriteReq;
726 }
727
728 /**
729 * When ruby is in use, Ruby will monitor the cache line and the
730 * phys memory should treat LL ops as normal reads.
731 */
732 void
733 convertLlToRead()
734 {
735 assert(isLLSC());
736 assert(isRead());
737 cmd = MemCmd::ReadReq;
738 }
739
740 /**
741 * Constructor. Note that a Request object must be constructed
742 * first, but the Requests's physical address and size fields need
743 * not be valid. The command must be supplied.
744 */
745 Packet(const RequestPtr _req, MemCmd _cmd)
322 /// A pointer to the original request.
323 const RequestPtr req;
324
325 private:
326 /**
327 * A pointer to the data being transfered. It can be differnt
328 * sizes at each level of the heirarchy so it belongs in the
329 * packet, not request. This may or may not be populated when a
330 * responder recieves the packet. If not populated it memory should
331 * be allocated.
332 */
333 PacketDataPtr data;
334
335 /// The address of the request. This address could be virtual or
336 /// physical, depending on the system configuration.
337 Addr addr;
338
339 /// True if the request targets the secure memory space.
340 bool _isSecure;
341
342 /// The size of the request or transfer.
343 unsigned size;
344
345 /**
346 * Track the bytes found that satisfy a functional read.
347 */
348 std::vector<bool> bytesValid;
349
350 public:
351
352 /**
353 * The extra delay from seeing the packet until the header is
354 * transmitted. This delay is used to communicate the crossbar
355 * forwarding latency to the neighbouring object (e.g. a cache)
356 * that actually makes the packet wait. As the delay is relative,
357 * a 32-bit unsigned should be sufficient.
358 */
359 uint32_t headerDelay;
360
361 /**
362 * Keep track of the extra delay incurred by snooping upwards
363 * before sending a request down the memory system. This is used
364 * by the coherent crossbar to account for the additional request
365 * delay.
366 */
367 uint32_t snoopDelay;
368
369 /**
370 * The extra pipelining delay from seeing the packet until the end of
371 * payload is transmitted by the component that provided it (if
372 * any). This includes the header delay. Similar to the header
373 * delay, this is used to make up for the fact that the
374 * crossbar does not make the packet wait. As the delay is
375 * relative, a 32-bit unsigned should be sufficient.
376 */
377 uint32_t payloadDelay;
378
379 /**
380 * A virtual base opaque structure used to hold state associated
381 * with the packet (e.g., an MSHR), specific to a MemObject that
382 * sees the packet. A pointer to this state is returned in the
383 * packet's response so that the MemObject in question can quickly
384 * look up the state needed to process it. A specific subclass
385 * would be derived from this to carry state specific to a
386 * particular sending device.
387 *
388 * As multiple MemObjects may add their SenderState throughout the
389 * memory system, the SenderStates create a stack, where a
390 * MemObject can add a new Senderstate, as long as the
391 * predecessing SenderState is restored when the response comes
392 * back. For this reason, the predecessor should always be
393 * populated with the current SenderState of a packet before
394 * modifying the senderState field in the request packet.
395 */
396 struct SenderState
397 {
398 SenderState* predecessor;
399 SenderState() : predecessor(NULL) {}
400 virtual ~SenderState() {}
401 };
402
403 /**
404 * Object used to maintain state of a PrintReq. The senderState
405 * field of a PrintReq should always be of this type.
406 */
407 class PrintReqState : public SenderState
408 {
409 private:
410 /**
411 * An entry in the label stack.
412 */
413 struct LabelStackEntry
414 {
415 const std::string label;
416 std::string *prefix;
417 bool labelPrinted;
418 LabelStackEntry(const std::string &_label, std::string *_prefix);
419 };
420
421 typedef std::list<LabelStackEntry> LabelStack;
422 LabelStack labelStack;
423
424 std::string *curPrefixPtr;
425
426 public:
427 std::ostream &os;
428 const int verbosity;
429
430 PrintReqState(std::ostream &os, int verbosity = 0);
431 ~PrintReqState();
432
433 /**
434 * Returns the current line prefix.
435 */
436 const std::string &curPrefix() { return *curPrefixPtr; }
437
438 /**
439 * Push a label onto the label stack, and prepend the given
440 * prefix string onto the current prefix. Labels will only be
441 * printed if an object within the label's scope is printed.
442 */
443 void pushLabel(const std::string &lbl,
444 const std::string &prefix = " ");
445
446 /**
447 * Pop a label off the label stack.
448 */
449 void popLabel();
450
451 /**
452 * Print all of the pending unprinted labels on the
453 * stack. Called by printObj(), so normally not called by
454 * users unless bypassing printObj().
455 */
456 void printLabels();
457
458 /**
459 * Print a Printable object to os, because it matched the
460 * address on a PrintReq.
461 */
462 void printObj(Printable *obj);
463 };
464
465 /**
466 * This packet's sender state. Devices should use dynamic_cast<>
467 * to cast to the state appropriate to the sender. The intent of
468 * this variable is to allow a device to attach extra information
469 * to a request. A response packet must return the sender state
470 * that was attached to the original request (even if a new packet
471 * is created).
472 */
473 SenderState *senderState;
474
475 /**
476 * Push a new sender state to the packet and make the current
477 * sender state the predecessor of the new one. This should be
478 * prefered over direct manipulation of the senderState member
479 * variable.
480 *
481 * @param sender_state SenderState to push at the top of the stack
482 */
483 void pushSenderState(SenderState *sender_state);
484
485 /**
486 * Pop the top of the state stack and return a pointer to it. This
487 * assumes the current sender state is not NULL. This should be
488 * preferred over direct manipulation of the senderState member
489 * variable.
490 *
491 * @return The current top of the stack
492 */
493 SenderState *popSenderState();
494
495 /**
496 * Go through the sender state stack and return the first instance
497 * that is of type T (as determined by a dynamic_cast). If there
498 * is no sender state of type T, NULL is returned.
499 *
500 * @return The topmost state of type T
501 */
502 template <typename T>
503 T * findNextSenderState() const
504 {
505 T *t = NULL;
506 SenderState* sender_state = senderState;
507 while (t == NULL && sender_state != NULL) {
508 t = dynamic_cast<T*>(sender_state);
509 sender_state = sender_state->predecessor;
510 }
511 return t;
512 }
513
514 /// Return the string name of the cmd field (for debugging and
515 /// tracing).
516 const std::string &cmdString() const { return cmd.toString(); }
517
518 /// Return the index of this command.
519 inline int cmdToIndex() const { return cmd.toInt(); }
520
521 bool isRead() const { return cmd.isRead(); }
522 bool isWrite() const { return cmd.isWrite(); }
523 bool isUpgrade() const { return cmd.isUpgrade(); }
524 bool isRequest() const { return cmd.isRequest(); }
525 bool isResponse() const { return cmd.isResponse(); }
526 bool needsWritable() const
527 {
528 // we should never check if a response needsWritable, the
529 // request has this flag, and for a response we should rather
530 // look at the hasSharers flag (if not set, the response is to
531 // be considered writable)
532 assert(isRequest());
533 return cmd.needsWritable();
534 }
535 bool needsResponse() const { return cmd.needsResponse(); }
536 bool isInvalidate() const { return cmd.isInvalidate(); }
537 bool isEviction() const { return cmd.isEviction(); }
538 bool isClean() const { return cmd.isClean(); }
539 bool fromCache() const { return cmd.fromCache(); }
540 bool isWriteback() const { return cmd.isWriteback(); }
541 bool hasData() const { return cmd.hasData(); }
542 bool hasRespData() const
543 {
544 MemCmd resp_cmd = cmd.responseCommand();
545 return resp_cmd.hasData();
546 }
547 bool isLLSC() const { return cmd.isLLSC(); }
548 bool isError() const { return cmd.isError(); }
549 bool isPrint() const { return cmd.isPrint(); }
550 bool isFlush() const { return cmd.isFlush(); }
551
552 //@{
553 /// Snoop flags
554 /**
555 * Set the cacheResponding flag. This is used by the caches to
556 * signal another cache that they are responding to a request. A
557 * cache will only respond to snoops if it has the line in either
558 * Modified or Owned state. Note that on snoop hits we always pass
559 * the line as Modified and never Owned. In the case of an Owned
560 * line we proceed to invalidate all other copies.
561 *
562 * On a cache fill (see Cache::handleFill), we check hasSharers
563 * first, ignoring the cacheResponding flag if hasSharers is set.
564 * A line is consequently allocated as:
565 *
566 * hasSharers cacheResponding state
567 * true false Shared
568 * true true Shared
569 * false false Exclusive
570 * false true Modified
571 */
572 void setCacheResponding()
573 {
574 assert(isRequest());
575 assert(!flags.isSet(CACHE_RESPONDING));
576 flags.set(CACHE_RESPONDING);
577 }
578 bool cacheResponding() const { return flags.isSet(CACHE_RESPONDING); }
579 /**
580 * On fills, the hasSharers flag is used by the caches in
581 * combination with the cacheResponding flag, as clarified
582 * above. If the hasSharers flag is not set, the packet is passing
583 * writable. Thus, a response from a memory passes the line as
584 * writable by default.
585 *
586 * The hasSharers flag is also used by upstream caches to inform a
587 * downstream cache that they have the block (by calling
588 * setHasSharers on snoop request packets that hit in upstream
589 * cachs tags or MSHRs). If the snoop packet has sharers, a
590 * downstream cache is prevented from passing a dirty line upwards
591 * if it was not explicitly asked for a writable copy. See
592 * Cache::satisfyCpuSideRequest.
593 *
594 * The hasSharers flag is also used on writebacks, in
595 * combination with the WritbackClean or WritebackDirty commands,
596 * to allocate the block downstream either as:
597 *
598 * command hasSharers state
599 * WritebackDirty false Modified
600 * WritebackDirty true Owned
601 * WritebackClean false Exclusive
602 * WritebackClean true Shared
603 */
604 void setHasSharers() { flags.set(HAS_SHARERS); }
605 bool hasSharers() const { return flags.isSet(HAS_SHARERS); }
606 //@}
607
608 /**
609 * The express snoop flag is used for two purposes. Firstly, it is
610 * used to bypass flow control for normal (non-snoop) requests
611 * going downstream in the memory system. In cases where a cache
612 * is responding to a snoop from another cache (it had a dirty
613 * line), but the line is not writable (and there are possibly
614 * other copies), the express snoop flag is set by the downstream
615 * cache to invalidate all other copies in zero time. Secondly,
616 * the express snoop flag is also set to be able to distinguish
617 * snoop packets that came from a downstream cache, rather than
618 * snoop packets from neighbouring caches.
619 */
620 void setExpressSnoop() { flags.set(EXPRESS_SNOOP); }
621 bool isExpressSnoop() const { return flags.isSet(EXPRESS_SNOOP); }
622
623 /**
624 * On responding to a snoop request (which only happens for
625 * Modified or Owned lines), make sure that we can transform an
626 * Owned response to a Modified one. If this flag is not set, the
627 * responding cache had the line in the Owned state, and there are
628 * possibly other Shared copies in the memory system. A downstream
629 * cache helps in orchestrating the invalidation of these copies
630 * by sending out the appropriate express snoops.
631 */
632 void setResponderHadWritable()
633 {
634 assert(cacheResponding());
635 assert(!responderHadWritable());
636 flags.set(RESPONDER_HAD_WRITABLE);
637 }
638 bool responderHadWritable() const
639 { return flags.isSet(RESPONDER_HAD_WRITABLE); }
640
641 /**
642 * A writeback/writeclean cmd gets propagated further downstream
643 * by the receiver when the flag is set.
644 */
645 void setWriteThrough()
646 {
647 assert(cmd.isWrite() &&
648 (cmd.isEviction() || cmd == MemCmd::WriteClean));
649 flags.set(WRITE_THROUGH);
650 }
651 void clearWriteThrough() { flags.clear(WRITE_THROUGH); }
652 bool writeThrough() const { return flags.isSet(WRITE_THROUGH); }
653
654 /**
655 * Set when a request hits in a cache and the cache is not going
656 * to respond. This is used by the crossbar to coordinate
657 * responses for cache maintenance operations.
658 */
659 void setSatisfied()
660 {
661 assert(cmd.isClean());
662 assert(!flags.isSet(SATISFIED));
663 flags.set(SATISFIED);
664 }
665 bool satisfied() const { return flags.isSet(SATISFIED); }
666
667 void setSuppressFuncError() { flags.set(SUPPRESS_FUNC_ERROR); }
668 bool suppressFuncError() const { return flags.isSet(SUPPRESS_FUNC_ERROR); }
669 void setBlockCached() { flags.set(BLOCK_CACHED); }
670 bool isBlockCached() const { return flags.isSet(BLOCK_CACHED); }
671 void clearBlockCached() { flags.clear(BLOCK_CACHED); }
672
673 // Network error conditions... encapsulate them as methods since
674 // their encoding keeps changing (from result field to command
675 // field, etc.)
676 void
677 setBadAddress()
678 {
679 assert(isResponse());
680 cmd = MemCmd::BadAddressError;
681 }
682
683 void copyError(Packet *pkt) { assert(pkt->isError()); cmd = pkt->cmd; }
684
685 Addr getAddr() const { assert(flags.isSet(VALID_ADDR)); return addr; }
686 /**
687 * Update the address of this packet mid-transaction. This is used
688 * by the address mapper to change an already set address to a new
689 * one based on the system configuration. It is intended to remap
690 * an existing address, so it asserts that the current address is
691 * valid.
692 */
693 void setAddr(Addr _addr) { assert(flags.isSet(VALID_ADDR)); addr = _addr; }
694
695 unsigned getSize() const { assert(flags.isSet(VALID_SIZE)); return size; }
696
697 Addr getOffset(unsigned int blk_size) const
698 {
699 return getAddr() & Addr(blk_size - 1);
700 }
701
702 Addr getBlockAddr(unsigned int blk_size) const
703 {
704 return getAddr() & ~(Addr(blk_size - 1));
705 }
706
707 bool isSecure() const
708 {
709 assert(flags.isSet(VALID_ADDR));
710 return _isSecure;
711 }
712
713 /**
714 * Accessor function to atomic op.
715 */
716 AtomicOpFunctor *getAtomicOp() const { return req->getAtomicOpFunctor(); }
717 bool isAtomicOp() const { return req->isAtomic(); }
718
719 /**
720 * It has been determined that the SC packet should successfully update
721 * memory. Therefore, convert this SC packet to a normal write.
722 */
723 void
724 convertScToWrite()
725 {
726 assert(isLLSC());
727 assert(isWrite());
728 cmd = MemCmd::WriteReq;
729 }
730
731 /**
732 * When ruby is in use, Ruby will monitor the cache line and the
733 * phys memory should treat LL ops as normal reads.
734 */
735 void
736 convertLlToRead()
737 {
738 assert(isLLSC());
739 assert(isRead());
740 cmd = MemCmd::ReadReq;
741 }
742
743 /**
744 * Constructor. Note that a Request object must be constructed
745 * first, but the Requests's physical address and size fields need
746 * not be valid. The command must be supplied.
747 */
748 Packet(const RequestPtr _req, MemCmd _cmd)
746 : cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
747 size(0), headerDelay(0), snoopDelay(0), payloadDelay(0),
748 senderState(NULL)
749 : cmd(_cmd), id((PacketId)_req), req(_req), data(nullptr), addr(0),
750 _isSecure(false), size(0), headerDelay(0), snoopDelay(0),
751 payloadDelay(0), senderState(NULL)
749 {
750 if (req->hasPaddr()) {
751 addr = req->getPaddr();
752 flags.set(VALID_ADDR);
753 _isSecure = req->isSecure();
754 }
755 if (req->hasSize()) {
756 size = req->getSize();
757 flags.set(VALID_SIZE);
758 }
759 }
760
761 /**
762 * Alternate constructor if you are trying to create a packet with
763 * a request that is for a whole block, not the address from the
764 * req. this allows for overriding the size/addr of the req.
765 */
752 {
753 if (req->hasPaddr()) {
754 addr = req->getPaddr();
755 flags.set(VALID_ADDR);
756 _isSecure = req->isSecure();
757 }
758 if (req->hasSize()) {
759 size = req->getSize();
760 flags.set(VALID_SIZE);
761 }
762 }
763
764 /**
765 * Alternate constructor if you are trying to create a packet with
766 * a request that is for a whole block, not the address from the
767 * req. this allows for overriding the size/addr of the req.
768 */
766 Packet(const RequestPtr _req, MemCmd _cmd, int _blkSize)
767 : cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
768 headerDelay(0), snoopDelay(0), payloadDelay(0),
769 senderState(NULL)
769 Packet(const RequestPtr _req, MemCmd _cmd, int _blkSize, PacketId _id = 0)
770 : cmd(_cmd), id(_id ? _id : (PacketId)_req), req(_req), data(nullptr),
771 addr(0), _isSecure(false), headerDelay(0), snoopDelay(0),
772 payloadDelay(0), senderState(NULL)
770 {
771 if (req->hasPaddr()) {
772 addr = req->getPaddr() & ~(_blkSize - 1);
773 flags.set(VALID_ADDR);
774 _isSecure = req->isSecure();
775 }
776 size = _blkSize;
777 flags.set(VALID_SIZE);
778 }
779
780 /**
781 * Alternate constructor for copying a packet. Copy all fields
782 * *except* if the original packet's data was dynamic, don't copy
783 * that, as we can't guarantee that the new packet's lifetime is
784 * less than that of the original packet. In this case the new
785 * packet should allocate its own data.
786 */
787 Packet(const PacketPtr pkt, bool clear_flags, bool alloc_data)
773 {
774 if (req->hasPaddr()) {
775 addr = req->getPaddr() & ~(_blkSize - 1);
776 flags.set(VALID_ADDR);
777 _isSecure = req->isSecure();
778 }
779 size = _blkSize;
780 flags.set(VALID_SIZE);
781 }
782
783 /**
784 * Alternate constructor for copying a packet. Copy all fields
785 * *except* if the original packet's data was dynamic, don't copy
786 * that, as we can't guarantee that the new packet's lifetime is
787 * less than that of the original packet. In this case the new
788 * packet should allocate its own data.
789 */
790 Packet(const PacketPtr pkt, bool clear_flags, bool alloc_data)
788 : cmd(pkt->cmd), req(pkt->req),
791 : cmd(pkt->cmd), id(pkt->id), req(pkt->req),
789 data(nullptr),
790 addr(pkt->addr), _isSecure(pkt->_isSecure), size(pkt->size),
791 bytesValid(pkt->bytesValid),
792 headerDelay(pkt->headerDelay),
793 snoopDelay(0),
794 payloadDelay(pkt->payloadDelay),
795 senderState(pkt->senderState)
796 {
797 if (!clear_flags)
798 flags.set(pkt->flags & COPY_FLAGS);
799
800 flags.set(pkt->flags & (VALID_ADDR|VALID_SIZE));
801
802 // should we allocate space for data, or not, the express
803 // snoops do not need to carry any data as they only serve to
804 // co-ordinate state changes
805 if (alloc_data) {
806 // even if asked to allocate data, if the original packet
807 // holds static data, then the sender will not be doing
808 // any memcpy on receiving the response, thus we simply
809 // carry the pointer forward
810 if (pkt->flags.isSet(STATIC_DATA)) {
811 data = pkt->data;
812 flags.set(STATIC_DATA);
813 } else {
814 allocate();
815 }
816 }
817 }
818
819 /**
820 * Generate the appropriate read MemCmd based on the Request flags.
821 */
822 static MemCmd
823 makeReadCmd(const RequestPtr req)
824 {
825 if (req->isLLSC())
826 return MemCmd::LoadLockedReq;
827 else if (req->isPrefetch())
828 return MemCmd::SoftPFReq;
829 else
830 return MemCmd::ReadReq;
831 }
832
833 /**
834 * Generate the appropriate write MemCmd based on the Request flags.
835 */
836 static MemCmd
837 makeWriteCmd(const RequestPtr req)
838 {
839 if (req->isLLSC())
840 return MemCmd::StoreCondReq;
841 else if (req->isSwap())
842 return MemCmd::SwapReq;
843 else if (req->isCacheInvalidate()) {
844 return req->isCacheClean() ? MemCmd::CleanInvalidReq :
845 MemCmd::InvalidateReq;
846 } else if (req->isCacheClean()) {
847 return MemCmd::CleanSharedReq;
848 } else
849 return MemCmd::WriteReq;
850 }
851
852 /**
853 * Constructor-like methods that return Packets based on Request objects.
854 * Fine-tune the MemCmd type if it's not a vanilla read or write.
855 */
856 static PacketPtr
857 createRead(const RequestPtr req)
858 {
859 return new Packet(req, makeReadCmd(req));
860 }
861
862 static PacketPtr
863 createWrite(const RequestPtr req)
864 {
865 return new Packet(req, makeWriteCmd(req));
866 }
867
868 /**
869 * clean up packet variables
870 */
871 ~Packet()
872 {
873 // Delete the request object if this is a request packet which
874 // does not need a response, because the requester will not get
875 // a chance. If the request packet needs a response then the
876 // request will be deleted on receipt of the response
877 // packet. We also make sure to never delete the request for
878 // express snoops, even for cases when responses are not
879 // needed (CleanEvict and Writeback), since the snoop packet
880 // re-uses the same request.
881 if (req && isRequest() && !needsResponse() &&
882 !isExpressSnoop()) {
883 delete req;
884 }
885 deleteData();
886 }
887
888 /**
889 * Take a request packet and modify it in place to be suitable for
890 * returning as a response to that request.
891 */
892 void
893 makeResponse()
894 {
895 assert(needsResponse());
896 assert(isRequest());
897 cmd = cmd.responseCommand();
898
899 // responses are never express, even if the snoop that
900 // triggered them was
901 flags.clear(EXPRESS_SNOOP);
902 }
903
904 void
905 makeAtomicResponse()
906 {
907 makeResponse();
908 }
909
910 void
911 makeTimingResponse()
912 {
913 makeResponse();
914 }
915
916 void
917 setFunctionalResponseStatus(bool success)
918 {
919 if (!success) {
920 if (isWrite()) {
921 cmd = MemCmd::FunctionalWriteError;
922 } else {
923 cmd = MemCmd::FunctionalReadError;
924 }
925 }
926 }
927
928 void
929 setSize(unsigned size)
930 {
931 assert(!flags.isSet(VALID_SIZE));
932
933 this->size = size;
934 flags.set(VALID_SIZE);
935 }
936
937
938 public:
939 /**
940 * @{
941 * @name Data accessor mehtods
942 */
943
944 /**
945 * Set the data pointer to the following value that should not be
946 * freed. Static data allows us to do a single memcpy even if
947 * multiple packets are required to get from source to destination
948 * and back. In essence the pointer is set calling dataStatic on
949 * the original packet, and whenever this packet is copied and
950 * forwarded the same pointer is passed on. When a packet
951 * eventually reaches the destination holding the data, it is
952 * copied once into the location originally set. On the way back
953 * to the source, no copies are necessary.
954 */
955 template <typename T>
956 void
957 dataStatic(T *p)
958 {
959 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
960 data = (PacketDataPtr)p;
961 flags.set(STATIC_DATA);
962 }
963
964 /**
965 * Set the data pointer to the following value that should not be
966 * freed. This version of the function allows the pointer passed
967 * to us to be const. To avoid issues down the line we cast the
968 * constness away, the alternative would be to keep both a const
969 * and non-const data pointer and cleverly choose between
970 * them. Note that this is only allowed for static data.
971 */
972 template <typename T>
973 void
974 dataStaticConst(const T *p)
975 {
976 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
977 data = const_cast<PacketDataPtr>(p);
978 flags.set(STATIC_DATA);
979 }
980
981 /**
982 * Set the data pointer to a value that should have delete []
983 * called on it. Dynamic data is local to this packet, and as the
984 * packet travels from source to destination, forwarded packets
985 * will allocate their own data. When a packet reaches the final
986 * destination it will populate the dynamic data of that specific
987 * packet, and on the way back towards the source, memcpy will be
988 * invoked in every step where a new packet was created e.g. in
989 * the caches. Ultimately when the response reaches the source a
990 * final memcpy is needed to extract the data from the packet
991 * before it is deallocated.
992 */
993 template <typename T>
994 void
995 dataDynamic(T *p)
996 {
997 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
998 data = (PacketDataPtr)p;
999 flags.set(DYNAMIC_DATA);
1000 }
1001
1002 /**
1003 * get a pointer to the data ptr.
1004 */
1005 template <typename T>
1006 T*
1007 getPtr()
1008 {
1009 assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
1010 return (T*)data;
1011 }
1012
1013 template <typename T>
1014 const T*
1015 getConstPtr() const
1016 {
1017 assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
1018 return (const T*)data;
1019 }
1020
1021 /**
1022 * Get the data in the packet byte swapped from big endian to
1023 * host endian.
1024 */
1025 template <typename T>
1026 T getBE() const;
1027
1028 /**
1029 * Get the data in the packet byte swapped from little endian to
1030 * host endian.
1031 */
1032 template <typename T>
1033 T getLE() const;
1034
1035 /**
1036 * Get the data in the packet byte swapped from the specified
1037 * endianness.
1038 */
1039 template <typename T>
1040 T get(ByteOrder endian) const;
1041
1042 /**
1043 * Get the data in the packet byte swapped from guest to host
1044 * endian.
1045 */
1046 template <typename T>
1047 T get() const;
1048
1049 /** Set the value in the data pointer to v as big endian. */
1050 template <typename T>
1051 void setBE(T v);
1052
1053 /** Set the value in the data pointer to v as little endian. */
1054 template <typename T>
1055 void setLE(T v);
1056
1057 /**
1058 * Set the value in the data pointer to v using the specified
1059 * endianness.
1060 */
1061 template <typename T>
1062 void set(T v, ByteOrder endian);
1063
1064 /** Set the value in the data pointer to v as guest endian. */
1065 template <typename T>
1066 void set(T v);
1067
1068 /**
1069 * Copy data into the packet from the provided pointer.
1070 */
1071 void
1072 setData(const uint8_t *p)
1073 {
1074 // we should never be copying data onto itself, which means we
1075 // must idenfity packets with static data, as they carry the
1076 // same pointer from source to destination and back
1077 assert(p != getPtr<uint8_t>() || flags.isSet(STATIC_DATA));
1078
1079 if (p != getPtr<uint8_t>())
1080 // for packet with allocated dynamic data, we copy data from
1081 // one to the other, e.g. a forwarded response to a response
1082 std::memcpy(getPtr<uint8_t>(), p, getSize());
1083 }
1084
1085 /**
1086 * Copy data into the packet from the provided block pointer,
1087 * which is aligned to the given block size.
1088 */
1089 void
1090 setDataFromBlock(const uint8_t *blk_data, int blkSize)
1091 {
1092 setData(blk_data + getOffset(blkSize));
1093 }
1094
1095 /**
1096 * Copy data from the packet to the provided block pointer, which
1097 * is aligned to the given block size.
1098 */
1099 void
1100 writeData(uint8_t *p) const
1101 {
1102 std::memcpy(p, getConstPtr<uint8_t>(), getSize());
1103 }
1104
1105 /**
1106 * Copy data from the packet to the memory at the provided pointer.
1107 */
1108 void
1109 writeDataToBlock(uint8_t *blk_data, int blkSize) const
1110 {
1111 writeData(blk_data + getOffset(blkSize));
1112 }
1113
1114 /**
1115 * delete the data pointed to in the data pointer. Ok to call to
1116 * matter how data was allocted.
1117 */
1118 void
1119 deleteData()
1120 {
1121 if (flags.isSet(DYNAMIC_DATA))
1122 delete [] data;
1123
1124 flags.clear(STATIC_DATA|DYNAMIC_DATA);
1125 data = NULL;
1126 }
1127
1128 /** Allocate memory for the packet. */
1129 void
1130 allocate()
1131 {
1132 // if either this command or the response command has a data
1133 // payload, actually allocate space
1134 if (hasData() || hasRespData()) {
1135 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
1136 flags.set(DYNAMIC_DATA);
1137 data = new uint8_t[getSize()];
1138 }
1139 }
1140
1141 /** @} */
1142
1143 private: // Private data accessor methods
1144 /** Get the data in the packet without byte swapping. */
1145 template <typename T>
1146 T getRaw() const;
1147
1148 /** Set the value in the data pointer to v without byte swapping. */
1149 template <typename T>
1150 void setRaw(T v);
1151
1152 public:
1153 /**
1154 * Check a functional request against a memory value stored in
1155 * another packet (i.e. an in-transit request or
1156 * response). Returns true if the current packet is a read, and
1157 * the other packet provides the data, which is then copied to the
1158 * current packet. If the current packet is a write, and the other
1159 * packet intersects this one, then we update the data
1160 * accordingly.
1161 */
1162 bool
1163 checkFunctional(PacketPtr other)
1164 {
1165 // all packets that are carrying a payload should have a valid
1166 // data pointer
1167 return checkFunctional(other, other->getAddr(), other->isSecure(),
1168 other->getSize(),
1169 other->hasData() ?
1170 other->getPtr<uint8_t>() : NULL);
1171 }
1172
1173 /**
1174 * Does the request need to check for cached copies of the same block
1175 * in the memory hierarchy above.
1176 **/
1177 bool
1178 mustCheckAbove() const
1179 {
1180 return cmd == MemCmd::HardPFReq || isEviction();
1181 }
1182
1183 /**
1184 * Is this packet a clean eviction, including both actual clean
1185 * evict packets, but also clean writebacks.
1186 */
1187 bool
1188 isCleanEviction() const
1189 {
1190 return cmd == MemCmd::CleanEvict || cmd == MemCmd::WritebackClean;
1191 }
1192
1193 /**
1194 * Check a functional request against a memory value represented
1195 * by a base/size pair and an associated data array. If the
1196 * current packet is a read, it may be satisfied by the memory
1197 * value. If the current packet is a write, it may update the
1198 * memory value.
1199 */
1200 bool
1201 checkFunctional(Printable *obj, Addr base, bool is_secure, int size,
1202 uint8_t *_data);
1203
1204 /**
1205 * Push label for PrintReq (safe to call unconditionally).
1206 */
1207 void
1208 pushLabel(const std::string &lbl)
1209 {
1210 if (isPrint())
1211 safe_cast<PrintReqState*>(senderState)->pushLabel(lbl);
1212 }
1213
1214 /**
1215 * Pop label for PrintReq (safe to call unconditionally).
1216 */
1217 void
1218 popLabel()
1219 {
1220 if (isPrint())
1221 safe_cast<PrintReqState*>(senderState)->popLabel();
1222 }
1223
1224 void print(std::ostream &o, int verbosity = 0,
1225 const std::string &prefix = "") const;
1226
1227 /**
1228 * A no-args wrapper of print(std::ostream...)
1229 * meant to be invoked from DPRINTFs
1230 * avoiding string overheads in fast mode
1231 * @return string with the request's type and start<->end addresses
1232 */
1233 std::string print() const;
1234};
1235
1236#endif //__MEM_PACKET_HH
792 data(nullptr),
793 addr(pkt->addr), _isSecure(pkt->_isSecure), size(pkt->size),
794 bytesValid(pkt->bytesValid),
795 headerDelay(pkt->headerDelay),
796 snoopDelay(0),
797 payloadDelay(pkt->payloadDelay),
798 senderState(pkt->senderState)
799 {
800 if (!clear_flags)
801 flags.set(pkt->flags & COPY_FLAGS);
802
803 flags.set(pkt->flags & (VALID_ADDR|VALID_SIZE));
804
805 // should we allocate space for data, or not, the express
806 // snoops do not need to carry any data as they only serve to
807 // co-ordinate state changes
808 if (alloc_data) {
809 // even if asked to allocate data, if the original packet
810 // holds static data, then the sender will not be doing
811 // any memcpy on receiving the response, thus we simply
812 // carry the pointer forward
813 if (pkt->flags.isSet(STATIC_DATA)) {
814 data = pkt->data;
815 flags.set(STATIC_DATA);
816 } else {
817 allocate();
818 }
819 }
820 }
821
822 /**
823 * Generate the appropriate read MemCmd based on the Request flags.
824 */
825 static MemCmd
826 makeReadCmd(const RequestPtr req)
827 {
828 if (req->isLLSC())
829 return MemCmd::LoadLockedReq;
830 else if (req->isPrefetch())
831 return MemCmd::SoftPFReq;
832 else
833 return MemCmd::ReadReq;
834 }
835
836 /**
837 * Generate the appropriate write MemCmd based on the Request flags.
838 */
839 static MemCmd
840 makeWriteCmd(const RequestPtr req)
841 {
842 if (req->isLLSC())
843 return MemCmd::StoreCondReq;
844 else if (req->isSwap())
845 return MemCmd::SwapReq;
846 else if (req->isCacheInvalidate()) {
847 return req->isCacheClean() ? MemCmd::CleanInvalidReq :
848 MemCmd::InvalidateReq;
849 } else if (req->isCacheClean()) {
850 return MemCmd::CleanSharedReq;
851 } else
852 return MemCmd::WriteReq;
853 }
854
855 /**
856 * Constructor-like methods that return Packets based on Request objects.
857 * Fine-tune the MemCmd type if it's not a vanilla read or write.
858 */
859 static PacketPtr
860 createRead(const RequestPtr req)
861 {
862 return new Packet(req, makeReadCmd(req));
863 }
864
865 static PacketPtr
866 createWrite(const RequestPtr req)
867 {
868 return new Packet(req, makeWriteCmd(req));
869 }
870
871 /**
872 * clean up packet variables
873 */
874 ~Packet()
875 {
876 // Delete the request object if this is a request packet which
877 // does not need a response, because the requester will not get
878 // a chance. If the request packet needs a response then the
879 // request will be deleted on receipt of the response
880 // packet. We also make sure to never delete the request for
881 // express snoops, even for cases when responses are not
882 // needed (CleanEvict and Writeback), since the snoop packet
883 // re-uses the same request.
884 if (req && isRequest() && !needsResponse() &&
885 !isExpressSnoop()) {
886 delete req;
887 }
888 deleteData();
889 }
890
891 /**
892 * Take a request packet and modify it in place to be suitable for
893 * returning as a response to that request.
894 */
895 void
896 makeResponse()
897 {
898 assert(needsResponse());
899 assert(isRequest());
900 cmd = cmd.responseCommand();
901
902 // responses are never express, even if the snoop that
903 // triggered them was
904 flags.clear(EXPRESS_SNOOP);
905 }
906
907 void
908 makeAtomicResponse()
909 {
910 makeResponse();
911 }
912
913 void
914 makeTimingResponse()
915 {
916 makeResponse();
917 }
918
919 void
920 setFunctionalResponseStatus(bool success)
921 {
922 if (!success) {
923 if (isWrite()) {
924 cmd = MemCmd::FunctionalWriteError;
925 } else {
926 cmd = MemCmd::FunctionalReadError;
927 }
928 }
929 }
930
931 void
932 setSize(unsigned size)
933 {
934 assert(!flags.isSet(VALID_SIZE));
935
936 this->size = size;
937 flags.set(VALID_SIZE);
938 }
939
940
941 public:
942 /**
943 * @{
944 * @name Data accessor mehtods
945 */
946
947 /**
948 * Set the data pointer to the following value that should not be
949 * freed. Static data allows us to do a single memcpy even if
950 * multiple packets are required to get from source to destination
951 * and back. In essence the pointer is set calling dataStatic on
952 * the original packet, and whenever this packet is copied and
953 * forwarded the same pointer is passed on. When a packet
954 * eventually reaches the destination holding the data, it is
955 * copied once into the location originally set. On the way back
956 * to the source, no copies are necessary.
957 */
958 template <typename T>
959 void
960 dataStatic(T *p)
961 {
962 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
963 data = (PacketDataPtr)p;
964 flags.set(STATIC_DATA);
965 }
966
967 /**
968 * Set the data pointer to the following value that should not be
969 * freed. This version of the function allows the pointer passed
970 * to us to be const. To avoid issues down the line we cast the
971 * constness away, the alternative would be to keep both a const
972 * and non-const data pointer and cleverly choose between
973 * them. Note that this is only allowed for static data.
974 */
975 template <typename T>
976 void
977 dataStaticConst(const T *p)
978 {
979 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
980 data = const_cast<PacketDataPtr>(p);
981 flags.set(STATIC_DATA);
982 }
983
984 /**
985 * Set the data pointer to a value that should have delete []
986 * called on it. Dynamic data is local to this packet, and as the
987 * packet travels from source to destination, forwarded packets
988 * will allocate their own data. When a packet reaches the final
989 * destination it will populate the dynamic data of that specific
990 * packet, and on the way back towards the source, memcpy will be
991 * invoked in every step where a new packet was created e.g. in
992 * the caches. Ultimately when the response reaches the source a
993 * final memcpy is needed to extract the data from the packet
994 * before it is deallocated.
995 */
996 template <typename T>
997 void
998 dataDynamic(T *p)
999 {
1000 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
1001 data = (PacketDataPtr)p;
1002 flags.set(DYNAMIC_DATA);
1003 }
1004
1005 /**
1006 * get a pointer to the data ptr.
1007 */
1008 template <typename T>
1009 T*
1010 getPtr()
1011 {
1012 assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
1013 return (T*)data;
1014 }
1015
1016 template <typename T>
1017 const T*
1018 getConstPtr() const
1019 {
1020 assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
1021 return (const T*)data;
1022 }
1023
1024 /**
1025 * Get the data in the packet byte swapped from big endian to
1026 * host endian.
1027 */
1028 template <typename T>
1029 T getBE() const;
1030
1031 /**
1032 * Get the data in the packet byte swapped from little endian to
1033 * host endian.
1034 */
1035 template <typename T>
1036 T getLE() const;
1037
1038 /**
1039 * Get the data in the packet byte swapped from the specified
1040 * endianness.
1041 */
1042 template <typename T>
1043 T get(ByteOrder endian) const;
1044
1045 /**
1046 * Get the data in the packet byte swapped from guest to host
1047 * endian.
1048 */
1049 template <typename T>
1050 T get() const;
1051
1052 /** Set the value in the data pointer to v as big endian. */
1053 template <typename T>
1054 void setBE(T v);
1055
1056 /** Set the value in the data pointer to v as little endian. */
1057 template <typename T>
1058 void setLE(T v);
1059
1060 /**
1061 * Set the value in the data pointer to v using the specified
1062 * endianness.
1063 */
1064 template <typename T>
1065 void set(T v, ByteOrder endian);
1066
1067 /** Set the value in the data pointer to v as guest endian. */
1068 template <typename T>
1069 void set(T v);
1070
1071 /**
1072 * Copy data into the packet from the provided pointer.
1073 */
1074 void
1075 setData(const uint8_t *p)
1076 {
1077 // we should never be copying data onto itself, which means we
1078 // must idenfity packets with static data, as they carry the
1079 // same pointer from source to destination and back
1080 assert(p != getPtr<uint8_t>() || flags.isSet(STATIC_DATA));
1081
1082 if (p != getPtr<uint8_t>())
1083 // for packet with allocated dynamic data, we copy data from
1084 // one to the other, e.g. a forwarded response to a response
1085 std::memcpy(getPtr<uint8_t>(), p, getSize());
1086 }
1087
1088 /**
1089 * Copy data into the packet from the provided block pointer,
1090 * which is aligned to the given block size.
1091 */
1092 void
1093 setDataFromBlock(const uint8_t *blk_data, int blkSize)
1094 {
1095 setData(blk_data + getOffset(blkSize));
1096 }
1097
1098 /**
1099 * Copy data from the packet to the provided block pointer, which
1100 * is aligned to the given block size.
1101 */
1102 void
1103 writeData(uint8_t *p) const
1104 {
1105 std::memcpy(p, getConstPtr<uint8_t>(), getSize());
1106 }
1107
1108 /**
1109 * Copy data from the packet to the memory at the provided pointer.
1110 */
1111 void
1112 writeDataToBlock(uint8_t *blk_data, int blkSize) const
1113 {
1114 writeData(blk_data + getOffset(blkSize));
1115 }
1116
1117 /**
1118 * delete the data pointed to in the data pointer. Ok to call to
1119 * matter how data was allocted.
1120 */
1121 void
1122 deleteData()
1123 {
1124 if (flags.isSet(DYNAMIC_DATA))
1125 delete [] data;
1126
1127 flags.clear(STATIC_DATA|DYNAMIC_DATA);
1128 data = NULL;
1129 }
1130
1131 /** Allocate memory for the packet. */
1132 void
1133 allocate()
1134 {
1135 // if either this command or the response command has a data
1136 // payload, actually allocate space
1137 if (hasData() || hasRespData()) {
1138 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
1139 flags.set(DYNAMIC_DATA);
1140 data = new uint8_t[getSize()];
1141 }
1142 }
1143
1144 /** @} */
1145
1146 private: // Private data accessor methods
1147 /** Get the data in the packet without byte swapping. */
1148 template <typename T>
1149 T getRaw() const;
1150
1151 /** Set the value in the data pointer to v without byte swapping. */
1152 template <typename T>
1153 void setRaw(T v);
1154
1155 public:
1156 /**
1157 * Check a functional request against a memory value stored in
1158 * another packet (i.e. an in-transit request or
1159 * response). Returns true if the current packet is a read, and
1160 * the other packet provides the data, which is then copied to the
1161 * current packet. If the current packet is a write, and the other
1162 * packet intersects this one, then we update the data
1163 * accordingly.
1164 */
1165 bool
1166 checkFunctional(PacketPtr other)
1167 {
1168 // all packets that are carrying a payload should have a valid
1169 // data pointer
1170 return checkFunctional(other, other->getAddr(), other->isSecure(),
1171 other->getSize(),
1172 other->hasData() ?
1173 other->getPtr<uint8_t>() : NULL);
1174 }
1175
1176 /**
1177 * Does the request need to check for cached copies of the same block
1178 * in the memory hierarchy above.
1179 **/
1180 bool
1181 mustCheckAbove() const
1182 {
1183 return cmd == MemCmd::HardPFReq || isEviction();
1184 }
1185
1186 /**
1187 * Is this packet a clean eviction, including both actual clean
1188 * evict packets, but also clean writebacks.
1189 */
1190 bool
1191 isCleanEviction() const
1192 {
1193 return cmd == MemCmd::CleanEvict || cmd == MemCmd::WritebackClean;
1194 }
1195
1196 /**
1197 * Check a functional request against a memory value represented
1198 * by a base/size pair and an associated data array. If the
1199 * current packet is a read, it may be satisfied by the memory
1200 * value. If the current packet is a write, it may update the
1201 * memory value.
1202 */
1203 bool
1204 checkFunctional(Printable *obj, Addr base, bool is_secure, int size,
1205 uint8_t *_data);
1206
1207 /**
1208 * Push label for PrintReq (safe to call unconditionally).
1209 */
1210 void
1211 pushLabel(const std::string &lbl)
1212 {
1213 if (isPrint())
1214 safe_cast<PrintReqState*>(senderState)->pushLabel(lbl);
1215 }
1216
1217 /**
1218 * Pop label for PrintReq (safe to call unconditionally).
1219 */
1220 void
1221 popLabel()
1222 {
1223 if (isPrint())
1224 safe_cast<PrintReqState*>(senderState)->popLabel();
1225 }
1226
1227 void print(std::ostream &o, int verbosity = 0,
1228 const std::string &prefix = "") const;
1229
1230 /**
1231 * A no-args wrapper of print(std::ostream...)
1232 * meant to be invoked from DPRINTFs
1233 * avoiding string overheads in fast mode
1234 * @return string with the request's type and start<->end addresses
1235 */
1236 std::string print() const;
1237};
1238
1239#endif //__MEM_PACKET_HH