packet.hh (10872:ebb3d0737aa7) packet.hh (10883:9294c4a60251)
1/*
2 * Copyright (c) 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * Copyright (c) 2010 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 * Steve Reinhardt
43 * Ali Saidi
44 * Andreas Hansson
45 */
46
47/**
48 * @file
49 * Declaration of the Packet class.
50 */
51
52#ifndef __MEM_PACKET_HH__
53#define __MEM_PACKET_HH__
54
55#include <bitset>
56#include <cassert>
57#include <list>
58
59#include "base/cast.hh"
60#include "base/compiler.hh"
61#include "base/flags.hh"
62#include "base/misc.hh"
63#include "base/printable.hh"
64#include "base/types.hh"
65#include "mem/request.hh"
66#include "sim/core.hh"
67
68class Packet;
69typedef Packet *PacketPtr;
70typedef uint8_t* PacketDataPtr;
71typedef std::list<PacketPtr> PacketList;
72
73class MemCmd
74{
75 friend class Packet;
76
77 public:
78 /**
79 * List of all commands associated with a packet.
80 */
81 enum Command
82 {
83 InvalidCmd,
84 ReadReq,
85 ReadResp,
86 ReadRespWithInvalidate,
87 WriteReq,
88 WriteResp,
89 Writeback,
1/*
2 * Copyright (c) 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * Copyright (c) 2010 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 * Steve Reinhardt
43 * Ali Saidi
44 * Andreas Hansson
45 */
46
47/**
48 * @file
49 * Declaration of the Packet class.
50 */
51
52#ifndef __MEM_PACKET_HH__
53#define __MEM_PACKET_HH__
54
55#include <bitset>
56#include <cassert>
57#include <list>
58
59#include "base/cast.hh"
60#include "base/compiler.hh"
61#include "base/flags.hh"
62#include "base/misc.hh"
63#include "base/printable.hh"
64#include "base/types.hh"
65#include "mem/request.hh"
66#include "sim/core.hh"
67
68class Packet;
69typedef Packet *PacketPtr;
70typedef uint8_t* PacketDataPtr;
71typedef std::list<PacketPtr> PacketList;
72
73class MemCmd
74{
75 friend class Packet;
76
77 public:
78 /**
79 * List of all commands associated with a packet.
80 */
81 enum Command
82 {
83 InvalidCmd,
84 ReadReq,
85 ReadResp,
86 ReadRespWithInvalidate,
87 WriteReq,
88 WriteResp,
89 Writeback,
90 CleanEvict,
90 SoftPFReq,
91 HardPFReq,
92 SoftPFResp,
93 HardPFResp,
94 WriteInvalidateReq,
95 WriteInvalidateResp,
96 UpgradeReq,
97 SCUpgradeReq, // Special "weak" upgrade for StoreCond
98 UpgradeResp,
99 SCUpgradeFailReq, // Failed SCUpgradeReq in MSHR (never sent)
100 UpgradeFailResp, // Valid for SCUpgradeReq only
101 ReadExReq,
102 ReadExResp,
103 LoadLockedReq,
104 StoreCondReq,
105 StoreCondFailReq, // Failed StoreCondReq in MSHR (never sent)
106 StoreCondResp,
107 SwapReq,
108 SwapResp,
109 MessageReq,
110 MessageResp,
111 // Error responses
112 // @TODO these should be classified as responses rather than
113 // requests; coding them as requests initially for backwards
114 // compatibility
115 InvalidDestError, // packet dest field invalid
116 BadAddressError, // memory address invalid
117 FunctionalReadError, // unable to fulfill functional read
118 FunctionalWriteError, // unable to fulfill functional write
119 // Fake simulator-only commands
120 PrintReq, // Print state matching address
121 FlushReq, //request for a cache flush
122 InvalidationReq, // request for address to be invalidated from lsq
123 NUM_MEM_CMDS
124 };
125
126 private:
127 /**
128 * List of command attributes.
129 */
130 enum Attribute
131 {
132 IsRead, //!< Data flows from responder to requester
133 IsWrite, //!< Data flows from requester to responder
134 IsUpgrade,
135 IsInvalidate,
136 NeedsExclusive, //!< Requires exclusive copy to complete in-cache
137 IsRequest, //!< Issued by requester
138 IsResponse, //!< Issue by responder
139 NeedsResponse, //!< Requester needs response from target
140 IsSWPrefetch,
141 IsHWPrefetch,
142 IsLlsc, //!< Alpha/MIPS LL or SC access
143 HasData, //!< There is an associated payload
144 IsError, //!< Error response
145 IsPrint, //!< Print state matching address (for debugging)
146 IsFlush, //!< Flush the address from caches
147 NUM_COMMAND_ATTRIBUTES
148 };
149
150 /**
151 * Structure that defines attributes and other data associated
152 * with a Command.
153 */
154 struct CommandInfo
155 {
156 /// Set of attribute flags.
157 const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
158 /// Corresponding response for requests; InvalidCmd if no
159 /// response is applicable.
160 const Command response;
161 /// String representation (for printing)
162 const std::string str;
163 };
164
165 /// Array to map Command enum to associated info.
166 static const CommandInfo commandInfo[];
167
168 private:
169
170 Command cmd;
171
172 bool
173 testCmdAttrib(MemCmd::Attribute attrib) const
174 {
175 return commandInfo[cmd].attributes[attrib] != 0;
176 }
177
178 public:
179
180 bool isRead() const { return testCmdAttrib(IsRead); }
181 bool isWrite() const { return testCmdAttrib(IsWrite); }
182 bool isUpgrade() const { return testCmdAttrib(IsUpgrade); }
183 bool isRequest() const { return testCmdAttrib(IsRequest); }
184 bool isResponse() const { return testCmdAttrib(IsResponse); }
185 bool needsExclusive() const { return testCmdAttrib(NeedsExclusive); }
186 bool needsResponse() const { return testCmdAttrib(NeedsResponse); }
187 bool isInvalidate() const { return testCmdAttrib(IsInvalidate); }
188 bool isWriteInvalidate() const { return testCmdAttrib(IsWrite) &&
189 testCmdAttrib(IsInvalidate); }
190
191 /**
192 * Check if this particular packet type carries payload data. Note
193 * that this does not reflect if the data pointer of the packet is
194 * valid or not.
195 */
196 bool hasData() const { return testCmdAttrib(HasData); }
197 bool isLLSC() const { return testCmdAttrib(IsLlsc); }
198 bool isSWPrefetch() const { return testCmdAttrib(IsSWPrefetch); }
199 bool isHWPrefetch() const { return testCmdAttrib(IsHWPrefetch); }
200 bool isPrefetch() const { return testCmdAttrib(IsSWPrefetch) ||
201 testCmdAttrib(IsHWPrefetch); }
202 bool isError() const { return testCmdAttrib(IsError); }
203 bool isPrint() const { return testCmdAttrib(IsPrint); }
204 bool isFlush() const { return testCmdAttrib(IsFlush); }
205
206 const Command
207 responseCommand() const
208 {
209 return commandInfo[cmd].response;
210 }
211
212 /// Return the string to a cmd given by idx.
213 const std::string &toString() const { return commandInfo[cmd].str; }
214 int toInt() const { return (int)cmd; }
215
216 MemCmd(Command _cmd) : cmd(_cmd) { }
217 MemCmd(int _cmd) : cmd((Command)_cmd) { }
218 MemCmd() : cmd(InvalidCmd) { }
219
220 bool operator==(MemCmd c2) const { return (cmd == c2.cmd); }
221 bool operator!=(MemCmd c2) const { return (cmd != c2.cmd); }
222};
223
224/**
225 * A Packet is used to encapsulate a transfer between two objects in
226 * the memory system (e.g., the L1 and L2 cache). (In contrast, a
227 * single Request travels all the way from the requester to the
228 * ultimate destination and back, possibly being conveyed by several
229 * different Packets along the way.)
230 */
231class Packet : public Printable
232{
233 public:
234 typedef uint32_t FlagsType;
235 typedef ::Flags<FlagsType> Flags;
236
237 private:
238 static const FlagsType PUBLIC_FLAGS = 0x00000000;
239 static const FlagsType PRIVATE_FLAGS = 0x00007F0F;
240 static const FlagsType COPY_FLAGS = 0x0000000F;
241
242 static const FlagsType SHARED = 0x00000001;
243 // Special control flags
244 /// Special timing-mode atomic snoop for multi-level coherence.
245 static const FlagsType EXPRESS_SNOOP = 0x00000002;
246 /// Does supplier have exclusive copy?
247 /// Useful for multi-level coherence.
248 static const FlagsType SUPPLY_EXCLUSIVE = 0x00000004;
249 // Snoop response flags
250 static const FlagsType MEM_INHIBIT = 0x00000008;
251 /// Are the 'addr' and 'size' fields valid?
252 static const FlagsType VALID_ADDR = 0x00000100;
253 static const FlagsType VALID_SIZE = 0x00000200;
254 /// Is the data pointer set to a value that shouldn't be freed
255 /// when the packet is destroyed?
256 static const FlagsType STATIC_DATA = 0x00001000;
257 /// The data pointer points to a value that should be freed when
258 /// the packet is destroyed. The pointer is assumed to be pointing
259 /// to an array, and delete [] is consequently called
260 static const FlagsType DYNAMIC_DATA = 0x00002000;
261 /// suppress the error if this packet encounters a functional
262 /// access failure.
263 static const FlagsType SUPPRESS_FUNC_ERROR = 0x00008000;
264 // Signal block present to squash prefetch and cache evict packets
265 // through express snoop flag
266 static const FlagsType BLOCK_CACHED = 0x00010000;
267
268 Flags flags;
269
270 public:
271 typedef MemCmd::Command Command;
272
273 /// The command field of the packet.
274 MemCmd cmd;
275
276 /// A pointer to the original request.
277 const RequestPtr req;
278
279 private:
280 /**
281 * A pointer to the data being transfered. It can be differnt
282 * sizes at each level of the heirarchy so it belongs in the
283 * packet, not request. This may or may not be populated when a
284 * responder recieves the packet. If not populated it memory should
285 * be allocated.
286 */
287 PacketDataPtr data;
288
289 /// The address of the request. This address could be virtual or
290 /// physical, depending on the system configuration.
291 Addr addr;
292
293 /// True if the request targets the secure memory space.
294 bool _isSecure;
295
296 /// The size of the request or transfer.
297 unsigned size;
298
299 /**
300 * The original value of the command field. Only valid when the
301 * current command field is an error condition; in that case, the
302 * previous contents of the command field are copied here. This
303 * field is *not* set on non-error responses.
304 */
305 MemCmd origCmd;
306
307 /**
308 * Track the bytes found that satisfy a functional read.
309 */
310 std::vector<bool> bytesValid;
311
312 public:
313
314 /**
315 * The extra delay from seeing the packet until the header is
316 * transmitted. This delay is used to communicate the crossbar
317 * forwarding latency to the neighbouring object (e.g. a cache)
318 * that actually makes the packet wait. As the delay is relative,
319 * a 32-bit unsigned should be sufficient.
320 */
321 uint32_t headerDelay;
322
323 /**
324 * The extra pipelining delay from seeing the packet until the end of
325 * payload is transmitted by the component that provided it (if
326 * any). This includes the header delay. Similar to the header
327 * delay, this is used to make up for the fact that the
328 * crossbar does not make the packet wait. As the delay is
329 * relative, a 32-bit unsigned should be sufficient.
330 */
331 uint32_t payloadDelay;
332
333 /**
334 * A virtual base opaque structure used to hold state associated
335 * with the packet (e.g., an MSHR), specific to a MemObject that
336 * sees the packet. A pointer to this state is returned in the
337 * packet's response so that the MemObject in question can quickly
338 * look up the state needed to process it. A specific subclass
339 * would be derived from this to carry state specific to a
340 * particular sending device.
341 *
342 * As multiple MemObjects may add their SenderState throughout the
343 * memory system, the SenderStates create a stack, where a
344 * MemObject can add a new Senderstate, as long as the
345 * predecessing SenderState is restored when the response comes
346 * back. For this reason, the predecessor should always be
347 * populated with the current SenderState of a packet before
348 * modifying the senderState field in the request packet.
349 */
350 struct SenderState
351 {
352 SenderState* predecessor;
353 SenderState() : predecessor(NULL) {}
354 virtual ~SenderState() {}
355 };
356
357 /**
358 * Object used to maintain state of a PrintReq. The senderState
359 * field of a PrintReq should always be of this type.
360 */
361 class PrintReqState : public SenderState
362 {
363 private:
364 /**
365 * An entry in the label stack.
366 */
367 struct LabelStackEntry
368 {
369 const std::string label;
370 std::string *prefix;
371 bool labelPrinted;
372 LabelStackEntry(const std::string &_label, std::string *_prefix);
373 };
374
375 typedef std::list<LabelStackEntry> LabelStack;
376 LabelStack labelStack;
377
378 std::string *curPrefixPtr;
379
380 public:
381 std::ostream &os;
382 const int verbosity;
383
384 PrintReqState(std::ostream &os, int verbosity = 0);
385 ~PrintReqState();
386
387 /**
388 * Returns the current line prefix.
389 */
390 const std::string &curPrefix() { return *curPrefixPtr; }
391
392 /**
393 * Push a label onto the label stack, and prepend the given
394 * prefix string onto the current prefix. Labels will only be
395 * printed if an object within the label's scope is printed.
396 */
397 void pushLabel(const std::string &lbl,
398 const std::string &prefix = " ");
399
400 /**
401 * Pop a label off the label stack.
402 */
403 void popLabel();
404
405 /**
406 * Print all of the pending unprinted labels on the
407 * stack. Called by printObj(), so normally not called by
408 * users unless bypassing printObj().
409 */
410 void printLabels();
411
412 /**
413 * Print a Printable object to os, because it matched the
414 * address on a PrintReq.
415 */
416 void printObj(Printable *obj);
417 };
418
419 /**
420 * This packet's sender state. Devices should use dynamic_cast<>
421 * to cast to the state appropriate to the sender. The intent of
422 * this variable is to allow a device to attach extra information
423 * to a request. A response packet must return the sender state
424 * that was attached to the original request (even if a new packet
425 * is created).
426 */
427 SenderState *senderState;
428
429 /**
430 * Push a new sender state to the packet and make the current
431 * sender state the predecessor of the new one. This should be
432 * prefered over direct manipulation of the senderState member
433 * variable.
434 *
435 * @param sender_state SenderState to push at the top of the stack
436 */
437 void pushSenderState(SenderState *sender_state);
438
439 /**
440 * Pop the top of the state stack and return a pointer to it. This
441 * assumes the current sender state is not NULL. This should be
442 * preferred over direct manipulation of the senderState member
443 * variable.
444 *
445 * @return The current top of the stack
446 */
447 SenderState *popSenderState();
448
449 /**
450 * Go through the sender state stack and return the first instance
451 * that is of type T (as determined by a dynamic_cast). If there
452 * is no sender state of type T, NULL is returned.
453 *
454 * @return The topmost state of type T
455 */
456 template <typename T>
457 T * findNextSenderState() const
458 {
459 T *t = NULL;
460 SenderState* sender_state = senderState;
461 while (t == NULL && sender_state != NULL) {
462 t = dynamic_cast<T*>(sender_state);
463 sender_state = sender_state->predecessor;
464 }
465 return t;
466 }
467
468 /// Return the string name of the cmd field (for debugging and
469 /// tracing).
470 const std::string &cmdString() const { return cmd.toString(); }
471
472 /// Return the index of this command.
473 inline int cmdToIndex() const { return cmd.toInt(); }
474
475 bool isRead() const { return cmd.isRead(); }
476 bool isWrite() const { return cmd.isWrite(); }
477 bool isUpgrade() const { return cmd.isUpgrade(); }
478 bool isRequest() const { return cmd.isRequest(); }
479 bool isResponse() const { return cmd.isResponse(); }
480 bool needsExclusive() const { return cmd.needsExclusive(); }
481 bool needsResponse() const { return cmd.needsResponse(); }
482 bool isInvalidate() const { return cmd.isInvalidate(); }
483 bool isWriteInvalidate() const { return cmd.isWriteInvalidate(); }
484 bool hasData() const { return cmd.hasData(); }
485 bool isLLSC() const { return cmd.isLLSC(); }
486 bool isError() const { return cmd.isError(); }
487 bool isPrint() const { return cmd.isPrint(); }
488 bool isFlush() const { return cmd.isFlush(); }
489
490 // Snoop flags
491 void assertMemInhibit()
492 {
493 assert(isRequest());
494 assert(!flags.isSet(MEM_INHIBIT));
495 flags.set(MEM_INHIBIT);
496 }
497 bool memInhibitAsserted() const { return flags.isSet(MEM_INHIBIT); }
498 void assertShared() { flags.set(SHARED); }
499 bool sharedAsserted() const { return flags.isSet(SHARED); }
500
501 // Special control flags
502 void setExpressSnoop() { flags.set(EXPRESS_SNOOP); }
503 bool isExpressSnoop() const { return flags.isSet(EXPRESS_SNOOP); }
504 void setSupplyExclusive() { flags.set(SUPPLY_EXCLUSIVE); }
505 void clearSupplyExclusive() { flags.clear(SUPPLY_EXCLUSIVE); }
506 bool isSupplyExclusive() const { return flags.isSet(SUPPLY_EXCLUSIVE); }
507 void setSuppressFuncError() { flags.set(SUPPRESS_FUNC_ERROR); }
508 bool suppressFuncError() const { return flags.isSet(SUPPRESS_FUNC_ERROR); }
509 void setBlockCached() { flags.set(BLOCK_CACHED); }
510 bool isBlockCached() const { return flags.isSet(BLOCK_CACHED); }
91 SoftPFReq,
92 HardPFReq,
93 SoftPFResp,
94 HardPFResp,
95 WriteInvalidateReq,
96 WriteInvalidateResp,
97 UpgradeReq,
98 SCUpgradeReq, // Special "weak" upgrade for StoreCond
99 UpgradeResp,
100 SCUpgradeFailReq, // Failed SCUpgradeReq in MSHR (never sent)
101 UpgradeFailResp, // Valid for SCUpgradeReq only
102 ReadExReq,
103 ReadExResp,
104 LoadLockedReq,
105 StoreCondReq,
106 StoreCondFailReq, // Failed StoreCondReq in MSHR (never sent)
107 StoreCondResp,
108 SwapReq,
109 SwapResp,
110 MessageReq,
111 MessageResp,
112 // Error responses
113 // @TODO these should be classified as responses rather than
114 // requests; coding them as requests initially for backwards
115 // compatibility
116 InvalidDestError, // packet dest field invalid
117 BadAddressError, // memory address invalid
118 FunctionalReadError, // unable to fulfill functional read
119 FunctionalWriteError, // unable to fulfill functional write
120 // Fake simulator-only commands
121 PrintReq, // Print state matching address
122 FlushReq, //request for a cache flush
123 InvalidationReq, // request for address to be invalidated from lsq
124 NUM_MEM_CMDS
125 };
126
127 private:
128 /**
129 * List of command attributes.
130 */
131 enum Attribute
132 {
133 IsRead, //!< Data flows from responder to requester
134 IsWrite, //!< Data flows from requester to responder
135 IsUpgrade,
136 IsInvalidate,
137 NeedsExclusive, //!< Requires exclusive copy to complete in-cache
138 IsRequest, //!< Issued by requester
139 IsResponse, //!< Issue by responder
140 NeedsResponse, //!< Requester needs response from target
141 IsSWPrefetch,
142 IsHWPrefetch,
143 IsLlsc, //!< Alpha/MIPS LL or SC access
144 HasData, //!< There is an associated payload
145 IsError, //!< Error response
146 IsPrint, //!< Print state matching address (for debugging)
147 IsFlush, //!< Flush the address from caches
148 NUM_COMMAND_ATTRIBUTES
149 };
150
151 /**
152 * Structure that defines attributes and other data associated
153 * with a Command.
154 */
155 struct CommandInfo
156 {
157 /// Set of attribute flags.
158 const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
159 /// Corresponding response for requests; InvalidCmd if no
160 /// response is applicable.
161 const Command response;
162 /// String representation (for printing)
163 const std::string str;
164 };
165
166 /// Array to map Command enum to associated info.
167 static const CommandInfo commandInfo[];
168
169 private:
170
171 Command cmd;
172
173 bool
174 testCmdAttrib(MemCmd::Attribute attrib) const
175 {
176 return commandInfo[cmd].attributes[attrib] != 0;
177 }
178
179 public:
180
181 bool isRead() const { return testCmdAttrib(IsRead); }
182 bool isWrite() const { return testCmdAttrib(IsWrite); }
183 bool isUpgrade() const { return testCmdAttrib(IsUpgrade); }
184 bool isRequest() const { return testCmdAttrib(IsRequest); }
185 bool isResponse() const { return testCmdAttrib(IsResponse); }
186 bool needsExclusive() const { return testCmdAttrib(NeedsExclusive); }
187 bool needsResponse() const { return testCmdAttrib(NeedsResponse); }
188 bool isInvalidate() const { return testCmdAttrib(IsInvalidate); }
189 bool isWriteInvalidate() const { return testCmdAttrib(IsWrite) &&
190 testCmdAttrib(IsInvalidate); }
191
192 /**
193 * Check if this particular packet type carries payload data. Note
194 * that this does not reflect if the data pointer of the packet is
195 * valid or not.
196 */
197 bool hasData() const { return testCmdAttrib(HasData); }
198 bool isLLSC() const { return testCmdAttrib(IsLlsc); }
199 bool isSWPrefetch() const { return testCmdAttrib(IsSWPrefetch); }
200 bool isHWPrefetch() const { return testCmdAttrib(IsHWPrefetch); }
201 bool isPrefetch() const { return testCmdAttrib(IsSWPrefetch) ||
202 testCmdAttrib(IsHWPrefetch); }
203 bool isError() const { return testCmdAttrib(IsError); }
204 bool isPrint() const { return testCmdAttrib(IsPrint); }
205 bool isFlush() const { return testCmdAttrib(IsFlush); }
206
207 const Command
208 responseCommand() const
209 {
210 return commandInfo[cmd].response;
211 }
212
213 /// Return the string to a cmd given by idx.
214 const std::string &toString() const { return commandInfo[cmd].str; }
215 int toInt() const { return (int)cmd; }
216
217 MemCmd(Command _cmd) : cmd(_cmd) { }
218 MemCmd(int _cmd) : cmd((Command)_cmd) { }
219 MemCmd() : cmd(InvalidCmd) { }
220
221 bool operator==(MemCmd c2) const { return (cmd == c2.cmd); }
222 bool operator!=(MemCmd c2) const { return (cmd != c2.cmd); }
223};
224
225/**
226 * A Packet is used to encapsulate a transfer between two objects in
227 * the memory system (e.g., the L1 and L2 cache). (In contrast, a
228 * single Request travels all the way from the requester to the
229 * ultimate destination and back, possibly being conveyed by several
230 * different Packets along the way.)
231 */
232class Packet : public Printable
233{
234 public:
235 typedef uint32_t FlagsType;
236 typedef ::Flags<FlagsType> Flags;
237
238 private:
239 static const FlagsType PUBLIC_FLAGS = 0x00000000;
240 static const FlagsType PRIVATE_FLAGS = 0x00007F0F;
241 static const FlagsType COPY_FLAGS = 0x0000000F;
242
243 static const FlagsType SHARED = 0x00000001;
244 // Special control flags
245 /// Special timing-mode atomic snoop for multi-level coherence.
246 static const FlagsType EXPRESS_SNOOP = 0x00000002;
247 /// Does supplier have exclusive copy?
248 /// Useful for multi-level coherence.
249 static const FlagsType SUPPLY_EXCLUSIVE = 0x00000004;
250 // Snoop response flags
251 static const FlagsType MEM_INHIBIT = 0x00000008;
252 /// Are the 'addr' and 'size' fields valid?
253 static const FlagsType VALID_ADDR = 0x00000100;
254 static const FlagsType VALID_SIZE = 0x00000200;
255 /// Is the data pointer set to a value that shouldn't be freed
256 /// when the packet is destroyed?
257 static const FlagsType STATIC_DATA = 0x00001000;
258 /// The data pointer points to a value that should be freed when
259 /// the packet is destroyed. The pointer is assumed to be pointing
260 /// to an array, and delete [] is consequently called
261 static const FlagsType DYNAMIC_DATA = 0x00002000;
262 /// suppress the error if this packet encounters a functional
263 /// access failure.
264 static const FlagsType SUPPRESS_FUNC_ERROR = 0x00008000;
265 // Signal block present to squash prefetch and cache evict packets
266 // through express snoop flag
267 static const FlagsType BLOCK_CACHED = 0x00010000;
268
269 Flags flags;
270
271 public:
272 typedef MemCmd::Command Command;
273
274 /// The command field of the packet.
275 MemCmd cmd;
276
277 /// A pointer to the original request.
278 const RequestPtr req;
279
280 private:
281 /**
282 * A pointer to the data being transfered. It can be differnt
283 * sizes at each level of the heirarchy so it belongs in the
284 * packet, not request. This may or may not be populated when a
285 * responder recieves the packet. If not populated it memory should
286 * be allocated.
287 */
288 PacketDataPtr data;
289
290 /// The address of the request. This address could be virtual or
291 /// physical, depending on the system configuration.
292 Addr addr;
293
294 /// True if the request targets the secure memory space.
295 bool _isSecure;
296
297 /// The size of the request or transfer.
298 unsigned size;
299
300 /**
301 * The original value of the command field. Only valid when the
302 * current command field is an error condition; in that case, the
303 * previous contents of the command field are copied here. This
304 * field is *not* set on non-error responses.
305 */
306 MemCmd origCmd;
307
308 /**
309 * Track the bytes found that satisfy a functional read.
310 */
311 std::vector<bool> bytesValid;
312
313 public:
314
315 /**
316 * The extra delay from seeing the packet until the header is
317 * transmitted. This delay is used to communicate the crossbar
318 * forwarding latency to the neighbouring object (e.g. a cache)
319 * that actually makes the packet wait. As the delay is relative,
320 * a 32-bit unsigned should be sufficient.
321 */
322 uint32_t headerDelay;
323
324 /**
325 * The extra pipelining delay from seeing the packet until the end of
326 * payload is transmitted by the component that provided it (if
327 * any). This includes the header delay. Similar to the header
328 * delay, this is used to make up for the fact that the
329 * crossbar does not make the packet wait. As the delay is
330 * relative, a 32-bit unsigned should be sufficient.
331 */
332 uint32_t payloadDelay;
333
334 /**
335 * A virtual base opaque structure used to hold state associated
336 * with the packet (e.g., an MSHR), specific to a MemObject that
337 * sees the packet. A pointer to this state is returned in the
338 * packet's response so that the MemObject in question can quickly
339 * look up the state needed to process it. A specific subclass
340 * would be derived from this to carry state specific to a
341 * particular sending device.
342 *
343 * As multiple MemObjects may add their SenderState throughout the
344 * memory system, the SenderStates create a stack, where a
345 * MemObject can add a new Senderstate, as long as the
346 * predecessing SenderState is restored when the response comes
347 * back. For this reason, the predecessor should always be
348 * populated with the current SenderState of a packet before
349 * modifying the senderState field in the request packet.
350 */
351 struct SenderState
352 {
353 SenderState* predecessor;
354 SenderState() : predecessor(NULL) {}
355 virtual ~SenderState() {}
356 };
357
358 /**
359 * Object used to maintain state of a PrintReq. The senderState
360 * field of a PrintReq should always be of this type.
361 */
362 class PrintReqState : public SenderState
363 {
364 private:
365 /**
366 * An entry in the label stack.
367 */
368 struct LabelStackEntry
369 {
370 const std::string label;
371 std::string *prefix;
372 bool labelPrinted;
373 LabelStackEntry(const std::string &_label, std::string *_prefix);
374 };
375
376 typedef std::list<LabelStackEntry> LabelStack;
377 LabelStack labelStack;
378
379 std::string *curPrefixPtr;
380
381 public:
382 std::ostream &os;
383 const int verbosity;
384
385 PrintReqState(std::ostream &os, int verbosity = 0);
386 ~PrintReqState();
387
388 /**
389 * Returns the current line prefix.
390 */
391 const std::string &curPrefix() { return *curPrefixPtr; }
392
393 /**
394 * Push a label onto the label stack, and prepend the given
395 * prefix string onto the current prefix. Labels will only be
396 * printed if an object within the label's scope is printed.
397 */
398 void pushLabel(const std::string &lbl,
399 const std::string &prefix = " ");
400
401 /**
402 * Pop a label off the label stack.
403 */
404 void popLabel();
405
406 /**
407 * Print all of the pending unprinted labels on the
408 * stack. Called by printObj(), so normally not called by
409 * users unless bypassing printObj().
410 */
411 void printLabels();
412
413 /**
414 * Print a Printable object to os, because it matched the
415 * address on a PrintReq.
416 */
417 void printObj(Printable *obj);
418 };
419
420 /**
421 * This packet's sender state. Devices should use dynamic_cast<>
422 * to cast to the state appropriate to the sender. The intent of
423 * this variable is to allow a device to attach extra information
424 * to a request. A response packet must return the sender state
425 * that was attached to the original request (even if a new packet
426 * is created).
427 */
428 SenderState *senderState;
429
430 /**
431 * Push a new sender state to the packet and make the current
432 * sender state the predecessor of the new one. This should be
433 * prefered over direct manipulation of the senderState member
434 * variable.
435 *
436 * @param sender_state SenderState to push at the top of the stack
437 */
438 void pushSenderState(SenderState *sender_state);
439
440 /**
441 * Pop the top of the state stack and return a pointer to it. This
442 * assumes the current sender state is not NULL. This should be
443 * preferred over direct manipulation of the senderState member
444 * variable.
445 *
446 * @return The current top of the stack
447 */
448 SenderState *popSenderState();
449
450 /**
451 * Go through the sender state stack and return the first instance
452 * that is of type T (as determined by a dynamic_cast). If there
453 * is no sender state of type T, NULL is returned.
454 *
455 * @return The topmost state of type T
456 */
457 template <typename T>
458 T * findNextSenderState() const
459 {
460 T *t = NULL;
461 SenderState* sender_state = senderState;
462 while (t == NULL && sender_state != NULL) {
463 t = dynamic_cast<T*>(sender_state);
464 sender_state = sender_state->predecessor;
465 }
466 return t;
467 }
468
469 /// Return the string name of the cmd field (for debugging and
470 /// tracing).
471 const std::string &cmdString() const { return cmd.toString(); }
472
473 /// Return the index of this command.
474 inline int cmdToIndex() const { return cmd.toInt(); }
475
476 bool isRead() const { return cmd.isRead(); }
477 bool isWrite() const { return cmd.isWrite(); }
478 bool isUpgrade() const { return cmd.isUpgrade(); }
479 bool isRequest() const { return cmd.isRequest(); }
480 bool isResponse() const { return cmd.isResponse(); }
481 bool needsExclusive() const { return cmd.needsExclusive(); }
482 bool needsResponse() const { return cmd.needsResponse(); }
483 bool isInvalidate() const { return cmd.isInvalidate(); }
484 bool isWriteInvalidate() const { return cmd.isWriteInvalidate(); }
485 bool hasData() const { return cmd.hasData(); }
486 bool isLLSC() const { return cmd.isLLSC(); }
487 bool isError() const { return cmd.isError(); }
488 bool isPrint() const { return cmd.isPrint(); }
489 bool isFlush() const { return cmd.isFlush(); }
490
491 // Snoop flags
492 void assertMemInhibit()
493 {
494 assert(isRequest());
495 assert(!flags.isSet(MEM_INHIBIT));
496 flags.set(MEM_INHIBIT);
497 }
498 bool memInhibitAsserted() const { return flags.isSet(MEM_INHIBIT); }
499 void assertShared() { flags.set(SHARED); }
500 bool sharedAsserted() const { return flags.isSet(SHARED); }
501
502 // Special control flags
503 void setExpressSnoop() { flags.set(EXPRESS_SNOOP); }
504 bool isExpressSnoop() const { return flags.isSet(EXPRESS_SNOOP); }
505 void setSupplyExclusive() { flags.set(SUPPLY_EXCLUSIVE); }
506 void clearSupplyExclusive() { flags.clear(SUPPLY_EXCLUSIVE); }
507 bool isSupplyExclusive() const { return flags.isSet(SUPPLY_EXCLUSIVE); }
508 void setSuppressFuncError() { flags.set(SUPPRESS_FUNC_ERROR); }
509 bool suppressFuncError() const { return flags.isSet(SUPPRESS_FUNC_ERROR); }
510 void setBlockCached() { flags.set(BLOCK_CACHED); }
511 bool isBlockCached() const { return flags.isSet(BLOCK_CACHED); }
512 void clearBlockCached() { flags.clear(BLOCK_CACHED); }
511
512 // Network error conditions... encapsulate them as methods since
513 // their encoding keeps changing (from result field to command
514 // field, etc.)
515 void
516 setBadAddress()
517 {
518 assert(isResponse());
519 cmd = MemCmd::BadAddressError;
520 }
521
522 bool hadBadAddress() const { return cmd == MemCmd::BadAddressError; }
523 void copyError(Packet *pkt) { assert(pkt->isError()); cmd = pkt->cmd; }
524
525 Addr getAddr() const { assert(flags.isSet(VALID_ADDR)); return addr; }
526 /**
527 * Update the address of this packet mid-transaction. This is used
528 * by the address mapper to change an already set address to a new
529 * one based on the system configuration. It is intended to remap
530 * an existing address, so it asserts that the current address is
531 * valid.
532 */
533 void setAddr(Addr _addr) { assert(flags.isSet(VALID_ADDR)); addr = _addr; }
534
535 unsigned getSize() const { assert(flags.isSet(VALID_SIZE)); return size; }
536 Addr getOffset(int blkSize) const { return getAddr() & (Addr)(blkSize - 1); }
537
538 bool isSecure() const
539 {
540 assert(flags.isSet(VALID_ADDR));
541 return _isSecure;
542 }
543
544 /**
545 * It has been determined that the SC packet should successfully update
546 * memory. Therefore, convert this SC packet to a normal write.
547 */
548 void
549 convertScToWrite()
550 {
551 assert(isLLSC());
552 assert(isWrite());
553 cmd = MemCmd::WriteReq;
554 }
555
556 /**
557 * When ruby is in use, Ruby will monitor the cache line and thus M5
558 * phys memory should treat LL ops as normal reads.
559 */
560 void
561 convertLlToRead()
562 {
563 assert(isLLSC());
564 assert(isRead());
565 cmd = MemCmd::ReadReq;
566 }
567
568 /**
569 * Constructor. Note that a Request object must be constructed
570 * first, but the Requests's physical address and size fields need
571 * not be valid. The command must be supplied.
572 */
573 Packet(const RequestPtr _req, MemCmd _cmd)
574 : cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
575 size(0), headerDelay(0), payloadDelay(0),
576 senderState(NULL)
577 {
578 if (req->hasPaddr()) {
579 addr = req->getPaddr();
580 flags.set(VALID_ADDR);
581 _isSecure = req->isSecure();
582 }
583 if (req->hasSize()) {
584 size = req->getSize();
585 flags.set(VALID_SIZE);
586 }
587 }
588
589 /**
590 * Alternate constructor if you are trying to create a packet with
591 * a request that is for a whole block, not the address from the
592 * req. this allows for overriding the size/addr of the req.
593 */
594 Packet(const RequestPtr _req, MemCmd _cmd, int _blkSize)
595 : cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
596 headerDelay(0), payloadDelay(0),
597 senderState(NULL)
598 {
599 if (req->hasPaddr()) {
600 addr = req->getPaddr() & ~(_blkSize - 1);
601 flags.set(VALID_ADDR);
602 _isSecure = req->isSecure();
603 }
604 size = _blkSize;
605 flags.set(VALID_SIZE);
606 }
607
608 /**
609 * Alternate constructor for copying a packet. Copy all fields
610 * *except* if the original packet's data was dynamic, don't copy
611 * that, as we can't guarantee that the new packet's lifetime is
612 * less than that of the original packet. In this case the new
613 * packet should allocate its own data.
614 */
615 Packet(PacketPtr pkt, bool clear_flags, bool alloc_data)
616 : cmd(pkt->cmd), req(pkt->req),
617 data(nullptr),
618 addr(pkt->addr), _isSecure(pkt->_isSecure), size(pkt->size),
619 bytesValid(pkt->bytesValid),
620 headerDelay(pkt->headerDelay),
621 payloadDelay(pkt->payloadDelay),
622 senderState(pkt->senderState)
623 {
624 if (!clear_flags)
625 flags.set(pkt->flags & COPY_FLAGS);
626
627 flags.set(pkt->flags & (VALID_ADDR|VALID_SIZE));
628
629 // should we allocate space for data, or not, the express
630 // snoops do not need to carry any data as they only serve to
631 // co-ordinate state changes
632 if (alloc_data) {
633 // even if asked to allocate data, if the original packet
634 // holds static data, then the sender will not be doing
635 // any memcpy on receiving the response, thus we simply
636 // carry the pointer forward
637 if (pkt->flags.isSet(STATIC_DATA)) {
638 data = pkt->data;
639 flags.set(STATIC_DATA);
640 } else {
641 allocate();
642 }
643 }
644 }
645
646 /**
647 * Generate the appropriate read MemCmd based on the Request flags.
648 */
649 static MemCmd
650 makeReadCmd(const RequestPtr req)
651 {
652 if (req->isLLSC())
653 return MemCmd::LoadLockedReq;
654 else if (req->isPrefetch())
655 return MemCmd::SoftPFReq;
656 else
657 return MemCmd::ReadReq;
658 }
659
660 /**
661 * Generate the appropriate write MemCmd based on the Request flags.
662 */
663 static MemCmd
664 makeWriteCmd(const RequestPtr req)
665 {
666 if (req->isLLSC())
667 return MemCmd::StoreCondReq;
668 else if (req->isSwap())
669 return MemCmd::SwapReq;
670 else
671 return MemCmd::WriteReq;
672 }
673
674 /**
675 * Constructor-like methods that return Packets based on Request objects.
676 * Fine-tune the MemCmd type if it's not a vanilla read or write.
677 */
678 static PacketPtr
679 createRead(const RequestPtr req)
680 {
681 return new Packet(req, makeReadCmd(req));
682 }
683
684 static PacketPtr
685 createWrite(const RequestPtr req)
686 {
687 return new Packet(req, makeWriteCmd(req));
688 }
689
690 /**
691 * clean up packet variables
692 */
693 ~Packet()
694 {
695 // Delete the request object if this is a request packet which
696 // does not need a response, because the requester will not get
697 // a chance. If the request packet needs a response then the
698 // request will be deleted on receipt of the response
699 // packet. We also make sure to never delete the request for
700 // express snoops, even for cases when responses are not
701 // needed (CleanEvict and Writeback), since the snoop packet
702 // re-uses the same request.
703 if (req && isRequest() && !needsResponse() &&
704 !isExpressSnoop()) {
705 delete req;
706 }
707 deleteData();
708 }
709
710 /**
711 * Take a request packet and modify it in place to be suitable for
712 * returning as a response to that request.
713 */
714 void
715 makeResponse()
716 {
717 assert(needsResponse());
718 assert(isRequest());
719 origCmd = cmd;
720 cmd = cmd.responseCommand();
721
722 // responses are never express, even if the snoop that
723 // triggered them was
724 flags.clear(EXPRESS_SNOOP);
725 }
726
727 void
728 makeAtomicResponse()
729 {
730 makeResponse();
731 }
732
733 void
734 makeTimingResponse()
735 {
736 makeResponse();
737 }
738
739 void
740 setFunctionalResponseStatus(bool success)
741 {
742 if (!success) {
743 if (isWrite()) {
744 cmd = MemCmd::FunctionalWriteError;
745 } else {
746 cmd = MemCmd::FunctionalReadError;
747 }
748 }
749 }
750
751 void
752 setSize(unsigned size)
753 {
754 assert(!flags.isSet(VALID_SIZE));
755
756 this->size = size;
757 flags.set(VALID_SIZE);
758 }
759
760
761 /**
762 * Set the data pointer to the following value that should not be
763 * freed. Static data allows us to do a single memcpy even if
764 * multiple packets are required to get from source to destination
765 * and back. In essence the pointer is set calling dataStatic on
766 * the original packet, and whenever this packet is copied and
767 * forwarded the same pointer is passed on. When a packet
768 * eventually reaches the destination holding the data, it is
769 * copied once into the location originally set. On the way back
770 * to the source, no copies are necessary.
771 */
772 template <typename T>
773 void
774 dataStatic(T *p)
775 {
776 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
777 data = (PacketDataPtr)p;
778 flags.set(STATIC_DATA);
779 }
780
781 /**
782 * Set the data pointer to the following value that should not be
783 * freed. This version of the function allows the pointer passed
784 * to us to be const. To avoid issues down the line we cast the
785 * constness away, the alternative would be to keep both a const
786 * and non-const data pointer and cleverly choose between
787 * them. Note that this is only allowed for static data.
788 */
789 template <typename T>
790 void
791 dataStaticConst(const T *p)
792 {
793 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
794 data = const_cast<PacketDataPtr>(p);
795 flags.set(STATIC_DATA);
796 }
797
798 /**
799 * Set the data pointer to a value that should have delete []
800 * called on it. Dynamic data is local to this packet, and as the
801 * packet travels from source to destination, forwarded packets
802 * will allocate their own data. When a packet reaches the final
803 * destination it will populate the dynamic data of that specific
804 * packet, and on the way back towards the source, memcpy will be
805 * invoked in every step where a new packet was created e.g. in
806 * the caches. Ultimately when the response reaches the source a
807 * final memcpy is needed to extract the data from the packet
808 * before it is deallocated.
809 */
810 template <typename T>
811 void
812 dataDynamic(T *p)
813 {
814 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
815 data = (PacketDataPtr)p;
816 flags.set(DYNAMIC_DATA);
817 }
818
819 /**
820 * get a pointer to the data ptr.
821 */
822 template <typename T>
823 T*
824 getPtr()
825 {
826 assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
827 return (T*)data;
828 }
829
830 template <typename T>
831 const T*
832 getConstPtr() const
833 {
834 assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
835 return (const T*)data;
836 }
837
838 /**
839 * return the value of what is pointed to in the packet.
840 */
841 template <typename T>
842 T get() const;
843
844 /**
845 * set the value in the data pointer to v.
846 */
847 template <typename T>
848 void set(T v);
849
850 /**
851 * Copy data into the packet from the provided pointer.
852 */
853 void
854 setData(const uint8_t *p)
855 {
856 // we should never be copying data onto itself, which means we
857 // must idenfity packets with static data, as they carry the
858 // same pointer from source to destination and back
859 assert(p != getPtr<uint8_t>() || flags.isSet(STATIC_DATA));
860
861 if (p != getPtr<uint8_t>())
862 // for packet with allocated dynamic data, we copy data from
863 // one to the other, e.g. a forwarded response to a response
864 std::memcpy(getPtr<uint8_t>(), p, getSize());
865 }
866
867 /**
868 * Copy data into the packet from the provided block pointer,
869 * which is aligned to the given block size.
870 */
871 void
872 setDataFromBlock(const uint8_t *blk_data, int blkSize)
873 {
874 setData(blk_data + getOffset(blkSize));
875 }
876
877 /**
878 * Copy data from the packet to the provided block pointer, which
879 * is aligned to the given block size.
880 */
881 void
882 writeData(uint8_t *p) const
883 {
884 std::memcpy(p, getConstPtr<uint8_t>(), getSize());
885 }
886
887 /**
888 * Copy data from the packet to the memory at the provided pointer.
889 */
890 void
891 writeDataToBlock(uint8_t *blk_data, int blkSize) const
892 {
893 writeData(blk_data + getOffset(blkSize));
894 }
895
896 /**
897 * delete the data pointed to in the data pointer. Ok to call to
898 * matter how data was allocted.
899 */
900 void
901 deleteData()
902 {
903 if (flags.isSet(DYNAMIC_DATA))
904 delete [] data;
905
906 flags.clear(STATIC_DATA|DYNAMIC_DATA);
907 data = NULL;
908 }
909
910 /** Allocate memory for the packet. */
911 void
912 allocate()
913 {
914 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
915 flags.set(DYNAMIC_DATA);
916 data = new uint8_t[getSize()];
917 }
918
919 /**
920 * Check a functional request against a memory value stored in
921 * another packet (i.e. an in-transit request or
922 * response). Returns true if the current packet is a read, and
923 * the other packet provides the data, which is then copied to the
924 * current packet. If the current packet is a write, and the other
925 * packet intersects this one, then we update the data
926 * accordingly.
927 */
928 bool
929 checkFunctional(PacketPtr other)
930 {
931 // all packets that are carrying a payload should have a valid
932 // data pointer
933 return checkFunctional(other, other->getAddr(), other->isSecure(),
934 other->getSize(),
935 other->hasData() ?
936 other->getPtr<uint8_t>() : NULL);
937 }
938
939 /**
513
514 // Network error conditions... encapsulate them as methods since
515 // their encoding keeps changing (from result field to command
516 // field, etc.)
517 void
518 setBadAddress()
519 {
520 assert(isResponse());
521 cmd = MemCmd::BadAddressError;
522 }
523
524 bool hadBadAddress() const { return cmd == MemCmd::BadAddressError; }
525 void copyError(Packet *pkt) { assert(pkt->isError()); cmd = pkt->cmd; }
526
527 Addr getAddr() const { assert(flags.isSet(VALID_ADDR)); return addr; }
528 /**
529 * Update the address of this packet mid-transaction. This is used
530 * by the address mapper to change an already set address to a new
531 * one based on the system configuration. It is intended to remap
532 * an existing address, so it asserts that the current address is
533 * valid.
534 */
535 void setAddr(Addr _addr) { assert(flags.isSet(VALID_ADDR)); addr = _addr; }
536
537 unsigned getSize() const { assert(flags.isSet(VALID_SIZE)); return size; }
538 Addr getOffset(int blkSize) const { return getAddr() & (Addr)(blkSize - 1); }
539
540 bool isSecure() const
541 {
542 assert(flags.isSet(VALID_ADDR));
543 return _isSecure;
544 }
545
546 /**
547 * It has been determined that the SC packet should successfully update
548 * memory. Therefore, convert this SC packet to a normal write.
549 */
550 void
551 convertScToWrite()
552 {
553 assert(isLLSC());
554 assert(isWrite());
555 cmd = MemCmd::WriteReq;
556 }
557
558 /**
559 * When ruby is in use, Ruby will monitor the cache line and thus M5
560 * phys memory should treat LL ops as normal reads.
561 */
562 void
563 convertLlToRead()
564 {
565 assert(isLLSC());
566 assert(isRead());
567 cmd = MemCmd::ReadReq;
568 }
569
570 /**
571 * Constructor. Note that a Request object must be constructed
572 * first, but the Requests's physical address and size fields need
573 * not be valid. The command must be supplied.
574 */
575 Packet(const RequestPtr _req, MemCmd _cmd)
576 : cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
577 size(0), headerDelay(0), payloadDelay(0),
578 senderState(NULL)
579 {
580 if (req->hasPaddr()) {
581 addr = req->getPaddr();
582 flags.set(VALID_ADDR);
583 _isSecure = req->isSecure();
584 }
585 if (req->hasSize()) {
586 size = req->getSize();
587 flags.set(VALID_SIZE);
588 }
589 }
590
591 /**
592 * Alternate constructor if you are trying to create a packet with
593 * a request that is for a whole block, not the address from the
594 * req. this allows for overriding the size/addr of the req.
595 */
596 Packet(const RequestPtr _req, MemCmd _cmd, int _blkSize)
597 : cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
598 headerDelay(0), payloadDelay(0),
599 senderState(NULL)
600 {
601 if (req->hasPaddr()) {
602 addr = req->getPaddr() & ~(_blkSize - 1);
603 flags.set(VALID_ADDR);
604 _isSecure = req->isSecure();
605 }
606 size = _blkSize;
607 flags.set(VALID_SIZE);
608 }
609
610 /**
611 * Alternate constructor for copying a packet. Copy all fields
612 * *except* if the original packet's data was dynamic, don't copy
613 * that, as we can't guarantee that the new packet's lifetime is
614 * less than that of the original packet. In this case the new
615 * packet should allocate its own data.
616 */
617 Packet(PacketPtr pkt, bool clear_flags, bool alloc_data)
618 : cmd(pkt->cmd), req(pkt->req),
619 data(nullptr),
620 addr(pkt->addr), _isSecure(pkt->_isSecure), size(pkt->size),
621 bytesValid(pkt->bytesValid),
622 headerDelay(pkt->headerDelay),
623 payloadDelay(pkt->payloadDelay),
624 senderState(pkt->senderState)
625 {
626 if (!clear_flags)
627 flags.set(pkt->flags & COPY_FLAGS);
628
629 flags.set(pkt->flags & (VALID_ADDR|VALID_SIZE));
630
631 // should we allocate space for data, or not, the express
632 // snoops do not need to carry any data as they only serve to
633 // co-ordinate state changes
634 if (alloc_data) {
635 // even if asked to allocate data, if the original packet
636 // holds static data, then the sender will not be doing
637 // any memcpy on receiving the response, thus we simply
638 // carry the pointer forward
639 if (pkt->flags.isSet(STATIC_DATA)) {
640 data = pkt->data;
641 flags.set(STATIC_DATA);
642 } else {
643 allocate();
644 }
645 }
646 }
647
648 /**
649 * Generate the appropriate read MemCmd based on the Request flags.
650 */
651 static MemCmd
652 makeReadCmd(const RequestPtr req)
653 {
654 if (req->isLLSC())
655 return MemCmd::LoadLockedReq;
656 else if (req->isPrefetch())
657 return MemCmd::SoftPFReq;
658 else
659 return MemCmd::ReadReq;
660 }
661
662 /**
663 * Generate the appropriate write MemCmd based on the Request flags.
664 */
665 static MemCmd
666 makeWriteCmd(const RequestPtr req)
667 {
668 if (req->isLLSC())
669 return MemCmd::StoreCondReq;
670 else if (req->isSwap())
671 return MemCmd::SwapReq;
672 else
673 return MemCmd::WriteReq;
674 }
675
676 /**
677 * Constructor-like methods that return Packets based on Request objects.
678 * Fine-tune the MemCmd type if it's not a vanilla read or write.
679 */
680 static PacketPtr
681 createRead(const RequestPtr req)
682 {
683 return new Packet(req, makeReadCmd(req));
684 }
685
686 static PacketPtr
687 createWrite(const RequestPtr req)
688 {
689 return new Packet(req, makeWriteCmd(req));
690 }
691
692 /**
693 * clean up packet variables
694 */
695 ~Packet()
696 {
697 // Delete the request object if this is a request packet which
698 // does not need a response, because the requester will not get
699 // a chance. If the request packet needs a response then the
700 // request will be deleted on receipt of the response
701 // packet. We also make sure to never delete the request for
702 // express snoops, even for cases when responses are not
703 // needed (CleanEvict and Writeback), since the snoop packet
704 // re-uses the same request.
705 if (req && isRequest() && !needsResponse() &&
706 !isExpressSnoop()) {
707 delete req;
708 }
709 deleteData();
710 }
711
712 /**
713 * Take a request packet and modify it in place to be suitable for
714 * returning as a response to that request.
715 */
716 void
717 makeResponse()
718 {
719 assert(needsResponse());
720 assert(isRequest());
721 origCmd = cmd;
722 cmd = cmd.responseCommand();
723
724 // responses are never express, even if the snoop that
725 // triggered them was
726 flags.clear(EXPRESS_SNOOP);
727 }
728
729 void
730 makeAtomicResponse()
731 {
732 makeResponse();
733 }
734
735 void
736 makeTimingResponse()
737 {
738 makeResponse();
739 }
740
741 void
742 setFunctionalResponseStatus(bool success)
743 {
744 if (!success) {
745 if (isWrite()) {
746 cmd = MemCmd::FunctionalWriteError;
747 } else {
748 cmd = MemCmd::FunctionalReadError;
749 }
750 }
751 }
752
753 void
754 setSize(unsigned size)
755 {
756 assert(!flags.isSet(VALID_SIZE));
757
758 this->size = size;
759 flags.set(VALID_SIZE);
760 }
761
762
763 /**
764 * Set the data pointer to the following value that should not be
765 * freed. Static data allows us to do a single memcpy even if
766 * multiple packets are required to get from source to destination
767 * and back. In essence the pointer is set calling dataStatic on
768 * the original packet, and whenever this packet is copied and
769 * forwarded the same pointer is passed on. When a packet
770 * eventually reaches the destination holding the data, it is
771 * copied once into the location originally set. On the way back
772 * to the source, no copies are necessary.
773 */
774 template <typename T>
775 void
776 dataStatic(T *p)
777 {
778 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
779 data = (PacketDataPtr)p;
780 flags.set(STATIC_DATA);
781 }
782
783 /**
784 * Set the data pointer to the following value that should not be
785 * freed. This version of the function allows the pointer passed
786 * to us to be const. To avoid issues down the line we cast the
787 * constness away, the alternative would be to keep both a const
788 * and non-const data pointer and cleverly choose between
789 * them. Note that this is only allowed for static data.
790 */
791 template <typename T>
792 void
793 dataStaticConst(const T *p)
794 {
795 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
796 data = const_cast<PacketDataPtr>(p);
797 flags.set(STATIC_DATA);
798 }
799
800 /**
801 * Set the data pointer to a value that should have delete []
802 * called on it. Dynamic data is local to this packet, and as the
803 * packet travels from source to destination, forwarded packets
804 * will allocate their own data. When a packet reaches the final
805 * destination it will populate the dynamic data of that specific
806 * packet, and on the way back towards the source, memcpy will be
807 * invoked in every step where a new packet was created e.g. in
808 * the caches. Ultimately when the response reaches the source a
809 * final memcpy is needed to extract the data from the packet
810 * before it is deallocated.
811 */
812 template <typename T>
813 void
814 dataDynamic(T *p)
815 {
816 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
817 data = (PacketDataPtr)p;
818 flags.set(DYNAMIC_DATA);
819 }
820
821 /**
822 * get a pointer to the data ptr.
823 */
824 template <typename T>
825 T*
826 getPtr()
827 {
828 assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
829 return (T*)data;
830 }
831
832 template <typename T>
833 const T*
834 getConstPtr() const
835 {
836 assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
837 return (const T*)data;
838 }
839
840 /**
841 * return the value of what is pointed to in the packet.
842 */
843 template <typename T>
844 T get() const;
845
846 /**
847 * set the value in the data pointer to v.
848 */
849 template <typename T>
850 void set(T v);
851
852 /**
853 * Copy data into the packet from the provided pointer.
854 */
855 void
856 setData(const uint8_t *p)
857 {
858 // we should never be copying data onto itself, which means we
859 // must idenfity packets with static data, as they carry the
860 // same pointer from source to destination and back
861 assert(p != getPtr<uint8_t>() || flags.isSet(STATIC_DATA));
862
863 if (p != getPtr<uint8_t>())
864 // for packet with allocated dynamic data, we copy data from
865 // one to the other, e.g. a forwarded response to a response
866 std::memcpy(getPtr<uint8_t>(), p, getSize());
867 }
868
869 /**
870 * Copy data into the packet from the provided block pointer,
871 * which is aligned to the given block size.
872 */
873 void
874 setDataFromBlock(const uint8_t *blk_data, int blkSize)
875 {
876 setData(blk_data + getOffset(blkSize));
877 }
878
879 /**
880 * Copy data from the packet to the provided block pointer, which
881 * is aligned to the given block size.
882 */
883 void
884 writeData(uint8_t *p) const
885 {
886 std::memcpy(p, getConstPtr<uint8_t>(), getSize());
887 }
888
889 /**
890 * Copy data from the packet to the memory at the provided pointer.
891 */
892 void
893 writeDataToBlock(uint8_t *blk_data, int blkSize) const
894 {
895 writeData(blk_data + getOffset(blkSize));
896 }
897
898 /**
899 * delete the data pointed to in the data pointer. Ok to call to
900 * matter how data was allocted.
901 */
902 void
903 deleteData()
904 {
905 if (flags.isSet(DYNAMIC_DATA))
906 delete [] data;
907
908 flags.clear(STATIC_DATA|DYNAMIC_DATA);
909 data = NULL;
910 }
911
912 /** Allocate memory for the packet. */
913 void
914 allocate()
915 {
916 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
917 flags.set(DYNAMIC_DATA);
918 data = new uint8_t[getSize()];
919 }
920
921 /**
922 * Check a functional request against a memory value stored in
923 * another packet (i.e. an in-transit request or
924 * response). Returns true if the current packet is a read, and
925 * the other packet provides the data, which is then copied to the
926 * current packet. If the current packet is a write, and the other
927 * packet intersects this one, then we update the data
928 * accordingly.
929 */
930 bool
931 checkFunctional(PacketPtr other)
932 {
933 // all packets that are carrying a payload should have a valid
934 // data pointer
935 return checkFunctional(other, other->getAddr(), other->isSecure(),
936 other->getSize(),
937 other->hasData() ?
938 other->getPtr<uint8_t>() : NULL);
939 }
940
941 /**
942 * Is this request notification of a clean or dirty eviction from the cache.
943 **/
944 bool
945 evictingBlock() const
946 {
947 return (cmd == MemCmd::Writeback ||
948 cmd == MemCmd::CleanEvict);
949 }
950
951 /**
952 * Does the request need to check for cached copies of the same block
953 * in the memory hierarchy above.
954 **/
955 bool
956 mustCheckAbove() const
957 {
958 return (cmd == MemCmd::HardPFReq ||
959 evictingBlock());
960 }
961
962 /**
940 * Check a functional request against a memory value represented
941 * by a base/size pair and an associated data array. If the
942 * current packet is a read, it may be satisfied by the memory
943 * value. If the current packet is a write, it may update the
944 * memory value.
945 */
946 bool
947 checkFunctional(Printable *obj, Addr base, bool is_secure, int size,
948 uint8_t *_data);
949
950 /**
951 * Push label for PrintReq (safe to call unconditionally).
952 */
953 void
954 pushLabel(const std::string &lbl)
955 {
956 if (isPrint())
957 safe_cast<PrintReqState*>(senderState)->pushLabel(lbl);
958 }
959
960 /**
961 * Pop label for PrintReq (safe to call unconditionally).
962 */
963 void
964 popLabel()
965 {
966 if (isPrint())
967 safe_cast<PrintReqState*>(senderState)->popLabel();
968 }
969
970 void print(std::ostream &o, int verbosity = 0,
971 const std::string &prefix = "") const;
972
973 /**
974 * A no-args wrapper of print(std::ostream...)
975 * meant to be invoked from DPRINTFs
976 * avoiding string overheads in fast mode
977 * @return string with the request's type and start<->end addresses
978 */
979 std::string print() const;
980};
981
982#endif //__MEM_PACKET_HH
963 * Check a functional request against a memory value represented
964 * by a base/size pair and an associated data array. If the
965 * current packet is a read, it may be satisfied by the memory
966 * value. If the current packet is a write, it may update the
967 * memory value.
968 */
969 bool
970 checkFunctional(Printable *obj, Addr base, bool is_secure, int size,
971 uint8_t *_data);
972
973 /**
974 * Push label for PrintReq (safe to call unconditionally).
975 */
976 void
977 pushLabel(const std::string &lbl)
978 {
979 if (isPrint())
980 safe_cast<PrintReqState*>(senderState)->pushLabel(lbl);
981 }
982
983 /**
984 * Pop label for PrintReq (safe to call unconditionally).
985 */
986 void
987 popLabel()
988 {
989 if (isPrint())
990 safe_cast<PrintReqState*>(senderState)->popLabel();
991 }
992
993 void print(std::ostream &o, int verbosity = 0,
994 const std::string &prefix = "") const;
995
996 /**
997 * A no-args wrapper of print(std::ostream...)
998 * meant to be invoked from DPRINTFs
999 * avoiding string overheads in fast mode
1000 * @return string with the request's type and start<->end addresses
1001 */
1002 std::string print() const;
1003};
1004
1005#endif //__MEM_PACKET_HH