packet.hh (11286:2071db8f864b) packet.hh (11287:0d5bbeaeb8ca)
1/*
2 * Copyright (c) 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 * Steve Reinhardt
43 * Ali Saidi
44 * Andreas Hansson
45 */
46
47/**
48 * @file
49 * Declaration of the Packet class.
50 */
51
52#ifndef __MEM_PACKET_HH__
53#define __MEM_PACKET_HH__
54
55#include <bitset>
56#include <cassert>
57#include <list>
58
59#include "base/cast.hh"
60#include "base/compiler.hh"
61#include "base/flags.hh"
62#include "base/misc.hh"
63#include "base/printable.hh"
64#include "base/types.hh"
65#include "mem/request.hh"
66#include "sim/core.hh"
67
68class Packet;
69typedef Packet *PacketPtr;
70typedef uint8_t* PacketDataPtr;
71typedef std::list<PacketPtr> PacketList;
72
73class MemCmd
74{
75 friend class Packet;
76
77 public:
78 /**
79 * List of all commands associated with a packet.
80 */
81 enum Command
82 {
83 InvalidCmd,
84 ReadReq,
85 ReadResp,
86 ReadRespWithInvalidate,
87 WriteReq,
88 WriteResp,
89 WritebackDirty,
90 WritebackClean,
91 CleanEvict,
92 SoftPFReq,
93 HardPFReq,
94 SoftPFResp,
95 HardPFResp,
96 WriteLineReq,
97 UpgradeReq,
98 SCUpgradeReq, // Special "weak" upgrade for StoreCond
99 UpgradeResp,
100 SCUpgradeFailReq, // Failed SCUpgradeReq in MSHR (never sent)
101 UpgradeFailResp, // Valid for SCUpgradeReq only
102 ReadExReq,
103 ReadExResp,
104 ReadCleanReq,
105 ReadSharedReq,
106 LoadLockedReq,
107 StoreCondReq,
108 StoreCondFailReq, // Failed StoreCondReq in MSHR (never sent)
109 StoreCondResp,
110 SwapReq,
111 SwapResp,
112 MessageReq,
113 MessageResp,
114 MemFenceReq,
115 MemFenceResp,
116 // Error responses
117 // @TODO these should be classified as responses rather than
118 // requests; coding them as requests initially for backwards
119 // compatibility
120 InvalidDestError, // packet dest field invalid
121 BadAddressError, // memory address invalid
122 FunctionalReadError, // unable to fulfill functional read
123 FunctionalWriteError, // unable to fulfill functional write
124 // Fake simulator-only commands
125 PrintReq, // Print state matching address
126 FlushReq, //request for a cache flush
127 InvalidateReq, // request for address to be invalidated
128 InvalidateResp,
129 NUM_MEM_CMDS
130 };
131
132 private:
133 /**
134 * List of command attributes.
135 */
136 enum Attribute
137 {
138 IsRead, //!< Data flows from responder to requester
139 IsWrite, //!< Data flows from requester to responder
140 IsUpgrade,
141 IsInvalidate,
142 NeedsWritable, //!< Requires writable copy to complete in-cache
143 IsRequest, //!< Issued by requester
144 IsResponse, //!< Issue by responder
145 NeedsResponse, //!< Requester needs response from target
146 IsEviction,
147 IsSWPrefetch,
148 IsHWPrefetch,
149 IsLlsc, //!< Alpha/MIPS LL or SC access
150 HasData, //!< There is an associated payload
151 IsError, //!< Error response
152 IsPrint, //!< Print state matching address (for debugging)
153 IsFlush, //!< Flush the address from caches
154 NUM_COMMAND_ATTRIBUTES
155 };
156
157 /**
158 * Structure that defines attributes and other data associated
159 * with a Command.
160 */
161 struct CommandInfo
162 {
163 /// Set of attribute flags.
164 const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
165 /// Corresponding response for requests; InvalidCmd if no
166 /// response is applicable.
167 const Command response;
168 /// String representation (for printing)
169 const std::string str;
170 };
171
172 /// Array to map Command enum to associated info.
173 static const CommandInfo commandInfo[];
174
175 private:
176
177 Command cmd;
178
179 bool
180 testCmdAttrib(MemCmd::Attribute attrib) const
181 {
182 return commandInfo[cmd].attributes[attrib] != 0;
183 }
184
185 public:
186
187 bool isRead() const { return testCmdAttrib(IsRead); }
188 bool isWrite() const { return testCmdAttrib(IsWrite); }
189 bool isUpgrade() const { return testCmdAttrib(IsUpgrade); }
190 bool isRequest() const { return testCmdAttrib(IsRequest); }
191 bool isResponse() const { return testCmdAttrib(IsResponse); }
192 bool needsWritable() const { return testCmdAttrib(NeedsWritable); }
193 bool needsResponse() const { return testCmdAttrib(NeedsResponse); }
194 bool isInvalidate() const { return testCmdAttrib(IsInvalidate); }
195 bool isEviction() const { return testCmdAttrib(IsEviction); }
196
197 /**
198 * A writeback is an eviction that carries data.
199 */
200 bool isWriteback() const { return testCmdAttrib(IsEviction) &&
201 testCmdAttrib(HasData); }
202
203 /**
204 * Check if this particular packet type carries payload data. Note
205 * that this does not reflect if the data pointer of the packet is
206 * valid or not.
207 */
208 bool hasData() const { return testCmdAttrib(HasData); }
209 bool isLLSC() const { return testCmdAttrib(IsLlsc); }
210 bool isSWPrefetch() const { return testCmdAttrib(IsSWPrefetch); }
211 bool isHWPrefetch() const { return testCmdAttrib(IsHWPrefetch); }
212 bool isPrefetch() const { return testCmdAttrib(IsSWPrefetch) ||
213 testCmdAttrib(IsHWPrefetch); }
214 bool isError() const { return testCmdAttrib(IsError); }
215 bool isPrint() const { return testCmdAttrib(IsPrint); }
216 bool isFlush() const { return testCmdAttrib(IsFlush); }
217
218 const Command
219 responseCommand() const
220 {
221 return commandInfo[cmd].response;
222 }
223
224 /// Return the string to a cmd given by idx.
225 const std::string &toString() const { return commandInfo[cmd].str; }
226 int toInt() const { return (int)cmd; }
227
228 MemCmd(Command _cmd) : cmd(_cmd) { }
229 MemCmd(int _cmd) : cmd((Command)_cmd) { }
230 MemCmd() : cmd(InvalidCmd) { }
231
232 bool operator==(MemCmd c2) const { return (cmd == c2.cmd); }
233 bool operator!=(MemCmd c2) const { return (cmd != c2.cmd); }
234};
235
236/**
237 * A Packet is used to encapsulate a transfer between two objects in
238 * the memory system (e.g., the L1 and L2 cache). (In contrast, a
239 * single Request travels all the way from the requester to the
240 * ultimate destination and back, possibly being conveyed by several
241 * different Packets along the way.)
242 */
243class Packet : public Printable
244{
245 public:
246 typedef uint32_t FlagsType;
247 typedef ::Flags<FlagsType> Flags;
248
249 private:
250
251 enum : FlagsType {
252 // Flags to transfer across when copying a packet
253 COPY_FLAGS = 0x0000000F,
254
255 // Does this packet have sharers (which means it should not be
256 // considered writable) or not. See setHasSharers below.
257 HAS_SHARERS = 0x00000001,
258
259 // Special control flags
260 /// Special timing-mode atomic snoop for multi-level coherence.
261 EXPRESS_SNOOP = 0x00000002,
262
263 /// Allow a responding cache to inform the cache hierarchy
264 /// that it had a writable copy before responding. See
265 /// setResponderHadWritable below.
266 RESPONDER_HAD_WRITABLE = 0x00000004,
267
268 // Snoop co-ordination flag to indicate that a cache is
269 // responding to a snoop. See setCacheResponding below.
270 CACHE_RESPONDING = 0x00000008,
271
272 /// Are the 'addr' and 'size' fields valid?
273 VALID_ADDR = 0x00000100,
274 VALID_SIZE = 0x00000200,
275
276 /// Is the data pointer set to a value that shouldn't be freed
277 /// when the packet is destroyed?
278 STATIC_DATA = 0x00001000,
279 /// The data pointer points to a value that should be freed when
280 /// the packet is destroyed. The pointer is assumed to be pointing
281 /// to an array, and delete [] is consequently called
282 DYNAMIC_DATA = 0x00002000,
283
284 /// suppress the error if this packet encounters a functional
285 /// access failure.
286 SUPPRESS_FUNC_ERROR = 0x00008000,
287
288 // Signal block present to squash prefetch and cache evict packets
289 // through express snoop flag
290 BLOCK_CACHED = 0x00010000
291 };
292
293 Flags flags;
294
295 public:
296 typedef MemCmd::Command Command;
297
298 /// The command field of the packet.
299 MemCmd cmd;
300
301 /// A pointer to the original request.
302 const RequestPtr req;
303
304 private:
305 /**
306 * A pointer to the data being transfered. It can be differnt
307 * sizes at each level of the heirarchy so it belongs in the
308 * packet, not request. This may or may not be populated when a
309 * responder recieves the packet. If not populated it memory should
310 * be allocated.
311 */
312 PacketDataPtr data;
313
314 /// The address of the request. This address could be virtual or
315 /// physical, depending on the system configuration.
316 Addr addr;
317
318 /// True if the request targets the secure memory space.
319 bool _isSecure;
320
321 /// The size of the request or transfer.
322 unsigned size;
323
324 /**
325 * Track the bytes found that satisfy a functional read.
326 */
327 std::vector<bool> bytesValid;
328
329 public:
330
331 /**
332 * The extra delay from seeing the packet until the header is
333 * transmitted. This delay is used to communicate the crossbar
334 * forwarding latency to the neighbouring object (e.g. a cache)
335 * that actually makes the packet wait. As the delay is relative,
336 * a 32-bit unsigned should be sufficient.
337 */
338 uint32_t headerDelay;
339
340 /**
341 * Keep track of the extra delay incurred by snooping upwards
342 * before sending a request down the memory system. This is used
343 * by the coherent crossbar to account for the additional request
344 * delay.
345 */
346 uint32_t snoopDelay;
347
348 /**
349 * The extra pipelining delay from seeing the packet until the end of
350 * payload is transmitted by the component that provided it (if
351 * any). This includes the header delay. Similar to the header
352 * delay, this is used to make up for the fact that the
353 * crossbar does not make the packet wait. As the delay is
354 * relative, a 32-bit unsigned should be sufficient.
355 */
356 uint32_t payloadDelay;
357
358 /**
359 * A virtual base opaque structure used to hold state associated
360 * with the packet (e.g., an MSHR), specific to a MemObject that
361 * sees the packet. A pointer to this state is returned in the
362 * packet's response so that the MemObject in question can quickly
363 * look up the state needed to process it. A specific subclass
364 * would be derived from this to carry state specific to a
365 * particular sending device.
366 *
367 * As multiple MemObjects may add their SenderState throughout the
368 * memory system, the SenderStates create a stack, where a
369 * MemObject can add a new Senderstate, as long as the
370 * predecessing SenderState is restored when the response comes
371 * back. For this reason, the predecessor should always be
372 * populated with the current SenderState of a packet before
373 * modifying the senderState field in the request packet.
374 */
375 struct SenderState
376 {
377 SenderState* predecessor;
378 SenderState() : predecessor(NULL) {}
379 virtual ~SenderState() {}
380 };
381
382 /**
383 * Object used to maintain state of a PrintReq. The senderState
384 * field of a PrintReq should always be of this type.
385 */
386 class PrintReqState : public SenderState
387 {
388 private:
389 /**
390 * An entry in the label stack.
391 */
392 struct LabelStackEntry
393 {
394 const std::string label;
395 std::string *prefix;
396 bool labelPrinted;
397 LabelStackEntry(const std::string &_label, std::string *_prefix);
398 };
399
400 typedef std::list<LabelStackEntry> LabelStack;
401 LabelStack labelStack;
402
403 std::string *curPrefixPtr;
404
405 public:
406 std::ostream &os;
407 const int verbosity;
408
409 PrintReqState(std::ostream &os, int verbosity = 0);
410 ~PrintReqState();
411
412 /**
413 * Returns the current line prefix.
414 */
415 const std::string &curPrefix() { return *curPrefixPtr; }
416
417 /**
418 * Push a label onto the label stack, and prepend the given
419 * prefix string onto the current prefix. Labels will only be
420 * printed if an object within the label's scope is printed.
421 */
422 void pushLabel(const std::string &lbl,
423 const std::string &prefix = " ");
424
425 /**
426 * Pop a label off the label stack.
427 */
428 void popLabel();
429
430 /**
431 * Print all of the pending unprinted labels on the
432 * stack. Called by printObj(), so normally not called by
433 * users unless bypassing printObj().
434 */
435 void printLabels();
436
437 /**
438 * Print a Printable object to os, because it matched the
439 * address on a PrintReq.
440 */
441 void printObj(Printable *obj);
442 };
443
444 /**
445 * This packet's sender state. Devices should use dynamic_cast<>
446 * to cast to the state appropriate to the sender. The intent of
447 * this variable is to allow a device to attach extra information
448 * to a request. A response packet must return the sender state
449 * that was attached to the original request (even if a new packet
450 * is created).
451 */
452 SenderState *senderState;
453
454 /**
455 * Push a new sender state to the packet and make the current
456 * sender state the predecessor of the new one. This should be
457 * prefered over direct manipulation of the senderState member
458 * variable.
459 *
460 * @param sender_state SenderState to push at the top of the stack
461 */
462 void pushSenderState(SenderState *sender_state);
463
464 /**
465 * Pop the top of the state stack and return a pointer to it. This
466 * assumes the current sender state is not NULL. This should be
467 * preferred over direct manipulation of the senderState member
468 * variable.
469 *
470 * @return The current top of the stack
471 */
472 SenderState *popSenderState();
473
474 /**
475 * Go through the sender state stack and return the first instance
476 * that is of type T (as determined by a dynamic_cast). If there
477 * is no sender state of type T, NULL is returned.
478 *
479 * @return The topmost state of type T
480 */
481 template <typename T>
482 T * findNextSenderState() const
483 {
484 T *t = NULL;
485 SenderState* sender_state = senderState;
486 while (t == NULL && sender_state != NULL) {
487 t = dynamic_cast<T*>(sender_state);
488 sender_state = sender_state->predecessor;
489 }
490 return t;
491 }
492
493 /// Return the string name of the cmd field (for debugging and
494 /// tracing).
495 const std::string &cmdString() const { return cmd.toString(); }
496
497 /// Return the index of this command.
498 inline int cmdToIndex() const { return cmd.toInt(); }
499
500 bool isRead() const { return cmd.isRead(); }
501 bool isWrite() const { return cmd.isWrite(); }
502 bool isUpgrade() const { return cmd.isUpgrade(); }
503 bool isRequest() const { return cmd.isRequest(); }
504 bool isResponse() const { return cmd.isResponse(); }
1/*
2 * Copyright (c) 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 * Steve Reinhardt
43 * Ali Saidi
44 * Andreas Hansson
45 */
46
47/**
48 * @file
49 * Declaration of the Packet class.
50 */
51
52#ifndef __MEM_PACKET_HH__
53#define __MEM_PACKET_HH__
54
55#include <bitset>
56#include <cassert>
57#include <list>
58
59#include "base/cast.hh"
60#include "base/compiler.hh"
61#include "base/flags.hh"
62#include "base/misc.hh"
63#include "base/printable.hh"
64#include "base/types.hh"
65#include "mem/request.hh"
66#include "sim/core.hh"
67
68class Packet;
69typedef Packet *PacketPtr;
70typedef uint8_t* PacketDataPtr;
71typedef std::list<PacketPtr> PacketList;
72
73class MemCmd
74{
75 friend class Packet;
76
77 public:
78 /**
79 * List of all commands associated with a packet.
80 */
81 enum Command
82 {
83 InvalidCmd,
84 ReadReq,
85 ReadResp,
86 ReadRespWithInvalidate,
87 WriteReq,
88 WriteResp,
89 WritebackDirty,
90 WritebackClean,
91 CleanEvict,
92 SoftPFReq,
93 HardPFReq,
94 SoftPFResp,
95 HardPFResp,
96 WriteLineReq,
97 UpgradeReq,
98 SCUpgradeReq, // Special "weak" upgrade for StoreCond
99 UpgradeResp,
100 SCUpgradeFailReq, // Failed SCUpgradeReq in MSHR (never sent)
101 UpgradeFailResp, // Valid for SCUpgradeReq only
102 ReadExReq,
103 ReadExResp,
104 ReadCleanReq,
105 ReadSharedReq,
106 LoadLockedReq,
107 StoreCondReq,
108 StoreCondFailReq, // Failed StoreCondReq in MSHR (never sent)
109 StoreCondResp,
110 SwapReq,
111 SwapResp,
112 MessageReq,
113 MessageResp,
114 MemFenceReq,
115 MemFenceResp,
116 // Error responses
117 // @TODO these should be classified as responses rather than
118 // requests; coding them as requests initially for backwards
119 // compatibility
120 InvalidDestError, // packet dest field invalid
121 BadAddressError, // memory address invalid
122 FunctionalReadError, // unable to fulfill functional read
123 FunctionalWriteError, // unable to fulfill functional write
124 // Fake simulator-only commands
125 PrintReq, // Print state matching address
126 FlushReq, //request for a cache flush
127 InvalidateReq, // request for address to be invalidated
128 InvalidateResp,
129 NUM_MEM_CMDS
130 };
131
132 private:
133 /**
134 * List of command attributes.
135 */
136 enum Attribute
137 {
138 IsRead, //!< Data flows from responder to requester
139 IsWrite, //!< Data flows from requester to responder
140 IsUpgrade,
141 IsInvalidate,
142 NeedsWritable, //!< Requires writable copy to complete in-cache
143 IsRequest, //!< Issued by requester
144 IsResponse, //!< Issue by responder
145 NeedsResponse, //!< Requester needs response from target
146 IsEviction,
147 IsSWPrefetch,
148 IsHWPrefetch,
149 IsLlsc, //!< Alpha/MIPS LL or SC access
150 HasData, //!< There is an associated payload
151 IsError, //!< Error response
152 IsPrint, //!< Print state matching address (for debugging)
153 IsFlush, //!< Flush the address from caches
154 NUM_COMMAND_ATTRIBUTES
155 };
156
157 /**
158 * Structure that defines attributes and other data associated
159 * with a Command.
160 */
161 struct CommandInfo
162 {
163 /// Set of attribute flags.
164 const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
165 /// Corresponding response for requests; InvalidCmd if no
166 /// response is applicable.
167 const Command response;
168 /// String representation (for printing)
169 const std::string str;
170 };
171
172 /// Array to map Command enum to associated info.
173 static const CommandInfo commandInfo[];
174
175 private:
176
177 Command cmd;
178
179 bool
180 testCmdAttrib(MemCmd::Attribute attrib) const
181 {
182 return commandInfo[cmd].attributes[attrib] != 0;
183 }
184
185 public:
186
187 bool isRead() const { return testCmdAttrib(IsRead); }
188 bool isWrite() const { return testCmdAttrib(IsWrite); }
189 bool isUpgrade() const { return testCmdAttrib(IsUpgrade); }
190 bool isRequest() const { return testCmdAttrib(IsRequest); }
191 bool isResponse() const { return testCmdAttrib(IsResponse); }
192 bool needsWritable() const { return testCmdAttrib(NeedsWritable); }
193 bool needsResponse() const { return testCmdAttrib(NeedsResponse); }
194 bool isInvalidate() const { return testCmdAttrib(IsInvalidate); }
195 bool isEviction() const { return testCmdAttrib(IsEviction); }
196
197 /**
198 * A writeback is an eviction that carries data.
199 */
200 bool isWriteback() const { return testCmdAttrib(IsEviction) &&
201 testCmdAttrib(HasData); }
202
203 /**
204 * Check if this particular packet type carries payload data. Note
205 * that this does not reflect if the data pointer of the packet is
206 * valid or not.
207 */
208 bool hasData() const { return testCmdAttrib(HasData); }
209 bool isLLSC() const { return testCmdAttrib(IsLlsc); }
210 bool isSWPrefetch() const { return testCmdAttrib(IsSWPrefetch); }
211 bool isHWPrefetch() const { return testCmdAttrib(IsHWPrefetch); }
212 bool isPrefetch() const { return testCmdAttrib(IsSWPrefetch) ||
213 testCmdAttrib(IsHWPrefetch); }
214 bool isError() const { return testCmdAttrib(IsError); }
215 bool isPrint() const { return testCmdAttrib(IsPrint); }
216 bool isFlush() const { return testCmdAttrib(IsFlush); }
217
218 const Command
219 responseCommand() const
220 {
221 return commandInfo[cmd].response;
222 }
223
224 /// Return the string to a cmd given by idx.
225 const std::string &toString() const { return commandInfo[cmd].str; }
226 int toInt() const { return (int)cmd; }
227
228 MemCmd(Command _cmd) : cmd(_cmd) { }
229 MemCmd(int _cmd) : cmd((Command)_cmd) { }
230 MemCmd() : cmd(InvalidCmd) { }
231
232 bool operator==(MemCmd c2) const { return (cmd == c2.cmd); }
233 bool operator!=(MemCmd c2) const { return (cmd != c2.cmd); }
234};
235
236/**
237 * A Packet is used to encapsulate a transfer between two objects in
238 * the memory system (e.g., the L1 and L2 cache). (In contrast, a
239 * single Request travels all the way from the requester to the
240 * ultimate destination and back, possibly being conveyed by several
241 * different Packets along the way.)
242 */
243class Packet : public Printable
244{
245 public:
246 typedef uint32_t FlagsType;
247 typedef ::Flags<FlagsType> Flags;
248
249 private:
250
251 enum : FlagsType {
252 // Flags to transfer across when copying a packet
253 COPY_FLAGS = 0x0000000F,
254
255 // Does this packet have sharers (which means it should not be
256 // considered writable) or not. See setHasSharers below.
257 HAS_SHARERS = 0x00000001,
258
259 // Special control flags
260 /// Special timing-mode atomic snoop for multi-level coherence.
261 EXPRESS_SNOOP = 0x00000002,
262
263 /// Allow a responding cache to inform the cache hierarchy
264 /// that it had a writable copy before responding. See
265 /// setResponderHadWritable below.
266 RESPONDER_HAD_WRITABLE = 0x00000004,
267
268 // Snoop co-ordination flag to indicate that a cache is
269 // responding to a snoop. See setCacheResponding below.
270 CACHE_RESPONDING = 0x00000008,
271
272 /// Are the 'addr' and 'size' fields valid?
273 VALID_ADDR = 0x00000100,
274 VALID_SIZE = 0x00000200,
275
276 /// Is the data pointer set to a value that shouldn't be freed
277 /// when the packet is destroyed?
278 STATIC_DATA = 0x00001000,
279 /// The data pointer points to a value that should be freed when
280 /// the packet is destroyed. The pointer is assumed to be pointing
281 /// to an array, and delete [] is consequently called
282 DYNAMIC_DATA = 0x00002000,
283
284 /// suppress the error if this packet encounters a functional
285 /// access failure.
286 SUPPRESS_FUNC_ERROR = 0x00008000,
287
288 // Signal block present to squash prefetch and cache evict packets
289 // through express snoop flag
290 BLOCK_CACHED = 0x00010000
291 };
292
293 Flags flags;
294
295 public:
296 typedef MemCmd::Command Command;
297
298 /// The command field of the packet.
299 MemCmd cmd;
300
301 /// A pointer to the original request.
302 const RequestPtr req;
303
304 private:
305 /**
306 * A pointer to the data being transfered. It can be differnt
307 * sizes at each level of the heirarchy so it belongs in the
308 * packet, not request. This may or may not be populated when a
309 * responder recieves the packet. If not populated it memory should
310 * be allocated.
311 */
312 PacketDataPtr data;
313
314 /// The address of the request. This address could be virtual or
315 /// physical, depending on the system configuration.
316 Addr addr;
317
318 /// True if the request targets the secure memory space.
319 bool _isSecure;
320
321 /// The size of the request or transfer.
322 unsigned size;
323
324 /**
325 * Track the bytes found that satisfy a functional read.
326 */
327 std::vector<bool> bytesValid;
328
329 public:
330
331 /**
332 * The extra delay from seeing the packet until the header is
333 * transmitted. This delay is used to communicate the crossbar
334 * forwarding latency to the neighbouring object (e.g. a cache)
335 * that actually makes the packet wait. As the delay is relative,
336 * a 32-bit unsigned should be sufficient.
337 */
338 uint32_t headerDelay;
339
340 /**
341 * Keep track of the extra delay incurred by snooping upwards
342 * before sending a request down the memory system. This is used
343 * by the coherent crossbar to account for the additional request
344 * delay.
345 */
346 uint32_t snoopDelay;
347
348 /**
349 * The extra pipelining delay from seeing the packet until the end of
350 * payload is transmitted by the component that provided it (if
351 * any). This includes the header delay. Similar to the header
352 * delay, this is used to make up for the fact that the
353 * crossbar does not make the packet wait. As the delay is
354 * relative, a 32-bit unsigned should be sufficient.
355 */
356 uint32_t payloadDelay;
357
358 /**
359 * A virtual base opaque structure used to hold state associated
360 * with the packet (e.g., an MSHR), specific to a MemObject that
361 * sees the packet. A pointer to this state is returned in the
362 * packet's response so that the MemObject in question can quickly
363 * look up the state needed to process it. A specific subclass
364 * would be derived from this to carry state specific to a
365 * particular sending device.
366 *
367 * As multiple MemObjects may add their SenderState throughout the
368 * memory system, the SenderStates create a stack, where a
369 * MemObject can add a new Senderstate, as long as the
370 * predecessing SenderState is restored when the response comes
371 * back. For this reason, the predecessor should always be
372 * populated with the current SenderState of a packet before
373 * modifying the senderState field in the request packet.
374 */
375 struct SenderState
376 {
377 SenderState* predecessor;
378 SenderState() : predecessor(NULL) {}
379 virtual ~SenderState() {}
380 };
381
382 /**
383 * Object used to maintain state of a PrintReq. The senderState
384 * field of a PrintReq should always be of this type.
385 */
386 class PrintReqState : public SenderState
387 {
388 private:
389 /**
390 * An entry in the label stack.
391 */
392 struct LabelStackEntry
393 {
394 const std::string label;
395 std::string *prefix;
396 bool labelPrinted;
397 LabelStackEntry(const std::string &_label, std::string *_prefix);
398 };
399
400 typedef std::list<LabelStackEntry> LabelStack;
401 LabelStack labelStack;
402
403 std::string *curPrefixPtr;
404
405 public:
406 std::ostream &os;
407 const int verbosity;
408
409 PrintReqState(std::ostream &os, int verbosity = 0);
410 ~PrintReqState();
411
412 /**
413 * Returns the current line prefix.
414 */
415 const std::string &curPrefix() { return *curPrefixPtr; }
416
417 /**
418 * Push a label onto the label stack, and prepend the given
419 * prefix string onto the current prefix. Labels will only be
420 * printed if an object within the label's scope is printed.
421 */
422 void pushLabel(const std::string &lbl,
423 const std::string &prefix = " ");
424
425 /**
426 * Pop a label off the label stack.
427 */
428 void popLabel();
429
430 /**
431 * Print all of the pending unprinted labels on the
432 * stack. Called by printObj(), so normally not called by
433 * users unless bypassing printObj().
434 */
435 void printLabels();
436
437 /**
438 * Print a Printable object to os, because it matched the
439 * address on a PrintReq.
440 */
441 void printObj(Printable *obj);
442 };
443
444 /**
445 * This packet's sender state. Devices should use dynamic_cast<>
446 * to cast to the state appropriate to the sender. The intent of
447 * this variable is to allow a device to attach extra information
448 * to a request. A response packet must return the sender state
449 * that was attached to the original request (even if a new packet
450 * is created).
451 */
452 SenderState *senderState;
453
454 /**
455 * Push a new sender state to the packet and make the current
456 * sender state the predecessor of the new one. This should be
457 * prefered over direct manipulation of the senderState member
458 * variable.
459 *
460 * @param sender_state SenderState to push at the top of the stack
461 */
462 void pushSenderState(SenderState *sender_state);
463
464 /**
465 * Pop the top of the state stack and return a pointer to it. This
466 * assumes the current sender state is not NULL. This should be
467 * preferred over direct manipulation of the senderState member
468 * variable.
469 *
470 * @return The current top of the stack
471 */
472 SenderState *popSenderState();
473
474 /**
475 * Go through the sender state stack and return the first instance
476 * that is of type T (as determined by a dynamic_cast). If there
477 * is no sender state of type T, NULL is returned.
478 *
479 * @return The topmost state of type T
480 */
481 template <typename T>
482 T * findNextSenderState() const
483 {
484 T *t = NULL;
485 SenderState* sender_state = senderState;
486 while (t == NULL && sender_state != NULL) {
487 t = dynamic_cast<T*>(sender_state);
488 sender_state = sender_state->predecessor;
489 }
490 return t;
491 }
492
493 /// Return the string name of the cmd field (for debugging and
494 /// tracing).
495 const std::string &cmdString() const { return cmd.toString(); }
496
497 /// Return the index of this command.
498 inline int cmdToIndex() const { return cmd.toInt(); }
499
500 bool isRead() const { return cmd.isRead(); }
501 bool isWrite() const { return cmd.isWrite(); }
502 bool isUpgrade() const { return cmd.isUpgrade(); }
503 bool isRequest() const { return cmd.isRequest(); }
504 bool isResponse() const { return cmd.isResponse(); }
505 bool needsWritable() const { return cmd.needsWritable(); }
505 bool needsWritable() const
506 {
507 // we should never check if a response needsWritable, the
508 // request has this flag, and for a response we should rather
509 // look at the hasSharers flag (if not set, the response is to
510 // be considered writable)
511 assert(isRequest());
512 return cmd.needsWritable();
513 }
506 bool needsResponse() const { return cmd.needsResponse(); }
507 bool isInvalidate() const { return cmd.isInvalidate(); }
508 bool isEviction() const { return cmd.isEviction(); }
509 bool isWriteback() const { return cmd.isWriteback(); }
510 bool hasData() const { return cmd.hasData(); }
511 bool hasRespData() const
512 {
513 MemCmd resp_cmd = cmd.responseCommand();
514 return resp_cmd.hasData();
515 }
516 bool isLLSC() const { return cmd.isLLSC(); }
517 bool isError() const { return cmd.isError(); }
518 bool isPrint() const { return cmd.isPrint(); }
519 bool isFlush() const { return cmd.isFlush(); }
520
521 //@{
522 /// Snoop flags
523 /**
524 * Set the cacheResponding flag. This is used by the caches to
525 * signal another cache that they are responding to a request. A
526 * cache will only respond to snoops if it has the line in either
527 * Modified or Owned state. Note that on snoop hits we always pass
528 * the line as Modified and never Owned. In the case of an Owned
529 * line we proceed to invalidate all other copies.
530 *
531 * On a cache fill (see Cache::handleFill), we check hasSharers
532 * first, ignoring the cacheResponding flag if hasSharers is set.
533 * A line is consequently allocated as:
534 *
535 * hasSharers cacheResponding state
536 * true false Shared
537 * true true Shared
538 * false false Exclusive
539 * false true Modified
540 */
541 void setCacheResponding()
542 {
543 assert(isRequest());
544 assert(!flags.isSet(CACHE_RESPONDING));
545 flags.set(CACHE_RESPONDING);
546 }
547 bool cacheResponding() const { return flags.isSet(CACHE_RESPONDING); }
548 /**
549 * On fills, the hasSharers flag is used by the caches in
550 * combination with the cacheResponding flag, as clarified
551 * above. If the hasSharers flag is not set, the packet is passing
552 * writable. Thus, a response from a memory passes the line as
553 * writable by default.
554 *
555 * The hasSharers flag is also used by upstream caches to inform a
556 * downstream cache that they have the block (by calling
557 * setHasSharers on snoop request packets that hit in upstream
558 * cachs tags or MSHRs). If the snoop packet has sharers, a
559 * downstream cache is prevented from passing a dirty line upwards
560 * if it was not explicitly asked for a writable copy. See
561 * Cache::satisfyCpuSideRequest.
562 *
563 * The hasSharers flag is also used on writebacks, in
564 * combination with the WritbackClean or WritebackDirty commands,
565 * to allocate the block downstream either as:
566 *
567 * command hasSharers state
568 * WritebackDirty false Modified
569 * WritebackDirty true Owned
570 * WritebackClean false Exclusive
571 * WritebackClean true Shared
572 */
573 void setHasSharers() { flags.set(HAS_SHARERS); }
574 bool hasSharers() const { return flags.isSet(HAS_SHARERS); }
575 //@}
576
577 /**
578 * The express snoop flag is used for two purposes. Firstly, it is
579 * used to bypass flow control for normal (non-snoop) requests
580 * going downstream in the memory system. In cases where a cache
581 * is responding to a snoop from another cache (it had a dirty
582 * line), but the line is not writable (and there are possibly
583 * other copies), the express snoop flag is set by the downstream
584 * cache to invalidate all other copies in zero time. Secondly,
585 * the express snoop flag is also set to be able to distinguish
586 * snoop packets that came from a downstream cache, rather than
587 * snoop packets from neighbouring caches.
588 */
589 void setExpressSnoop() { flags.set(EXPRESS_SNOOP); }
590 bool isExpressSnoop() const { return flags.isSet(EXPRESS_SNOOP); }
591
592 /**
593 * On responding to a snoop request (which only happens for
594 * Modified or Owned lines), make sure that we can transform an
595 * Owned response to a Modified one. If this flag is not set, the
596 * responding cache had the line in the Owned state, and there are
597 * possibly other Shared copies in the memory system. A downstream
598 * cache helps in orchestrating the invalidation of these copies
599 * by sending out the appropriate express snoops.
600 */
601 void setResponderHadWritable()
602 {
603 assert(cacheResponding());
604 flags.set(RESPONDER_HAD_WRITABLE);
605 }
606 bool responderHadWritable() const
607 { return flags.isSet(RESPONDER_HAD_WRITABLE); }
608
609 void setSuppressFuncError() { flags.set(SUPPRESS_FUNC_ERROR); }
610 bool suppressFuncError() const { return flags.isSet(SUPPRESS_FUNC_ERROR); }
611 void setBlockCached() { flags.set(BLOCK_CACHED); }
612 bool isBlockCached() const { return flags.isSet(BLOCK_CACHED); }
613 void clearBlockCached() { flags.clear(BLOCK_CACHED); }
614
615 // Network error conditions... encapsulate them as methods since
616 // their encoding keeps changing (from result field to command
617 // field, etc.)
618 void
619 setBadAddress()
620 {
621 assert(isResponse());
622 cmd = MemCmd::BadAddressError;
623 }
624
625 void copyError(Packet *pkt) { assert(pkt->isError()); cmd = pkt->cmd; }
626
627 Addr getAddr() const { assert(flags.isSet(VALID_ADDR)); return addr; }
628 /**
629 * Update the address of this packet mid-transaction. This is used
630 * by the address mapper to change an already set address to a new
631 * one based on the system configuration. It is intended to remap
632 * an existing address, so it asserts that the current address is
633 * valid.
634 */
635 void setAddr(Addr _addr) { assert(flags.isSet(VALID_ADDR)); addr = _addr; }
636
637 unsigned getSize() const { assert(flags.isSet(VALID_SIZE)); return size; }
638
639 Addr getOffset(unsigned int blk_size) const
640 {
641 return getAddr() & Addr(blk_size - 1);
642 }
643
644 Addr getBlockAddr(unsigned int blk_size) const
645 {
646 return getAddr() & ~(Addr(blk_size - 1));
647 }
648
649 bool isSecure() const
650 {
651 assert(flags.isSet(VALID_ADDR));
652 return _isSecure;
653 }
654
655 /**
656 * It has been determined that the SC packet should successfully update
657 * memory. Therefore, convert this SC packet to a normal write.
658 */
659 void
660 convertScToWrite()
661 {
662 assert(isLLSC());
663 assert(isWrite());
664 cmd = MemCmd::WriteReq;
665 }
666
667 /**
668 * When ruby is in use, Ruby will monitor the cache line and the
669 * phys memory should treat LL ops as normal reads.
670 */
671 void
672 convertLlToRead()
673 {
674 assert(isLLSC());
675 assert(isRead());
676 cmd = MemCmd::ReadReq;
677 }
678
679 /**
680 * Constructor. Note that a Request object must be constructed
681 * first, but the Requests's physical address and size fields need
682 * not be valid. The command must be supplied.
683 */
684 Packet(const RequestPtr _req, MemCmd _cmd)
685 : cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
686 size(0), headerDelay(0), snoopDelay(0), payloadDelay(0),
687 senderState(NULL)
688 {
689 if (req->hasPaddr()) {
690 addr = req->getPaddr();
691 flags.set(VALID_ADDR);
692 _isSecure = req->isSecure();
693 }
694 if (req->hasSize()) {
695 size = req->getSize();
696 flags.set(VALID_SIZE);
697 }
698 }
699
700 /**
701 * Alternate constructor if you are trying to create a packet with
702 * a request that is for a whole block, not the address from the
703 * req. this allows for overriding the size/addr of the req.
704 */
705 Packet(const RequestPtr _req, MemCmd _cmd, int _blkSize)
706 : cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
707 headerDelay(0), snoopDelay(0), payloadDelay(0),
708 senderState(NULL)
709 {
710 if (req->hasPaddr()) {
711 addr = req->getPaddr() & ~(_blkSize - 1);
712 flags.set(VALID_ADDR);
713 _isSecure = req->isSecure();
714 }
715 size = _blkSize;
716 flags.set(VALID_SIZE);
717 }
718
719 /**
720 * Alternate constructor for copying a packet. Copy all fields
721 * *except* if the original packet's data was dynamic, don't copy
722 * that, as we can't guarantee that the new packet's lifetime is
723 * less than that of the original packet. In this case the new
724 * packet should allocate its own data.
725 */
726 Packet(const PacketPtr pkt, bool clear_flags, bool alloc_data)
727 : cmd(pkt->cmd), req(pkt->req),
728 data(nullptr),
729 addr(pkt->addr), _isSecure(pkt->_isSecure), size(pkt->size),
730 bytesValid(pkt->bytesValid),
731 headerDelay(pkt->headerDelay),
732 snoopDelay(0),
733 payloadDelay(pkt->payloadDelay),
734 senderState(pkt->senderState)
735 {
736 if (!clear_flags)
737 flags.set(pkt->flags & COPY_FLAGS);
738
739 flags.set(pkt->flags & (VALID_ADDR|VALID_SIZE));
740
741 // should we allocate space for data, or not, the express
742 // snoops do not need to carry any data as they only serve to
743 // co-ordinate state changes
744 if (alloc_data) {
745 // even if asked to allocate data, if the original packet
746 // holds static data, then the sender will not be doing
747 // any memcpy on receiving the response, thus we simply
748 // carry the pointer forward
749 if (pkt->flags.isSet(STATIC_DATA)) {
750 data = pkt->data;
751 flags.set(STATIC_DATA);
752 } else {
753 allocate();
754 }
755 }
756 }
757
758 /**
759 * Generate the appropriate read MemCmd based on the Request flags.
760 */
761 static MemCmd
762 makeReadCmd(const RequestPtr req)
763 {
764 if (req->isLLSC())
765 return MemCmd::LoadLockedReq;
766 else if (req->isPrefetch())
767 return MemCmd::SoftPFReq;
768 else
769 return MemCmd::ReadReq;
770 }
771
772 /**
773 * Generate the appropriate write MemCmd based on the Request flags.
774 */
775 static MemCmd
776 makeWriteCmd(const RequestPtr req)
777 {
778 if (req->isLLSC())
779 return MemCmd::StoreCondReq;
780 else if (req->isSwap())
781 return MemCmd::SwapReq;
782 else
783 return MemCmd::WriteReq;
784 }
785
786 /**
787 * Constructor-like methods that return Packets based on Request objects.
788 * Fine-tune the MemCmd type if it's not a vanilla read or write.
789 */
790 static PacketPtr
791 createRead(const RequestPtr req)
792 {
793 return new Packet(req, makeReadCmd(req));
794 }
795
796 static PacketPtr
797 createWrite(const RequestPtr req)
798 {
799 return new Packet(req, makeWriteCmd(req));
800 }
801
802 /**
803 * clean up packet variables
804 */
805 ~Packet()
806 {
807 // Delete the request object if this is a request packet which
808 // does not need a response, because the requester will not get
809 // a chance. If the request packet needs a response then the
810 // request will be deleted on receipt of the response
811 // packet. We also make sure to never delete the request for
812 // express snoops, even for cases when responses are not
813 // needed (CleanEvict and Writeback), since the snoop packet
814 // re-uses the same request.
815 if (req && isRequest() && !needsResponse() &&
816 !isExpressSnoop()) {
817 delete req;
818 }
819 deleteData();
820 }
821
822 /**
823 * Take a request packet and modify it in place to be suitable for
824 * returning as a response to that request.
825 */
826 void
827 makeResponse()
828 {
829 assert(needsResponse());
830 assert(isRequest());
831 cmd = cmd.responseCommand();
832
833 // responses are never express, even if the snoop that
834 // triggered them was
835 flags.clear(EXPRESS_SNOOP);
836 }
837
838 void
839 makeAtomicResponse()
840 {
841 makeResponse();
842 }
843
844 void
845 makeTimingResponse()
846 {
847 makeResponse();
848 }
849
850 void
851 setFunctionalResponseStatus(bool success)
852 {
853 if (!success) {
854 if (isWrite()) {
855 cmd = MemCmd::FunctionalWriteError;
856 } else {
857 cmd = MemCmd::FunctionalReadError;
858 }
859 }
860 }
861
862 void
863 setSize(unsigned size)
864 {
865 assert(!flags.isSet(VALID_SIZE));
866
867 this->size = size;
868 flags.set(VALID_SIZE);
869 }
870
871
872 public:
873 /**
874 * @{
875 * @name Data accessor mehtods
876 */
877
878 /**
879 * Set the data pointer to the following value that should not be
880 * freed. Static data allows us to do a single memcpy even if
881 * multiple packets are required to get from source to destination
882 * and back. In essence the pointer is set calling dataStatic on
883 * the original packet, and whenever this packet is copied and
884 * forwarded the same pointer is passed on. When a packet
885 * eventually reaches the destination holding the data, it is
886 * copied once into the location originally set. On the way back
887 * to the source, no copies are necessary.
888 */
889 template <typename T>
890 void
891 dataStatic(T *p)
892 {
893 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
894 data = (PacketDataPtr)p;
895 flags.set(STATIC_DATA);
896 }
897
898 /**
899 * Set the data pointer to the following value that should not be
900 * freed. This version of the function allows the pointer passed
901 * to us to be const. To avoid issues down the line we cast the
902 * constness away, the alternative would be to keep both a const
903 * and non-const data pointer and cleverly choose between
904 * them. Note that this is only allowed for static data.
905 */
906 template <typename T>
907 void
908 dataStaticConst(const T *p)
909 {
910 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
911 data = const_cast<PacketDataPtr>(p);
912 flags.set(STATIC_DATA);
913 }
914
915 /**
916 * Set the data pointer to a value that should have delete []
917 * called on it. Dynamic data is local to this packet, and as the
918 * packet travels from source to destination, forwarded packets
919 * will allocate their own data. When a packet reaches the final
920 * destination it will populate the dynamic data of that specific
921 * packet, and on the way back towards the source, memcpy will be
922 * invoked in every step where a new packet was created e.g. in
923 * the caches. Ultimately when the response reaches the source a
924 * final memcpy is needed to extract the data from the packet
925 * before it is deallocated.
926 */
927 template <typename T>
928 void
929 dataDynamic(T *p)
930 {
931 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
932 data = (PacketDataPtr)p;
933 flags.set(DYNAMIC_DATA);
934 }
935
936 /**
937 * get a pointer to the data ptr.
938 */
939 template <typename T>
940 T*
941 getPtr()
942 {
943 assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
944 return (T*)data;
945 }
946
947 template <typename T>
948 const T*
949 getConstPtr() const
950 {
951 assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
952 return (const T*)data;
953 }
954
955 /**
956 * Get the data in the packet byte swapped from big endian to
957 * host endian.
958 */
959 template <typename T>
960 T getBE() const;
961
962 /**
963 * Get the data in the packet byte swapped from little endian to
964 * host endian.
965 */
966 template <typename T>
967 T getLE() const;
968
969 /**
970 * Get the data in the packet byte swapped from the specified
971 * endianness.
972 */
973 template <typename T>
974 T get(ByteOrder endian) const;
975
976 /**
977 * Get the data in the packet byte swapped from guest to host
978 * endian.
979 */
980 template <typename T>
981 T get() const;
982
983 /** Set the value in the data pointer to v as big endian. */
984 template <typename T>
985 void setBE(T v);
986
987 /** Set the value in the data pointer to v as little endian. */
988 template <typename T>
989 void setLE(T v);
990
991 /**
992 * Set the value in the data pointer to v using the specified
993 * endianness.
994 */
995 template <typename T>
996 void set(T v, ByteOrder endian);
997
998 /** Set the value in the data pointer to v as guest endian. */
999 template <typename T>
1000 void set(T v);
1001
1002 /**
1003 * Copy data into the packet from the provided pointer.
1004 */
1005 void
1006 setData(const uint8_t *p)
1007 {
1008 // we should never be copying data onto itself, which means we
1009 // must idenfity packets with static data, as they carry the
1010 // same pointer from source to destination and back
1011 assert(p != getPtr<uint8_t>() || flags.isSet(STATIC_DATA));
1012
1013 if (p != getPtr<uint8_t>())
1014 // for packet with allocated dynamic data, we copy data from
1015 // one to the other, e.g. a forwarded response to a response
1016 std::memcpy(getPtr<uint8_t>(), p, getSize());
1017 }
1018
1019 /**
1020 * Copy data into the packet from the provided block pointer,
1021 * which is aligned to the given block size.
1022 */
1023 void
1024 setDataFromBlock(const uint8_t *blk_data, int blkSize)
1025 {
1026 setData(blk_data + getOffset(blkSize));
1027 }
1028
1029 /**
1030 * Copy data from the packet to the provided block pointer, which
1031 * is aligned to the given block size.
1032 */
1033 void
1034 writeData(uint8_t *p) const
1035 {
1036 std::memcpy(p, getConstPtr<uint8_t>(), getSize());
1037 }
1038
1039 /**
1040 * Copy data from the packet to the memory at the provided pointer.
1041 */
1042 void
1043 writeDataToBlock(uint8_t *blk_data, int blkSize) const
1044 {
1045 writeData(blk_data + getOffset(blkSize));
1046 }
1047
1048 /**
1049 * delete the data pointed to in the data pointer. Ok to call to
1050 * matter how data was allocted.
1051 */
1052 void
1053 deleteData()
1054 {
1055 if (flags.isSet(DYNAMIC_DATA))
1056 delete [] data;
1057
1058 flags.clear(STATIC_DATA|DYNAMIC_DATA);
1059 data = NULL;
1060 }
1061
1062 /** Allocate memory for the packet. */
1063 void
1064 allocate()
1065 {
1066 // if either this command or the response command has a data
1067 // payload, actually allocate space
1068 if (hasData() || hasRespData()) {
1069 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
1070 flags.set(DYNAMIC_DATA);
1071 data = new uint8_t[getSize()];
1072 }
1073 }
1074
1075 /** @} */
1076
1077 private: // Private data accessor methods
1078 /** Get the data in the packet without byte swapping. */
1079 template <typename T>
1080 T getRaw() const;
1081
1082 /** Set the value in the data pointer to v without byte swapping. */
1083 template <typename T>
1084 void setRaw(T v);
1085
1086 public:
1087 /**
1088 * Check a functional request against a memory value stored in
1089 * another packet (i.e. an in-transit request or
1090 * response). Returns true if the current packet is a read, and
1091 * the other packet provides the data, which is then copied to the
1092 * current packet. If the current packet is a write, and the other
1093 * packet intersects this one, then we update the data
1094 * accordingly.
1095 */
1096 bool
1097 checkFunctional(PacketPtr other)
1098 {
1099 // all packets that are carrying a payload should have a valid
1100 // data pointer
1101 return checkFunctional(other, other->getAddr(), other->isSecure(),
1102 other->getSize(),
1103 other->hasData() ?
1104 other->getPtr<uint8_t>() : NULL);
1105 }
1106
1107 /**
1108 * Does the request need to check for cached copies of the same block
1109 * in the memory hierarchy above.
1110 **/
1111 bool
1112 mustCheckAbove() const
1113 {
1114 return cmd == MemCmd::HardPFReq || isEviction();
1115 }
1116
1117 /**
1118 * Is this packet a clean eviction, including both actual clean
1119 * evict packets, but also clean writebacks.
1120 */
1121 bool
1122 isCleanEviction() const
1123 {
1124 return cmd == MemCmd::CleanEvict || cmd == MemCmd::WritebackClean;
1125 }
1126
1127 /**
1128 * Check a functional request against a memory value represented
1129 * by a base/size pair and an associated data array. If the
1130 * current packet is a read, it may be satisfied by the memory
1131 * value. If the current packet is a write, it may update the
1132 * memory value.
1133 */
1134 bool
1135 checkFunctional(Printable *obj, Addr base, bool is_secure, int size,
1136 uint8_t *_data);
1137
1138 /**
1139 * Push label for PrintReq (safe to call unconditionally).
1140 */
1141 void
1142 pushLabel(const std::string &lbl)
1143 {
1144 if (isPrint())
1145 safe_cast<PrintReqState*>(senderState)->pushLabel(lbl);
1146 }
1147
1148 /**
1149 * Pop label for PrintReq (safe to call unconditionally).
1150 */
1151 void
1152 popLabel()
1153 {
1154 if (isPrint())
1155 safe_cast<PrintReqState*>(senderState)->popLabel();
1156 }
1157
1158 void print(std::ostream &o, int verbosity = 0,
1159 const std::string &prefix = "") const;
1160
1161 /**
1162 * A no-args wrapper of print(std::ostream...)
1163 * meant to be invoked from DPRINTFs
1164 * avoiding string overheads in fast mode
1165 * @return string with the request's type and start<->end addresses
1166 */
1167 std::string print() const;
1168};
1169
1170#endif //__MEM_PACKET_HH
514 bool needsResponse() const { return cmd.needsResponse(); }
515 bool isInvalidate() const { return cmd.isInvalidate(); }
516 bool isEviction() const { return cmd.isEviction(); }
517 bool isWriteback() const { return cmd.isWriteback(); }
518 bool hasData() const { return cmd.hasData(); }
519 bool hasRespData() const
520 {
521 MemCmd resp_cmd = cmd.responseCommand();
522 return resp_cmd.hasData();
523 }
524 bool isLLSC() const { return cmd.isLLSC(); }
525 bool isError() const { return cmd.isError(); }
526 bool isPrint() const { return cmd.isPrint(); }
527 bool isFlush() const { return cmd.isFlush(); }
528
529 //@{
530 /// Snoop flags
531 /**
532 * Set the cacheResponding flag. This is used by the caches to
533 * signal another cache that they are responding to a request. A
534 * cache will only respond to snoops if it has the line in either
535 * Modified or Owned state. Note that on snoop hits we always pass
536 * the line as Modified and never Owned. In the case of an Owned
537 * line we proceed to invalidate all other copies.
538 *
539 * On a cache fill (see Cache::handleFill), we check hasSharers
540 * first, ignoring the cacheResponding flag if hasSharers is set.
541 * A line is consequently allocated as:
542 *
543 * hasSharers cacheResponding state
544 * true false Shared
545 * true true Shared
546 * false false Exclusive
547 * false true Modified
548 */
549 void setCacheResponding()
550 {
551 assert(isRequest());
552 assert(!flags.isSet(CACHE_RESPONDING));
553 flags.set(CACHE_RESPONDING);
554 }
555 bool cacheResponding() const { return flags.isSet(CACHE_RESPONDING); }
556 /**
557 * On fills, the hasSharers flag is used by the caches in
558 * combination with the cacheResponding flag, as clarified
559 * above. If the hasSharers flag is not set, the packet is passing
560 * writable. Thus, a response from a memory passes the line as
561 * writable by default.
562 *
563 * The hasSharers flag is also used by upstream caches to inform a
564 * downstream cache that they have the block (by calling
565 * setHasSharers on snoop request packets that hit in upstream
566 * cachs tags or MSHRs). If the snoop packet has sharers, a
567 * downstream cache is prevented from passing a dirty line upwards
568 * if it was not explicitly asked for a writable copy. See
569 * Cache::satisfyCpuSideRequest.
570 *
571 * The hasSharers flag is also used on writebacks, in
572 * combination with the WritbackClean or WritebackDirty commands,
573 * to allocate the block downstream either as:
574 *
575 * command hasSharers state
576 * WritebackDirty false Modified
577 * WritebackDirty true Owned
578 * WritebackClean false Exclusive
579 * WritebackClean true Shared
580 */
581 void setHasSharers() { flags.set(HAS_SHARERS); }
582 bool hasSharers() const { return flags.isSet(HAS_SHARERS); }
583 //@}
584
585 /**
586 * The express snoop flag is used for two purposes. Firstly, it is
587 * used to bypass flow control for normal (non-snoop) requests
588 * going downstream in the memory system. In cases where a cache
589 * is responding to a snoop from another cache (it had a dirty
590 * line), but the line is not writable (and there are possibly
591 * other copies), the express snoop flag is set by the downstream
592 * cache to invalidate all other copies in zero time. Secondly,
593 * the express snoop flag is also set to be able to distinguish
594 * snoop packets that came from a downstream cache, rather than
595 * snoop packets from neighbouring caches.
596 */
597 void setExpressSnoop() { flags.set(EXPRESS_SNOOP); }
598 bool isExpressSnoop() const { return flags.isSet(EXPRESS_SNOOP); }
599
600 /**
601 * On responding to a snoop request (which only happens for
602 * Modified or Owned lines), make sure that we can transform an
603 * Owned response to a Modified one. If this flag is not set, the
604 * responding cache had the line in the Owned state, and there are
605 * possibly other Shared copies in the memory system. A downstream
606 * cache helps in orchestrating the invalidation of these copies
607 * by sending out the appropriate express snoops.
608 */
609 void setResponderHadWritable()
610 {
611 assert(cacheResponding());
612 flags.set(RESPONDER_HAD_WRITABLE);
613 }
614 bool responderHadWritable() const
615 { return flags.isSet(RESPONDER_HAD_WRITABLE); }
616
617 void setSuppressFuncError() { flags.set(SUPPRESS_FUNC_ERROR); }
618 bool suppressFuncError() const { return flags.isSet(SUPPRESS_FUNC_ERROR); }
619 void setBlockCached() { flags.set(BLOCK_CACHED); }
620 bool isBlockCached() const { return flags.isSet(BLOCK_CACHED); }
621 void clearBlockCached() { flags.clear(BLOCK_CACHED); }
622
623 // Network error conditions... encapsulate them as methods since
624 // their encoding keeps changing (from result field to command
625 // field, etc.)
626 void
627 setBadAddress()
628 {
629 assert(isResponse());
630 cmd = MemCmd::BadAddressError;
631 }
632
633 void copyError(Packet *pkt) { assert(pkt->isError()); cmd = pkt->cmd; }
634
635 Addr getAddr() const { assert(flags.isSet(VALID_ADDR)); return addr; }
636 /**
637 * Update the address of this packet mid-transaction. This is used
638 * by the address mapper to change an already set address to a new
639 * one based on the system configuration. It is intended to remap
640 * an existing address, so it asserts that the current address is
641 * valid.
642 */
643 void setAddr(Addr _addr) { assert(flags.isSet(VALID_ADDR)); addr = _addr; }
644
645 unsigned getSize() const { assert(flags.isSet(VALID_SIZE)); return size; }
646
647 Addr getOffset(unsigned int blk_size) const
648 {
649 return getAddr() & Addr(blk_size - 1);
650 }
651
652 Addr getBlockAddr(unsigned int blk_size) const
653 {
654 return getAddr() & ~(Addr(blk_size - 1));
655 }
656
657 bool isSecure() const
658 {
659 assert(flags.isSet(VALID_ADDR));
660 return _isSecure;
661 }
662
663 /**
664 * It has been determined that the SC packet should successfully update
665 * memory. Therefore, convert this SC packet to a normal write.
666 */
667 void
668 convertScToWrite()
669 {
670 assert(isLLSC());
671 assert(isWrite());
672 cmd = MemCmd::WriteReq;
673 }
674
675 /**
676 * When ruby is in use, Ruby will monitor the cache line and the
677 * phys memory should treat LL ops as normal reads.
678 */
679 void
680 convertLlToRead()
681 {
682 assert(isLLSC());
683 assert(isRead());
684 cmd = MemCmd::ReadReq;
685 }
686
687 /**
688 * Constructor. Note that a Request object must be constructed
689 * first, but the Requests's physical address and size fields need
690 * not be valid. The command must be supplied.
691 */
692 Packet(const RequestPtr _req, MemCmd _cmd)
693 : cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
694 size(0), headerDelay(0), snoopDelay(0), payloadDelay(0),
695 senderState(NULL)
696 {
697 if (req->hasPaddr()) {
698 addr = req->getPaddr();
699 flags.set(VALID_ADDR);
700 _isSecure = req->isSecure();
701 }
702 if (req->hasSize()) {
703 size = req->getSize();
704 flags.set(VALID_SIZE);
705 }
706 }
707
708 /**
709 * Alternate constructor if you are trying to create a packet with
710 * a request that is for a whole block, not the address from the
711 * req. this allows for overriding the size/addr of the req.
712 */
713 Packet(const RequestPtr _req, MemCmd _cmd, int _blkSize)
714 : cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
715 headerDelay(0), snoopDelay(0), payloadDelay(0),
716 senderState(NULL)
717 {
718 if (req->hasPaddr()) {
719 addr = req->getPaddr() & ~(_blkSize - 1);
720 flags.set(VALID_ADDR);
721 _isSecure = req->isSecure();
722 }
723 size = _blkSize;
724 flags.set(VALID_SIZE);
725 }
726
727 /**
728 * Alternate constructor for copying a packet. Copy all fields
729 * *except* if the original packet's data was dynamic, don't copy
730 * that, as we can't guarantee that the new packet's lifetime is
731 * less than that of the original packet. In this case the new
732 * packet should allocate its own data.
733 */
734 Packet(const PacketPtr pkt, bool clear_flags, bool alloc_data)
735 : cmd(pkt->cmd), req(pkt->req),
736 data(nullptr),
737 addr(pkt->addr), _isSecure(pkt->_isSecure), size(pkt->size),
738 bytesValid(pkt->bytesValid),
739 headerDelay(pkt->headerDelay),
740 snoopDelay(0),
741 payloadDelay(pkt->payloadDelay),
742 senderState(pkt->senderState)
743 {
744 if (!clear_flags)
745 flags.set(pkt->flags & COPY_FLAGS);
746
747 flags.set(pkt->flags & (VALID_ADDR|VALID_SIZE));
748
749 // should we allocate space for data, or not, the express
750 // snoops do not need to carry any data as they only serve to
751 // co-ordinate state changes
752 if (alloc_data) {
753 // even if asked to allocate data, if the original packet
754 // holds static data, then the sender will not be doing
755 // any memcpy on receiving the response, thus we simply
756 // carry the pointer forward
757 if (pkt->flags.isSet(STATIC_DATA)) {
758 data = pkt->data;
759 flags.set(STATIC_DATA);
760 } else {
761 allocate();
762 }
763 }
764 }
765
766 /**
767 * Generate the appropriate read MemCmd based on the Request flags.
768 */
769 static MemCmd
770 makeReadCmd(const RequestPtr req)
771 {
772 if (req->isLLSC())
773 return MemCmd::LoadLockedReq;
774 else if (req->isPrefetch())
775 return MemCmd::SoftPFReq;
776 else
777 return MemCmd::ReadReq;
778 }
779
780 /**
781 * Generate the appropriate write MemCmd based on the Request flags.
782 */
783 static MemCmd
784 makeWriteCmd(const RequestPtr req)
785 {
786 if (req->isLLSC())
787 return MemCmd::StoreCondReq;
788 else if (req->isSwap())
789 return MemCmd::SwapReq;
790 else
791 return MemCmd::WriteReq;
792 }
793
794 /**
795 * Constructor-like methods that return Packets based on Request objects.
796 * Fine-tune the MemCmd type if it's not a vanilla read or write.
797 */
798 static PacketPtr
799 createRead(const RequestPtr req)
800 {
801 return new Packet(req, makeReadCmd(req));
802 }
803
804 static PacketPtr
805 createWrite(const RequestPtr req)
806 {
807 return new Packet(req, makeWriteCmd(req));
808 }
809
810 /**
811 * clean up packet variables
812 */
813 ~Packet()
814 {
815 // Delete the request object if this is a request packet which
816 // does not need a response, because the requester will not get
817 // a chance. If the request packet needs a response then the
818 // request will be deleted on receipt of the response
819 // packet. We also make sure to never delete the request for
820 // express snoops, even for cases when responses are not
821 // needed (CleanEvict and Writeback), since the snoop packet
822 // re-uses the same request.
823 if (req && isRequest() && !needsResponse() &&
824 !isExpressSnoop()) {
825 delete req;
826 }
827 deleteData();
828 }
829
830 /**
831 * Take a request packet and modify it in place to be suitable for
832 * returning as a response to that request.
833 */
834 void
835 makeResponse()
836 {
837 assert(needsResponse());
838 assert(isRequest());
839 cmd = cmd.responseCommand();
840
841 // responses are never express, even if the snoop that
842 // triggered them was
843 flags.clear(EXPRESS_SNOOP);
844 }
845
846 void
847 makeAtomicResponse()
848 {
849 makeResponse();
850 }
851
852 void
853 makeTimingResponse()
854 {
855 makeResponse();
856 }
857
858 void
859 setFunctionalResponseStatus(bool success)
860 {
861 if (!success) {
862 if (isWrite()) {
863 cmd = MemCmd::FunctionalWriteError;
864 } else {
865 cmd = MemCmd::FunctionalReadError;
866 }
867 }
868 }
869
870 void
871 setSize(unsigned size)
872 {
873 assert(!flags.isSet(VALID_SIZE));
874
875 this->size = size;
876 flags.set(VALID_SIZE);
877 }
878
879
880 public:
881 /**
882 * @{
883 * @name Data accessor mehtods
884 */
885
886 /**
887 * Set the data pointer to the following value that should not be
888 * freed. Static data allows us to do a single memcpy even if
889 * multiple packets are required to get from source to destination
890 * and back. In essence the pointer is set calling dataStatic on
891 * the original packet, and whenever this packet is copied and
892 * forwarded the same pointer is passed on. When a packet
893 * eventually reaches the destination holding the data, it is
894 * copied once into the location originally set. On the way back
895 * to the source, no copies are necessary.
896 */
897 template <typename T>
898 void
899 dataStatic(T *p)
900 {
901 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
902 data = (PacketDataPtr)p;
903 flags.set(STATIC_DATA);
904 }
905
906 /**
907 * Set the data pointer to the following value that should not be
908 * freed. This version of the function allows the pointer passed
909 * to us to be const. To avoid issues down the line we cast the
910 * constness away, the alternative would be to keep both a const
911 * and non-const data pointer and cleverly choose between
912 * them. Note that this is only allowed for static data.
913 */
914 template <typename T>
915 void
916 dataStaticConst(const T *p)
917 {
918 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
919 data = const_cast<PacketDataPtr>(p);
920 flags.set(STATIC_DATA);
921 }
922
923 /**
924 * Set the data pointer to a value that should have delete []
925 * called on it. Dynamic data is local to this packet, and as the
926 * packet travels from source to destination, forwarded packets
927 * will allocate their own data. When a packet reaches the final
928 * destination it will populate the dynamic data of that specific
929 * packet, and on the way back towards the source, memcpy will be
930 * invoked in every step where a new packet was created e.g. in
931 * the caches. Ultimately when the response reaches the source a
932 * final memcpy is needed to extract the data from the packet
933 * before it is deallocated.
934 */
935 template <typename T>
936 void
937 dataDynamic(T *p)
938 {
939 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
940 data = (PacketDataPtr)p;
941 flags.set(DYNAMIC_DATA);
942 }
943
944 /**
945 * get a pointer to the data ptr.
946 */
947 template <typename T>
948 T*
949 getPtr()
950 {
951 assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
952 return (T*)data;
953 }
954
955 template <typename T>
956 const T*
957 getConstPtr() const
958 {
959 assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
960 return (const T*)data;
961 }
962
963 /**
964 * Get the data in the packet byte swapped from big endian to
965 * host endian.
966 */
967 template <typename T>
968 T getBE() const;
969
970 /**
971 * Get the data in the packet byte swapped from little endian to
972 * host endian.
973 */
974 template <typename T>
975 T getLE() const;
976
977 /**
978 * Get the data in the packet byte swapped from the specified
979 * endianness.
980 */
981 template <typename T>
982 T get(ByteOrder endian) const;
983
984 /**
985 * Get the data in the packet byte swapped from guest to host
986 * endian.
987 */
988 template <typename T>
989 T get() const;
990
991 /** Set the value in the data pointer to v as big endian. */
992 template <typename T>
993 void setBE(T v);
994
995 /** Set the value in the data pointer to v as little endian. */
996 template <typename T>
997 void setLE(T v);
998
999 /**
1000 * Set the value in the data pointer to v using the specified
1001 * endianness.
1002 */
1003 template <typename T>
1004 void set(T v, ByteOrder endian);
1005
1006 /** Set the value in the data pointer to v as guest endian. */
1007 template <typename T>
1008 void set(T v);
1009
1010 /**
1011 * Copy data into the packet from the provided pointer.
1012 */
1013 void
1014 setData(const uint8_t *p)
1015 {
1016 // we should never be copying data onto itself, which means we
1017 // must idenfity packets with static data, as they carry the
1018 // same pointer from source to destination and back
1019 assert(p != getPtr<uint8_t>() || flags.isSet(STATIC_DATA));
1020
1021 if (p != getPtr<uint8_t>())
1022 // for packet with allocated dynamic data, we copy data from
1023 // one to the other, e.g. a forwarded response to a response
1024 std::memcpy(getPtr<uint8_t>(), p, getSize());
1025 }
1026
1027 /**
1028 * Copy data into the packet from the provided block pointer,
1029 * which is aligned to the given block size.
1030 */
1031 void
1032 setDataFromBlock(const uint8_t *blk_data, int blkSize)
1033 {
1034 setData(blk_data + getOffset(blkSize));
1035 }
1036
1037 /**
1038 * Copy data from the packet to the provided block pointer, which
1039 * is aligned to the given block size.
1040 */
1041 void
1042 writeData(uint8_t *p) const
1043 {
1044 std::memcpy(p, getConstPtr<uint8_t>(), getSize());
1045 }
1046
1047 /**
1048 * Copy data from the packet to the memory at the provided pointer.
1049 */
1050 void
1051 writeDataToBlock(uint8_t *blk_data, int blkSize) const
1052 {
1053 writeData(blk_data + getOffset(blkSize));
1054 }
1055
1056 /**
1057 * delete the data pointed to in the data pointer. Ok to call to
1058 * matter how data was allocted.
1059 */
1060 void
1061 deleteData()
1062 {
1063 if (flags.isSet(DYNAMIC_DATA))
1064 delete [] data;
1065
1066 flags.clear(STATIC_DATA|DYNAMIC_DATA);
1067 data = NULL;
1068 }
1069
1070 /** Allocate memory for the packet. */
1071 void
1072 allocate()
1073 {
1074 // if either this command or the response command has a data
1075 // payload, actually allocate space
1076 if (hasData() || hasRespData()) {
1077 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
1078 flags.set(DYNAMIC_DATA);
1079 data = new uint8_t[getSize()];
1080 }
1081 }
1082
1083 /** @} */
1084
1085 private: // Private data accessor methods
1086 /** Get the data in the packet without byte swapping. */
1087 template <typename T>
1088 T getRaw() const;
1089
1090 /** Set the value in the data pointer to v without byte swapping. */
1091 template <typename T>
1092 void setRaw(T v);
1093
1094 public:
1095 /**
1096 * Check a functional request against a memory value stored in
1097 * another packet (i.e. an in-transit request or
1098 * response). Returns true if the current packet is a read, and
1099 * the other packet provides the data, which is then copied to the
1100 * current packet. If the current packet is a write, and the other
1101 * packet intersects this one, then we update the data
1102 * accordingly.
1103 */
1104 bool
1105 checkFunctional(PacketPtr other)
1106 {
1107 // all packets that are carrying a payload should have a valid
1108 // data pointer
1109 return checkFunctional(other, other->getAddr(), other->isSecure(),
1110 other->getSize(),
1111 other->hasData() ?
1112 other->getPtr<uint8_t>() : NULL);
1113 }
1114
1115 /**
1116 * Does the request need to check for cached copies of the same block
1117 * in the memory hierarchy above.
1118 **/
1119 bool
1120 mustCheckAbove() const
1121 {
1122 return cmd == MemCmd::HardPFReq || isEviction();
1123 }
1124
1125 /**
1126 * Is this packet a clean eviction, including both actual clean
1127 * evict packets, but also clean writebacks.
1128 */
1129 bool
1130 isCleanEviction() const
1131 {
1132 return cmd == MemCmd::CleanEvict || cmd == MemCmd::WritebackClean;
1133 }
1134
1135 /**
1136 * Check a functional request against a memory value represented
1137 * by a base/size pair and an associated data array. If the
1138 * current packet is a read, it may be satisfied by the memory
1139 * value. If the current packet is a write, it may update the
1140 * memory value.
1141 */
1142 bool
1143 checkFunctional(Printable *obj, Addr base, bool is_secure, int size,
1144 uint8_t *_data);
1145
1146 /**
1147 * Push label for PrintReq (safe to call unconditionally).
1148 */
1149 void
1150 pushLabel(const std::string &lbl)
1151 {
1152 if (isPrint())
1153 safe_cast<PrintReqState*>(senderState)->pushLabel(lbl);
1154 }
1155
1156 /**
1157 * Pop label for PrintReq (safe to call unconditionally).
1158 */
1159 void
1160 popLabel()
1161 {
1162 if (isPrint())
1163 safe_cast<PrintReqState*>(senderState)->popLabel();
1164 }
1165
1166 void print(std::ostream &o, int verbosity = 0,
1167 const std::string &prefix = "") const;
1168
1169 /**
1170 * A no-args wrapper of print(std::ostream...)
1171 * meant to be invoked from DPRINTFs
1172 * avoiding string overheads in fast mode
1173 * @return string with the request's type and start<->end addresses
1174 */
1175 std::string print() const;
1176};
1177
1178#endif //__MEM_PACKET_HH