Deleted Added
sdiff udiff text old ( 10618:bb665366cc00 ) new ( 10619:6dd27a0e0d23 )
full compact
1/*
2 * Copyright (c) 2012-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 * Ani Udipi
42 * Neha Agarwal
43 * Omar Naji
44 */
45
46/**
47 * @file
48 * DRAMCtrl declaration
49 */
50
51#ifndef __MEM_DRAM_CTRL_HH__
52#define __MEM_DRAM_CTRL_HH__
53
54#include <deque>
55#include <string>
56
57#include "base/statistics.hh"
58#include "enums/AddrMap.hh"
59#include "enums/MemSched.hh"
60#include "enums/PageManage.hh"
61#include "mem/abstract_mem.hh"
62#include "mem/qport.hh"
63#include "params/DRAMCtrl.hh"
64#include "sim/eventq.hh"
65#include "mem/drampower.hh"
66
67/**
68 * The DRAM controller is a single-channel memory controller capturing
69 * the most important timing constraints associated with a
70 * contemporary DRAM. For multi-channel memory systems, the controller
71 * is combined with a crossbar model, with the channel address
72 * interleaving taking part in the crossbar.
73 *
74 * As a basic design principle, this controller
75 * model is not cycle callable, but instead uses events to: 1) decide
76 * when new decisions can be made, 2) when resources become available,
77 * 3) when things are to be considered done, and 4) when to send
78 * things back. Through these simple principles, the model delivers
79 * high performance, and lots of flexibility, allowing users to
80 * evaluate the system impact of a wide range of memory technologies,
81 * such as DDR3/4, LPDDR2/3/4, WideIO1/2, HBM and HMC.
82 *
83 * For more details, please see Hansson et al, "Simulating DRAM
84 * controllers for future system architecture exploration",
85 * Proc. ISPASS, 2014. If you use this model as part of your research
86 * please cite the paper.
87 */
88class DRAMCtrl : public AbstractMemory
89{
90
91 private:
92
93 // For now, make use of a queued slave port to avoid dealing with
94 // flow control for the responses being sent back
95 class MemoryPort : public QueuedSlavePort
96 {
97
98 SlavePacketQueue queue;
99 DRAMCtrl& memory;
100
101 public:
102
103 MemoryPort(const std::string& name, DRAMCtrl& _memory);
104
105 protected:
106
107 Tick recvAtomic(PacketPtr pkt);
108
109 void recvFunctional(PacketPtr pkt);
110
111 bool recvTimingReq(PacketPtr);
112
113 virtual AddrRangeList getAddrRanges() const;
114
115 };
116
117 /**
118 * Our incoming port, for a multi-ported controller add a crossbar
119 * in front of it
120 */
121 MemoryPort port;
122
123 /**
124 * Remeber if the memory system is in timing mode
125 */
126 bool isTimingMode;
127
128 /**
129 * Remember if we have to retry a request when available.
130 */
131 bool retryRdReq;
132 bool retryWrReq;
133
134 /**
135 * Bus state used to control the read/write switching and drive
136 * the scheduling of the next request.
137 */
138 enum BusState {
139 READ = 0,
140 READ_TO_WRITE,
141 WRITE,
142 WRITE_TO_READ
143 };
144
145 BusState busState;
146
147 /**
148 * A basic class to track the bank state, i.e. what row is
149 * currently open (if any), when is the bank free to accept a new
150 * column (read/write) command, when can it be precharged, and
151 * when can it be activated.
152 *
153 * The bank also keeps track of how many bytes have been accessed
154 * in the open row since it was opened.
155 */
156 class Bank
157 {
158
159 public:
160
161 static const uint32_t NO_ROW = -1;
162
163 uint32_t openRow;
164 uint8_t bank;
165 uint8_t bankgr;
166
167 Tick colAllowedAt;
168 Tick preAllowedAt;
169 Tick actAllowedAt;
170
171 uint32_t rowAccesses;
172 uint32_t bytesAccessed;
173
174 Bank() :
175 openRow(NO_ROW), bank(0), bankgr(0),
176 colAllowedAt(0), preAllowedAt(0), actAllowedAt(0),
177 rowAccesses(0), bytesAccessed(0)
178 { }
179 };
180
181
182 /**
183 * Rank class includes a vector of banks. Refresh and Power state
184 * machines are defined per rank. Events required to change the
185 * state of the refresh and power state machine are scheduled per
186 * rank. This class allows the implementation of rank-wise refresh
187 * and rank-wise power-down.
188 */
189 class Rank : public EventManager
190 {
191
192 private:
193
194 /**
195 * The power state captures the different operational states of
196 * the DRAM and interacts with the bus read/write state machine,
197 * and the refresh state machine. In the idle state all banks are
198 * precharged. From there we either go to an auto refresh (as
199 * determined by the refresh state machine), or to a precharge
200 * power down mode. From idle the memory can also go to the active
201 * state (with one or more banks active), and in turn from there
202 * to active power down. At the moment we do not capture the deep
203 * power down and self-refresh state.
204 */
205 enum PowerState {
206 PWR_IDLE = 0,
207 PWR_REF,
208 PWR_PRE_PDN,
209 PWR_ACT,
210 PWR_ACT_PDN
211 };
212
213 /**
214 * The refresh state is used to control the progress of the
215 * refresh scheduling. When normal operation is in progress the
216 * refresh state is idle. From there, it progresses to the refresh
217 * drain state once tREFI has passed. The refresh drain state
218 * captures the DRAM row active state, as it will stay there until
219 * all ongoing accesses complete. Thereafter all banks are
220 * precharged, and lastly, the DRAM is refreshed.
221 */
222 enum RefreshState {
223 REF_IDLE = 0,
224 REF_DRAIN,
225 REF_PRE,
226 REF_RUN
227 };
228
229 /**
230 * A reference to the parent DRAMCtrl instance
231 */
232 DRAMCtrl& memory;
233
234 /**
235 * Since we are taking decisions out of order, we need to keep
236 * track of what power transition is happening at what time, such
237 * that we can go back in time and change history. For example, if
238 * we precharge all banks and schedule going to the idle state, we
239 * might at a later point decide to activate a bank before the
240 * transition to idle would have taken place.
241 */
242 PowerState pwrStateTrans;
243
244 /**
245 * Current power state.
246 */
247 PowerState pwrState;
248
249 /**
250 * Track when we transitioned to the current power state
251 */
252 Tick pwrStateTick;
253
254 /**
255 * current refresh state
256 */
257 RefreshState refreshState;
258
259 /**
260 * Keep track of when a refresh is due.
261 */
262 Tick refreshDueAt;
263
264 /*
265 * Command energies
266 */
267 Stats::Scalar actEnergy;
268 Stats::Scalar preEnergy;
269 Stats::Scalar readEnergy;
270 Stats::Scalar writeEnergy;
271 Stats::Scalar refreshEnergy;
272
273 /*
274 * Active Background Energy
275 */
276 Stats::Scalar actBackEnergy;
277
278 /*
279 * Precharge Background Energy
280 */
281 Stats::Scalar preBackEnergy;
282
283 Stats::Scalar totalEnergy;
284 Stats::Scalar averagePower;
285
286 /**
287 * Track time spent in each power state.
288 */
289 Stats::Vector pwrStateTime;
290
291 /**
292 * Function to update Power Stats
293 */
294 void updatePowerStats();
295
296 /**
297 * Schedule a power state transition in the future, and
298 * potentially override an already scheduled transition.
299 *
300 * @param pwr_state Power state to transition to
301 * @param tick Tick when transition should take place
302 */
303 void schedulePowerEvent(PowerState pwr_state, Tick tick);
304
305 public:
306
307 /**
308 * Current Rank index
309 */
310 uint8_t rank;
311
312 /**
313 * One DRAMPower instance per rank
314 */
315 DRAMPower power;
316
317 /**
318 * Vector of Banks. Each rank is made of several devices which in
319 * term are made from several banks.
320 */
321 std::vector<Bank> banks;
322
323 /**
324 * To track number of banks which are currently active for
325 * this rank.
326 */
327 unsigned int numBanksActive;
328
329 /** List to keep track of activate ticks */
330 std::deque<Tick> actTicks;
331
332 Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p);
333
334 const std::string name() const
335 {
336 return csprintf("%s_%d", memory.name(), rank);
337 }
338
339 /**
340 * Kick off accounting for power and refresh states and
341 * schedule initial refresh.
342 *
343 * @param ref_tick Tick for first refresh
344 */
345 void startup(Tick ref_tick);
346
347 /**
348 * Stop the refresh events.
349 */
350 void suspend();
351
352 /**
353 * Check if the current rank is available for scheduling.
354 *
355 * @param Return true if the rank is idle from a refresh point of view
356 */
357 bool isAvailable() const { return refreshState == REF_IDLE; }
358
359 /**
360 * Let the rank check if it was waiting for requests to drain
361 * to allow it to transition states.
362 */
363 void checkDrainDone();
364
365 /*
366 * Function to register Stats
367 */
368 void regStats();
369
370 void processActivateEvent();
371 EventWrapper<Rank, &Rank::processActivateEvent>
372 activateEvent;
373
374 void processPrechargeEvent();
375 EventWrapper<Rank, &Rank::processPrechargeEvent>
376 prechargeEvent;
377
378 void processRefreshEvent();
379 EventWrapper<Rank, &Rank::processRefreshEvent>
380 refreshEvent;
381
382 void processPowerEvent();
383 EventWrapper<Rank, &Rank::processPowerEvent>
384 powerEvent;
385
386 };
387
388 /**
389 * A burst helper helps organize and manage a packet that is larger than
390 * the DRAM burst size. A system packet that is larger than the burst size
391 * is split into multiple DRAM packets and all those DRAM packets point to
392 * a single burst helper such that we know when the whole packet is served.
393 */
394 class BurstHelper {
395
396 public:
397
398 /** Number of DRAM bursts requred for a system packet **/
399 const unsigned int burstCount;
400
401 /** Number of DRAM bursts serviced so far for a system packet **/
402 unsigned int burstsServiced;
403
404 BurstHelper(unsigned int _burstCount)
405 : burstCount(_burstCount), burstsServiced(0)
406 { }
407 };
408
409 /**
410 * A DRAM packet stores packets along with the timestamp of when
411 * the packet entered the queue, and also the decoded address.
412 */
413 class DRAMPacket {
414
415 public:
416
417 /** When did request enter the controller */
418 const Tick entryTime;
419
420 /** When will request leave the controller */
421 Tick readyTime;
422
423 /** This comes from the outside world */
424 const PacketPtr pkt;
425
426 const bool isRead;
427
428 /** Will be populated by address decoder */
429 const uint8_t rank;
430 const uint8_t bank;
431 const uint32_t row;
432
433 /**
434 * Bank id is calculated considering banks in all the ranks
435 * eg: 2 ranks each with 8 banks, then bankId = 0 --> rank0, bank0 and
436 * bankId = 8 --> rank1, bank0
437 */
438 const uint16_t bankId;
439
440 /**
441 * The starting address of the DRAM packet.
442 * This address could be unaligned to burst size boundaries. The
443 * reason is to keep the address offset so we can accurately check
444 * incoming read packets with packets in the write queue.
445 */
446 Addr addr;
447
448 /**
449 * The size of this dram packet in bytes
450 * It is always equal or smaller than DRAM burst size
451 */
452 unsigned int size;
453
454 /**
455 * A pointer to the BurstHelper if this DRAMPacket is a split packet
456 * If not a split packet (common case), this is set to NULL
457 */
458 BurstHelper* burstHelper;
459 Bank& bankRef;
460 Rank& rankRef;
461
462 DRAMPacket(PacketPtr _pkt, bool is_read, uint8_t _rank, uint8_t _bank,
463 uint32_t _row, uint16_t bank_id, Addr _addr,
464 unsigned int _size, Bank& bank_ref, Rank& rank_ref)
465 : entryTime(curTick()), readyTime(curTick()),
466 pkt(_pkt), isRead(is_read), rank(_rank), bank(_bank), row(_row),
467 bankId(bank_id), addr(_addr), size(_size), burstHelper(NULL),
468 bankRef(bank_ref), rankRef(rank_ref)
469 { }
470
471 };
472
473 /**
474 * Bunch of things requires to setup "events" in gem5
475 * When event "respondEvent" occurs for example, the method
476 * processRespondEvent is called; no parameters are allowed
477 * in these methods
478 */
479 void processNextReqEvent();
480 EventWrapper<DRAMCtrl,&DRAMCtrl::processNextReqEvent> nextReqEvent;
481
482 void processRespondEvent();
483 EventWrapper<DRAMCtrl, &DRAMCtrl::processRespondEvent> respondEvent;
484
485 /**
486 * Check if the read queue has room for more entries
487 *
488 * @param pktCount The number of entries needed in the read queue
489 * @return true if read queue is full, false otherwise
490 */
491 bool readQueueFull(unsigned int pktCount) const;
492
493 /**
494 * Check if the write queue has room for more entries
495 *
496 * @param pktCount The number of entries needed in the write queue
497 * @return true if write queue is full, false otherwise
498 */
499 bool writeQueueFull(unsigned int pktCount) const;
500
501 /**
502 * When a new read comes in, first check if the write q has a
503 * pending request to the same address.\ If not, decode the
504 * address to populate rank/bank/row, create one or mutliple
505 * "dram_pkt", and push them to the back of the read queue.\
506 * If this is the only
507 * read request in the system, schedule an event to start
508 * servicing it.
509 *
510 * @param pkt The request packet from the outside world
511 * @param pktCount The number of DRAM bursts the pkt
512 * translate to. If pkt size is larger then one full burst,
513 * then pktCount is greater than one.
514 */
515 void addToReadQueue(PacketPtr pkt, unsigned int pktCount);
516
517 /**
518 * Decode the incoming pkt, create a dram_pkt and push to the
519 * back of the write queue. \If the write q length is more than
520 * the threshold specified by the user, ie the queue is beginning
521 * to get full, stop reads, and start draining writes.
522 *
523 * @param pkt The request packet from the outside world
524 * @param pktCount The number of DRAM bursts the pkt
525 * translate to. If pkt size is larger then one full burst,
526 * then pktCount is greater than one.
527 */
528 void addToWriteQueue(PacketPtr pkt, unsigned int pktCount);
529
530 /**
531 * Actually do the DRAM access - figure out the latency it
532 * will take to service the req based on bank state, channel state etc
533 * and then update those states to account for this request.\ Based
534 * on this, update the packet's "readyTime" and move it to the
535 * response q from where it will eventually go back to the outside
536 * world.
537 *
538 * @param pkt The DRAM packet created from the outside world pkt
539 */
540 void doDRAMAccess(DRAMPacket* dram_pkt);
541
542 /**
543 * When a packet reaches its "readyTime" in the response Q,
544 * use the "access()" method in AbstractMemory to actually
545 * create the response packet, and send it back to the outside
546 * world requestor.
547 *
548 * @param pkt The packet from the outside world
549 * @param static_latency Static latency to add before sending the packet
550 */
551 void accessAndRespond(PacketPtr pkt, Tick static_latency);
552
553 /**
554 * Address decoder to figure out physical mapping onto ranks,
555 * banks, and rows. This function is called multiple times on the same
556 * system packet if the pakcet is larger than burst of the memory. The
557 * dramPktAddr is used for the offset within the packet.
558 *
559 * @param pkt The packet from the outside world
560 * @param dramPktAddr The starting address of the DRAM packet
561 * @param size The size of the DRAM packet in bytes
562 * @param isRead Is the request for a read or a write to DRAM
563 * @return A DRAMPacket pointer with the decoded information
564 */
565 DRAMPacket* decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned int size,
566 bool isRead);
567
568 /**
569 * The memory schduler/arbiter - picks which request needs to
570 * go next, based on the specified policy such as FCFS or FR-FCFS
571 * and moves it to the head of the queue.
572 * Prioritizes accesses to the same rank as previous burst unless
573 * controller is switching command type.
574 *
575 * @param queue Queued requests to consider
576 * @param switched_cmd_type Command type is changing
577 * @return true if a packet is scheduled to a rank which is available else
578 * false
579 */
580 bool chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type);
581
582 /**
583 * For FR-FCFS policy reorder the read/write queue depending on row buffer
584 * hits and earliest banks available in DRAM
585 * Prioritizes accesses to the same rank as previous burst unless
586 * controller is switching command type.
587 *
588 * @param queue Queued requests to consider
589 * @param switched_cmd_type Command type is changing
590 * @return true if a packet is scheduled to a rank which is available else
591 * false
592 */
593 bool reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type);
594
595 /**
596 * Find which are the earliest banks ready to issue an activate
597 * for the enqueued requests. Assumes maximum of 64 banks per DIMM
598 * Also checks if the bank is already prepped.
599 *
600 * @param queue Queued requests to consider
601 * @param switched_cmd_type Command type is changing
602 * @return One-hot encoded mask of bank indices
603 */
604 uint64_t minBankPrep(const std::deque<DRAMPacket*>& queue,
605 bool switched_cmd_type) const;
606
607 /**
608 * Keep track of when row activations happen, in order to enforce
609 * the maximum number of activations in the activation window. The
610 * method updates the time that the banks become available based
611 * on the current limits.
612 *
613 * @param rank_ref Reference to the rank
614 * @param bank_ref Reference to the bank
615 * @param act_tick Time when the activation takes place
616 * @param row Index of the row
617 */
618 void activateBank(Rank& rank_ref, Bank& bank_ref, Tick act_tick,
619 uint32_t row);
620
621 /**
622 * Precharge a given bank and also update when the precharge is
623 * done. This will also deal with any stats related to the
624 * accesses to the open page.
625 *
626 * @param rank_ref The rank to precharge
627 * @param bank_ref The bank to precharge
628 * @param pre_at Time when the precharge takes place
629 * @param trace Is this an auto precharge then do not add to trace
630 */
631 void prechargeBank(Rank& rank_ref, Bank& bank_ref,
632 Tick pre_at, bool trace = true);
633
634 /**
635 * Used for debugging to observe the contents of the queues.
636 */
637 void printQs() const;
638
639 /**
640 * The controller's main read and write queues
641 */
642 std::deque<DRAMPacket*> readQueue;
643 std::deque<DRAMPacket*> writeQueue;
644
645 /**
646 * Response queue where read packets wait after we're done working
647 * with them, but it's not time to send the response yet. The
648 * responses are stored seperately mostly to keep the code clean
649 * and help with events scheduling. For all logical purposes such
650 * as sizing the read queue, this and the main read queue need to
651 * be added together.
652 */
653 std::deque<DRAMPacket*> respQueue;
654
655 /**
656 * If we need to drain, keep the drain manager around until we're
657 * done here.
658 */
659 DrainManager *drainManager;
660
661 /**
662 * Vector of ranks
663 */
664 std::vector<Rank*> ranks;
665
666 /**
667 * The following are basic design parameters of the memory
668 * controller, and are initialized based on parameter values.
669 * The rowsPerBank is determined based on the capacity, number of
670 * ranks and banks, the burst size, and the row buffer size.
671 */
672 const uint32_t deviceSize;
673 const uint32_t deviceBusWidth;
674 const uint32_t burstLength;
675 const uint32_t deviceRowBufferSize;
676 const uint32_t devicesPerRank;
677 const uint32_t burstSize;
678 const uint32_t rowBufferSize;
679 const uint32_t columnsPerRowBuffer;
680 const uint32_t columnsPerStripe;
681 const uint32_t ranksPerChannel;
682 const uint32_t bankGroupsPerRank;
683 const bool bankGroupArch;
684 const uint32_t banksPerRank;
685 const uint32_t channels;
686 uint32_t rowsPerBank;
687 const uint32_t readBufferSize;
688 const uint32_t writeBufferSize;
689 const uint32_t writeHighThreshold;
690 const uint32_t writeLowThreshold;
691 const uint32_t minWritesPerSwitch;
692 uint32_t writesThisTime;
693 uint32_t readsThisTime;
694
695 /**
696 * Basic memory timing parameters initialized based on parameter
697 * values.
698 */
699 const Tick M5_CLASS_VAR_USED tCK;
700 const Tick tWTR;
701 const Tick tRTW;
702 const Tick tCS;
703 const Tick tBURST;
704 const Tick tCCD_L;
705 const Tick tRCD;
706 const Tick tCL;
707 const Tick tRP;
708 const Tick tRAS;
709 const Tick tWR;
710 const Tick tRTP;
711 const Tick tRFC;
712 const Tick tREFI;
713 const Tick tRRD;
714 const Tick tRRD_L;
715 const Tick tXAW;
716 const uint32_t activationLimit;
717
718 /**
719 * Memory controller configuration initialized based on parameter
720 * values.
721 */
722 Enums::MemSched memSchedPolicy;
723 Enums::AddrMap addrMapping;
724 Enums::PageManage pageMgmt;
725
726 /**
727 * Max column accesses (read and write) per row, before forefully
728 * closing it.
729 */
730 const uint32_t maxAccessesPerRow;
731
732 /**
733 * Pipeline latency of the controller frontend. The frontend
734 * contribution is added to writes (that complete when they are in
735 * the write buffer) and reads that are serviced the write buffer.
736 */
737 const Tick frontendLatency;
738
739 /**
740 * Pipeline latency of the backend and PHY. Along with the
741 * frontend contribution, this latency is added to reads serviced
742 * by the DRAM.
743 */
744 const Tick backendLatency;
745
746 /**
747 * Till when has the main data bus been spoken for already?
748 */
749 Tick busBusyUntil;
750
751 Tick prevArrival;
752
753 /**
754 * The soonest you have to start thinking about the next request
755 * is the longest access time that can occur before
756 * busBusyUntil. Assuming you need to precharge, open a new row,
757 * and access, it is tRP + tRCD + tCL.
758 */
759 Tick nextReqTime;
760
761 // All statistics that the model needs to capture
762 Stats::Scalar readReqs;
763 Stats::Scalar writeReqs;
764 Stats::Scalar readBursts;
765 Stats::Scalar writeBursts;
766 Stats::Scalar bytesReadDRAM;
767 Stats::Scalar bytesReadWrQ;
768 Stats::Scalar bytesWritten;
769 Stats::Scalar bytesReadSys;
770 Stats::Scalar bytesWrittenSys;
771 Stats::Scalar servicedByWrQ;
772 Stats::Scalar mergedWrBursts;
773 Stats::Scalar neitherReadNorWrite;
774 Stats::Vector perBankRdBursts;
775 Stats::Vector perBankWrBursts;
776 Stats::Scalar numRdRetry;
777 Stats::Scalar numWrRetry;
778 Stats::Scalar totGap;
779 Stats::Vector readPktSize;
780 Stats::Vector writePktSize;
781 Stats::Vector rdQLenPdf;
782 Stats::Vector wrQLenPdf;
783 Stats::Histogram bytesPerActivate;
784 Stats::Histogram rdPerTurnAround;
785 Stats::Histogram wrPerTurnAround;
786
787 // Latencies summed over all requests
788 Stats::Scalar totQLat;
789 Stats::Scalar totMemAccLat;
790 Stats::Scalar totBusLat;
791
792 // Average latencies per request
793 Stats::Formula avgQLat;
794 Stats::Formula avgBusLat;
795 Stats::Formula avgMemAccLat;
796
797 // Average bandwidth
798 Stats::Formula avgRdBW;
799 Stats::Formula avgWrBW;
800 Stats::Formula avgRdBWSys;
801 Stats::Formula avgWrBWSys;
802 Stats::Formula peakBW;
803 Stats::Formula busUtil;
804 Stats::Formula busUtilRead;
805 Stats::Formula busUtilWrite;
806
807 // Average queue lengths
808 Stats::Average avgRdQLen;
809 Stats::Average avgWrQLen;
810
811 // Row hit count and rate
812 Stats::Scalar readRowHits;
813 Stats::Scalar writeRowHits;
814 Stats::Formula readRowHitRate;
815 Stats::Formula writeRowHitRate;
816 Stats::Formula avgGap;
817
818 // DRAM Power Calculation
819 Stats::Formula pageHitRate;
820
821 // Holds the value of the rank of burst issued
822 uint8_t activeRank;
823
824 // timestamp offset
825 uint64_t timeStampOffset;
826
827 /** @todo this is a temporary workaround until the 4-phase code is
828 * committed. upstream caches needs this packet until true is returned, so
829 * hold onto it for deletion until a subsequent call
830 */
831 std::vector<PacketPtr> pendingDelete;
832
833 /**
834 * This function increments the energy when called. If stats are
835 * dumped periodically, note accumulated energy values will
836 * appear in the stats (even if the stats are reset). This is a
837 * result of the energy values coming from DRAMPower, and there
838 * is currently no support for resetting the state.
839 *
840 * @param rank Currrent rank
841 */
842 void updatePowerStats(Rank& rank_ref);
843
844 /**
845 * Function for sorting commands in the command list of DRAMPower.
846 *
847 * @param a Memory Command in command list of DRAMPower library
848 * @param next Memory Command in command list of DRAMPower
849 * @return true if timestamp of Command 1 < timestamp of Command 2
850 */
851 static bool sortTime(const Data::MemCommand& m1,
852 const Data::MemCommand& m2) {
853 return m1.getTime() < m2.getTime();
854 };
855
856
857 public:
858
859 void regStats();
860
861 DRAMCtrl(const DRAMCtrlParams* p);
862
863 unsigned int drain(DrainManager* dm);
864
865 virtual BaseSlavePort& getSlavePort(const std::string& if_name,
866 PortID idx = InvalidPortID);
867
868 virtual void init() M5_ATTR_OVERRIDE;
869 virtual void startup() M5_ATTR_OVERRIDE;
870 virtual void drainResume() M5_ATTR_OVERRIDE;
871
872 protected:
873
874 Tick recvAtomic(PacketPtr pkt);
875 void recvFunctional(PacketPtr pkt);
876 bool recvTimingReq(PacketPtr pkt);
877
878};
879
880#endif //__MEM_DRAM_CTRL_HH__