packet.hh (10583:d1e1e8588881) packet.hh (10660:87f7b5a07584)
1/*
2 * Copyright (c) 2012-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * Copyright (c) 2010 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 * Steve Reinhardt
43 * Ali Saidi
44 * Andreas Hansson
45 */
46
47/**
48 * @file
49 * Declaration of the Packet class.
50 */
51
52#ifndef __MEM_PACKET_HH__
53#define __MEM_PACKET_HH__
54
55#include <bitset>
56#include <cassert>
57#include <list>
58
59#include "base/cast.hh"
60#include "base/compiler.hh"
61#include "base/flags.hh"
62#include "base/misc.hh"
63#include "base/printable.hh"
64#include "base/types.hh"
65#include "mem/request.hh"
66#include "sim/core.hh"
67
68class Packet;
69typedef Packet *PacketPtr;
70typedef uint8_t* PacketDataPtr;
71typedef std::list<PacketPtr> PacketList;
72
73class MemCmd
74{
75 friend class Packet;
76
77 public:
78 /**
79 * List of all commands associated with a packet.
80 */
81 enum Command
82 {
83 InvalidCmd,
84 ReadReq,
85 ReadResp,
86 ReadRespWithInvalidate,
87 WriteReq,
88 WriteResp,
89 Writeback,
90 SoftPFReq,
91 HardPFReq,
92 SoftPFResp,
93 HardPFResp,
94 WriteInvalidateReq,
95 WriteInvalidateResp,
96 UpgradeReq,
97 SCUpgradeReq, // Special "weak" upgrade for StoreCond
98 UpgradeResp,
99 SCUpgradeFailReq, // Failed SCUpgradeReq in MSHR (never sent)
100 UpgradeFailResp, // Valid for SCUpgradeReq only
101 ReadExReq,
102 ReadExResp,
103 LoadLockedReq,
104 StoreCondReq,
105 StoreCondFailReq, // Failed StoreCondReq in MSHR (never sent)
106 StoreCondResp,
107 SwapReq,
108 SwapResp,
109 MessageReq,
110 MessageResp,
111 // Error responses
112 // @TODO these should be classified as responses rather than
113 // requests; coding them as requests initially for backwards
114 // compatibility
115 InvalidDestError, // packet dest field invalid
116 BadAddressError, // memory address invalid
117 FunctionalReadError, // unable to fulfill functional read
118 FunctionalWriteError, // unable to fulfill functional write
119 // Fake simulator-only commands
120 PrintReq, // Print state matching address
121 FlushReq, //request for a cache flush
122 InvalidationReq, // request for address to be invalidated from lsq
123 NUM_MEM_CMDS
124 };
125
126 private:
127 /**
128 * List of command attributes.
129 */
130 enum Attribute
131 {
132 IsRead, //!< Data flows from responder to requester
133 IsWrite, //!< Data flows from requester to responder
134 IsUpgrade,
135 IsInvalidate,
136 NeedsExclusive, //!< Requires exclusive copy to complete in-cache
137 IsRequest, //!< Issued by requester
138 IsResponse, //!< Issue by responder
139 NeedsResponse, //!< Requester needs response from target
140 IsSWPrefetch,
141 IsHWPrefetch,
142 IsLlsc, //!< Alpha/MIPS LL or SC access
143 HasData, //!< There is an associated payload
144 IsError, //!< Error response
145 IsPrint, //!< Print state matching address (for debugging)
146 IsFlush, //!< Flush the address from caches
147 NUM_COMMAND_ATTRIBUTES
148 };
149
150 /**
151 * Structure that defines attributes and other data associated
152 * with a Command.
153 */
154 struct CommandInfo
155 {
156 /// Set of attribute flags.
157 const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
158 /// Corresponding response for requests; InvalidCmd if no
159 /// response is applicable.
160 const Command response;
161 /// String representation (for printing)
162 const std::string str;
163 };
164
165 /// Array to map Command enum to associated info.
166 static const CommandInfo commandInfo[];
167
168 private:
169
170 Command cmd;
171
172 bool
173 testCmdAttrib(MemCmd::Attribute attrib) const
174 {
175 return commandInfo[cmd].attributes[attrib] != 0;
176 }
177
178 public:
179
180 bool isRead() const { return testCmdAttrib(IsRead); }
181 bool isWrite() const { return testCmdAttrib(IsWrite); }
182 bool isUpgrade() const { return testCmdAttrib(IsUpgrade); }
183 bool isRequest() const { return testCmdAttrib(IsRequest); }
184 bool isResponse() const { return testCmdAttrib(IsResponse); }
185 bool needsExclusive() const { return testCmdAttrib(NeedsExclusive); }
186 bool needsResponse() const { return testCmdAttrib(NeedsResponse); }
187 bool isInvalidate() const { return testCmdAttrib(IsInvalidate); }
188 bool isWriteInvalidate() const { return testCmdAttrib(IsWrite) &&
189 testCmdAttrib(IsInvalidate); }
190
191 /**
192 * Check if this particular packet type carries payload data. Note
193 * that this does not reflect if the data pointer of the packet is
194 * valid or not.
195 */
196 bool hasData() const { return testCmdAttrib(HasData); }
197 bool isLLSC() const { return testCmdAttrib(IsLlsc); }
198 bool isSWPrefetch() const { return testCmdAttrib(IsSWPrefetch); }
199 bool isHWPrefetch() const { return testCmdAttrib(IsHWPrefetch); }
200 bool isPrefetch() const { return testCmdAttrib(IsSWPrefetch) ||
201 testCmdAttrib(IsHWPrefetch); }
202 bool isError() const { return testCmdAttrib(IsError); }
203 bool isPrint() const { return testCmdAttrib(IsPrint); }
204 bool isFlush() const { return testCmdAttrib(IsFlush); }
205
206 const Command
207 responseCommand() const
208 {
209 return commandInfo[cmd].response;
210 }
211
212 /// Return the string to a cmd given by idx.
213 const std::string &toString() const { return commandInfo[cmd].str; }
214 int toInt() const { return (int)cmd; }
215
216 MemCmd(Command _cmd) : cmd(_cmd) { }
217 MemCmd(int _cmd) : cmd((Command)_cmd) { }
218 MemCmd() : cmd(InvalidCmd) { }
219
220 bool operator==(MemCmd c2) const { return (cmd == c2.cmd); }
221 bool operator!=(MemCmd c2) const { return (cmd != c2.cmd); }
222};
223
224/**
225 * A Packet is used to encapsulate a transfer between two objects in
226 * the memory system (e.g., the L1 and L2 cache). (In contrast, a
227 * single Request travels all the way from the requester to the
228 * ultimate destination and back, possibly being conveyed by several
229 * different Packets along the way.)
230 */
231class Packet : public Printable
232{
233 public:
234 typedef uint32_t FlagsType;
235 typedef ::Flags<FlagsType> Flags;
236
237 private:
238 static const FlagsType PUBLIC_FLAGS = 0x00000000;
239 static const FlagsType PRIVATE_FLAGS = 0x00007F0F;
240 static const FlagsType COPY_FLAGS = 0x0000000F;
241
242 static const FlagsType SHARED = 0x00000001;
243 // Special control flags
244 /// Special timing-mode atomic snoop for multi-level coherence.
245 static const FlagsType EXPRESS_SNOOP = 0x00000002;
246 /// Does supplier have exclusive copy?
247 /// Useful for multi-level coherence.
248 static const FlagsType SUPPLY_EXCLUSIVE = 0x00000004;
249 // Snoop response flags
250 static const FlagsType MEM_INHIBIT = 0x00000008;
251 /// Are the 'addr' and 'size' fields valid?
252 static const FlagsType VALID_ADDR = 0x00000100;
253 static const FlagsType VALID_SIZE = 0x00000200;
254 /// Is the data pointer set to a value that shouldn't be freed
255 /// when the packet is destroyed?
256 static const FlagsType STATIC_DATA = 0x00001000;
257 /// The data pointer points to a value that should be freed when
258 /// the packet is destroyed. The pointer is assumed to be pointing
259 /// to an array, and delete [] is consequently called
260 static const FlagsType DYNAMIC_DATA = 0x00002000;
261 /// suppress the error if this packet encounters a functional
262 /// access failure.
263 static const FlagsType SUPPRESS_FUNC_ERROR = 0x00008000;
264 // Signal prefetch squash through express snoop flag
265 static const FlagsType PREFETCH_SNOOP_SQUASH = 0x00010000;
266
267 Flags flags;
268
269 public:
270 typedef MemCmd::Command Command;
271
272 /// The command field of the packet.
273 MemCmd cmd;
274
275 /// A pointer to the original request.
276 const RequestPtr req;
277
278 private:
279 /**
280 * A pointer to the data being transfered. It can be differnt
281 * sizes at each level of the heirarchy so it belongs in the
282 * packet, not request. This may or may not be populated when a
283 * responder recieves the packet. If not populated it memory should
284 * be allocated.
285 */
286 PacketDataPtr data;
287
288 /// The address of the request. This address could be virtual or
289 /// physical, depending on the system configuration.
290 Addr addr;
291
292 /// True if the request targets the secure memory space.
293 bool _isSecure;
294
295 /// The size of the request or transfer.
296 unsigned size;
297
298 /**
1/*
2 * Copyright (c) 2012-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * Copyright (c) 2010 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 * Steve Reinhardt
43 * Ali Saidi
44 * Andreas Hansson
45 */
46
47/**
48 * @file
49 * Declaration of the Packet class.
50 */
51
52#ifndef __MEM_PACKET_HH__
53#define __MEM_PACKET_HH__
54
55#include <bitset>
56#include <cassert>
57#include <list>
58
59#include "base/cast.hh"
60#include "base/compiler.hh"
61#include "base/flags.hh"
62#include "base/misc.hh"
63#include "base/printable.hh"
64#include "base/types.hh"
65#include "mem/request.hh"
66#include "sim/core.hh"
67
68class Packet;
69typedef Packet *PacketPtr;
70typedef uint8_t* PacketDataPtr;
71typedef std::list<PacketPtr> PacketList;
72
73class MemCmd
74{
75 friend class Packet;
76
77 public:
78 /**
79 * List of all commands associated with a packet.
80 */
81 enum Command
82 {
83 InvalidCmd,
84 ReadReq,
85 ReadResp,
86 ReadRespWithInvalidate,
87 WriteReq,
88 WriteResp,
89 Writeback,
90 SoftPFReq,
91 HardPFReq,
92 SoftPFResp,
93 HardPFResp,
94 WriteInvalidateReq,
95 WriteInvalidateResp,
96 UpgradeReq,
97 SCUpgradeReq, // Special "weak" upgrade for StoreCond
98 UpgradeResp,
99 SCUpgradeFailReq, // Failed SCUpgradeReq in MSHR (never sent)
100 UpgradeFailResp, // Valid for SCUpgradeReq only
101 ReadExReq,
102 ReadExResp,
103 LoadLockedReq,
104 StoreCondReq,
105 StoreCondFailReq, // Failed StoreCondReq in MSHR (never sent)
106 StoreCondResp,
107 SwapReq,
108 SwapResp,
109 MessageReq,
110 MessageResp,
111 // Error responses
112 // @TODO these should be classified as responses rather than
113 // requests; coding them as requests initially for backwards
114 // compatibility
115 InvalidDestError, // packet dest field invalid
116 BadAddressError, // memory address invalid
117 FunctionalReadError, // unable to fulfill functional read
118 FunctionalWriteError, // unable to fulfill functional write
119 // Fake simulator-only commands
120 PrintReq, // Print state matching address
121 FlushReq, //request for a cache flush
122 InvalidationReq, // request for address to be invalidated from lsq
123 NUM_MEM_CMDS
124 };
125
126 private:
127 /**
128 * List of command attributes.
129 */
130 enum Attribute
131 {
132 IsRead, //!< Data flows from responder to requester
133 IsWrite, //!< Data flows from requester to responder
134 IsUpgrade,
135 IsInvalidate,
136 NeedsExclusive, //!< Requires exclusive copy to complete in-cache
137 IsRequest, //!< Issued by requester
138 IsResponse, //!< Issue by responder
139 NeedsResponse, //!< Requester needs response from target
140 IsSWPrefetch,
141 IsHWPrefetch,
142 IsLlsc, //!< Alpha/MIPS LL or SC access
143 HasData, //!< There is an associated payload
144 IsError, //!< Error response
145 IsPrint, //!< Print state matching address (for debugging)
146 IsFlush, //!< Flush the address from caches
147 NUM_COMMAND_ATTRIBUTES
148 };
149
150 /**
151 * Structure that defines attributes and other data associated
152 * with a Command.
153 */
154 struct CommandInfo
155 {
156 /// Set of attribute flags.
157 const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
158 /// Corresponding response for requests; InvalidCmd if no
159 /// response is applicable.
160 const Command response;
161 /// String representation (for printing)
162 const std::string str;
163 };
164
165 /// Array to map Command enum to associated info.
166 static const CommandInfo commandInfo[];
167
168 private:
169
170 Command cmd;
171
172 bool
173 testCmdAttrib(MemCmd::Attribute attrib) const
174 {
175 return commandInfo[cmd].attributes[attrib] != 0;
176 }
177
178 public:
179
180 bool isRead() const { return testCmdAttrib(IsRead); }
181 bool isWrite() const { return testCmdAttrib(IsWrite); }
182 bool isUpgrade() const { return testCmdAttrib(IsUpgrade); }
183 bool isRequest() const { return testCmdAttrib(IsRequest); }
184 bool isResponse() const { return testCmdAttrib(IsResponse); }
185 bool needsExclusive() const { return testCmdAttrib(NeedsExclusive); }
186 bool needsResponse() const { return testCmdAttrib(NeedsResponse); }
187 bool isInvalidate() const { return testCmdAttrib(IsInvalidate); }
188 bool isWriteInvalidate() const { return testCmdAttrib(IsWrite) &&
189 testCmdAttrib(IsInvalidate); }
190
191 /**
192 * Check if this particular packet type carries payload data. Note
193 * that this does not reflect if the data pointer of the packet is
194 * valid or not.
195 */
196 bool hasData() const { return testCmdAttrib(HasData); }
197 bool isLLSC() const { return testCmdAttrib(IsLlsc); }
198 bool isSWPrefetch() const { return testCmdAttrib(IsSWPrefetch); }
199 bool isHWPrefetch() const { return testCmdAttrib(IsHWPrefetch); }
200 bool isPrefetch() const { return testCmdAttrib(IsSWPrefetch) ||
201 testCmdAttrib(IsHWPrefetch); }
202 bool isError() const { return testCmdAttrib(IsError); }
203 bool isPrint() const { return testCmdAttrib(IsPrint); }
204 bool isFlush() const { return testCmdAttrib(IsFlush); }
205
206 const Command
207 responseCommand() const
208 {
209 return commandInfo[cmd].response;
210 }
211
212 /// Return the string to a cmd given by idx.
213 const std::string &toString() const { return commandInfo[cmd].str; }
214 int toInt() const { return (int)cmd; }
215
216 MemCmd(Command _cmd) : cmd(_cmd) { }
217 MemCmd(int _cmd) : cmd((Command)_cmd) { }
218 MemCmd() : cmd(InvalidCmd) { }
219
220 bool operator==(MemCmd c2) const { return (cmd == c2.cmd); }
221 bool operator!=(MemCmd c2) const { return (cmd != c2.cmd); }
222};
223
224/**
225 * A Packet is used to encapsulate a transfer between two objects in
226 * the memory system (e.g., the L1 and L2 cache). (In contrast, a
227 * single Request travels all the way from the requester to the
228 * ultimate destination and back, possibly being conveyed by several
229 * different Packets along the way.)
230 */
231class Packet : public Printable
232{
233 public:
234 typedef uint32_t FlagsType;
235 typedef ::Flags<FlagsType> Flags;
236
237 private:
238 static const FlagsType PUBLIC_FLAGS = 0x00000000;
239 static const FlagsType PRIVATE_FLAGS = 0x00007F0F;
240 static const FlagsType COPY_FLAGS = 0x0000000F;
241
242 static const FlagsType SHARED = 0x00000001;
243 // Special control flags
244 /// Special timing-mode atomic snoop for multi-level coherence.
245 static const FlagsType EXPRESS_SNOOP = 0x00000002;
246 /// Does supplier have exclusive copy?
247 /// Useful for multi-level coherence.
248 static const FlagsType SUPPLY_EXCLUSIVE = 0x00000004;
249 // Snoop response flags
250 static const FlagsType MEM_INHIBIT = 0x00000008;
251 /// Are the 'addr' and 'size' fields valid?
252 static const FlagsType VALID_ADDR = 0x00000100;
253 static const FlagsType VALID_SIZE = 0x00000200;
254 /// Is the data pointer set to a value that shouldn't be freed
255 /// when the packet is destroyed?
256 static const FlagsType STATIC_DATA = 0x00001000;
257 /// The data pointer points to a value that should be freed when
258 /// the packet is destroyed. The pointer is assumed to be pointing
259 /// to an array, and delete [] is consequently called
260 static const FlagsType DYNAMIC_DATA = 0x00002000;
261 /// suppress the error if this packet encounters a functional
262 /// access failure.
263 static const FlagsType SUPPRESS_FUNC_ERROR = 0x00008000;
264 // Signal prefetch squash through express snoop flag
265 static const FlagsType PREFETCH_SNOOP_SQUASH = 0x00010000;
266
267 Flags flags;
268
269 public:
270 typedef MemCmd::Command Command;
271
272 /// The command field of the packet.
273 MemCmd cmd;
274
275 /// A pointer to the original request.
276 const RequestPtr req;
277
278 private:
279 /**
280 * A pointer to the data being transfered. It can be differnt
281 * sizes at each level of the heirarchy so it belongs in the
282 * packet, not request. This may or may not be populated when a
283 * responder recieves the packet. If not populated it memory should
284 * be allocated.
285 */
286 PacketDataPtr data;
287
288 /// The address of the request. This address could be virtual or
289 /// physical, depending on the system configuration.
290 Addr addr;
291
292 /// True if the request targets the secure memory space.
293 bool _isSecure;
294
295 /// The size of the request or transfer.
296 unsigned size;
297
298 /**
299 * Source port identifier set on a request packet to enable
300 * appropriate routing of the responses. The source port
301 * identifier is set by any multiplexing component, e.g. a
302 * crossbar, as the timing responses need this information to be
303 * routed back to the appropriate port at a later point in
304 * time. The field can be updated (over-written) as the request
305 * packet passes through additional multiplexing components, and
306 * it is their responsibility to remember the original source port
307 * identifier, for example by using an appropriate sender
308 * state. The latter is done in the cache and bridge.
309 */
310 PortID src;
311
312 /**
313 * Destination port identifier that is present on all response
314 * packets that passed through a multiplexing component as a
315 * request packet. The source port identifier is turned into a
316 * destination port identifier when the packet is turned into a
317 * response, and the destination is used, e.g. by the crossbar, to
318 * select the appropriate path through the interconnect.
319 */
320 PortID dest;
321
322 /**
323 * The original value of the command field. Only valid when the
324 * current command field is an error condition; in that case, the
325 * previous contents of the command field are copied here. This
326 * field is *not* set on non-error responses.
327 */
328 MemCmd origCmd;
329
330 /**
331 * These values specify the range of bytes found that satisfy a
332 * functional read.
333 */
334 uint16_t bytesValidStart;
335 uint16_t bytesValidEnd;
336
337 public:
338
339 /**
340 * The extra delay from seeing the packet until the first word is
341 * transmitted. This delay is used to communicate the crossbar
342 * forwarding latency to the neighbouring object (e.g. a cache)
343 * that actually makes the packet wait. As the delay is relative,
344 * a 32-bit unsigned should be sufficient.
345 */
346 uint32_t firstWordDelay;
347
348 /**
349 * The extra pipelining delay from seeing the packet until the
350 * last word is transmitted by the component that provided it (if
351 * any). This includes the first word delay. Similar to the first
352 * word delay, this is used to make up for the fact that the
353 * crossbar does not make the packet wait. As the delay is
354 * relative, a 32-bit unsigned should be sufficient.
355 */
356 uint32_t lastWordDelay;
357
358 /**
359 * A virtual base opaque structure used to hold state associated
360 * with the packet (e.g., an MSHR), specific to a MemObject that
361 * sees the packet. A pointer to this state is returned in the
362 * packet's response so that the MemObject in question can quickly
363 * look up the state needed to process it. A specific subclass
364 * would be derived from this to carry state specific to a
365 * particular sending device.
366 *
367 * As multiple MemObjects may add their SenderState throughout the
368 * memory system, the SenderStates create a stack, where a
369 * MemObject can add a new Senderstate, as long as the
370 * predecessing SenderState is restored when the response comes
371 * back. For this reason, the predecessor should always be
372 * populated with the current SenderState of a packet before
373 * modifying the senderState field in the request packet.
374 */
375 struct SenderState
376 {
377 SenderState* predecessor;
378 SenderState() : predecessor(NULL) {}
379 virtual ~SenderState() {}
380 };
381
382 /**
383 * Object used to maintain state of a PrintReq. The senderState
384 * field of a PrintReq should always be of this type.
385 */
386 class PrintReqState : public SenderState
387 {
388 private:
389 /**
390 * An entry in the label stack.
391 */
392 struct LabelStackEntry
393 {
394 const std::string label;
395 std::string *prefix;
396 bool labelPrinted;
397 LabelStackEntry(const std::string &_label, std::string *_prefix);
398 };
399
400 typedef std::list<LabelStackEntry> LabelStack;
401 LabelStack labelStack;
402
403 std::string *curPrefixPtr;
404
405 public:
406 std::ostream &os;
407 const int verbosity;
408
409 PrintReqState(std::ostream &os, int verbosity = 0);
410 ~PrintReqState();
411
412 /**
413 * Returns the current line prefix.
414 */
415 const std::string &curPrefix() { return *curPrefixPtr; }
416
417 /**
418 * Push a label onto the label stack, and prepend the given
419 * prefix string onto the current prefix. Labels will only be
420 * printed if an object within the label's scope is printed.
421 */
422 void pushLabel(const std::string &lbl,
423 const std::string &prefix = " ");
424
425 /**
426 * Pop a label off the label stack.
427 */
428 void popLabel();
429
430 /**
431 * Print all of the pending unprinted labels on the
432 * stack. Called by printObj(), so normally not called by
433 * users unless bypassing printObj().
434 */
435 void printLabels();
436
437 /**
438 * Print a Printable object to os, because it matched the
439 * address on a PrintReq.
440 */
441 void printObj(Printable *obj);
442 };
443
444 /**
445 * This packet's sender state. Devices should use dynamic_cast<>
446 * to cast to the state appropriate to the sender. The intent of
447 * this variable is to allow a device to attach extra information
448 * to a request. A response packet must return the sender state
449 * that was attached to the original request (even if a new packet
450 * is created).
451 */
452 SenderState *senderState;
453
454 /**
455 * Push a new sender state to the packet and make the current
456 * sender state the predecessor of the new one. This should be
457 * prefered over direct manipulation of the senderState member
458 * variable.
459 *
460 * @param sender_state SenderState to push at the top of the stack
461 */
462 void pushSenderState(SenderState *sender_state);
463
464 /**
465 * Pop the top of the state stack and return a pointer to it. This
466 * assumes the current sender state is not NULL. This should be
467 * preferred over direct manipulation of the senderState member
468 * variable.
469 *
470 * @return The current top of the stack
471 */
472 SenderState *popSenderState();
473
474 /**
475 * Go through the sender state stack and return the first instance
476 * that is of type T (as determined by a dynamic_cast). If there
477 * is no sender state of type T, NULL is returned.
478 *
479 * @return The topmost state of type T
480 */
481 template <typename T>
482 T * findNextSenderState() const
483 {
484 T *t = NULL;
485 SenderState* sender_state = senderState;
486 while (t == NULL && sender_state != NULL) {
487 t = dynamic_cast<T*>(sender_state);
488 sender_state = sender_state->predecessor;
489 }
490 return t;
491 }
492
493 /// Return the string name of the cmd field (for debugging and
494 /// tracing).
495 const std::string &cmdString() const { return cmd.toString(); }
496
497 /// Return the index of this command.
498 inline int cmdToIndex() const { return cmd.toInt(); }
499
500 bool isRead() const { return cmd.isRead(); }
501 bool isWrite() const { return cmd.isWrite(); }
502 bool isUpgrade() const { return cmd.isUpgrade(); }
503 bool isRequest() const { return cmd.isRequest(); }
504 bool isResponse() const { return cmd.isResponse(); }
505 bool needsExclusive() const { return cmd.needsExclusive(); }
506 bool needsResponse() const { return cmd.needsResponse(); }
507 bool isInvalidate() const { return cmd.isInvalidate(); }
508 bool isWriteInvalidate() const { return cmd.isWriteInvalidate(); }
509 bool hasData() const { return cmd.hasData(); }
510 bool isLLSC() const { return cmd.isLLSC(); }
511 bool isError() const { return cmd.isError(); }
512 bool isPrint() const { return cmd.isPrint(); }
513 bool isFlush() const { return cmd.isFlush(); }
514
515 // Snoop flags
516 void assertMemInhibit()
517 {
518 assert(isRequest());
519 assert(!flags.isSet(MEM_INHIBIT));
520 flags.set(MEM_INHIBIT);
521 }
522 bool memInhibitAsserted() const { return flags.isSet(MEM_INHIBIT); }
523 void assertShared() { flags.set(SHARED); }
524 bool sharedAsserted() const { return flags.isSet(SHARED); }
525
526 // Special control flags
527 void setExpressSnoop() { flags.set(EXPRESS_SNOOP); }
528 bool isExpressSnoop() const { return flags.isSet(EXPRESS_SNOOP); }
529 void setSupplyExclusive() { flags.set(SUPPLY_EXCLUSIVE); }
530 void clearSupplyExclusive() { flags.clear(SUPPLY_EXCLUSIVE); }
531 bool isSupplyExclusive() const { return flags.isSet(SUPPLY_EXCLUSIVE); }
532 void setSuppressFuncError() { flags.set(SUPPRESS_FUNC_ERROR); }
533 bool suppressFuncError() const { return flags.isSet(SUPPRESS_FUNC_ERROR); }
534 void setPrefetchSquashed() { flags.set(PREFETCH_SNOOP_SQUASH); }
535 bool prefetchSquashed() const { return flags.isSet(PREFETCH_SNOOP_SQUASH); }
536
537 // Network error conditions... encapsulate them as methods since
538 // their encoding keeps changing (from result field to command
539 // field, etc.)
540 void
541 setBadAddress()
542 {
543 assert(isResponse());
544 cmd = MemCmd::BadAddressError;
545 }
546
547 bool hadBadAddress() const { return cmd == MemCmd::BadAddressError; }
548 void copyError(Packet *pkt) { assert(pkt->isError()); cmd = pkt->cmd; }
549
299 * The original value of the command field. Only valid when the
300 * current command field is an error condition; in that case, the
301 * previous contents of the command field are copied here. This
302 * field is *not* set on non-error responses.
303 */
304 MemCmd origCmd;
305
306 /**
307 * These values specify the range of bytes found that satisfy a
308 * functional read.
309 */
310 uint16_t bytesValidStart;
311 uint16_t bytesValidEnd;
312
313 public:
314
315 /**
316 * The extra delay from seeing the packet until the first word is
317 * transmitted. This delay is used to communicate the crossbar
318 * forwarding latency to the neighbouring object (e.g. a cache)
319 * that actually makes the packet wait. As the delay is relative,
320 * a 32-bit unsigned should be sufficient.
321 */
322 uint32_t firstWordDelay;
323
324 /**
325 * The extra pipelining delay from seeing the packet until the
326 * last word is transmitted by the component that provided it (if
327 * any). This includes the first word delay. Similar to the first
328 * word delay, this is used to make up for the fact that the
329 * crossbar does not make the packet wait. As the delay is
330 * relative, a 32-bit unsigned should be sufficient.
331 */
332 uint32_t lastWordDelay;
333
334 /**
335 * A virtual base opaque structure used to hold state associated
336 * with the packet (e.g., an MSHR), specific to a MemObject that
337 * sees the packet. A pointer to this state is returned in the
338 * packet's response so that the MemObject in question can quickly
339 * look up the state needed to process it. A specific subclass
340 * would be derived from this to carry state specific to a
341 * particular sending device.
342 *
343 * As multiple MemObjects may add their SenderState throughout the
344 * memory system, the SenderStates create a stack, where a
345 * MemObject can add a new Senderstate, as long as the
346 * predecessing SenderState is restored when the response comes
347 * back. For this reason, the predecessor should always be
348 * populated with the current SenderState of a packet before
349 * modifying the senderState field in the request packet.
350 */
351 struct SenderState
352 {
353 SenderState* predecessor;
354 SenderState() : predecessor(NULL) {}
355 virtual ~SenderState() {}
356 };
357
358 /**
359 * Object used to maintain state of a PrintReq. The senderState
360 * field of a PrintReq should always be of this type.
361 */
362 class PrintReqState : public SenderState
363 {
364 private:
365 /**
366 * An entry in the label stack.
367 */
368 struct LabelStackEntry
369 {
370 const std::string label;
371 std::string *prefix;
372 bool labelPrinted;
373 LabelStackEntry(const std::string &_label, std::string *_prefix);
374 };
375
376 typedef std::list<LabelStackEntry> LabelStack;
377 LabelStack labelStack;
378
379 std::string *curPrefixPtr;
380
381 public:
382 std::ostream &os;
383 const int verbosity;
384
385 PrintReqState(std::ostream &os, int verbosity = 0);
386 ~PrintReqState();
387
388 /**
389 * Returns the current line prefix.
390 */
391 const std::string &curPrefix() { return *curPrefixPtr; }
392
393 /**
394 * Push a label onto the label stack, and prepend the given
395 * prefix string onto the current prefix. Labels will only be
396 * printed if an object within the label's scope is printed.
397 */
398 void pushLabel(const std::string &lbl,
399 const std::string &prefix = " ");
400
401 /**
402 * Pop a label off the label stack.
403 */
404 void popLabel();
405
406 /**
407 * Print all of the pending unprinted labels on the
408 * stack. Called by printObj(), so normally not called by
409 * users unless bypassing printObj().
410 */
411 void printLabels();
412
413 /**
414 * Print a Printable object to os, because it matched the
415 * address on a PrintReq.
416 */
417 void printObj(Printable *obj);
418 };
419
420 /**
421 * This packet's sender state. Devices should use dynamic_cast<>
422 * to cast to the state appropriate to the sender. The intent of
423 * this variable is to allow a device to attach extra information
424 * to a request. A response packet must return the sender state
425 * that was attached to the original request (even if a new packet
426 * is created).
427 */
428 SenderState *senderState;
429
430 /**
431 * Push a new sender state to the packet and make the current
432 * sender state the predecessor of the new one. This should be
433 * prefered over direct manipulation of the senderState member
434 * variable.
435 *
436 * @param sender_state SenderState to push at the top of the stack
437 */
438 void pushSenderState(SenderState *sender_state);
439
440 /**
441 * Pop the top of the state stack and return a pointer to it. This
442 * assumes the current sender state is not NULL. This should be
443 * preferred over direct manipulation of the senderState member
444 * variable.
445 *
446 * @return The current top of the stack
447 */
448 SenderState *popSenderState();
449
450 /**
451 * Go through the sender state stack and return the first instance
452 * that is of type T (as determined by a dynamic_cast). If there
453 * is no sender state of type T, NULL is returned.
454 *
455 * @return The topmost state of type T
456 */
457 template <typename T>
458 T * findNextSenderState() const
459 {
460 T *t = NULL;
461 SenderState* sender_state = senderState;
462 while (t == NULL && sender_state != NULL) {
463 t = dynamic_cast<T*>(sender_state);
464 sender_state = sender_state->predecessor;
465 }
466 return t;
467 }
468
469 /// Return the string name of the cmd field (for debugging and
470 /// tracing).
471 const std::string &cmdString() const { return cmd.toString(); }
472
473 /// Return the index of this command.
474 inline int cmdToIndex() const { return cmd.toInt(); }
475
476 bool isRead() const { return cmd.isRead(); }
477 bool isWrite() const { return cmd.isWrite(); }
478 bool isUpgrade() const { return cmd.isUpgrade(); }
479 bool isRequest() const { return cmd.isRequest(); }
480 bool isResponse() const { return cmd.isResponse(); }
481 bool needsExclusive() const { return cmd.needsExclusive(); }
482 bool needsResponse() const { return cmd.needsResponse(); }
483 bool isInvalidate() const { return cmd.isInvalidate(); }
484 bool isWriteInvalidate() const { return cmd.isWriteInvalidate(); }
485 bool hasData() const { return cmd.hasData(); }
486 bool isLLSC() const { return cmd.isLLSC(); }
487 bool isError() const { return cmd.isError(); }
488 bool isPrint() const { return cmd.isPrint(); }
489 bool isFlush() const { return cmd.isFlush(); }
490
491 // Snoop flags
492 void assertMemInhibit()
493 {
494 assert(isRequest());
495 assert(!flags.isSet(MEM_INHIBIT));
496 flags.set(MEM_INHIBIT);
497 }
498 bool memInhibitAsserted() const { return flags.isSet(MEM_INHIBIT); }
499 void assertShared() { flags.set(SHARED); }
500 bool sharedAsserted() const { return flags.isSet(SHARED); }
501
502 // Special control flags
503 void setExpressSnoop() { flags.set(EXPRESS_SNOOP); }
504 bool isExpressSnoop() const { return flags.isSet(EXPRESS_SNOOP); }
505 void setSupplyExclusive() { flags.set(SUPPLY_EXCLUSIVE); }
506 void clearSupplyExclusive() { flags.clear(SUPPLY_EXCLUSIVE); }
507 bool isSupplyExclusive() const { return flags.isSet(SUPPLY_EXCLUSIVE); }
508 void setSuppressFuncError() { flags.set(SUPPRESS_FUNC_ERROR); }
509 bool suppressFuncError() const { return flags.isSet(SUPPRESS_FUNC_ERROR); }
510 void setPrefetchSquashed() { flags.set(PREFETCH_SNOOP_SQUASH); }
511 bool prefetchSquashed() const { return flags.isSet(PREFETCH_SNOOP_SQUASH); }
512
513 // Network error conditions... encapsulate them as methods since
514 // their encoding keeps changing (from result field to command
515 // field, etc.)
516 void
517 setBadAddress()
518 {
519 assert(isResponse());
520 cmd = MemCmd::BadAddressError;
521 }
522
523 bool hadBadAddress() const { return cmd == MemCmd::BadAddressError; }
524 void copyError(Packet *pkt) { assert(pkt->isError()); cmd = pkt->cmd; }
525
550 /// Accessor function to get the source index of the packet.
551 PortID getSrc() const { return src; }
552 /// Accessor function to set the source index of the packet.
553 void setSrc(PortID _src) { src = _src; }
554
555 /// Accessor function for the destination index of the packet.
556 PortID getDest() const { return dest; }
557 /// Accessor function to set the destination index of the packet.
558 void setDest(PortID _dest) { dest = _dest; }
559 /// Reset destination field, e.g. to turn a response into a request again.
560 void clearDest() { dest = InvalidPortID; }
561
562 Addr getAddr() const { assert(flags.isSet(VALID_ADDR)); return addr; }
563 /**
564 * Update the address of this packet mid-transaction. This is used
565 * by the address mapper to change an already set address to a new
566 * one based on the system configuration. It is intended to remap
567 * an existing address, so it asserts that the current address is
568 * valid.
569 */
570 void setAddr(Addr _addr) { assert(flags.isSet(VALID_ADDR)); addr = _addr; }
571
572 unsigned getSize() const { assert(flags.isSet(VALID_SIZE)); return size; }
573 Addr getOffset(int blkSize) const { return getAddr() & (Addr)(blkSize - 1); }
574
575 bool isSecure() const
576 {
577 assert(flags.isSet(VALID_ADDR));
578 return _isSecure;
579 }
580
581 /**
582 * It has been determined that the SC packet should successfully update
583 * memory. Therefore, convert this SC packet to a normal write.
584 */
585 void
586 convertScToWrite()
587 {
588 assert(isLLSC());
589 assert(isWrite());
590 cmd = MemCmd::WriteReq;
591 }
592
593 /**
594 * When ruby is in use, Ruby will monitor the cache line and thus M5
595 * phys memory should treat LL ops as normal reads.
596 */
597 void
598 convertLlToRead()
599 {
600 assert(isLLSC());
601 assert(isRead());
602 cmd = MemCmd::ReadReq;
603 }
604
605 /**
606 * Constructor. Note that a Request object must be constructed
607 * first, but the Requests's physical address and size fields need
608 * not be valid. The command must be supplied.
609 */
610 Packet(const RequestPtr _req, MemCmd _cmd)
611 : cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
526 Addr getAddr() const { assert(flags.isSet(VALID_ADDR)); return addr; }
527 /**
528 * Update the address of this packet mid-transaction. This is used
529 * by the address mapper to change an already set address to a new
530 * one based on the system configuration. It is intended to remap
531 * an existing address, so it asserts that the current address is
532 * valid.
533 */
534 void setAddr(Addr _addr) { assert(flags.isSet(VALID_ADDR)); addr = _addr; }
535
536 unsigned getSize() const { assert(flags.isSet(VALID_SIZE)); return size; }
537 Addr getOffset(int blkSize) const { return getAddr() & (Addr)(blkSize - 1); }
538
539 bool isSecure() const
540 {
541 assert(flags.isSet(VALID_ADDR));
542 return _isSecure;
543 }
544
545 /**
546 * It has been determined that the SC packet should successfully update
547 * memory. Therefore, convert this SC packet to a normal write.
548 */
549 void
550 convertScToWrite()
551 {
552 assert(isLLSC());
553 assert(isWrite());
554 cmd = MemCmd::WriteReq;
555 }
556
557 /**
558 * When ruby is in use, Ruby will monitor the cache line and thus M5
559 * phys memory should treat LL ops as normal reads.
560 */
561 void
562 convertLlToRead()
563 {
564 assert(isLLSC());
565 assert(isRead());
566 cmd = MemCmd::ReadReq;
567 }
568
569 /**
570 * Constructor. Note that a Request object must be constructed
571 * first, but the Requests's physical address and size fields need
572 * not be valid. The command must be supplied.
573 */
574 Packet(const RequestPtr _req, MemCmd _cmd)
575 : cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
612 size(0), src(InvalidPortID), dest(InvalidPortID),
613 bytesValidStart(0), bytesValidEnd(0),
576 size(0), bytesValidStart(0), bytesValidEnd(0),
614 firstWordDelay(0), lastWordDelay(0),
615 senderState(NULL)
616 {
617 if (req->hasPaddr()) {
618 addr = req->getPaddr();
619 flags.set(VALID_ADDR);
620 _isSecure = req->isSecure();
621 }
622 if (req->hasSize()) {
623 size = req->getSize();
624 flags.set(VALID_SIZE);
625 }
626 }
627
628 /**
629 * Alternate constructor if you are trying to create a packet with
630 * a request that is for a whole block, not the address from the
631 * req. this allows for overriding the size/addr of the req.
632 */
633 Packet(const RequestPtr _req, MemCmd _cmd, int _blkSize)
634 : cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
577 firstWordDelay(0), lastWordDelay(0),
578 senderState(NULL)
579 {
580 if (req->hasPaddr()) {
581 addr = req->getPaddr();
582 flags.set(VALID_ADDR);
583 _isSecure = req->isSecure();
584 }
585 if (req->hasSize()) {
586 size = req->getSize();
587 flags.set(VALID_SIZE);
588 }
589 }
590
591 /**
592 * Alternate constructor if you are trying to create a packet with
593 * a request that is for a whole block, not the address from the
594 * req. this allows for overriding the size/addr of the req.
595 */
596 Packet(const RequestPtr _req, MemCmd _cmd, int _blkSize)
597 : cmd(_cmd), req(_req), data(nullptr), addr(0), _isSecure(false),
635 src(InvalidPortID), dest(InvalidPortID),
636 bytesValidStart(0), bytesValidEnd(0),
637 firstWordDelay(0), lastWordDelay(0),
638 senderState(NULL)
639 {
640 if (req->hasPaddr()) {
641 addr = req->getPaddr() & ~(_blkSize - 1);
642 flags.set(VALID_ADDR);
643 _isSecure = req->isSecure();
644 }
645 size = _blkSize;
646 flags.set(VALID_SIZE);
647 }
648
649 /**
650 * Alternate constructor for copying a packet. Copy all fields
651 * *except* if the original packet's data was dynamic, don't copy
652 * that, as we can't guarantee that the new packet's lifetime is
653 * less than that of the original packet. In this case the new
654 * packet should allocate its own data.
655 */
656 Packet(PacketPtr pkt, bool clear_flags, bool alloc_data)
657 : cmd(pkt->cmd), req(pkt->req),
658 data(nullptr),
659 addr(pkt->addr), _isSecure(pkt->_isSecure), size(pkt->size),
598 bytesValidStart(0), bytesValidEnd(0),
599 firstWordDelay(0), lastWordDelay(0),
600 senderState(NULL)
601 {
602 if (req->hasPaddr()) {
603 addr = req->getPaddr() & ~(_blkSize - 1);
604 flags.set(VALID_ADDR);
605 _isSecure = req->isSecure();
606 }
607 size = _blkSize;
608 flags.set(VALID_SIZE);
609 }
610
611 /**
612 * Alternate constructor for copying a packet. Copy all fields
613 * *except* if the original packet's data was dynamic, don't copy
614 * that, as we can't guarantee that the new packet's lifetime is
615 * less than that of the original packet. In this case the new
616 * packet should allocate its own data.
617 */
618 Packet(PacketPtr pkt, bool clear_flags, bool alloc_data)
619 : cmd(pkt->cmd), req(pkt->req),
620 data(nullptr),
621 addr(pkt->addr), _isSecure(pkt->_isSecure), size(pkt->size),
660 src(pkt->src), dest(pkt->dest),
661 bytesValidStart(pkt->bytesValidStart),
662 bytesValidEnd(pkt->bytesValidEnd),
663 firstWordDelay(pkt->firstWordDelay),
664 lastWordDelay(pkt->lastWordDelay),
665 senderState(pkt->senderState)
666 {
667 if (!clear_flags)
668 flags.set(pkt->flags & COPY_FLAGS);
669
670 flags.set(pkt->flags & (VALID_ADDR|VALID_SIZE));
671
672 // should we allocate space for data, or not, the express
673 // snoops do not need to carry any data as they only serve to
674 // co-ordinate state changes
675 if (alloc_data) {
676 // even if asked to allocate data, if the original packet
677 // holds static data, then the sender will not be doing
678 // any memcpy on receiving the response, thus we simply
679 // carry the pointer forward
680 if (pkt->flags.isSet(STATIC_DATA)) {
681 data = pkt->data;
682 flags.set(STATIC_DATA);
683 } else {
684 allocate();
685 }
686 }
687 }
688
689 /**
690 * Change the packet type based on request type.
691 */
692 void
693 refineCommand()
694 {
695 if (cmd == MemCmd::ReadReq) {
696 if (req->isLLSC()) {
697 cmd = MemCmd::LoadLockedReq;
698 } else if (req->isPrefetch()) {
699 cmd = MemCmd::SoftPFReq;
700 }
701 } else if (cmd == MemCmd::WriteReq) {
702 if (req->isLLSC()) {
703 cmd = MemCmd::StoreCondReq;
704 } else if (req->isSwap()) {
705 cmd = MemCmd::SwapReq;
706 }
707 }
708 }
709
710 /**
711 * Constructor-like methods that return Packets based on Request objects.
712 * Will call refineCommand() to fine-tune the Packet type if it's not a
713 * vanilla read or write.
714 */
715 static PacketPtr
716 createRead(const RequestPtr req)
717 {
718 PacketPtr pkt = new Packet(req, MemCmd::ReadReq);
719 pkt->refineCommand();
720 return pkt;
721 }
722
723 static PacketPtr
724 createWrite(const RequestPtr req)
725 {
726 PacketPtr pkt = new Packet(req, MemCmd::WriteReq);
727 pkt->refineCommand();
728 return pkt;
729 }
730
731 /**
732 * clean up packet variables
733 */
734 ~Packet()
735 {
736 // If this is a request packet for which there's no response,
737 // delete the request object here, since the requester will
738 // never get the chance.
739 if (req && isRequest() && !needsResponse())
740 delete req;
741 deleteData();
742 }
743
744 /**
745 * Take a request packet and modify it in place to be suitable for
622 bytesValidStart(pkt->bytesValidStart),
623 bytesValidEnd(pkt->bytesValidEnd),
624 firstWordDelay(pkt->firstWordDelay),
625 lastWordDelay(pkt->lastWordDelay),
626 senderState(pkt->senderState)
627 {
628 if (!clear_flags)
629 flags.set(pkt->flags & COPY_FLAGS);
630
631 flags.set(pkt->flags & (VALID_ADDR|VALID_SIZE));
632
633 // should we allocate space for data, or not, the express
634 // snoops do not need to carry any data as they only serve to
635 // co-ordinate state changes
636 if (alloc_data) {
637 // even if asked to allocate data, if the original packet
638 // holds static data, then the sender will not be doing
639 // any memcpy on receiving the response, thus we simply
640 // carry the pointer forward
641 if (pkt->flags.isSet(STATIC_DATA)) {
642 data = pkt->data;
643 flags.set(STATIC_DATA);
644 } else {
645 allocate();
646 }
647 }
648 }
649
650 /**
651 * Change the packet type based on request type.
652 */
653 void
654 refineCommand()
655 {
656 if (cmd == MemCmd::ReadReq) {
657 if (req->isLLSC()) {
658 cmd = MemCmd::LoadLockedReq;
659 } else if (req->isPrefetch()) {
660 cmd = MemCmd::SoftPFReq;
661 }
662 } else if (cmd == MemCmd::WriteReq) {
663 if (req->isLLSC()) {
664 cmd = MemCmd::StoreCondReq;
665 } else if (req->isSwap()) {
666 cmd = MemCmd::SwapReq;
667 }
668 }
669 }
670
671 /**
672 * Constructor-like methods that return Packets based on Request objects.
673 * Will call refineCommand() to fine-tune the Packet type if it's not a
674 * vanilla read or write.
675 */
676 static PacketPtr
677 createRead(const RequestPtr req)
678 {
679 PacketPtr pkt = new Packet(req, MemCmd::ReadReq);
680 pkt->refineCommand();
681 return pkt;
682 }
683
684 static PacketPtr
685 createWrite(const RequestPtr req)
686 {
687 PacketPtr pkt = new Packet(req, MemCmd::WriteReq);
688 pkt->refineCommand();
689 return pkt;
690 }
691
692 /**
693 * clean up packet variables
694 */
695 ~Packet()
696 {
697 // If this is a request packet for which there's no response,
698 // delete the request object here, since the requester will
699 // never get the chance.
700 if (req && isRequest() && !needsResponse())
701 delete req;
702 deleteData();
703 }
704
705 /**
706 * Take a request packet and modify it in place to be suitable for
746 * returning as a response to that request. The source field is
747 * turned into the destination, and subsequently cleared. Note
748 * that the latter is not necessary for atomic requests, but
749 * causes no harm as neither field is valid.
707 * returning as a response to that request.
750 */
751 void
752 makeResponse()
753 {
754 assert(needsResponse());
755 assert(isRequest());
756 origCmd = cmd;
757 cmd = cmd.responseCommand();
758
759 // responses are never express, even if the snoop that
760 // triggered them was
761 flags.clear(EXPRESS_SNOOP);
708 */
709 void
710 makeResponse()
711 {
712 assert(needsResponse());
713 assert(isRequest());
714 origCmd = cmd;
715 cmd = cmd.responseCommand();
716
717 // responses are never express, even if the snoop that
718 // triggered them was
719 flags.clear(EXPRESS_SNOOP);
762
763 dest = src;
764 src = InvalidPortID;
765 }
766
767 void
768 makeAtomicResponse()
769 {
770 makeResponse();
771 }
772
773 void
774 makeTimingResponse()
775 {
776 makeResponse();
777 }
778
779 void
780 setFunctionalResponseStatus(bool success)
781 {
782 if (!success) {
783 if (isWrite()) {
784 cmd = MemCmd::FunctionalWriteError;
785 } else {
786 cmd = MemCmd::FunctionalReadError;
787 }
788 }
789 }
790
791 void
792 setSize(unsigned size)
793 {
794 assert(!flags.isSet(VALID_SIZE));
795
796 this->size = size;
797 flags.set(VALID_SIZE);
798 }
799
800
801 /**
802 * Set the data pointer to the following value that should not be
803 * freed. Static data allows us to do a single memcpy even if
804 * multiple packets are required to get from source to destination
805 * and back. In essence the pointer is set calling dataStatic on
806 * the original packet, and whenever this packet is copied and
807 * forwarded the same pointer is passed on. When a packet
808 * eventually reaches the destination holding the data, it is
809 * copied once into the location originally set. On the way back
810 * to the source, no copies are necessary.
811 */
812 template <typename T>
813 void
814 dataStatic(T *p)
815 {
816 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
817 data = (PacketDataPtr)p;
818 flags.set(STATIC_DATA);
819 }
820
821 /**
822 * Set the data pointer to the following value that should not be
823 * freed. This version of the function allows the pointer passed
824 * to us to be const. To avoid issues down the line we cast the
825 * constness away, the alternative would be to keep both a const
826 * and non-const data pointer and cleverly choose between
827 * them. Note that this is only allowed for static data.
828 */
829 template <typename T>
830 void
831 dataStaticConst(const T *p)
832 {
833 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
834 data = const_cast<PacketDataPtr>(p);
835 flags.set(STATIC_DATA);
836 }
837
838 /**
839 * Set the data pointer to a value that should have delete []
840 * called on it. Dynamic data is local to this packet, and as the
841 * packet travels from source to destination, forwarded packets
842 * will allocate their own data. When a packet reaches the final
843 * destination it will populate the dynamic data of that specific
844 * packet, and on the way back towards the source, memcpy will be
845 * invoked in every step where a new packet was created e.g. in
846 * the caches. Ultimately when the response reaches the source a
847 * final memcpy is needed to extract the data from the packet
848 * before it is deallocated.
849 */
850 template <typename T>
851 void
852 dataDynamic(T *p)
853 {
854 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
855 data = (PacketDataPtr)p;
856 flags.set(DYNAMIC_DATA);
857 }
858
859 /**
860 * get a pointer to the data ptr.
861 */
862 template <typename T>
863 T*
864 getPtr()
865 {
866 assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
867 return (T*)data;
868 }
869
870 template <typename T>
871 const T*
872 getConstPtr() const
873 {
874 assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
875 return (const T*)data;
876 }
877
878 /**
879 * return the value of what is pointed to in the packet.
880 */
881 template <typename T>
882 T get() const;
883
884 /**
885 * set the value in the data pointer to v.
886 */
887 template <typename T>
888 void set(T v);
889
890 /**
891 * Copy data into the packet from the provided pointer.
892 */
893 void
894 setData(const uint8_t *p)
895 {
896 // we should never be copying data onto itself, which means we
897 // must idenfity packets with static data, as they carry the
898 // same pointer from source to destination and back
899 assert(p != getPtr<uint8_t>() || flags.isSet(STATIC_DATA));
900
901 if (p != getPtr<uint8_t>())
902 // for packet with allocated dynamic data, we copy data from
903 // one to the other, e.g. a forwarded response to a response
904 std::memcpy(getPtr<uint8_t>(), p, getSize());
905 }
906
907 /**
908 * Copy data into the packet from the provided block pointer,
909 * which is aligned to the given block size.
910 */
911 void
912 setDataFromBlock(const uint8_t *blk_data, int blkSize)
913 {
914 setData(blk_data + getOffset(blkSize));
915 }
916
917 /**
918 * Copy data from the packet to the provided block pointer, which
919 * is aligned to the given block size.
920 */
921 void
922 writeData(uint8_t *p) const
923 {
924 std::memcpy(p, getConstPtr<uint8_t>(), getSize());
925 }
926
927 /**
928 * Copy data from the packet to the memory at the provided pointer.
929 */
930 void
931 writeDataToBlock(uint8_t *blk_data, int blkSize) const
932 {
933 writeData(blk_data + getOffset(blkSize));
934 }
935
936 /**
937 * delete the data pointed to in the data pointer. Ok to call to
938 * matter how data was allocted.
939 */
940 void
941 deleteData()
942 {
943 if (flags.isSet(DYNAMIC_DATA))
944 delete [] data;
945
946 flags.clear(STATIC_DATA|DYNAMIC_DATA);
947 data = NULL;
948 }
949
950 /** Allocate memory for the packet. */
951 void
952 allocate()
953 {
954 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
955 flags.set(DYNAMIC_DATA);
956 data = new uint8_t[getSize()];
957 }
958
959 /**
960 * Check a functional request against a memory value stored in
961 * another packet (i.e. an in-transit request or
962 * response). Returns true if the current packet is a read, and
963 * the other packet provides the data, which is then copied to the
964 * current packet. If the current packet is a write, and the other
965 * packet intersects this one, then we update the data
966 * accordingly.
967 */
968 bool
969 checkFunctional(PacketPtr other)
970 {
971 // all packets that are carrying a payload should have a valid
972 // data pointer
973 return checkFunctional(other, other->getAddr(), other->isSecure(),
974 other->getSize(),
975 other->hasData() ?
976 other->getPtr<uint8_t>() : NULL);
977 }
978
979 /**
980 * Check a functional request against a memory value represented
981 * by a base/size pair and an associated data array. If the
982 * current packet is a read, it may be satisfied by the memory
983 * value. If the current packet is a write, it may update the
984 * memory value.
985 */
986 bool
987 checkFunctional(Printable *obj, Addr base, bool is_secure, int size,
988 uint8_t *_data);
989
990 /**
991 * Push label for PrintReq (safe to call unconditionally).
992 */
993 void
994 pushLabel(const std::string &lbl)
995 {
996 if (isPrint())
997 safe_cast<PrintReqState*>(senderState)->pushLabel(lbl);
998 }
999
1000 /**
1001 * Pop label for PrintReq (safe to call unconditionally).
1002 */
1003 void
1004 popLabel()
1005 {
1006 if (isPrint())
1007 safe_cast<PrintReqState*>(senderState)->popLabel();
1008 }
1009
1010 void print(std::ostream &o, int verbosity = 0,
1011 const std::string &prefix = "") const;
1012
1013 /**
1014 * A no-args wrapper of print(std::ostream...)
1015 * meant to be invoked from DPRINTFs
1016 * avoiding string overheads in fast mode
1017 * @return string with the request's type and start<->end addresses
1018 */
1019 std::string print() const;
1020};
1021
1022#endif //__MEM_PACKET_HH
720 }
721
722 void
723 makeAtomicResponse()
724 {
725 makeResponse();
726 }
727
728 void
729 makeTimingResponse()
730 {
731 makeResponse();
732 }
733
734 void
735 setFunctionalResponseStatus(bool success)
736 {
737 if (!success) {
738 if (isWrite()) {
739 cmd = MemCmd::FunctionalWriteError;
740 } else {
741 cmd = MemCmd::FunctionalReadError;
742 }
743 }
744 }
745
746 void
747 setSize(unsigned size)
748 {
749 assert(!flags.isSet(VALID_SIZE));
750
751 this->size = size;
752 flags.set(VALID_SIZE);
753 }
754
755
756 /**
757 * Set the data pointer to the following value that should not be
758 * freed. Static data allows us to do a single memcpy even if
759 * multiple packets are required to get from source to destination
760 * and back. In essence the pointer is set calling dataStatic on
761 * the original packet, and whenever this packet is copied and
762 * forwarded the same pointer is passed on. When a packet
763 * eventually reaches the destination holding the data, it is
764 * copied once into the location originally set. On the way back
765 * to the source, no copies are necessary.
766 */
767 template <typename T>
768 void
769 dataStatic(T *p)
770 {
771 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
772 data = (PacketDataPtr)p;
773 flags.set(STATIC_DATA);
774 }
775
776 /**
777 * Set the data pointer to the following value that should not be
778 * freed. This version of the function allows the pointer passed
779 * to us to be const. To avoid issues down the line we cast the
780 * constness away, the alternative would be to keep both a const
781 * and non-const data pointer and cleverly choose between
782 * them. Note that this is only allowed for static data.
783 */
784 template <typename T>
785 void
786 dataStaticConst(const T *p)
787 {
788 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
789 data = const_cast<PacketDataPtr>(p);
790 flags.set(STATIC_DATA);
791 }
792
793 /**
794 * Set the data pointer to a value that should have delete []
795 * called on it. Dynamic data is local to this packet, and as the
796 * packet travels from source to destination, forwarded packets
797 * will allocate their own data. When a packet reaches the final
798 * destination it will populate the dynamic data of that specific
799 * packet, and on the way back towards the source, memcpy will be
800 * invoked in every step where a new packet was created e.g. in
801 * the caches. Ultimately when the response reaches the source a
802 * final memcpy is needed to extract the data from the packet
803 * before it is deallocated.
804 */
805 template <typename T>
806 void
807 dataDynamic(T *p)
808 {
809 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
810 data = (PacketDataPtr)p;
811 flags.set(DYNAMIC_DATA);
812 }
813
814 /**
815 * get a pointer to the data ptr.
816 */
817 template <typename T>
818 T*
819 getPtr()
820 {
821 assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
822 return (T*)data;
823 }
824
825 template <typename T>
826 const T*
827 getConstPtr() const
828 {
829 assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
830 return (const T*)data;
831 }
832
833 /**
834 * return the value of what is pointed to in the packet.
835 */
836 template <typename T>
837 T get() const;
838
839 /**
840 * set the value in the data pointer to v.
841 */
842 template <typename T>
843 void set(T v);
844
845 /**
846 * Copy data into the packet from the provided pointer.
847 */
848 void
849 setData(const uint8_t *p)
850 {
851 // we should never be copying data onto itself, which means we
852 // must idenfity packets with static data, as they carry the
853 // same pointer from source to destination and back
854 assert(p != getPtr<uint8_t>() || flags.isSet(STATIC_DATA));
855
856 if (p != getPtr<uint8_t>())
857 // for packet with allocated dynamic data, we copy data from
858 // one to the other, e.g. a forwarded response to a response
859 std::memcpy(getPtr<uint8_t>(), p, getSize());
860 }
861
862 /**
863 * Copy data into the packet from the provided block pointer,
864 * which is aligned to the given block size.
865 */
866 void
867 setDataFromBlock(const uint8_t *blk_data, int blkSize)
868 {
869 setData(blk_data + getOffset(blkSize));
870 }
871
872 /**
873 * Copy data from the packet to the provided block pointer, which
874 * is aligned to the given block size.
875 */
876 void
877 writeData(uint8_t *p) const
878 {
879 std::memcpy(p, getConstPtr<uint8_t>(), getSize());
880 }
881
882 /**
883 * Copy data from the packet to the memory at the provided pointer.
884 */
885 void
886 writeDataToBlock(uint8_t *blk_data, int blkSize) const
887 {
888 writeData(blk_data + getOffset(blkSize));
889 }
890
891 /**
892 * delete the data pointed to in the data pointer. Ok to call to
893 * matter how data was allocted.
894 */
895 void
896 deleteData()
897 {
898 if (flags.isSet(DYNAMIC_DATA))
899 delete [] data;
900
901 flags.clear(STATIC_DATA|DYNAMIC_DATA);
902 data = NULL;
903 }
904
905 /** Allocate memory for the packet. */
906 void
907 allocate()
908 {
909 assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
910 flags.set(DYNAMIC_DATA);
911 data = new uint8_t[getSize()];
912 }
913
914 /**
915 * Check a functional request against a memory value stored in
916 * another packet (i.e. an in-transit request or
917 * response). Returns true if the current packet is a read, and
918 * the other packet provides the data, which is then copied to the
919 * current packet. If the current packet is a write, and the other
920 * packet intersects this one, then we update the data
921 * accordingly.
922 */
923 bool
924 checkFunctional(PacketPtr other)
925 {
926 // all packets that are carrying a payload should have a valid
927 // data pointer
928 return checkFunctional(other, other->getAddr(), other->isSecure(),
929 other->getSize(),
930 other->hasData() ?
931 other->getPtr<uint8_t>() : NULL);
932 }
933
934 /**
935 * Check a functional request against a memory value represented
936 * by a base/size pair and an associated data array. If the
937 * current packet is a read, it may be satisfied by the memory
938 * value. If the current packet is a write, it may update the
939 * memory value.
940 */
941 bool
942 checkFunctional(Printable *obj, Addr base, bool is_secure, int size,
943 uint8_t *_data);
944
945 /**
946 * Push label for PrintReq (safe to call unconditionally).
947 */
948 void
949 pushLabel(const std::string &lbl)
950 {
951 if (isPrint())
952 safe_cast<PrintReqState*>(senderState)->pushLabel(lbl);
953 }
954
955 /**
956 * Pop label for PrintReq (safe to call unconditionally).
957 */
958 void
959 popLabel()
960 {
961 if (isPrint())
962 safe_cast<PrintReqState*>(senderState)->popLabel();
963 }
964
965 void print(std::ostream &o, int verbosity = 0,
966 const std::string &prefix = "") const;
967
968 /**
969 * A no-args wrapper of print(std::ostream...)
970 * meant to be invoked from DPRINTFs
971 * avoiding string overheads in fast mode
972 * @return string with the request's type and start<->end addresses
973 */
974 std::string print() const;
975};
976
977#endif //__MEM_PACKET_HH