dram_ctrl.hh (10889:c4c13fced000) dram_ctrl.hh (10890:bac38d2a4acb)
1/*
2 * Copyright (c) 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 * Ani Udipi
42 * Neha Agarwal
43 * Omar Naji
44 */
45
46/**
47 * @file
48 * DRAMCtrl declaration
49 */
50
51#ifndef __MEM_DRAM_CTRL_HH__
52#define __MEM_DRAM_CTRL_HH__
53
54#include <deque>
55#include <string>
56#include <unordered_set>
57
58#include "base/statistics.hh"
59#include "enums/AddrMap.hh"
60#include "enums/MemSched.hh"
61#include "enums/PageManage.hh"
62#include "mem/abstract_mem.hh"
63#include "mem/qport.hh"
64#include "params/DRAMCtrl.hh"
65#include "sim/eventq.hh"
66#include "mem/drampower.hh"
67
68/**
69 * The DRAM controller is a single-channel memory controller capturing
70 * the most important timing constraints associated with a
71 * contemporary DRAM. For multi-channel memory systems, the controller
72 * is combined with a crossbar model, with the channel address
73 * interleaving taking part in the crossbar.
74 *
75 * As a basic design principle, this controller
76 * model is not cycle callable, but instead uses events to: 1) decide
77 * when new decisions can be made, 2) when resources become available,
78 * 3) when things are to be considered done, and 4) when to send
79 * things back. Through these simple principles, the model delivers
80 * high performance, and lots of flexibility, allowing users to
81 * evaluate the system impact of a wide range of memory technologies,
82 * such as DDR3/4, LPDDR2/3/4, WideIO1/2, HBM and HMC.
83 *
84 * For more details, please see Hansson et al, "Simulating DRAM
85 * controllers for future system architecture exploration",
86 * Proc. ISPASS, 2014. If you use this model as part of your research
87 * please cite the paper.
88 */
89class DRAMCtrl : public AbstractMemory
90{
91
92 private:
93
94 // For now, make use of a queued slave port to avoid dealing with
95 // flow control for the responses being sent back
96 class MemoryPort : public QueuedSlavePort
97 {
98
99 RespPacketQueue queue;
100 DRAMCtrl& memory;
101
102 public:
103
104 MemoryPort(const std::string& name, DRAMCtrl& _memory);
105
106 protected:
107
108 Tick recvAtomic(PacketPtr pkt);
109
110 void recvFunctional(PacketPtr pkt);
111
112 bool recvTimingReq(PacketPtr);
113
114 virtual AddrRangeList getAddrRanges() const;
115
116 };
117
118 /**
119 * Our incoming port, for a multi-ported controller add a crossbar
120 * in front of it
121 */
122 MemoryPort port;
123
124 /**
125 * Remeber if the memory system is in timing mode
126 */
127 bool isTimingMode;
128
129 /**
130 * Remember if we have to retry a request when available.
131 */
132 bool retryRdReq;
133 bool retryWrReq;
134
135 /**
136 * Bus state used to control the read/write switching and drive
137 * the scheduling of the next request.
138 */
139 enum BusState {
140 READ = 0,
141 READ_TO_WRITE,
142 WRITE,
143 WRITE_TO_READ
144 };
145
146 BusState busState;
147
148 /**
149 * A basic class to track the bank state, i.e. what row is
150 * currently open (if any), when is the bank free to accept a new
151 * column (read/write) command, when can it be precharged, and
152 * when can it be activated.
153 *
154 * The bank also keeps track of how many bytes have been accessed
155 * in the open row since it was opened.
156 */
157 class Bank
158 {
159
160 public:
161
162 static const uint32_t NO_ROW = -1;
163
164 uint32_t openRow;
165 uint8_t bank;
166 uint8_t bankgr;
167
168 Tick colAllowedAt;
169 Tick preAllowedAt;
170 Tick actAllowedAt;
171
172 uint32_t rowAccesses;
173 uint32_t bytesAccessed;
174
175 Bank() :
176 openRow(NO_ROW), bank(0), bankgr(0),
177 colAllowedAt(0), preAllowedAt(0), actAllowedAt(0),
178 rowAccesses(0), bytesAccessed(0)
179 { }
180 };
181
182
183 /**
184 * Rank class includes a vector of banks. Refresh and Power state
185 * machines are defined per rank. Events required to change the
186 * state of the refresh and power state machine are scheduled per
187 * rank. This class allows the implementation of rank-wise refresh
188 * and rank-wise power-down.
189 */
190 class Rank : public EventManager
191 {
192
193 private:
194
195 /**
196 * The power state captures the different operational states of
197 * the DRAM and interacts with the bus read/write state machine,
198 * and the refresh state machine. In the idle state all banks are
199 * precharged. From there we either go to an auto refresh (as
200 * determined by the refresh state machine), or to a precharge
201 * power down mode. From idle the memory can also go to the active
202 * state (with one or more banks active), and in turn from there
203 * to active power down. At the moment we do not capture the deep
204 * power down and self-refresh state.
205 */
206 enum PowerState {
207 PWR_IDLE = 0,
208 PWR_REF,
209 PWR_PRE_PDN,
210 PWR_ACT,
211 PWR_ACT_PDN
212 };
213
214 /**
215 * The refresh state is used to control the progress of the
216 * refresh scheduling. When normal operation is in progress the
217 * refresh state is idle. From there, it progresses to the refresh
218 * drain state once tREFI has passed. The refresh drain state
219 * captures the DRAM row active state, as it will stay there until
220 * all ongoing accesses complete. Thereafter all banks are
221 * precharged, and lastly, the DRAM is refreshed.
222 */
223 enum RefreshState {
224 REF_IDLE = 0,
225 REF_DRAIN,
226 REF_PRE,
227 REF_RUN
228 };
229
230 /**
231 * A reference to the parent DRAMCtrl instance
232 */
233 DRAMCtrl& memory;
234
235 /**
236 * Since we are taking decisions out of order, we need to keep
237 * track of what power transition is happening at what time, such
238 * that we can go back in time and change history. For example, if
239 * we precharge all banks and schedule going to the idle state, we
240 * might at a later point decide to activate a bank before the
241 * transition to idle would have taken place.
242 */
243 PowerState pwrStateTrans;
244
245 /**
246 * Current power state.
247 */
248 PowerState pwrState;
249
250 /**
251 * Track when we transitioned to the current power state
252 */
253 Tick pwrStateTick;
254
255 /**
256 * current refresh state
257 */
258 RefreshState refreshState;
259
260 /**
261 * Keep track of when a refresh is due.
262 */
263 Tick refreshDueAt;
264
265 /*
266 * Command energies
267 */
268 Stats::Scalar actEnergy;
269 Stats::Scalar preEnergy;
270 Stats::Scalar readEnergy;
271 Stats::Scalar writeEnergy;
272 Stats::Scalar refreshEnergy;
273
274 /*
275 * Active Background Energy
276 */
277 Stats::Scalar actBackEnergy;
278
279 /*
280 * Precharge Background Energy
281 */
282 Stats::Scalar preBackEnergy;
283
284 Stats::Scalar totalEnergy;
285 Stats::Scalar averagePower;
286
287 /**
288 * Track time spent in each power state.
289 */
290 Stats::Vector pwrStateTime;
291
292 /**
293 * Function to update Power Stats
294 */
295 void updatePowerStats();
296
297 /**
298 * Schedule a power state transition in the future, and
299 * potentially override an already scheduled transition.
300 *
301 * @param pwr_state Power state to transition to
302 * @param tick Tick when transition should take place
303 */
304 void schedulePowerEvent(PowerState pwr_state, Tick tick);
305
306 public:
307
308 /**
309 * Current Rank index
310 */
311 uint8_t rank;
312
313 /**
314 * One DRAMPower instance per rank
315 */
316 DRAMPower power;
317
318 /**
319 * Vector of Banks. Each rank is made of several devices which in
320 * term are made from several banks.
321 */
322 std::vector<Bank> banks;
323
324 /**
325 * To track number of banks which are currently active for
326 * this rank.
327 */
328 unsigned int numBanksActive;
329
330 /** List to keep track of activate ticks */
331 std::deque<Tick> actTicks;
332
333 Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p);
334
335 const std::string name() const
336 {
337 return csprintf("%s_%d", memory.name(), rank);
338 }
339
340 /**
341 * Kick off accounting for power and refresh states and
342 * schedule initial refresh.
343 *
344 * @param ref_tick Tick for first refresh
345 */
346 void startup(Tick ref_tick);
347
348 /**
349 * Stop the refresh events.
350 */
351 void suspend();
352
353 /**
354 * Check if the current rank is available for scheduling.
355 *
356 * @param Return true if the rank is idle from a refresh point of view
357 */
358 bool isAvailable() const { return refreshState == REF_IDLE; }
359
360 /**
361 * Let the rank check if it was waiting for requests to drain
362 * to allow it to transition states.
363 */
364 void checkDrainDone();
365
366 /*
367 * Function to register Stats
368 */
369 void regStats();
370
371 void processActivateEvent();
372 EventWrapper<Rank, &Rank::processActivateEvent>
373 activateEvent;
374
375 void processPrechargeEvent();
376 EventWrapper<Rank, &Rank::processPrechargeEvent>
377 prechargeEvent;
378
379 void processRefreshEvent();
380 EventWrapper<Rank, &Rank::processRefreshEvent>
381 refreshEvent;
382
383 void processPowerEvent();
384 EventWrapper<Rank, &Rank::processPowerEvent>
385 powerEvent;
386
387 };
388
389 /**
390 * A burst helper helps organize and manage a packet that is larger than
391 * the DRAM burst size. A system packet that is larger than the burst size
392 * is split into multiple DRAM packets and all those DRAM packets point to
393 * a single burst helper such that we know when the whole packet is served.
394 */
395 class BurstHelper {
396
397 public:
398
399 /** Number of DRAM bursts requred for a system packet **/
400 const unsigned int burstCount;
401
402 /** Number of DRAM bursts serviced so far for a system packet **/
403 unsigned int burstsServiced;
404
405 BurstHelper(unsigned int _burstCount)
406 : burstCount(_burstCount), burstsServiced(0)
407 { }
408 };
409
410 /**
411 * A DRAM packet stores packets along with the timestamp of when
412 * the packet entered the queue, and also the decoded address.
413 */
414 class DRAMPacket {
415
416 public:
417
418 /** When did request enter the controller */
419 const Tick entryTime;
420
421 /** When will request leave the controller */
422 Tick readyTime;
423
424 /** This comes from the outside world */
425 const PacketPtr pkt;
426
427 const bool isRead;
428
429 /** Will be populated by address decoder */
430 const uint8_t rank;
431 const uint8_t bank;
432 const uint32_t row;
433
434 /**
435 * Bank id is calculated considering banks in all the ranks
436 * eg: 2 ranks each with 8 banks, then bankId = 0 --> rank0, bank0 and
437 * bankId = 8 --> rank1, bank0
438 */
439 const uint16_t bankId;
440
441 /**
442 * The starting address of the DRAM packet.
443 * This address could be unaligned to burst size boundaries. The
444 * reason is to keep the address offset so we can accurately check
445 * incoming read packets with packets in the write queue.
446 */
447 Addr addr;
448
449 /**
450 * The size of this dram packet in bytes
451 * It is always equal or smaller than DRAM burst size
452 */
453 unsigned int size;
454
455 /**
456 * A pointer to the BurstHelper if this DRAMPacket is a split packet
457 * If not a split packet (common case), this is set to NULL
458 */
459 BurstHelper* burstHelper;
460 Bank& bankRef;
461 Rank& rankRef;
462
463 DRAMPacket(PacketPtr _pkt, bool is_read, uint8_t _rank, uint8_t _bank,
464 uint32_t _row, uint16_t bank_id, Addr _addr,
465 unsigned int _size, Bank& bank_ref, Rank& rank_ref)
466 : entryTime(curTick()), readyTime(curTick()),
467 pkt(_pkt), isRead(is_read), rank(_rank), bank(_bank), row(_row),
468 bankId(bank_id), addr(_addr), size(_size), burstHelper(NULL),
469 bankRef(bank_ref), rankRef(rank_ref)
470 { }
471
472 };
473
474 /**
475 * Bunch of things requires to setup "events" in gem5
476 * When event "respondEvent" occurs for example, the method
477 * processRespondEvent is called; no parameters are allowed
478 * in these methods
479 */
480 void processNextReqEvent();
481 EventWrapper<DRAMCtrl,&DRAMCtrl::processNextReqEvent> nextReqEvent;
482
483 void processRespondEvent();
484 EventWrapper<DRAMCtrl, &DRAMCtrl::processRespondEvent> respondEvent;
485
486 /**
487 * Check if the read queue has room for more entries
488 *
489 * @param pktCount The number of entries needed in the read queue
490 * @return true if read queue is full, false otherwise
491 */
492 bool readQueueFull(unsigned int pktCount) const;
493
494 /**
495 * Check if the write queue has room for more entries
496 *
497 * @param pktCount The number of entries needed in the write queue
498 * @return true if write queue is full, false otherwise
499 */
500 bool writeQueueFull(unsigned int pktCount) const;
501
502 /**
503 * When a new read comes in, first check if the write q has a
504 * pending request to the same address.\ If not, decode the
505 * address to populate rank/bank/row, create one or mutliple
506 * "dram_pkt", and push them to the back of the read queue.\
507 * If this is the only
508 * read request in the system, schedule an event to start
509 * servicing it.
510 *
511 * @param pkt The request packet from the outside world
512 * @param pktCount The number of DRAM bursts the pkt
513 * translate to. If pkt size is larger then one full burst,
514 * then pktCount is greater than one.
515 */
516 void addToReadQueue(PacketPtr pkt, unsigned int pktCount);
517
518 /**
519 * Decode the incoming pkt, create a dram_pkt and push to the
520 * back of the write queue. \If the write q length is more than
521 * the threshold specified by the user, ie the queue is beginning
522 * to get full, stop reads, and start draining writes.
523 *
524 * @param pkt The request packet from the outside world
525 * @param pktCount The number of DRAM bursts the pkt
526 * translate to. If pkt size is larger then one full burst,
527 * then pktCount is greater than one.
528 */
529 void addToWriteQueue(PacketPtr pkt, unsigned int pktCount);
530
531 /**
532 * Actually do the DRAM access - figure out the latency it
533 * will take to service the req based on bank state, channel state etc
534 * and then update those states to account for this request.\ Based
535 * on this, update the packet's "readyTime" and move it to the
536 * response q from where it will eventually go back to the outside
537 * world.
538 *
539 * @param pkt The DRAM packet created from the outside world pkt
540 */
541 void doDRAMAccess(DRAMPacket* dram_pkt);
542
543 /**
544 * When a packet reaches its "readyTime" in the response Q,
545 * use the "access()" method in AbstractMemory to actually
546 * create the response packet, and send it back to the outside
547 * world requestor.
548 *
549 * @param pkt The packet from the outside world
550 * @param static_latency Static latency to add before sending the packet
551 */
552 void accessAndRespond(PacketPtr pkt, Tick static_latency);
553
554 /**
555 * Address decoder to figure out physical mapping onto ranks,
556 * banks, and rows. This function is called multiple times on the same
557 * system packet if the pakcet is larger than burst of the memory. The
558 * dramPktAddr is used for the offset within the packet.
559 *
560 * @param pkt The packet from the outside world
561 * @param dramPktAddr The starting address of the DRAM packet
562 * @param size The size of the DRAM packet in bytes
563 * @param isRead Is the request for a read or a write to DRAM
564 * @return A DRAMPacket pointer with the decoded information
565 */
566 DRAMPacket* decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned int size,
567 bool isRead);
568
569 /**
570 * The memory schduler/arbiter - picks which request needs to
571 * go next, based on the specified policy such as FCFS or FR-FCFS
572 * and moves it to the head of the queue.
573 * Prioritizes accesses to the same rank as previous burst unless
574 * controller is switching command type.
575 *
576 * @param queue Queued requests to consider
1/*
2 * Copyright (c) 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 * Ani Udipi
42 * Neha Agarwal
43 * Omar Naji
44 */
45
46/**
47 * @file
48 * DRAMCtrl declaration
49 */
50
51#ifndef __MEM_DRAM_CTRL_HH__
52#define __MEM_DRAM_CTRL_HH__
53
54#include <deque>
55#include <string>
56#include <unordered_set>
57
58#include "base/statistics.hh"
59#include "enums/AddrMap.hh"
60#include "enums/MemSched.hh"
61#include "enums/PageManage.hh"
62#include "mem/abstract_mem.hh"
63#include "mem/qport.hh"
64#include "params/DRAMCtrl.hh"
65#include "sim/eventq.hh"
66#include "mem/drampower.hh"
67
68/**
69 * The DRAM controller is a single-channel memory controller capturing
70 * the most important timing constraints associated with a
71 * contemporary DRAM. For multi-channel memory systems, the controller
72 * is combined with a crossbar model, with the channel address
73 * interleaving taking part in the crossbar.
74 *
75 * As a basic design principle, this controller
76 * model is not cycle callable, but instead uses events to: 1) decide
77 * when new decisions can be made, 2) when resources become available,
78 * 3) when things are to be considered done, and 4) when to send
79 * things back. Through these simple principles, the model delivers
80 * high performance, and lots of flexibility, allowing users to
81 * evaluate the system impact of a wide range of memory technologies,
82 * such as DDR3/4, LPDDR2/3/4, WideIO1/2, HBM and HMC.
83 *
84 * For more details, please see Hansson et al, "Simulating DRAM
85 * controllers for future system architecture exploration",
86 * Proc. ISPASS, 2014. If you use this model as part of your research
87 * please cite the paper.
88 */
89class DRAMCtrl : public AbstractMemory
90{
91
92 private:
93
94 // For now, make use of a queued slave port to avoid dealing with
95 // flow control for the responses being sent back
96 class MemoryPort : public QueuedSlavePort
97 {
98
99 RespPacketQueue queue;
100 DRAMCtrl& memory;
101
102 public:
103
104 MemoryPort(const std::string& name, DRAMCtrl& _memory);
105
106 protected:
107
108 Tick recvAtomic(PacketPtr pkt);
109
110 void recvFunctional(PacketPtr pkt);
111
112 bool recvTimingReq(PacketPtr);
113
114 virtual AddrRangeList getAddrRanges() const;
115
116 };
117
118 /**
119 * Our incoming port, for a multi-ported controller add a crossbar
120 * in front of it
121 */
122 MemoryPort port;
123
124 /**
125 * Remeber if the memory system is in timing mode
126 */
127 bool isTimingMode;
128
129 /**
130 * Remember if we have to retry a request when available.
131 */
132 bool retryRdReq;
133 bool retryWrReq;
134
135 /**
136 * Bus state used to control the read/write switching and drive
137 * the scheduling of the next request.
138 */
139 enum BusState {
140 READ = 0,
141 READ_TO_WRITE,
142 WRITE,
143 WRITE_TO_READ
144 };
145
146 BusState busState;
147
148 /**
149 * A basic class to track the bank state, i.e. what row is
150 * currently open (if any), when is the bank free to accept a new
151 * column (read/write) command, when can it be precharged, and
152 * when can it be activated.
153 *
154 * The bank also keeps track of how many bytes have been accessed
155 * in the open row since it was opened.
156 */
157 class Bank
158 {
159
160 public:
161
162 static const uint32_t NO_ROW = -1;
163
164 uint32_t openRow;
165 uint8_t bank;
166 uint8_t bankgr;
167
168 Tick colAllowedAt;
169 Tick preAllowedAt;
170 Tick actAllowedAt;
171
172 uint32_t rowAccesses;
173 uint32_t bytesAccessed;
174
175 Bank() :
176 openRow(NO_ROW), bank(0), bankgr(0),
177 colAllowedAt(0), preAllowedAt(0), actAllowedAt(0),
178 rowAccesses(0), bytesAccessed(0)
179 { }
180 };
181
182
183 /**
184 * Rank class includes a vector of banks. Refresh and Power state
185 * machines are defined per rank. Events required to change the
186 * state of the refresh and power state machine are scheduled per
187 * rank. This class allows the implementation of rank-wise refresh
188 * and rank-wise power-down.
189 */
190 class Rank : public EventManager
191 {
192
193 private:
194
195 /**
196 * The power state captures the different operational states of
197 * the DRAM and interacts with the bus read/write state machine,
198 * and the refresh state machine. In the idle state all banks are
199 * precharged. From there we either go to an auto refresh (as
200 * determined by the refresh state machine), or to a precharge
201 * power down mode. From idle the memory can also go to the active
202 * state (with one or more banks active), and in turn from there
203 * to active power down. At the moment we do not capture the deep
204 * power down and self-refresh state.
205 */
206 enum PowerState {
207 PWR_IDLE = 0,
208 PWR_REF,
209 PWR_PRE_PDN,
210 PWR_ACT,
211 PWR_ACT_PDN
212 };
213
214 /**
215 * The refresh state is used to control the progress of the
216 * refresh scheduling. When normal operation is in progress the
217 * refresh state is idle. From there, it progresses to the refresh
218 * drain state once tREFI has passed. The refresh drain state
219 * captures the DRAM row active state, as it will stay there until
220 * all ongoing accesses complete. Thereafter all banks are
221 * precharged, and lastly, the DRAM is refreshed.
222 */
223 enum RefreshState {
224 REF_IDLE = 0,
225 REF_DRAIN,
226 REF_PRE,
227 REF_RUN
228 };
229
230 /**
231 * A reference to the parent DRAMCtrl instance
232 */
233 DRAMCtrl& memory;
234
235 /**
236 * Since we are taking decisions out of order, we need to keep
237 * track of what power transition is happening at what time, such
238 * that we can go back in time and change history. For example, if
239 * we precharge all banks and schedule going to the idle state, we
240 * might at a later point decide to activate a bank before the
241 * transition to idle would have taken place.
242 */
243 PowerState pwrStateTrans;
244
245 /**
246 * Current power state.
247 */
248 PowerState pwrState;
249
250 /**
251 * Track when we transitioned to the current power state
252 */
253 Tick pwrStateTick;
254
255 /**
256 * current refresh state
257 */
258 RefreshState refreshState;
259
260 /**
261 * Keep track of when a refresh is due.
262 */
263 Tick refreshDueAt;
264
265 /*
266 * Command energies
267 */
268 Stats::Scalar actEnergy;
269 Stats::Scalar preEnergy;
270 Stats::Scalar readEnergy;
271 Stats::Scalar writeEnergy;
272 Stats::Scalar refreshEnergy;
273
274 /*
275 * Active Background Energy
276 */
277 Stats::Scalar actBackEnergy;
278
279 /*
280 * Precharge Background Energy
281 */
282 Stats::Scalar preBackEnergy;
283
284 Stats::Scalar totalEnergy;
285 Stats::Scalar averagePower;
286
287 /**
288 * Track time spent in each power state.
289 */
290 Stats::Vector pwrStateTime;
291
292 /**
293 * Function to update Power Stats
294 */
295 void updatePowerStats();
296
297 /**
298 * Schedule a power state transition in the future, and
299 * potentially override an already scheduled transition.
300 *
301 * @param pwr_state Power state to transition to
302 * @param tick Tick when transition should take place
303 */
304 void schedulePowerEvent(PowerState pwr_state, Tick tick);
305
306 public:
307
308 /**
309 * Current Rank index
310 */
311 uint8_t rank;
312
313 /**
314 * One DRAMPower instance per rank
315 */
316 DRAMPower power;
317
318 /**
319 * Vector of Banks. Each rank is made of several devices which in
320 * term are made from several banks.
321 */
322 std::vector<Bank> banks;
323
324 /**
325 * To track number of banks which are currently active for
326 * this rank.
327 */
328 unsigned int numBanksActive;
329
330 /** List to keep track of activate ticks */
331 std::deque<Tick> actTicks;
332
333 Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p);
334
335 const std::string name() const
336 {
337 return csprintf("%s_%d", memory.name(), rank);
338 }
339
340 /**
341 * Kick off accounting for power and refresh states and
342 * schedule initial refresh.
343 *
344 * @param ref_tick Tick for first refresh
345 */
346 void startup(Tick ref_tick);
347
348 /**
349 * Stop the refresh events.
350 */
351 void suspend();
352
353 /**
354 * Check if the current rank is available for scheduling.
355 *
356 * @param Return true if the rank is idle from a refresh point of view
357 */
358 bool isAvailable() const { return refreshState == REF_IDLE; }
359
360 /**
361 * Let the rank check if it was waiting for requests to drain
362 * to allow it to transition states.
363 */
364 void checkDrainDone();
365
366 /*
367 * Function to register Stats
368 */
369 void regStats();
370
371 void processActivateEvent();
372 EventWrapper<Rank, &Rank::processActivateEvent>
373 activateEvent;
374
375 void processPrechargeEvent();
376 EventWrapper<Rank, &Rank::processPrechargeEvent>
377 prechargeEvent;
378
379 void processRefreshEvent();
380 EventWrapper<Rank, &Rank::processRefreshEvent>
381 refreshEvent;
382
383 void processPowerEvent();
384 EventWrapper<Rank, &Rank::processPowerEvent>
385 powerEvent;
386
387 };
388
389 /**
390 * A burst helper helps organize and manage a packet that is larger than
391 * the DRAM burst size. A system packet that is larger than the burst size
392 * is split into multiple DRAM packets and all those DRAM packets point to
393 * a single burst helper such that we know when the whole packet is served.
394 */
395 class BurstHelper {
396
397 public:
398
399 /** Number of DRAM bursts requred for a system packet **/
400 const unsigned int burstCount;
401
402 /** Number of DRAM bursts serviced so far for a system packet **/
403 unsigned int burstsServiced;
404
405 BurstHelper(unsigned int _burstCount)
406 : burstCount(_burstCount), burstsServiced(0)
407 { }
408 };
409
410 /**
411 * A DRAM packet stores packets along with the timestamp of when
412 * the packet entered the queue, and also the decoded address.
413 */
414 class DRAMPacket {
415
416 public:
417
418 /** When did request enter the controller */
419 const Tick entryTime;
420
421 /** When will request leave the controller */
422 Tick readyTime;
423
424 /** This comes from the outside world */
425 const PacketPtr pkt;
426
427 const bool isRead;
428
429 /** Will be populated by address decoder */
430 const uint8_t rank;
431 const uint8_t bank;
432 const uint32_t row;
433
434 /**
435 * Bank id is calculated considering banks in all the ranks
436 * eg: 2 ranks each with 8 banks, then bankId = 0 --> rank0, bank0 and
437 * bankId = 8 --> rank1, bank0
438 */
439 const uint16_t bankId;
440
441 /**
442 * The starting address of the DRAM packet.
443 * This address could be unaligned to burst size boundaries. The
444 * reason is to keep the address offset so we can accurately check
445 * incoming read packets with packets in the write queue.
446 */
447 Addr addr;
448
449 /**
450 * The size of this dram packet in bytes
451 * It is always equal or smaller than DRAM burst size
452 */
453 unsigned int size;
454
455 /**
456 * A pointer to the BurstHelper if this DRAMPacket is a split packet
457 * If not a split packet (common case), this is set to NULL
458 */
459 BurstHelper* burstHelper;
460 Bank& bankRef;
461 Rank& rankRef;
462
463 DRAMPacket(PacketPtr _pkt, bool is_read, uint8_t _rank, uint8_t _bank,
464 uint32_t _row, uint16_t bank_id, Addr _addr,
465 unsigned int _size, Bank& bank_ref, Rank& rank_ref)
466 : entryTime(curTick()), readyTime(curTick()),
467 pkt(_pkt), isRead(is_read), rank(_rank), bank(_bank), row(_row),
468 bankId(bank_id), addr(_addr), size(_size), burstHelper(NULL),
469 bankRef(bank_ref), rankRef(rank_ref)
470 { }
471
472 };
473
474 /**
475 * Bunch of things requires to setup "events" in gem5
476 * When event "respondEvent" occurs for example, the method
477 * processRespondEvent is called; no parameters are allowed
478 * in these methods
479 */
480 void processNextReqEvent();
481 EventWrapper<DRAMCtrl,&DRAMCtrl::processNextReqEvent> nextReqEvent;
482
483 void processRespondEvent();
484 EventWrapper<DRAMCtrl, &DRAMCtrl::processRespondEvent> respondEvent;
485
486 /**
487 * Check if the read queue has room for more entries
488 *
489 * @param pktCount The number of entries needed in the read queue
490 * @return true if read queue is full, false otherwise
491 */
492 bool readQueueFull(unsigned int pktCount) const;
493
494 /**
495 * Check if the write queue has room for more entries
496 *
497 * @param pktCount The number of entries needed in the write queue
498 * @return true if write queue is full, false otherwise
499 */
500 bool writeQueueFull(unsigned int pktCount) const;
501
502 /**
503 * When a new read comes in, first check if the write q has a
504 * pending request to the same address.\ If not, decode the
505 * address to populate rank/bank/row, create one or mutliple
506 * "dram_pkt", and push them to the back of the read queue.\
507 * If this is the only
508 * read request in the system, schedule an event to start
509 * servicing it.
510 *
511 * @param pkt The request packet from the outside world
512 * @param pktCount The number of DRAM bursts the pkt
513 * translate to. If pkt size is larger then one full burst,
514 * then pktCount is greater than one.
515 */
516 void addToReadQueue(PacketPtr pkt, unsigned int pktCount);
517
518 /**
519 * Decode the incoming pkt, create a dram_pkt and push to the
520 * back of the write queue. \If the write q length is more than
521 * the threshold specified by the user, ie the queue is beginning
522 * to get full, stop reads, and start draining writes.
523 *
524 * @param pkt The request packet from the outside world
525 * @param pktCount The number of DRAM bursts the pkt
526 * translate to. If pkt size is larger then one full burst,
527 * then pktCount is greater than one.
528 */
529 void addToWriteQueue(PacketPtr pkt, unsigned int pktCount);
530
531 /**
532 * Actually do the DRAM access - figure out the latency it
533 * will take to service the req based on bank state, channel state etc
534 * and then update those states to account for this request.\ Based
535 * on this, update the packet's "readyTime" and move it to the
536 * response q from where it will eventually go back to the outside
537 * world.
538 *
539 * @param pkt The DRAM packet created from the outside world pkt
540 */
541 void doDRAMAccess(DRAMPacket* dram_pkt);
542
543 /**
544 * When a packet reaches its "readyTime" in the response Q,
545 * use the "access()" method in AbstractMemory to actually
546 * create the response packet, and send it back to the outside
547 * world requestor.
548 *
549 * @param pkt The packet from the outside world
550 * @param static_latency Static latency to add before sending the packet
551 */
552 void accessAndRespond(PacketPtr pkt, Tick static_latency);
553
554 /**
555 * Address decoder to figure out physical mapping onto ranks,
556 * banks, and rows. This function is called multiple times on the same
557 * system packet if the pakcet is larger than burst of the memory. The
558 * dramPktAddr is used for the offset within the packet.
559 *
560 * @param pkt The packet from the outside world
561 * @param dramPktAddr The starting address of the DRAM packet
562 * @param size The size of the DRAM packet in bytes
563 * @param isRead Is the request for a read or a write to DRAM
564 * @return A DRAMPacket pointer with the decoded information
565 */
566 DRAMPacket* decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned int size,
567 bool isRead);
568
569 /**
570 * The memory schduler/arbiter - picks which request needs to
571 * go next, based on the specified policy such as FCFS or FR-FCFS
572 * and moves it to the head of the queue.
573 * Prioritizes accesses to the same rank as previous burst unless
574 * controller is switching command type.
575 *
576 * @param queue Queued requests to consider
577 * @param switched_cmd_type Command type is changing
577 * @param extra_col_delay Any extra delay due to a read/write switch
578 * @return true if a packet is scheduled to a rank which is available else
579 * false
580 */
578 * @return true if a packet is scheduled to a rank which is available else
579 * false
580 */
581 bool chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type);
581 bool chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay);
582
583 /**
584 * For FR-FCFS policy reorder the read/write queue depending on row buffer
582
583 /**
584 * For FR-FCFS policy reorder the read/write queue depending on row buffer
585 * hits and earliest banks available in DRAM
586 * Prioritizes accesses to the same rank as previous burst unless
587 * controller is switching command type.
585 * hits and earliest bursts available in DRAM
588 *
589 * @param queue Queued requests to consider
586 *
587 * @param queue Queued requests to consider
590 * @param switched_cmd_type Command type is changing
588 * @param extra_col_delay Any extra delay due to a read/write switch
591 * @return true if a packet is scheduled to a rank which is available else
592 * false
593 */
589 * @return true if a packet is scheduled to a rank which is available else
590 * false
591 */
594 bool reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type);
592 bool reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay);
595
596 /**
597 * Find which are the earliest banks ready to issue an activate
598 * for the enqueued requests. Assumes maximum of 64 banks per DIMM
599 * Also checks if the bank is already prepped.
600 *
601 * @param queue Queued requests to consider
593
594 /**
595 * Find which are the earliest banks ready to issue an activate
596 * for the enqueued requests. Assumes maximum of 64 banks per DIMM
597 * Also checks if the bank is already prepped.
598 *
599 * @param queue Queued requests to consider
602 * @param switched_cmd_type Command type is changing
600 * @param time of seamless burst command
603 * @return One-hot encoded mask of bank indices
601 * @return One-hot encoded mask of bank indices
602 * @return boolean indicating burst can issue seamlessly, with no gaps
604 */
603 */
605 uint64_t minBankPrep(const std::deque<DRAMPacket*>& queue,
606 bool switched_cmd_type) const;
604 std::pair<uint64_t, bool> minBankPrep(const std::deque<DRAMPacket*>& queue,
605 Tick min_col_at) const;
607
608 /**
609 * Keep track of when row activations happen, in order to enforce
610 * the maximum number of activations in the activation window. The
611 * method updates the time that the banks become available based
612 * on the current limits.
613 *
614 * @param rank_ref Reference to the rank
615 * @param bank_ref Reference to the bank
616 * @param act_tick Time when the activation takes place
617 * @param row Index of the row
618 */
619 void activateBank(Rank& rank_ref, Bank& bank_ref, Tick act_tick,
620 uint32_t row);
621
622 /**
623 * Precharge a given bank and also update when the precharge is
624 * done. This will also deal with any stats related to the
625 * accesses to the open page.
626 *
627 * @param rank_ref The rank to precharge
628 * @param bank_ref The bank to precharge
629 * @param pre_at Time when the precharge takes place
630 * @param trace Is this an auto precharge then do not add to trace
631 */
632 void prechargeBank(Rank& rank_ref, Bank& bank_ref,
633 Tick pre_at, bool trace = true);
634
635 /**
636 * Used for debugging to observe the contents of the queues.
637 */
638 void printQs() const;
639
640 /**
641 * Burst-align an address.
642 *
643 * @param addr The potentially unaligned address
644 *
645 * @return An address aligned to a DRAM burst
646 */
647 Addr burstAlign(Addr addr) const { return (addr & ~(Addr(burstSize - 1))); }
648
649 /**
650 * The controller's main read and write queues
651 */
652 std::deque<DRAMPacket*> readQueue;
653 std::deque<DRAMPacket*> writeQueue;
654
655 /**
656 * To avoid iterating over the write queue to check for
657 * overlapping transactions, maintain a set of burst addresses
658 * that are currently queued. Since we merge writes to the same
659 * location we never have more than one address to the same burst
660 * address.
661 */
662 std::unordered_set<Addr> isInWriteQueue;
663
664 /**
665 * Response queue where read packets wait after we're done working
666 * with them, but it's not time to send the response yet. The
667 * responses are stored seperately mostly to keep the code clean
668 * and help with events scheduling. For all logical purposes such
669 * as sizing the read queue, this and the main read queue need to
670 * be added together.
671 */
672 std::deque<DRAMPacket*> respQueue;
673
674 /**
675 * If we need to drain, keep the drain manager around until we're
676 * done here.
677 */
678 DrainManager *drainManager;
679
680 /**
681 * Vector of ranks
682 */
683 std::vector<Rank*> ranks;
684
685 /**
686 * The following are basic design parameters of the memory
687 * controller, and are initialized based on parameter values.
688 * The rowsPerBank is determined based on the capacity, number of
689 * ranks and banks, the burst size, and the row buffer size.
690 */
691 const uint32_t deviceSize;
692 const uint32_t deviceBusWidth;
693 const uint32_t burstLength;
694 const uint32_t deviceRowBufferSize;
695 const uint32_t devicesPerRank;
696 const uint32_t burstSize;
697 const uint32_t rowBufferSize;
698 const uint32_t columnsPerRowBuffer;
699 const uint32_t columnsPerStripe;
700 const uint32_t ranksPerChannel;
701 const uint32_t bankGroupsPerRank;
702 const bool bankGroupArch;
703 const uint32_t banksPerRank;
704 const uint32_t channels;
705 uint32_t rowsPerBank;
706 const uint32_t readBufferSize;
707 const uint32_t writeBufferSize;
708 const uint32_t writeHighThreshold;
709 const uint32_t writeLowThreshold;
710 const uint32_t minWritesPerSwitch;
711 uint32_t writesThisTime;
712 uint32_t readsThisTime;
713
714 /**
715 * Basic memory timing parameters initialized based on parameter
716 * values.
717 */
718 const Tick M5_CLASS_VAR_USED tCK;
719 const Tick tWTR;
720 const Tick tRTW;
721 const Tick tCS;
722 const Tick tBURST;
723 const Tick tCCD_L;
724 const Tick tRCD;
725 const Tick tCL;
726 const Tick tRP;
727 const Tick tRAS;
728 const Tick tWR;
729 const Tick tRTP;
730 const Tick tRFC;
731 const Tick tREFI;
732 const Tick tRRD;
733 const Tick tRRD_L;
734 const Tick tXAW;
735 const uint32_t activationLimit;
736
737 /**
738 * Memory controller configuration initialized based on parameter
739 * values.
740 */
741 Enums::MemSched memSchedPolicy;
742 Enums::AddrMap addrMapping;
743 Enums::PageManage pageMgmt;
744
745 /**
746 * Max column accesses (read and write) per row, before forefully
747 * closing it.
748 */
749 const uint32_t maxAccessesPerRow;
750
751 /**
752 * Pipeline latency of the controller frontend. The frontend
753 * contribution is added to writes (that complete when they are in
754 * the write buffer) and reads that are serviced the write buffer.
755 */
756 const Tick frontendLatency;
757
758 /**
759 * Pipeline latency of the backend and PHY. Along with the
760 * frontend contribution, this latency is added to reads serviced
761 * by the DRAM.
762 */
763 const Tick backendLatency;
764
765 /**
766 * Till when has the main data bus been spoken for already?
767 */
768 Tick busBusyUntil;
769
770 Tick prevArrival;
771
772 /**
773 * The soonest you have to start thinking about the next request
774 * is the longest access time that can occur before
775 * busBusyUntil. Assuming you need to precharge, open a new row,
776 * and access, it is tRP + tRCD + tCL.
777 */
778 Tick nextReqTime;
779
780 // All statistics that the model needs to capture
781 Stats::Scalar readReqs;
782 Stats::Scalar writeReqs;
783 Stats::Scalar readBursts;
784 Stats::Scalar writeBursts;
785 Stats::Scalar bytesReadDRAM;
786 Stats::Scalar bytesReadWrQ;
787 Stats::Scalar bytesWritten;
788 Stats::Scalar bytesReadSys;
789 Stats::Scalar bytesWrittenSys;
790 Stats::Scalar servicedByWrQ;
791 Stats::Scalar mergedWrBursts;
792 Stats::Scalar neitherReadNorWrite;
793 Stats::Vector perBankRdBursts;
794 Stats::Vector perBankWrBursts;
795 Stats::Scalar numRdRetry;
796 Stats::Scalar numWrRetry;
797 Stats::Scalar totGap;
798 Stats::Vector readPktSize;
799 Stats::Vector writePktSize;
800 Stats::Vector rdQLenPdf;
801 Stats::Vector wrQLenPdf;
802 Stats::Histogram bytesPerActivate;
803 Stats::Histogram rdPerTurnAround;
804 Stats::Histogram wrPerTurnAround;
805
806 // Latencies summed over all requests
807 Stats::Scalar totQLat;
808 Stats::Scalar totMemAccLat;
809 Stats::Scalar totBusLat;
810
811 // Average latencies per request
812 Stats::Formula avgQLat;
813 Stats::Formula avgBusLat;
814 Stats::Formula avgMemAccLat;
815
816 // Average bandwidth
817 Stats::Formula avgRdBW;
818 Stats::Formula avgWrBW;
819 Stats::Formula avgRdBWSys;
820 Stats::Formula avgWrBWSys;
821 Stats::Formula peakBW;
822 Stats::Formula busUtil;
823 Stats::Formula busUtilRead;
824 Stats::Formula busUtilWrite;
825
826 // Average queue lengths
827 Stats::Average avgRdQLen;
828 Stats::Average avgWrQLen;
829
830 // Row hit count and rate
831 Stats::Scalar readRowHits;
832 Stats::Scalar writeRowHits;
833 Stats::Formula readRowHitRate;
834 Stats::Formula writeRowHitRate;
835 Stats::Formula avgGap;
836
837 // DRAM Power Calculation
838 Stats::Formula pageHitRate;
839
840 // Holds the value of the rank of burst issued
841 uint8_t activeRank;
842
843 // timestamp offset
844 uint64_t timeStampOffset;
845
846 /** @todo this is a temporary workaround until the 4-phase code is
847 * committed. upstream caches needs this packet until true is returned, so
848 * hold onto it for deletion until a subsequent call
849 */
850 std::vector<PacketPtr> pendingDelete;
851
852 /**
853 * This function increments the energy when called. If stats are
854 * dumped periodically, note accumulated energy values will
855 * appear in the stats (even if the stats are reset). This is a
856 * result of the energy values coming from DRAMPower, and there
857 * is currently no support for resetting the state.
858 *
859 * @param rank Currrent rank
860 */
861 void updatePowerStats(Rank& rank_ref);
862
863 /**
864 * Function for sorting commands in the command list of DRAMPower.
865 *
866 * @param a Memory Command in command list of DRAMPower library
867 * @param next Memory Command in command list of DRAMPower
868 * @return true if timestamp of Command 1 < timestamp of Command 2
869 */
870 static bool sortTime(const Data::MemCommand& m1,
871 const Data::MemCommand& m2) {
872 return m1.getTime() < m2.getTime();
873 };
874
875
876 public:
877
878 void regStats();
879
880 DRAMCtrl(const DRAMCtrlParams* p);
881
882 unsigned int drain(DrainManager* dm);
883
884 virtual BaseSlavePort& getSlavePort(const std::string& if_name,
885 PortID idx = InvalidPortID);
886
887 virtual void init() M5_ATTR_OVERRIDE;
888 virtual void startup() M5_ATTR_OVERRIDE;
889 virtual void drainResume() M5_ATTR_OVERRIDE;
890
891 protected:
892
893 Tick recvAtomic(PacketPtr pkt);
894 void recvFunctional(PacketPtr pkt);
895 bool recvTimingReq(PacketPtr pkt);
896
897};
898
899#endif //__MEM_DRAM_CTRL_HH__
606
607 /**
608 * Keep track of when row activations happen, in order to enforce
609 * the maximum number of activations in the activation window. The
610 * method updates the time that the banks become available based
611 * on the current limits.
612 *
613 * @param rank_ref Reference to the rank
614 * @param bank_ref Reference to the bank
615 * @param act_tick Time when the activation takes place
616 * @param row Index of the row
617 */
618 void activateBank(Rank& rank_ref, Bank& bank_ref, Tick act_tick,
619 uint32_t row);
620
621 /**
622 * Precharge a given bank and also update when the precharge is
623 * done. This will also deal with any stats related to the
624 * accesses to the open page.
625 *
626 * @param rank_ref The rank to precharge
627 * @param bank_ref The bank to precharge
628 * @param pre_at Time when the precharge takes place
629 * @param trace Is this an auto precharge then do not add to trace
630 */
631 void prechargeBank(Rank& rank_ref, Bank& bank_ref,
632 Tick pre_at, bool trace = true);
633
634 /**
635 * Used for debugging to observe the contents of the queues.
636 */
637 void printQs() const;
638
639 /**
640 * Burst-align an address.
641 *
642 * @param addr The potentially unaligned address
643 *
644 * @return An address aligned to a DRAM burst
645 */
646 Addr burstAlign(Addr addr) const { return (addr & ~(Addr(burstSize - 1))); }
647
648 /**
649 * The controller's main read and write queues
650 */
651 std::deque<DRAMPacket*> readQueue;
652 std::deque<DRAMPacket*> writeQueue;
653
654 /**
655 * To avoid iterating over the write queue to check for
656 * overlapping transactions, maintain a set of burst addresses
657 * that are currently queued. Since we merge writes to the same
658 * location we never have more than one address to the same burst
659 * address.
660 */
661 std::unordered_set<Addr> isInWriteQueue;
662
663 /**
664 * Response queue where read packets wait after we're done working
665 * with them, but it's not time to send the response yet. The
666 * responses are stored seperately mostly to keep the code clean
667 * and help with events scheduling. For all logical purposes such
668 * as sizing the read queue, this and the main read queue need to
669 * be added together.
670 */
671 std::deque<DRAMPacket*> respQueue;
672
673 /**
674 * If we need to drain, keep the drain manager around until we're
675 * done here.
676 */
677 DrainManager *drainManager;
678
679 /**
680 * Vector of ranks
681 */
682 std::vector<Rank*> ranks;
683
684 /**
685 * The following are basic design parameters of the memory
686 * controller, and are initialized based on parameter values.
687 * The rowsPerBank is determined based on the capacity, number of
688 * ranks and banks, the burst size, and the row buffer size.
689 */
690 const uint32_t deviceSize;
691 const uint32_t deviceBusWidth;
692 const uint32_t burstLength;
693 const uint32_t deviceRowBufferSize;
694 const uint32_t devicesPerRank;
695 const uint32_t burstSize;
696 const uint32_t rowBufferSize;
697 const uint32_t columnsPerRowBuffer;
698 const uint32_t columnsPerStripe;
699 const uint32_t ranksPerChannel;
700 const uint32_t bankGroupsPerRank;
701 const bool bankGroupArch;
702 const uint32_t banksPerRank;
703 const uint32_t channels;
704 uint32_t rowsPerBank;
705 const uint32_t readBufferSize;
706 const uint32_t writeBufferSize;
707 const uint32_t writeHighThreshold;
708 const uint32_t writeLowThreshold;
709 const uint32_t minWritesPerSwitch;
710 uint32_t writesThisTime;
711 uint32_t readsThisTime;
712
713 /**
714 * Basic memory timing parameters initialized based on parameter
715 * values.
716 */
717 const Tick M5_CLASS_VAR_USED tCK;
718 const Tick tWTR;
719 const Tick tRTW;
720 const Tick tCS;
721 const Tick tBURST;
722 const Tick tCCD_L;
723 const Tick tRCD;
724 const Tick tCL;
725 const Tick tRP;
726 const Tick tRAS;
727 const Tick tWR;
728 const Tick tRTP;
729 const Tick tRFC;
730 const Tick tREFI;
731 const Tick tRRD;
732 const Tick tRRD_L;
733 const Tick tXAW;
734 const uint32_t activationLimit;
735
736 /**
737 * Memory controller configuration initialized based on parameter
738 * values.
739 */
740 Enums::MemSched memSchedPolicy;
741 Enums::AddrMap addrMapping;
742 Enums::PageManage pageMgmt;
743
744 /**
745 * Max column accesses (read and write) per row, before forefully
746 * closing it.
747 */
748 const uint32_t maxAccessesPerRow;
749
750 /**
751 * Pipeline latency of the controller frontend. The frontend
752 * contribution is added to writes (that complete when they are in
753 * the write buffer) and reads that are serviced the write buffer.
754 */
755 const Tick frontendLatency;
756
757 /**
758 * Pipeline latency of the backend and PHY. Along with the
759 * frontend contribution, this latency is added to reads serviced
760 * by the DRAM.
761 */
762 const Tick backendLatency;
763
764 /**
765 * Till when has the main data bus been spoken for already?
766 */
767 Tick busBusyUntil;
768
769 Tick prevArrival;
770
771 /**
772 * The soonest you have to start thinking about the next request
773 * is the longest access time that can occur before
774 * busBusyUntil. Assuming you need to precharge, open a new row,
775 * and access, it is tRP + tRCD + tCL.
776 */
777 Tick nextReqTime;
778
779 // All statistics that the model needs to capture
780 Stats::Scalar readReqs;
781 Stats::Scalar writeReqs;
782 Stats::Scalar readBursts;
783 Stats::Scalar writeBursts;
784 Stats::Scalar bytesReadDRAM;
785 Stats::Scalar bytesReadWrQ;
786 Stats::Scalar bytesWritten;
787 Stats::Scalar bytesReadSys;
788 Stats::Scalar bytesWrittenSys;
789 Stats::Scalar servicedByWrQ;
790 Stats::Scalar mergedWrBursts;
791 Stats::Scalar neitherReadNorWrite;
792 Stats::Vector perBankRdBursts;
793 Stats::Vector perBankWrBursts;
794 Stats::Scalar numRdRetry;
795 Stats::Scalar numWrRetry;
796 Stats::Scalar totGap;
797 Stats::Vector readPktSize;
798 Stats::Vector writePktSize;
799 Stats::Vector rdQLenPdf;
800 Stats::Vector wrQLenPdf;
801 Stats::Histogram bytesPerActivate;
802 Stats::Histogram rdPerTurnAround;
803 Stats::Histogram wrPerTurnAround;
804
805 // Latencies summed over all requests
806 Stats::Scalar totQLat;
807 Stats::Scalar totMemAccLat;
808 Stats::Scalar totBusLat;
809
810 // Average latencies per request
811 Stats::Formula avgQLat;
812 Stats::Formula avgBusLat;
813 Stats::Formula avgMemAccLat;
814
815 // Average bandwidth
816 Stats::Formula avgRdBW;
817 Stats::Formula avgWrBW;
818 Stats::Formula avgRdBWSys;
819 Stats::Formula avgWrBWSys;
820 Stats::Formula peakBW;
821 Stats::Formula busUtil;
822 Stats::Formula busUtilRead;
823 Stats::Formula busUtilWrite;
824
825 // Average queue lengths
826 Stats::Average avgRdQLen;
827 Stats::Average avgWrQLen;
828
829 // Row hit count and rate
830 Stats::Scalar readRowHits;
831 Stats::Scalar writeRowHits;
832 Stats::Formula readRowHitRate;
833 Stats::Formula writeRowHitRate;
834 Stats::Formula avgGap;
835
836 // DRAM Power Calculation
837 Stats::Formula pageHitRate;
838
839 // Holds the value of the rank of burst issued
840 uint8_t activeRank;
841
842 // timestamp offset
843 uint64_t timeStampOffset;
844
845 /** @todo this is a temporary workaround until the 4-phase code is
846 * committed. upstream caches needs this packet until true is returned, so
847 * hold onto it for deletion until a subsequent call
848 */
849 std::vector<PacketPtr> pendingDelete;
850
851 /**
852 * This function increments the energy when called. If stats are
853 * dumped periodically, note accumulated energy values will
854 * appear in the stats (even if the stats are reset). This is a
855 * result of the energy values coming from DRAMPower, and there
856 * is currently no support for resetting the state.
857 *
858 * @param rank Currrent rank
859 */
860 void updatePowerStats(Rank& rank_ref);
861
862 /**
863 * Function for sorting commands in the command list of DRAMPower.
864 *
865 * @param a Memory Command in command list of DRAMPower library
866 * @param next Memory Command in command list of DRAMPower
867 * @return true if timestamp of Command 1 < timestamp of Command 2
868 */
869 static bool sortTime(const Data::MemCommand& m1,
870 const Data::MemCommand& m2) {
871 return m1.getTime() < m2.getTime();
872 };
873
874
875 public:
876
877 void regStats();
878
879 DRAMCtrl(const DRAMCtrlParams* p);
880
881 unsigned int drain(DrainManager* dm);
882
883 virtual BaseSlavePort& getSlavePort(const std::string& if_name,
884 PortID idx = InvalidPortID);
885
886 virtual void init() M5_ATTR_OVERRIDE;
887 virtual void startup() M5_ATTR_OVERRIDE;
888 virtual void drainResume() M5_ATTR_OVERRIDE;
889
890 protected:
891
892 Tick recvAtomic(PacketPtr pkt);
893 void recvFunctional(PacketPtr pkt);
894 bool recvTimingReq(PacketPtr pkt);
895
896};
897
898#endif //__MEM_DRAM_CTRL_HH__