dram_ctrl.hh (11555:2efa95cf8504) dram_ctrl.hh (11673:9f3ccf96bb5a)
1/*
2 * Copyright (c) 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 * Ani Udipi
42 * Neha Agarwal
43 * Omar Naji
44 * Matthias Jung
45 */
46
47/**
48 * @file
49 * DRAMCtrl declaration
50 */
51
52#ifndef __MEM_DRAM_CTRL_HH__
53#define __MEM_DRAM_CTRL_HH__
54
55#include <deque>
56#include <string>
57#include <unordered_set>
58
59#include "base/statistics.hh"
60#include "enums/AddrMap.hh"
61#include "enums/MemSched.hh"
62#include "enums/PageManage.hh"
63#include "mem/abstract_mem.hh"
64#include "mem/qport.hh"
65#include "params/DRAMCtrl.hh"
66#include "sim/eventq.hh"
67#include "mem/drampower.hh"
68
69/**
70 * The DRAM controller is a single-channel memory controller capturing
71 * the most important timing constraints associated with a
72 * contemporary DRAM. For multi-channel memory systems, the controller
73 * is combined with a crossbar model, with the channel address
74 * interleaving taking part in the crossbar.
75 *
76 * As a basic design principle, this controller
77 * model is not cycle callable, but instead uses events to: 1) decide
78 * when new decisions can be made, 2) when resources become available,
79 * 3) when things are to be considered done, and 4) when to send
80 * things back. Through these simple principles, the model delivers
81 * high performance, and lots of flexibility, allowing users to
82 * evaluate the system impact of a wide range of memory technologies,
83 * such as DDR3/4, LPDDR2/3/4, WideIO1/2, HBM and HMC.
84 *
85 * For more details, please see Hansson et al, "Simulating DRAM
86 * controllers for future system architecture exploration",
87 * Proc. ISPASS, 2014. If you use this model as part of your research
88 * please cite the paper.
89 */
90class DRAMCtrl : public AbstractMemory
91{
92
93 private:
94
95 // For now, make use of a queued slave port to avoid dealing with
96 // flow control for the responses being sent back
97 class MemoryPort : public QueuedSlavePort
98 {
99
100 RespPacketQueue queue;
101 DRAMCtrl& memory;
102
103 public:
104
105 MemoryPort(const std::string& name, DRAMCtrl& _memory);
106
107 protected:
108
109 Tick recvAtomic(PacketPtr pkt);
110
111 void recvFunctional(PacketPtr pkt);
112
113 bool recvTimingReq(PacketPtr);
114
115 virtual AddrRangeList getAddrRanges() const;
116
117 };
118
119 /**
120 * Our incoming port, for a multi-ported controller add a crossbar
121 * in front of it
122 */
123 MemoryPort port;
124
125 /**
126 * Remeber if the memory system is in timing mode
127 */
128 bool isTimingMode;
129
130 /**
131 * Remember if we have to retry a request when available.
132 */
133 bool retryRdReq;
134 bool retryWrReq;
135
136 /**
137 * Bus state used to control the read/write switching and drive
138 * the scheduling of the next request.
139 */
140 enum BusState {
141 READ = 0,
142 READ_TO_WRITE,
143 WRITE,
144 WRITE_TO_READ
145 };
146
147 BusState busState;
148
149 /**
150 * A basic class to track the bank state, i.e. what row is
151 * currently open (if any), when is the bank free to accept a new
152 * column (read/write) command, when can it be precharged, and
153 * when can it be activated.
154 *
155 * The bank also keeps track of how many bytes have been accessed
156 * in the open row since it was opened.
157 */
158 class Bank
159 {
160
161 public:
162
163 static const uint32_t NO_ROW = -1;
164
165 uint32_t openRow;
166 uint8_t bank;
167 uint8_t bankgr;
168
169 Tick colAllowedAt;
170 Tick preAllowedAt;
171 Tick actAllowedAt;
172
173 uint32_t rowAccesses;
174 uint32_t bytesAccessed;
175
176 Bank() :
177 openRow(NO_ROW), bank(0), bankgr(0),
178 colAllowedAt(0), preAllowedAt(0), actAllowedAt(0),
179 rowAccesses(0), bytesAccessed(0)
180 { }
181 };
182
183
184 /**
185 * Rank class includes a vector of banks. Refresh and Power state
186 * machines are defined per rank. Events required to change the
187 * state of the refresh and power state machine are scheduled per
188 * rank. This class allows the implementation of rank-wise refresh
189 * and rank-wise power-down.
190 */
191 class Rank : public EventManager
192 {
193
194 private:
195
196 /**
197 * The power state captures the different operational states of
198 * the DRAM and interacts with the bus read/write state machine,
199 * and the refresh state machine. In the idle state all banks are
200 * precharged. From there we either go to an auto refresh (as
201 * determined by the refresh state machine), or to a precharge
202 * power down mode. From idle the memory can also go to the active
203 * state (with one or more banks active), and in turn from there
204 * to active power down. At the moment we do not capture the deep
205 * power down and self-refresh state.
206 */
207 enum PowerState {
208 PWR_IDLE = 0,
209 PWR_REF,
210 PWR_PRE_PDN,
211 PWR_ACT,
212 PWR_ACT_PDN
213 };
214
215 /**
216 * The refresh state is used to control the progress of the
217 * refresh scheduling. When normal operation is in progress the
218 * refresh state is idle. From there, it progresses to the refresh
219 * drain state once tREFI has passed. The refresh drain state
220 * captures the DRAM row active state, as it will stay there until
221 * all ongoing accesses complete. Thereafter all banks are
222 * precharged, and lastly, the DRAM is refreshed.
223 */
224 enum RefreshState {
225 REF_IDLE = 0,
226 REF_DRAIN,
227 REF_PRE,
228 REF_RUN
229 };
230
231 /**
232 * A reference to the parent DRAMCtrl instance
233 */
234 DRAMCtrl& memory;
235
236 /**
237 * Since we are taking decisions out of order, we need to keep
238 * track of what power transition is happening at what time, such
239 * that we can go back in time and change history. For example, if
240 * we precharge all banks and schedule going to the idle state, we
241 * might at a later point decide to activate a bank before the
242 * transition to idle would have taken place.
243 */
244 PowerState pwrStateTrans;
245
246 /**
247 * Current power state.
248 */
249 PowerState pwrState;
250
251 /**
252 * Track when we transitioned to the current power state
253 */
254 Tick pwrStateTick;
255
256 /**
257 * current refresh state
258 */
259 RefreshState refreshState;
260
261 /**
262 * Keep track of when a refresh is due.
263 */
264 Tick refreshDueAt;
265
266 /*
267 * Command energies
268 */
269 Stats::Scalar actEnergy;
270 Stats::Scalar preEnergy;
271 Stats::Scalar readEnergy;
272 Stats::Scalar writeEnergy;
273 Stats::Scalar refreshEnergy;
274
275 /*
276 * Active Background Energy
277 */
278 Stats::Scalar actBackEnergy;
279
280 /*
281 * Precharge Background Energy
282 */
283 Stats::Scalar preBackEnergy;
284
285 Stats::Scalar totalEnergy;
286 Stats::Scalar averagePower;
287
288 /**
289 * Track time spent in each power state.
290 */
291 Stats::Vector pwrStateTime;
292
293 /**
294 * Function to update Power Stats
295 */
296 void updatePowerStats();
297
298 /**
299 * Schedule a power state transition in the future, and
300 * potentially override an already scheduled transition.
301 *
302 * @param pwr_state Power state to transition to
303 * @param tick Tick when transition should take place
304 */
305 void schedulePowerEvent(PowerState pwr_state, Tick tick);
306
307 public:
308
309 /**
310 * Current Rank index
311 */
312 uint8_t rank;
313
314 /**
315 * One DRAMPower instance per rank
316 */
317 DRAMPower power;
318
319 /**
320 * Vector of Banks. Each rank is made of several devices which in
321 * term are made from several banks.
322 */
323 std::vector<Bank> banks;
324
325 /**
326 * To track number of banks which are currently active for
327 * this rank.
328 */
329 unsigned int numBanksActive;
330
331 /** List to keep track of activate ticks */
332 std::deque<Tick> actTicks;
333
334 Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p);
335
336 const std::string name() const
337 {
338 return csprintf("%s_%d", memory.name(), rank);
339 }
340
341 /**
342 * Kick off accounting for power and refresh states and
343 * schedule initial refresh.
344 *
345 * @param ref_tick Tick for first refresh
346 */
347 void startup(Tick ref_tick);
348
349 /**
350 * Stop the refresh events.
351 */
352 void suspend();
353
354 /**
355 * Check if the current rank is available for scheduling.
356 *
357 * @param Return true if the rank is idle from a refresh point of view
358 */
359 bool isAvailable() const { return refreshState == REF_IDLE; }
360
361 /**
362 * Let the rank check if it was waiting for requests to drain
363 * to allow it to transition states.
364 */
365 void checkDrainDone();
366
367 /*
368 * Function to register Stats
369 */
370 void regStats();
371
372 void processActivateEvent();
373 EventWrapper<Rank, &Rank::processActivateEvent>
374 activateEvent;
375
376 void processPrechargeEvent();
377 EventWrapper<Rank, &Rank::processPrechargeEvent>
378 prechargeEvent;
379
380 void processRefreshEvent();
381 EventWrapper<Rank, &Rank::processRefreshEvent>
382 refreshEvent;
383
384 void processPowerEvent();
385 EventWrapper<Rank, &Rank::processPowerEvent>
386 powerEvent;
387
388 };
389
390 /**
391 * A burst helper helps organize and manage a packet that is larger than
392 * the DRAM burst size. A system packet that is larger than the burst size
393 * is split into multiple DRAM packets and all those DRAM packets point to
394 * a single burst helper such that we know when the whole packet is served.
395 */
396 class BurstHelper {
397
398 public:
399
400 /** Number of DRAM bursts requred for a system packet **/
401 const unsigned int burstCount;
402
403 /** Number of DRAM bursts serviced so far for a system packet **/
404 unsigned int burstsServiced;
405
406 BurstHelper(unsigned int _burstCount)
407 : burstCount(_burstCount), burstsServiced(0)
408 { }
409 };
410
411 /**
412 * A DRAM packet stores packets along with the timestamp of when
413 * the packet entered the queue, and also the decoded address.
414 */
415 class DRAMPacket {
416
417 public:
418
419 /** When did request enter the controller */
420 const Tick entryTime;
421
422 /** When will request leave the controller */
423 Tick readyTime;
424
425 /** This comes from the outside world */
426 const PacketPtr pkt;
427
428 const bool isRead;
429
430 /** Will be populated by address decoder */
431 const uint8_t rank;
432 const uint8_t bank;
433 const uint32_t row;
434
435 /**
436 * Bank id is calculated considering banks in all the ranks
437 * eg: 2 ranks each with 8 banks, then bankId = 0 --> rank0, bank0 and
438 * bankId = 8 --> rank1, bank0
439 */
440 const uint16_t bankId;
441
442 /**
443 * The starting address of the DRAM packet.
444 * This address could be unaligned to burst size boundaries. The
445 * reason is to keep the address offset so we can accurately check
446 * incoming read packets with packets in the write queue.
447 */
448 Addr addr;
449
450 /**
451 * The size of this dram packet in bytes
452 * It is always equal or smaller than DRAM burst size
453 */
454 unsigned int size;
455
456 /**
457 * A pointer to the BurstHelper if this DRAMPacket is a split packet
458 * If not a split packet (common case), this is set to NULL
459 */
460 BurstHelper* burstHelper;
461 Bank& bankRef;
462 Rank& rankRef;
463
464 DRAMPacket(PacketPtr _pkt, bool is_read, uint8_t _rank, uint8_t _bank,
465 uint32_t _row, uint16_t bank_id, Addr _addr,
466 unsigned int _size, Bank& bank_ref, Rank& rank_ref)
467 : entryTime(curTick()), readyTime(curTick()),
468 pkt(_pkt), isRead(is_read), rank(_rank), bank(_bank), row(_row),
469 bankId(bank_id), addr(_addr), size(_size), burstHelper(NULL),
470 bankRef(bank_ref), rankRef(rank_ref)
471 { }
472
473 };
474
475 /**
476 * Bunch of things requires to setup "events" in gem5
477 * When event "respondEvent" occurs for example, the method
478 * processRespondEvent is called; no parameters are allowed
479 * in these methods
480 */
481 void processNextReqEvent();
482 EventWrapper<DRAMCtrl,&DRAMCtrl::processNextReqEvent> nextReqEvent;
483
484 void processRespondEvent();
485 EventWrapper<DRAMCtrl, &DRAMCtrl::processRespondEvent> respondEvent;
486
487 /**
488 * Check if the read queue has room for more entries
489 *
490 * @param pktCount The number of entries needed in the read queue
491 * @return true if read queue is full, false otherwise
492 */
493 bool readQueueFull(unsigned int pktCount) const;
494
495 /**
496 * Check if the write queue has room for more entries
497 *
498 * @param pktCount The number of entries needed in the write queue
499 * @return true if write queue is full, false otherwise
500 */
501 bool writeQueueFull(unsigned int pktCount) const;
502
503 /**
504 * When a new read comes in, first check if the write q has a
505 * pending request to the same address.\ If not, decode the
506 * address to populate rank/bank/row, create one or mutliple
507 * "dram_pkt", and push them to the back of the read queue.\
508 * If this is the only
509 * read request in the system, schedule an event to start
510 * servicing it.
511 *
512 * @param pkt The request packet from the outside world
513 * @param pktCount The number of DRAM bursts the pkt
514 * translate to. If pkt size is larger then one full burst,
515 * then pktCount is greater than one.
516 */
517 void addToReadQueue(PacketPtr pkt, unsigned int pktCount);
518
519 /**
520 * Decode the incoming pkt, create a dram_pkt and push to the
521 * back of the write queue. \If the write q length is more than
522 * the threshold specified by the user, ie the queue is beginning
523 * to get full, stop reads, and start draining writes.
524 *
525 * @param pkt The request packet from the outside world
526 * @param pktCount The number of DRAM bursts the pkt
527 * translate to. If pkt size is larger then one full burst,
528 * then pktCount is greater than one.
529 */
530 void addToWriteQueue(PacketPtr pkt, unsigned int pktCount);
531
532 /**
533 * Actually do the DRAM access - figure out the latency it
534 * will take to service the req based on bank state, channel state etc
535 * and then update those states to account for this request.\ Based
536 * on this, update the packet's "readyTime" and move it to the
537 * response q from where it will eventually go back to the outside
538 * world.
539 *
540 * @param pkt The DRAM packet created from the outside world pkt
541 */
542 void doDRAMAccess(DRAMPacket* dram_pkt);
543
544 /**
545 * When a packet reaches its "readyTime" in the response Q,
546 * use the "access()" method in AbstractMemory to actually
547 * create the response packet, and send it back to the outside
548 * world requestor.
549 *
550 * @param pkt The packet from the outside world
551 * @param static_latency Static latency to add before sending the packet
552 */
553 void accessAndRespond(PacketPtr pkt, Tick static_latency);
554
555 /**
556 * Address decoder to figure out physical mapping onto ranks,
557 * banks, and rows. This function is called multiple times on the same
558 * system packet if the pakcet is larger than burst of the memory. The
559 * dramPktAddr is used for the offset within the packet.
560 *
561 * @param pkt The packet from the outside world
562 * @param dramPktAddr The starting address of the DRAM packet
563 * @param size The size of the DRAM packet in bytes
564 * @param isRead Is the request for a read or a write to DRAM
565 * @return A DRAMPacket pointer with the decoded information
566 */
567 DRAMPacket* decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned int size,
568 bool isRead);
569
570 /**
571 * The memory schduler/arbiter - picks which request needs to
572 * go next, based on the specified policy such as FCFS or FR-FCFS
573 * and moves it to the head of the queue.
574 * Prioritizes accesses to the same rank as previous burst unless
575 * controller is switching command type.
576 *
577 * @param queue Queued requests to consider
578 * @param extra_col_delay Any extra delay due to a read/write switch
579 * @return true if a packet is scheduled to a rank which is available else
580 * false
581 */
582 bool chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay);
583
584 /**
585 * For FR-FCFS policy reorder the read/write queue depending on row buffer
586 * hits and earliest bursts available in DRAM
587 *
588 * @param queue Queued requests to consider
589 * @param extra_col_delay Any extra delay due to a read/write switch
590 * @return true if a packet is scheduled to a rank which is available else
591 * false
592 */
593 bool reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay);
594
595 /**
596 * Find which are the earliest banks ready to issue an activate
597 * for the enqueued requests. Assumes maximum of 64 banks per DIMM
598 * Also checks if the bank is already prepped.
599 *
600 * @param queue Queued requests to consider
601 * @param time of seamless burst command
602 * @return One-hot encoded mask of bank indices
603 * @return boolean indicating burst can issue seamlessly, with no gaps
604 */
605 std::pair<uint64_t, bool> minBankPrep(const std::deque<DRAMPacket*>& queue,
606 Tick min_col_at) const;
607
608 /**
609 * Keep track of when row activations happen, in order to enforce
610 * the maximum number of activations in the activation window. The
611 * method updates the time that the banks become available based
612 * on the current limits.
613 *
614 * @param rank_ref Reference to the rank
615 * @param bank_ref Reference to the bank
616 * @param act_tick Time when the activation takes place
617 * @param row Index of the row
618 */
619 void activateBank(Rank& rank_ref, Bank& bank_ref, Tick act_tick,
620 uint32_t row);
621
622 /**
623 * Precharge a given bank and also update when the precharge is
624 * done. This will also deal with any stats related to the
625 * accesses to the open page.
626 *
627 * @param rank_ref The rank to precharge
628 * @param bank_ref The bank to precharge
629 * @param pre_at Time when the precharge takes place
630 * @param trace Is this an auto precharge then do not add to trace
631 */
632 void prechargeBank(Rank& rank_ref, Bank& bank_ref,
633 Tick pre_at, bool trace = true);
634
635 /**
636 * Used for debugging to observe the contents of the queues.
637 */
638 void printQs() const;
639
640 /**
641 * Burst-align an address.
642 *
643 * @param addr The potentially unaligned address
644 *
645 * @return An address aligned to a DRAM burst
646 */
647 Addr burstAlign(Addr addr) const { return (addr & ~(Addr(burstSize - 1))); }
648
649 /**
650 * The controller's main read and write queues
651 */
652 std::deque<DRAMPacket*> readQueue;
653 std::deque<DRAMPacket*> writeQueue;
654
655 /**
656 * To avoid iterating over the write queue to check for
657 * overlapping transactions, maintain a set of burst addresses
658 * that are currently queued. Since we merge writes to the same
659 * location we never have more than one address to the same burst
660 * address.
661 */
662 std::unordered_set<Addr> isInWriteQueue;
663
664 /**
665 * Response queue where read packets wait after we're done working
666 * with them, but it's not time to send the response yet. The
667 * responses are stored seperately mostly to keep the code clean
668 * and help with events scheduling. For all logical purposes such
669 * as sizing the read queue, this and the main read queue need to
670 * be added together.
671 */
672 std::deque<DRAMPacket*> respQueue;
673
674 /**
675 * Vector of ranks
676 */
677 std::vector<Rank*> ranks;
678
679 /**
680 * The following are basic design parameters of the memory
681 * controller, and are initialized based on parameter values.
682 * The rowsPerBank is determined based on the capacity, number of
683 * ranks and banks, the burst size, and the row buffer size.
684 */
685 const uint32_t deviceSize;
686 const uint32_t deviceBusWidth;
687 const uint32_t burstLength;
688 const uint32_t deviceRowBufferSize;
689 const uint32_t devicesPerRank;
690 const uint32_t burstSize;
691 const uint32_t rowBufferSize;
692 const uint32_t columnsPerRowBuffer;
693 const uint32_t columnsPerStripe;
694 const uint32_t ranksPerChannel;
695 const uint32_t bankGroupsPerRank;
696 const bool bankGroupArch;
697 const uint32_t banksPerRank;
698 const uint32_t channels;
699 uint32_t rowsPerBank;
700 const uint32_t readBufferSize;
701 const uint32_t writeBufferSize;
702 const uint32_t writeHighThreshold;
703 const uint32_t writeLowThreshold;
704 const uint32_t minWritesPerSwitch;
705 uint32_t writesThisTime;
706 uint32_t readsThisTime;
707
708 /**
709 * Basic memory timing parameters initialized based on parameter
710 * values.
711 */
712 const Tick M5_CLASS_VAR_USED tCK;
713 const Tick tWTR;
714 const Tick tRTW;
715 const Tick tCS;
716 const Tick tBURST;
717 const Tick tCCD_L;
718 const Tick tRCD;
719 const Tick tCL;
720 const Tick tRP;
721 const Tick tRAS;
722 const Tick tWR;
723 const Tick tRTP;
724 const Tick tRFC;
725 const Tick tREFI;
726 const Tick tRRD;
727 const Tick tRRD_L;
728 const Tick tXAW;
1/*
2 * Copyright (c) 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 * Ani Udipi
42 * Neha Agarwal
43 * Omar Naji
44 * Matthias Jung
45 */
46
47/**
48 * @file
49 * DRAMCtrl declaration
50 */
51
52#ifndef __MEM_DRAM_CTRL_HH__
53#define __MEM_DRAM_CTRL_HH__
54
55#include <deque>
56#include <string>
57#include <unordered_set>
58
59#include "base/statistics.hh"
60#include "enums/AddrMap.hh"
61#include "enums/MemSched.hh"
62#include "enums/PageManage.hh"
63#include "mem/abstract_mem.hh"
64#include "mem/qport.hh"
65#include "params/DRAMCtrl.hh"
66#include "sim/eventq.hh"
67#include "mem/drampower.hh"
68
69/**
70 * The DRAM controller is a single-channel memory controller capturing
71 * the most important timing constraints associated with a
72 * contemporary DRAM. For multi-channel memory systems, the controller
73 * is combined with a crossbar model, with the channel address
74 * interleaving taking part in the crossbar.
75 *
76 * As a basic design principle, this controller
77 * model is not cycle callable, but instead uses events to: 1) decide
78 * when new decisions can be made, 2) when resources become available,
79 * 3) when things are to be considered done, and 4) when to send
80 * things back. Through these simple principles, the model delivers
81 * high performance, and lots of flexibility, allowing users to
82 * evaluate the system impact of a wide range of memory technologies,
83 * such as DDR3/4, LPDDR2/3/4, WideIO1/2, HBM and HMC.
84 *
85 * For more details, please see Hansson et al, "Simulating DRAM
86 * controllers for future system architecture exploration",
87 * Proc. ISPASS, 2014. If you use this model as part of your research
88 * please cite the paper.
89 */
90class DRAMCtrl : public AbstractMemory
91{
92
93 private:
94
95 // For now, make use of a queued slave port to avoid dealing with
96 // flow control for the responses being sent back
97 class MemoryPort : public QueuedSlavePort
98 {
99
100 RespPacketQueue queue;
101 DRAMCtrl& memory;
102
103 public:
104
105 MemoryPort(const std::string& name, DRAMCtrl& _memory);
106
107 protected:
108
109 Tick recvAtomic(PacketPtr pkt);
110
111 void recvFunctional(PacketPtr pkt);
112
113 bool recvTimingReq(PacketPtr);
114
115 virtual AddrRangeList getAddrRanges() const;
116
117 };
118
119 /**
120 * Our incoming port, for a multi-ported controller add a crossbar
121 * in front of it
122 */
123 MemoryPort port;
124
125 /**
126 * Remeber if the memory system is in timing mode
127 */
128 bool isTimingMode;
129
130 /**
131 * Remember if we have to retry a request when available.
132 */
133 bool retryRdReq;
134 bool retryWrReq;
135
136 /**
137 * Bus state used to control the read/write switching and drive
138 * the scheduling of the next request.
139 */
140 enum BusState {
141 READ = 0,
142 READ_TO_WRITE,
143 WRITE,
144 WRITE_TO_READ
145 };
146
147 BusState busState;
148
149 /**
150 * A basic class to track the bank state, i.e. what row is
151 * currently open (if any), when is the bank free to accept a new
152 * column (read/write) command, when can it be precharged, and
153 * when can it be activated.
154 *
155 * The bank also keeps track of how many bytes have been accessed
156 * in the open row since it was opened.
157 */
158 class Bank
159 {
160
161 public:
162
163 static const uint32_t NO_ROW = -1;
164
165 uint32_t openRow;
166 uint8_t bank;
167 uint8_t bankgr;
168
169 Tick colAllowedAt;
170 Tick preAllowedAt;
171 Tick actAllowedAt;
172
173 uint32_t rowAccesses;
174 uint32_t bytesAccessed;
175
176 Bank() :
177 openRow(NO_ROW), bank(0), bankgr(0),
178 colAllowedAt(0), preAllowedAt(0), actAllowedAt(0),
179 rowAccesses(0), bytesAccessed(0)
180 { }
181 };
182
183
184 /**
185 * Rank class includes a vector of banks. Refresh and Power state
186 * machines are defined per rank. Events required to change the
187 * state of the refresh and power state machine are scheduled per
188 * rank. This class allows the implementation of rank-wise refresh
189 * and rank-wise power-down.
190 */
191 class Rank : public EventManager
192 {
193
194 private:
195
196 /**
197 * The power state captures the different operational states of
198 * the DRAM and interacts with the bus read/write state machine,
199 * and the refresh state machine. In the idle state all banks are
200 * precharged. From there we either go to an auto refresh (as
201 * determined by the refresh state machine), or to a precharge
202 * power down mode. From idle the memory can also go to the active
203 * state (with one or more banks active), and in turn from there
204 * to active power down. At the moment we do not capture the deep
205 * power down and self-refresh state.
206 */
207 enum PowerState {
208 PWR_IDLE = 0,
209 PWR_REF,
210 PWR_PRE_PDN,
211 PWR_ACT,
212 PWR_ACT_PDN
213 };
214
215 /**
216 * The refresh state is used to control the progress of the
217 * refresh scheduling. When normal operation is in progress the
218 * refresh state is idle. From there, it progresses to the refresh
219 * drain state once tREFI has passed. The refresh drain state
220 * captures the DRAM row active state, as it will stay there until
221 * all ongoing accesses complete. Thereafter all banks are
222 * precharged, and lastly, the DRAM is refreshed.
223 */
224 enum RefreshState {
225 REF_IDLE = 0,
226 REF_DRAIN,
227 REF_PRE,
228 REF_RUN
229 };
230
231 /**
232 * A reference to the parent DRAMCtrl instance
233 */
234 DRAMCtrl& memory;
235
236 /**
237 * Since we are taking decisions out of order, we need to keep
238 * track of what power transition is happening at what time, such
239 * that we can go back in time and change history. For example, if
240 * we precharge all banks and schedule going to the idle state, we
241 * might at a later point decide to activate a bank before the
242 * transition to idle would have taken place.
243 */
244 PowerState pwrStateTrans;
245
246 /**
247 * Current power state.
248 */
249 PowerState pwrState;
250
251 /**
252 * Track when we transitioned to the current power state
253 */
254 Tick pwrStateTick;
255
256 /**
257 * current refresh state
258 */
259 RefreshState refreshState;
260
261 /**
262 * Keep track of when a refresh is due.
263 */
264 Tick refreshDueAt;
265
266 /*
267 * Command energies
268 */
269 Stats::Scalar actEnergy;
270 Stats::Scalar preEnergy;
271 Stats::Scalar readEnergy;
272 Stats::Scalar writeEnergy;
273 Stats::Scalar refreshEnergy;
274
275 /*
276 * Active Background Energy
277 */
278 Stats::Scalar actBackEnergy;
279
280 /*
281 * Precharge Background Energy
282 */
283 Stats::Scalar preBackEnergy;
284
285 Stats::Scalar totalEnergy;
286 Stats::Scalar averagePower;
287
288 /**
289 * Track time spent in each power state.
290 */
291 Stats::Vector pwrStateTime;
292
293 /**
294 * Function to update Power Stats
295 */
296 void updatePowerStats();
297
298 /**
299 * Schedule a power state transition in the future, and
300 * potentially override an already scheduled transition.
301 *
302 * @param pwr_state Power state to transition to
303 * @param tick Tick when transition should take place
304 */
305 void schedulePowerEvent(PowerState pwr_state, Tick tick);
306
307 public:
308
309 /**
310 * Current Rank index
311 */
312 uint8_t rank;
313
314 /**
315 * One DRAMPower instance per rank
316 */
317 DRAMPower power;
318
319 /**
320 * Vector of Banks. Each rank is made of several devices which in
321 * term are made from several banks.
322 */
323 std::vector<Bank> banks;
324
325 /**
326 * To track number of banks which are currently active for
327 * this rank.
328 */
329 unsigned int numBanksActive;
330
331 /** List to keep track of activate ticks */
332 std::deque<Tick> actTicks;
333
334 Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p);
335
336 const std::string name() const
337 {
338 return csprintf("%s_%d", memory.name(), rank);
339 }
340
341 /**
342 * Kick off accounting for power and refresh states and
343 * schedule initial refresh.
344 *
345 * @param ref_tick Tick for first refresh
346 */
347 void startup(Tick ref_tick);
348
349 /**
350 * Stop the refresh events.
351 */
352 void suspend();
353
354 /**
355 * Check if the current rank is available for scheduling.
356 *
357 * @param Return true if the rank is idle from a refresh point of view
358 */
359 bool isAvailable() const { return refreshState == REF_IDLE; }
360
361 /**
362 * Let the rank check if it was waiting for requests to drain
363 * to allow it to transition states.
364 */
365 void checkDrainDone();
366
367 /*
368 * Function to register Stats
369 */
370 void regStats();
371
372 void processActivateEvent();
373 EventWrapper<Rank, &Rank::processActivateEvent>
374 activateEvent;
375
376 void processPrechargeEvent();
377 EventWrapper<Rank, &Rank::processPrechargeEvent>
378 prechargeEvent;
379
380 void processRefreshEvent();
381 EventWrapper<Rank, &Rank::processRefreshEvent>
382 refreshEvent;
383
384 void processPowerEvent();
385 EventWrapper<Rank, &Rank::processPowerEvent>
386 powerEvent;
387
388 };
389
390 /**
391 * A burst helper helps organize and manage a packet that is larger than
392 * the DRAM burst size. A system packet that is larger than the burst size
393 * is split into multiple DRAM packets and all those DRAM packets point to
394 * a single burst helper such that we know when the whole packet is served.
395 */
396 class BurstHelper {
397
398 public:
399
400 /** Number of DRAM bursts requred for a system packet **/
401 const unsigned int burstCount;
402
403 /** Number of DRAM bursts serviced so far for a system packet **/
404 unsigned int burstsServiced;
405
406 BurstHelper(unsigned int _burstCount)
407 : burstCount(_burstCount), burstsServiced(0)
408 { }
409 };
410
411 /**
412 * A DRAM packet stores packets along with the timestamp of when
413 * the packet entered the queue, and also the decoded address.
414 */
415 class DRAMPacket {
416
417 public:
418
419 /** When did request enter the controller */
420 const Tick entryTime;
421
422 /** When will request leave the controller */
423 Tick readyTime;
424
425 /** This comes from the outside world */
426 const PacketPtr pkt;
427
428 const bool isRead;
429
430 /** Will be populated by address decoder */
431 const uint8_t rank;
432 const uint8_t bank;
433 const uint32_t row;
434
435 /**
436 * Bank id is calculated considering banks in all the ranks
437 * eg: 2 ranks each with 8 banks, then bankId = 0 --> rank0, bank0 and
438 * bankId = 8 --> rank1, bank0
439 */
440 const uint16_t bankId;
441
442 /**
443 * The starting address of the DRAM packet.
444 * This address could be unaligned to burst size boundaries. The
445 * reason is to keep the address offset so we can accurately check
446 * incoming read packets with packets in the write queue.
447 */
448 Addr addr;
449
450 /**
451 * The size of this dram packet in bytes
452 * It is always equal or smaller than DRAM burst size
453 */
454 unsigned int size;
455
456 /**
457 * A pointer to the BurstHelper if this DRAMPacket is a split packet
458 * If not a split packet (common case), this is set to NULL
459 */
460 BurstHelper* burstHelper;
461 Bank& bankRef;
462 Rank& rankRef;
463
464 DRAMPacket(PacketPtr _pkt, bool is_read, uint8_t _rank, uint8_t _bank,
465 uint32_t _row, uint16_t bank_id, Addr _addr,
466 unsigned int _size, Bank& bank_ref, Rank& rank_ref)
467 : entryTime(curTick()), readyTime(curTick()),
468 pkt(_pkt), isRead(is_read), rank(_rank), bank(_bank), row(_row),
469 bankId(bank_id), addr(_addr), size(_size), burstHelper(NULL),
470 bankRef(bank_ref), rankRef(rank_ref)
471 { }
472
473 };
474
475 /**
476 * Bunch of things requires to setup "events" in gem5
477 * When event "respondEvent" occurs for example, the method
478 * processRespondEvent is called; no parameters are allowed
479 * in these methods
480 */
481 void processNextReqEvent();
482 EventWrapper<DRAMCtrl,&DRAMCtrl::processNextReqEvent> nextReqEvent;
483
484 void processRespondEvent();
485 EventWrapper<DRAMCtrl, &DRAMCtrl::processRespondEvent> respondEvent;
486
487 /**
488 * Check if the read queue has room for more entries
489 *
490 * @param pktCount The number of entries needed in the read queue
491 * @return true if read queue is full, false otherwise
492 */
493 bool readQueueFull(unsigned int pktCount) const;
494
495 /**
496 * Check if the write queue has room for more entries
497 *
498 * @param pktCount The number of entries needed in the write queue
499 * @return true if write queue is full, false otherwise
500 */
501 bool writeQueueFull(unsigned int pktCount) const;
502
503 /**
504 * When a new read comes in, first check if the write q has a
505 * pending request to the same address.\ If not, decode the
506 * address to populate rank/bank/row, create one or mutliple
507 * "dram_pkt", and push them to the back of the read queue.\
508 * If this is the only
509 * read request in the system, schedule an event to start
510 * servicing it.
511 *
512 * @param pkt The request packet from the outside world
513 * @param pktCount The number of DRAM bursts the pkt
514 * translate to. If pkt size is larger then one full burst,
515 * then pktCount is greater than one.
516 */
517 void addToReadQueue(PacketPtr pkt, unsigned int pktCount);
518
519 /**
520 * Decode the incoming pkt, create a dram_pkt and push to the
521 * back of the write queue. \If the write q length is more than
522 * the threshold specified by the user, ie the queue is beginning
523 * to get full, stop reads, and start draining writes.
524 *
525 * @param pkt The request packet from the outside world
526 * @param pktCount The number of DRAM bursts the pkt
527 * translate to. If pkt size is larger then one full burst,
528 * then pktCount is greater than one.
529 */
530 void addToWriteQueue(PacketPtr pkt, unsigned int pktCount);
531
532 /**
533 * Actually do the DRAM access - figure out the latency it
534 * will take to service the req based on bank state, channel state etc
535 * and then update those states to account for this request.\ Based
536 * on this, update the packet's "readyTime" and move it to the
537 * response q from where it will eventually go back to the outside
538 * world.
539 *
540 * @param pkt The DRAM packet created from the outside world pkt
541 */
542 void doDRAMAccess(DRAMPacket* dram_pkt);
543
544 /**
545 * When a packet reaches its "readyTime" in the response Q,
546 * use the "access()" method in AbstractMemory to actually
547 * create the response packet, and send it back to the outside
548 * world requestor.
549 *
550 * @param pkt The packet from the outside world
551 * @param static_latency Static latency to add before sending the packet
552 */
553 void accessAndRespond(PacketPtr pkt, Tick static_latency);
554
555 /**
556 * Address decoder to figure out physical mapping onto ranks,
557 * banks, and rows. This function is called multiple times on the same
558 * system packet if the pakcet is larger than burst of the memory. The
559 * dramPktAddr is used for the offset within the packet.
560 *
561 * @param pkt The packet from the outside world
562 * @param dramPktAddr The starting address of the DRAM packet
563 * @param size The size of the DRAM packet in bytes
564 * @param isRead Is the request for a read or a write to DRAM
565 * @return A DRAMPacket pointer with the decoded information
566 */
567 DRAMPacket* decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned int size,
568 bool isRead);
569
570 /**
571 * The memory schduler/arbiter - picks which request needs to
572 * go next, based on the specified policy such as FCFS or FR-FCFS
573 * and moves it to the head of the queue.
574 * Prioritizes accesses to the same rank as previous burst unless
575 * controller is switching command type.
576 *
577 * @param queue Queued requests to consider
578 * @param extra_col_delay Any extra delay due to a read/write switch
579 * @return true if a packet is scheduled to a rank which is available else
580 * false
581 */
582 bool chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay);
583
584 /**
585 * For FR-FCFS policy reorder the read/write queue depending on row buffer
586 * hits and earliest bursts available in DRAM
587 *
588 * @param queue Queued requests to consider
589 * @param extra_col_delay Any extra delay due to a read/write switch
590 * @return true if a packet is scheduled to a rank which is available else
591 * false
592 */
593 bool reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay);
594
595 /**
596 * Find which are the earliest banks ready to issue an activate
597 * for the enqueued requests. Assumes maximum of 64 banks per DIMM
598 * Also checks if the bank is already prepped.
599 *
600 * @param queue Queued requests to consider
601 * @param time of seamless burst command
602 * @return One-hot encoded mask of bank indices
603 * @return boolean indicating burst can issue seamlessly, with no gaps
604 */
605 std::pair<uint64_t, bool> minBankPrep(const std::deque<DRAMPacket*>& queue,
606 Tick min_col_at) const;
607
608 /**
609 * Keep track of when row activations happen, in order to enforce
610 * the maximum number of activations in the activation window. The
611 * method updates the time that the banks become available based
612 * on the current limits.
613 *
614 * @param rank_ref Reference to the rank
615 * @param bank_ref Reference to the bank
616 * @param act_tick Time when the activation takes place
617 * @param row Index of the row
618 */
619 void activateBank(Rank& rank_ref, Bank& bank_ref, Tick act_tick,
620 uint32_t row);
621
622 /**
623 * Precharge a given bank and also update when the precharge is
624 * done. This will also deal with any stats related to the
625 * accesses to the open page.
626 *
627 * @param rank_ref The rank to precharge
628 * @param bank_ref The bank to precharge
629 * @param pre_at Time when the precharge takes place
630 * @param trace Is this an auto precharge then do not add to trace
631 */
632 void prechargeBank(Rank& rank_ref, Bank& bank_ref,
633 Tick pre_at, bool trace = true);
634
635 /**
636 * Used for debugging to observe the contents of the queues.
637 */
638 void printQs() const;
639
640 /**
641 * Burst-align an address.
642 *
643 * @param addr The potentially unaligned address
644 *
645 * @return An address aligned to a DRAM burst
646 */
647 Addr burstAlign(Addr addr) const { return (addr & ~(Addr(burstSize - 1))); }
648
649 /**
650 * The controller's main read and write queues
651 */
652 std::deque<DRAMPacket*> readQueue;
653 std::deque<DRAMPacket*> writeQueue;
654
655 /**
656 * To avoid iterating over the write queue to check for
657 * overlapping transactions, maintain a set of burst addresses
658 * that are currently queued. Since we merge writes to the same
659 * location we never have more than one address to the same burst
660 * address.
661 */
662 std::unordered_set<Addr> isInWriteQueue;
663
664 /**
665 * Response queue where read packets wait after we're done working
666 * with them, but it's not time to send the response yet. The
667 * responses are stored seperately mostly to keep the code clean
668 * and help with events scheduling. For all logical purposes such
669 * as sizing the read queue, this and the main read queue need to
670 * be added together.
671 */
672 std::deque<DRAMPacket*> respQueue;
673
674 /**
675 * Vector of ranks
676 */
677 std::vector<Rank*> ranks;
678
679 /**
680 * The following are basic design parameters of the memory
681 * controller, and are initialized based on parameter values.
682 * The rowsPerBank is determined based on the capacity, number of
683 * ranks and banks, the burst size, and the row buffer size.
684 */
685 const uint32_t deviceSize;
686 const uint32_t deviceBusWidth;
687 const uint32_t burstLength;
688 const uint32_t deviceRowBufferSize;
689 const uint32_t devicesPerRank;
690 const uint32_t burstSize;
691 const uint32_t rowBufferSize;
692 const uint32_t columnsPerRowBuffer;
693 const uint32_t columnsPerStripe;
694 const uint32_t ranksPerChannel;
695 const uint32_t bankGroupsPerRank;
696 const bool bankGroupArch;
697 const uint32_t banksPerRank;
698 const uint32_t channels;
699 uint32_t rowsPerBank;
700 const uint32_t readBufferSize;
701 const uint32_t writeBufferSize;
702 const uint32_t writeHighThreshold;
703 const uint32_t writeLowThreshold;
704 const uint32_t minWritesPerSwitch;
705 uint32_t writesThisTime;
706 uint32_t readsThisTime;
707
708 /**
709 * Basic memory timing parameters initialized based on parameter
710 * values.
711 */
712 const Tick M5_CLASS_VAR_USED tCK;
713 const Tick tWTR;
714 const Tick tRTW;
715 const Tick tCS;
716 const Tick tBURST;
717 const Tick tCCD_L;
718 const Tick tRCD;
719 const Tick tCL;
720 const Tick tRP;
721 const Tick tRAS;
722 const Tick tWR;
723 const Tick tRTP;
724 const Tick tRFC;
725 const Tick tREFI;
726 const Tick tRRD;
727 const Tick tRRD_L;
728 const Tick tXAW;
729 const Tick tXP;
730 const Tick tXS;
729 const uint32_t activationLimit;
730
731 /**
732 * Memory controller configuration initialized based on parameter
733 * values.
734 */
735 Enums::MemSched memSchedPolicy;
736 Enums::AddrMap addrMapping;
737 Enums::PageManage pageMgmt;
738
739 /**
740 * Max column accesses (read and write) per row, before forefully
741 * closing it.
742 */
743 const uint32_t maxAccessesPerRow;
744
745 /**
746 * Pipeline latency of the controller frontend. The frontend
747 * contribution is added to writes (that complete when they are in
748 * the write buffer) and reads that are serviced the write buffer.
749 */
750 const Tick frontendLatency;
751
752 /**
753 * Pipeline latency of the backend and PHY. Along with the
754 * frontend contribution, this latency is added to reads serviced
755 * by the DRAM.
756 */
757 const Tick backendLatency;
758
759 /**
760 * Till when has the main data bus been spoken for already?
761 */
762 Tick busBusyUntil;
763
764 Tick prevArrival;
765
766 /**
767 * The soonest you have to start thinking about the next request
768 * is the longest access time that can occur before
769 * busBusyUntil. Assuming you need to precharge, open a new row,
770 * and access, it is tRP + tRCD + tCL.
771 */
772 Tick nextReqTime;
773
774 // All statistics that the model needs to capture
775 Stats::Scalar readReqs;
776 Stats::Scalar writeReqs;
777 Stats::Scalar readBursts;
778 Stats::Scalar writeBursts;
779 Stats::Scalar bytesReadDRAM;
780 Stats::Scalar bytesReadWrQ;
781 Stats::Scalar bytesWritten;
782 Stats::Scalar bytesReadSys;
783 Stats::Scalar bytesWrittenSys;
784 Stats::Scalar servicedByWrQ;
785 Stats::Scalar mergedWrBursts;
786 Stats::Scalar neitherReadNorWrite;
787 Stats::Vector perBankRdBursts;
788 Stats::Vector perBankWrBursts;
789 Stats::Scalar numRdRetry;
790 Stats::Scalar numWrRetry;
791 Stats::Scalar totGap;
792 Stats::Vector readPktSize;
793 Stats::Vector writePktSize;
794 Stats::Vector rdQLenPdf;
795 Stats::Vector wrQLenPdf;
796 Stats::Histogram bytesPerActivate;
797 Stats::Histogram rdPerTurnAround;
798 Stats::Histogram wrPerTurnAround;
799
800 // Latencies summed over all requests
801 Stats::Scalar totQLat;
802 Stats::Scalar totMemAccLat;
803 Stats::Scalar totBusLat;
804
805 // Average latencies per request
806 Stats::Formula avgQLat;
807 Stats::Formula avgBusLat;
808 Stats::Formula avgMemAccLat;
809
810 // Average bandwidth
811 Stats::Formula avgRdBW;
812 Stats::Formula avgWrBW;
813 Stats::Formula avgRdBWSys;
814 Stats::Formula avgWrBWSys;
815 Stats::Formula peakBW;
816 Stats::Formula busUtil;
817 Stats::Formula busUtilRead;
818 Stats::Formula busUtilWrite;
819
820 // Average queue lengths
821 Stats::Average avgRdQLen;
822 Stats::Average avgWrQLen;
823
824 // Row hit count and rate
825 Stats::Scalar readRowHits;
826 Stats::Scalar writeRowHits;
827 Stats::Formula readRowHitRate;
828 Stats::Formula writeRowHitRate;
829 Stats::Formula avgGap;
830
831 // DRAM Power Calculation
832 Stats::Formula pageHitRate;
833
834 // Holds the value of the rank of burst issued
835 uint8_t activeRank;
836
837 // timestamp offset
838 uint64_t timeStampOffset;
839
840 /**
841 * Upstream caches need this packet until true is returned, so
842 * hold it for deletion until a subsequent call
843 */
844 std::unique_ptr<Packet> pendingDelete;
845
846 /**
847 * This function increments the energy when called. If stats are
848 * dumped periodically, note accumulated energy values will
849 * appear in the stats (even if the stats are reset). This is a
850 * result of the energy values coming from DRAMPower, and there
851 * is currently no support for resetting the state.
852 *
853 * @param rank Currrent rank
854 */
855 void updatePowerStats(Rank& rank_ref);
856
857 /**
858 * Function for sorting commands in the command list of DRAMPower.
859 *
860 * @param a Memory Command in command list of DRAMPower library
861 * @param next Memory Command in command list of DRAMPower
862 * @return true if timestamp of Command 1 < timestamp of Command 2
863 */
864 static bool sortTime(const Data::MemCommand& m1,
865 const Data::MemCommand& m2) {
866 return m1.getTimeInt64() < m2.getTimeInt64();
867 };
868
869
870 public:
871
872 void regStats() override;
873
874 DRAMCtrl(const DRAMCtrlParams* p);
875
876 DrainState drain() override;
877
878 virtual BaseSlavePort& getSlavePort(const std::string& if_name,
879 PortID idx = InvalidPortID) override;
880
881 virtual void init() override;
882 virtual void startup() override;
883 virtual void drainResume() override;
884
885 protected:
886
887 Tick recvAtomic(PacketPtr pkt);
888 void recvFunctional(PacketPtr pkt);
889 bool recvTimingReq(PacketPtr pkt);
890
891};
892
893#endif //__MEM_DRAM_CTRL_HH__
731 const uint32_t activationLimit;
732
733 /**
734 * Memory controller configuration initialized based on parameter
735 * values.
736 */
737 Enums::MemSched memSchedPolicy;
738 Enums::AddrMap addrMapping;
739 Enums::PageManage pageMgmt;
740
741 /**
742 * Max column accesses (read and write) per row, before forefully
743 * closing it.
744 */
745 const uint32_t maxAccessesPerRow;
746
747 /**
748 * Pipeline latency of the controller frontend. The frontend
749 * contribution is added to writes (that complete when they are in
750 * the write buffer) and reads that are serviced the write buffer.
751 */
752 const Tick frontendLatency;
753
754 /**
755 * Pipeline latency of the backend and PHY. Along with the
756 * frontend contribution, this latency is added to reads serviced
757 * by the DRAM.
758 */
759 const Tick backendLatency;
760
761 /**
762 * Till when has the main data bus been spoken for already?
763 */
764 Tick busBusyUntil;
765
766 Tick prevArrival;
767
768 /**
769 * The soonest you have to start thinking about the next request
770 * is the longest access time that can occur before
771 * busBusyUntil. Assuming you need to precharge, open a new row,
772 * and access, it is tRP + tRCD + tCL.
773 */
774 Tick nextReqTime;
775
776 // All statistics that the model needs to capture
777 Stats::Scalar readReqs;
778 Stats::Scalar writeReqs;
779 Stats::Scalar readBursts;
780 Stats::Scalar writeBursts;
781 Stats::Scalar bytesReadDRAM;
782 Stats::Scalar bytesReadWrQ;
783 Stats::Scalar bytesWritten;
784 Stats::Scalar bytesReadSys;
785 Stats::Scalar bytesWrittenSys;
786 Stats::Scalar servicedByWrQ;
787 Stats::Scalar mergedWrBursts;
788 Stats::Scalar neitherReadNorWrite;
789 Stats::Vector perBankRdBursts;
790 Stats::Vector perBankWrBursts;
791 Stats::Scalar numRdRetry;
792 Stats::Scalar numWrRetry;
793 Stats::Scalar totGap;
794 Stats::Vector readPktSize;
795 Stats::Vector writePktSize;
796 Stats::Vector rdQLenPdf;
797 Stats::Vector wrQLenPdf;
798 Stats::Histogram bytesPerActivate;
799 Stats::Histogram rdPerTurnAround;
800 Stats::Histogram wrPerTurnAround;
801
802 // Latencies summed over all requests
803 Stats::Scalar totQLat;
804 Stats::Scalar totMemAccLat;
805 Stats::Scalar totBusLat;
806
807 // Average latencies per request
808 Stats::Formula avgQLat;
809 Stats::Formula avgBusLat;
810 Stats::Formula avgMemAccLat;
811
812 // Average bandwidth
813 Stats::Formula avgRdBW;
814 Stats::Formula avgWrBW;
815 Stats::Formula avgRdBWSys;
816 Stats::Formula avgWrBWSys;
817 Stats::Formula peakBW;
818 Stats::Formula busUtil;
819 Stats::Formula busUtilRead;
820 Stats::Formula busUtilWrite;
821
822 // Average queue lengths
823 Stats::Average avgRdQLen;
824 Stats::Average avgWrQLen;
825
826 // Row hit count and rate
827 Stats::Scalar readRowHits;
828 Stats::Scalar writeRowHits;
829 Stats::Formula readRowHitRate;
830 Stats::Formula writeRowHitRate;
831 Stats::Formula avgGap;
832
833 // DRAM Power Calculation
834 Stats::Formula pageHitRate;
835
836 // Holds the value of the rank of burst issued
837 uint8_t activeRank;
838
839 // timestamp offset
840 uint64_t timeStampOffset;
841
842 /**
843 * Upstream caches need this packet until true is returned, so
844 * hold it for deletion until a subsequent call
845 */
846 std::unique_ptr<Packet> pendingDelete;
847
848 /**
849 * This function increments the energy when called. If stats are
850 * dumped periodically, note accumulated energy values will
851 * appear in the stats (even if the stats are reset). This is a
852 * result of the energy values coming from DRAMPower, and there
853 * is currently no support for resetting the state.
854 *
855 * @param rank Currrent rank
856 */
857 void updatePowerStats(Rank& rank_ref);
858
859 /**
860 * Function for sorting commands in the command list of DRAMPower.
861 *
862 * @param a Memory Command in command list of DRAMPower library
863 * @param next Memory Command in command list of DRAMPower
864 * @return true if timestamp of Command 1 < timestamp of Command 2
865 */
866 static bool sortTime(const Data::MemCommand& m1,
867 const Data::MemCommand& m2) {
868 return m1.getTimeInt64() < m2.getTimeInt64();
869 };
870
871
872 public:
873
874 void regStats() override;
875
876 DRAMCtrl(const DRAMCtrlParams* p);
877
878 DrainState drain() override;
879
880 virtual BaseSlavePort& getSlavePort(const std::string& if_name,
881 PortID idx = InvalidPortID) override;
882
883 virtual void init() override;
884 virtual void startup() override;
885 virtual void drainResume() override;
886
887 protected:
888
889 Tick recvAtomic(PacketPtr pkt);
890 void recvFunctional(PacketPtr pkt);
891 bool recvTimingReq(PacketPtr pkt);
892
893};
894
895#endif //__MEM_DRAM_CTRL_HH__