dram_ctrl.cc (11677:beaf1afe2f83) dram_ctrl.cc (11678:8c6991a00515)
1/*
2 * Copyright (c) 2010-2016 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software

--- 27 unchanged lines hidden (view full) ---

36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 * Ani Udipi
42 * Neha Agarwal
43 * Omar Naji
1/*
2 * Copyright (c) 2010-2016 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software

--- 27 unchanged lines hidden (view full) ---

36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 * Ani Udipi
42 * Neha Agarwal
43 * Omar Naji
44 * Wendy Elsasser
44 */
45
46#include "base/bitfield.hh"
47#include "base/trace.hh"
48#include "debug/DRAM.hh"
49#include "debug/DRAMPower.hh"
50#include "debug/DRAMState.hh"
51#include "debug/Drain.hh"
52#include "mem/dram_ctrl.hh"
53#include "sim/system.hh"
54
55using namespace std;
56using namespace Data;
57
58DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
59 AbstractMemory(p),
60 port(name() + ".port", *this), isTimingMode(false),
61 retryRdReq(false), retryWrReq(false),
62 busState(READ),
45 */
46
47#include "base/bitfield.hh"
48#include "base/trace.hh"
49#include "debug/DRAM.hh"
50#include "debug/DRAMPower.hh"
51#include "debug/DRAMState.hh"
52#include "debug/Drain.hh"
53#include "mem/dram_ctrl.hh"
54#include "sim/system.hh"
55
56using namespace std;
57using namespace Data;
58
59DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
60 AbstractMemory(p),
61 port(name() + ".port", *this), isTimingMode(false),
62 retryRdReq(false), retryWrReq(false),
63 busState(READ),
64 busStateNext(READ),
63 nextReqEvent(this), respondEvent(this),
64 deviceSize(p->device_size),
65 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
66 deviceRowBufferSize(p->device_rowbuffer_size),
67 devicesPerRank(p->devices_per_rank),
68 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
69 rowBufferSize(devicesPerRank * deviceRowBufferSize),
70 columnsPerRowBuffer(rowBufferSize / burstSize),

--- 405 unchanged lines hidden (view full) ---

476
477 assert(!readQueueFull(1));
478 rdQLenPdf[readQueue.size() + respQueue.size()]++;
479
480 DPRINTF(DRAM, "Adding to read queue\n");
481
482 readQueue.push_back(dram_pkt);
483
65 nextReqEvent(this), respondEvent(this),
66 deviceSize(p->device_size),
67 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
68 deviceRowBufferSize(p->device_rowbuffer_size),
69 devicesPerRank(p->devices_per_rank),
70 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
71 rowBufferSize(devicesPerRank * deviceRowBufferSize),
72 columnsPerRowBuffer(rowBufferSize / burstSize),

--- 405 unchanged lines hidden (view full) ---

478
479 assert(!readQueueFull(1));
480 rdQLenPdf[readQueue.size() + respQueue.size()]++;
481
482 DPRINTF(DRAM, "Adding to read queue\n");
483
484 readQueue.push_back(dram_pkt);
485
486 // increment read entries of the rank
487 ++dram_pkt->rankRef.readEntries;
488
484 // Update stats
485 avgRdQLen = readQueue.size() + respQueue.size();
486 }
487
488 // Starting address of next dram pkt (aligend to burstSize boundary)
489 addr = (addr | (burstSize - 1)) + 1;
490 }
491

--- 47 unchanged lines hidden (view full) ---

539 DPRINTF(DRAM, "Adding to write queue\n");
540
541 writeQueue.push_back(dram_pkt);
542 isInWriteQueue.insert(burstAlign(addr));
543 assert(writeQueue.size() == isInWriteQueue.size());
544
545 // Update stats
546 avgWrQLen = writeQueue.size();
489 // Update stats
490 avgRdQLen = readQueue.size() + respQueue.size();
491 }
492
493 // Starting address of next dram pkt (aligend to burstSize boundary)
494 addr = (addr | (burstSize - 1)) + 1;
495 }
496

--- 47 unchanged lines hidden (view full) ---

544 DPRINTF(DRAM, "Adding to write queue\n");
545
546 writeQueue.push_back(dram_pkt);
547 isInWriteQueue.insert(burstAlign(addr));
548 assert(writeQueue.size() == isInWriteQueue.size());
549
550 // Update stats
551 avgWrQLen = writeQueue.size();
552
553 // increment write entries of the rank
554 ++dram_pkt->rankRef.writeEntries;
547 } else {
548 DPRINTF(DRAM, "Merging write burst with existing queue entry\n");
549
550 // keep track of the fact that this burst effectively
551 // disappeared as it was merged with an existing one
552 mergedWrBursts++;
553 }
554

--- 96 unchanged lines hidden (view full) ---

651void
652DRAMCtrl::processRespondEvent()
653{
654 DPRINTF(DRAM,
655 "processRespondEvent(): Some req has reached its readyTime\n");
656
657 DRAMPacket* dram_pkt = respQueue.front();
658
555 } else {
556 DPRINTF(DRAM, "Merging write burst with existing queue entry\n");
557
558 // keep track of the fact that this burst effectively
559 // disappeared as it was merged with an existing one
560 mergedWrBursts++;
561 }
562

--- 96 unchanged lines hidden (view full) ---

659void
660DRAMCtrl::processRespondEvent()
661{
662 DPRINTF(DRAM,
663 "processRespondEvent(): Some req has reached its readyTime\n");
664
665 DRAMPacket* dram_pkt = respQueue.front();
666
667 // if a read has reached its ready-time, decrement the number of reads
668 // At this point the packet has been handled and there is a possibility
669 // to switch to low-power mode if no other packet is available
670 --dram_pkt->rankRef.readEntries;
671 DPRINTF(DRAM, "number of read entries for rank %d is %d\n",
672 dram_pkt->rank, dram_pkt->rankRef.readEntries);
673
674 // counter should at least indicate one outstanding request
675 // for this read
676 assert(dram_pkt->rankRef.outstandingEvents > 0);
677 // read response received, decrement count
678 --dram_pkt->rankRef.outstandingEvents;
679
680 // at this moment should be either ACT or IDLE depending on
681 // if PRE has occurred to close all banks
682 assert((dram_pkt->rankRef.pwrState == PWR_ACT) ||
683 (dram_pkt->rankRef.pwrState == PWR_IDLE));
684
685 // track if this is the last packet before idling
686 // and that there are no outstanding commands to this rank
687 if (dram_pkt->rankRef.lowPowerEntryReady()) {
688 // verify that there are no events scheduled
689 assert(!dram_pkt->rankRef.activateEvent.scheduled());
690 assert(!dram_pkt->rankRef.prechargeEvent.scheduled());
691 assert(dram_pkt->rankRef.refreshState == REF_IDLE);
692
693 // if coming from active state, schedule power event to
694 // active power-down else go to precharge power-down
695 DPRINTF(DRAMState, "Rank %d sleep at tick %d; current power state is "
696 "%d\n", dram_pkt->rank, curTick(), dram_pkt->rankRef.pwrState);
697
698 // default to ACT power-down unless already in IDLE state
699 // could be in IDLE if PRE issued before data returned
700 PowerState next_pwr_state = PWR_ACT_PDN;
701 if (dram_pkt->rankRef.pwrState == PWR_IDLE) {
702 next_pwr_state = PWR_PRE_PDN;
703 }
704
705 dram_pkt->rankRef.powerDownSleep(next_pwr_state, curTick());
706 }
707
659 if (dram_pkt->burstHelper) {
660 // it is a split packet
661 dram_pkt->burstHelper->burstsServiced++;
662 if (dram_pkt->burstHelper->burstsServiced ==
663 dram_pkt->burstHelper->burstCount) {
664 // we have now serviced all children packets of a system packet
665 // so we can now respond to the requester
666 // @todo we probably want to have a different front end and back

--- 340 unchanged lines hidden (view full) ---

1007 timeStampOffset, bank.bank, rank_ref.rank);
1008 }
1009 // if we look at the current number of active banks we might be
1010 // tempted to think the DRAM is now idle, however this can be
1011 // undone by an activate that is scheduled to happen before we
1012 // would have reached the idle state, so schedule an event and
1013 // rather check once we actually make it to the point in time when
1014 // the (last) precharge takes place
708 if (dram_pkt->burstHelper) {
709 // it is a split packet
710 dram_pkt->burstHelper->burstsServiced++;
711 if (dram_pkt->burstHelper->burstsServiced ==
712 dram_pkt->burstHelper->burstCount) {
713 // we have now serviced all children packets of a system packet
714 // so we can now respond to the requester
715 // @todo we probably want to have a different front end and back

--- 340 unchanged lines hidden (view full) ---

1056 timeStampOffset, bank.bank, rank_ref.rank);
1057 }
1058 // if we look at the current number of active banks we might be
1059 // tempted to think the DRAM is now idle, however this can be
1060 // undone by an activate that is scheduled to happen before we
1061 // would have reached the idle state, so schedule an event and
1062 // rather check once we actually make it to the point in time when
1063 // the (last) precharge takes place
1015 if (!rank_ref.prechargeEvent.scheduled())
1064 if (!rank_ref.prechargeEvent.scheduled()) {
1016 schedule(rank_ref.prechargeEvent, pre_done_at);
1065 schedule(rank_ref.prechargeEvent, pre_done_at);
1017 else if (rank_ref.prechargeEvent.when() < pre_done_at)
1066 // New event, increment count
1067 ++rank_ref.outstandingEvents;
1068 } else if (rank_ref.prechargeEvent.when() < pre_done_at) {
1018 reschedule(rank_ref.prechargeEvent, pre_done_at);
1069 reschedule(rank_ref.prechargeEvent, pre_done_at);
1070 }
1019}
1020
1021void
1022DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1023{
1024 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1025 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1026
1027 // get the rank
1028 Rank& rank = dram_pkt->rankRef;
1029
1071}
1072
1073void
1074DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1075{
1076 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1077 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1078
1079 // get the rank
1080 Rank& rank = dram_pkt->rankRef;
1081
1082 // are we in or transitioning to a low-power state and have not scheduled
1083 // a power-up event?
1084 // if so, wake up from power down to issue RD/WR burst
1085 if (rank.inLowPowerState) {
1086 assert(rank.pwrState != PWR_SREF);
1087 rank.scheduleWakeUpEvent(tXP);
1088 }
1089
1030 // get the bank
1031 Bank& bank = dram_pkt->bankRef;
1032
1033 // for the state we need to track if it is a row hit or not
1034 bool row_hit = true;
1035
1036 // respect any constraints on the command (e.g. tRCD or tCCD)
1037 Tick cmd_at = std::max(bank.colAllowedAt, curTick());

--- 186 unchanged lines hidden (view full) ---

1224}
1225
1226void
1227DRAMCtrl::processNextReqEvent()
1228{
1229 int busyRanks = 0;
1230 for (auto r : ranks) {
1231 if (!r->isAvailable()) {
1090 // get the bank
1091 Bank& bank = dram_pkt->bankRef;
1092
1093 // for the state we need to track if it is a row hit or not
1094 bool row_hit = true;
1095
1096 // respect any constraints on the command (e.g. tRCD or tCCD)
1097 Tick cmd_at = std::max(bank.colAllowedAt, curTick());

--- 186 unchanged lines hidden (view full) ---

1284}
1285
1286void
1287DRAMCtrl::processNextReqEvent()
1288{
1289 int busyRanks = 0;
1290 for (auto r : ranks) {
1291 if (!r->isAvailable()) {
1232 // rank is busy refreshing
1233 busyRanks++;
1292 if (r->pwrState != PWR_SREF) {
1293 // rank is busy refreshing
1294 DPRINTF(DRAMState, "Rank %d is not available\n", r->rank);
1295 busyRanks++;
1234
1296
1235 // let the rank know that if it was waiting to drain, it
1236 // is now done and ready to proceed
1237 r->checkDrainDone();
1297 // let the rank know that if it was waiting to drain, it
1298 // is now done and ready to proceed
1299 r->checkDrainDone();
1300 }
1301
1302 // check if we were in self-refresh and haven't started
1303 // to transition out
1304 if ((r->pwrState == PWR_SREF) && r->inLowPowerState) {
1305 DPRINTF(DRAMState, "Rank %d is in self-refresh\n", r->rank);
1306 // if we have commands queued to this rank and we don't have
1307 // a minimum number of active commands enqueued,
1308 // exit self-refresh
1309 if (r->forceSelfRefreshExit()) {
1310 DPRINTF(DRAMState, "rank %d was in self refresh and"
1311 " should wake up\n", r->rank);
1312 //wake up from self-refresh
1313 r->scheduleWakeUpEvent(tXS);
1314 // things are brought back into action once a refresh is
1315 // performed after self-refresh
1316 // continue with selection for other ranks
1317 }
1318 }
1238 }
1239 }
1240
1241 if (busyRanks == ranksPerChannel) {
1242 // if all ranks are refreshing wait for them to finish
1243 // and stall this state machine without taking any further
1244 // action, and do not schedule a new nextReqEvent
1245 return;
1246 }
1247
1319 }
1320 }
1321
1322 if (busyRanks == ranksPerChannel) {
1323 // if all ranks are refreshing wait for them to finish
1324 // and stall this state machine without taking any further
1325 // action, and do not schedule a new nextReqEvent
1326 return;
1327 }
1328
1248 // pre-emptively set to false. Overwrite if in READ_TO_WRITE
1249 // or WRITE_TO_READ state
1329 // pre-emptively set to false. Overwrite if in transitioning to
1330 // a new state
1250 bool switched_cmd_type = false;
1331 bool switched_cmd_type = false;
1251 if (busState == READ_TO_WRITE) {
1252 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1253 "waiting\n", readsThisTime, readQueue.size());
1332 if (busState != busStateNext) {
1333 if (busState == READ) {
1334 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1335 "waiting\n", readsThisTime, readQueue.size());
1254
1336
1255 // sample and reset the read-related stats as we are now
1256 // transitioning to writes, and all reads are done
1257 rdPerTurnAround.sample(readsThisTime);
1258 readsThisTime = 0;
1337 // sample and reset the read-related stats as we are now
1338 // transitioning to writes, and all reads are done
1339 rdPerTurnAround.sample(readsThisTime);
1340 readsThisTime = 0;
1259
1341
1260 // now proceed to do the actual writes
1261 busState = WRITE;
1262 switched_cmd_type = true;
1263 } else if (busState == WRITE_TO_READ) {
1264 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1265 "waiting\n", writesThisTime, writeQueue.size());
1342 // now proceed to do the actual writes
1343 switched_cmd_type = true;
1344 } else {
1345 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1346 "waiting\n", writesThisTime, writeQueue.size());
1266
1347
1267 wrPerTurnAround.sample(writesThisTime);
1268 writesThisTime = 0;
1348 wrPerTurnAround.sample(writesThisTime);
1349 writesThisTime = 0;
1269
1350
1270 busState = READ;
1271 switched_cmd_type = true;
1351 switched_cmd_type = true;
1352 }
1353 // update busState to match next state until next transition
1354 busState = busStateNext;
1272 }
1273
1274 // when we get here it is either a read or a write
1275 if (busState == READ) {
1276
1277 // track if we should switch or not
1278 bool switch_to_writes = false;
1279

--- 38 unchanged lines hidden (view full) ---

1318 // which are above the required threshold. However, to
1319 // avoid adding more complexity to the code, return and wait
1320 // for a refresh event to kick things into action again.
1321 if (!found_read)
1322 return;
1323
1324 DRAMPacket* dram_pkt = readQueue.front();
1325 assert(dram_pkt->rankRef.isAvailable());
1355 }
1356
1357 // when we get here it is either a read or a write
1358 if (busState == READ) {
1359
1360 // track if we should switch or not
1361 bool switch_to_writes = false;
1362

--- 38 unchanged lines hidden (view full) ---

1401 // which are above the required threshold. However, to
1402 // avoid adding more complexity to the code, return and wait
1403 // for a refresh event to kick things into action again.
1404 if (!found_read)
1405 return;
1406
1407 DRAMPacket* dram_pkt = readQueue.front();
1408 assert(dram_pkt->rankRef.isAvailable());
1409
1326 // here we get a bit creative and shift the bus busy time not
1327 // just the tWTR, but also a CAS latency to capture the fact
1328 // that we are allowed to prepare a new bank, but not issue a
1329 // read command until after tWTR, in essence we capture a
1330 // bubble on the data bus that is tWTR + tCL
1331 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1332 busBusyUntil += tWTR + tCL;
1333 }
1334
1335 doDRAMAccess(dram_pkt);
1336
1337 // At this point we're done dealing with the request
1338 readQueue.pop_front();
1339
1410 // here we get a bit creative and shift the bus busy time not
1411 // just the tWTR, but also a CAS latency to capture the fact
1412 // that we are allowed to prepare a new bank, but not issue a
1413 // read command until after tWTR, in essence we capture a
1414 // bubble on the data bus that is tWTR + tCL
1415 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1416 busBusyUntil += tWTR + tCL;
1417 }
1418
1419 doDRAMAccess(dram_pkt);
1420
1421 // At this point we're done dealing with the request
1422 readQueue.pop_front();
1423
1424 // Every respQueue which will generate an event, increment count
1425 ++dram_pkt->rankRef.outstandingEvents;
1426
1340 // sanity check
1341 assert(dram_pkt->size <= burstSize);
1342 assert(dram_pkt->readyTime >= curTick());
1343
1344 // Insert into response queue. It will be sent back to the
1345 // requestor at its readyTime
1346 if (respQueue.empty()) {
1347 assert(!respondEvent.scheduled());

--- 11 unchanged lines hidden (view full) ---

1359 }
1360 }
1361
1362 // switching to writes, either because the read queue is empty
1363 // and the writes have passed the low threshold (or we are
1364 // draining), or because the writes hit the hight threshold
1365 if (switch_to_writes) {
1366 // transition to writing
1427 // sanity check
1428 assert(dram_pkt->size <= burstSize);
1429 assert(dram_pkt->readyTime >= curTick());
1430
1431 // Insert into response queue. It will be sent back to the
1432 // requestor at its readyTime
1433 if (respQueue.empty()) {
1434 assert(!respondEvent.scheduled());

--- 11 unchanged lines hidden (view full) ---

1446 }
1447 }
1448
1449 // switching to writes, either because the read queue is empty
1450 // and the writes have passed the low threshold (or we are
1451 // draining), or because the writes hit the hight threshold
1452 if (switch_to_writes) {
1453 // transition to writing
1367 busState = READ_TO_WRITE;
1454 busStateNext = WRITE;
1368 }
1369 } else {
1370 // bool to check if write to free rank is found
1371 bool found_write = false;
1372
1373 // If we are changing command type, incorporate the minimum
1374 // bus turnaround delay
1375 found_write = chooseNext(writeQueue,

--- 17 unchanged lines hidden (view full) ---

1393 // applied to colAllowedAt
1394 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1395 busBusyUntil += tRTW;
1396 }
1397
1398 doDRAMAccess(dram_pkt);
1399
1400 writeQueue.pop_front();
1455 }
1456 } else {
1457 // bool to check if write to free rank is found
1458 bool found_write = false;
1459
1460 // If we are changing command type, incorporate the minimum
1461 // bus turnaround delay
1462 found_write = chooseNext(writeQueue,

--- 17 unchanged lines hidden (view full) ---

1480 // applied to colAllowedAt
1481 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1482 busBusyUntil += tRTW;
1483 }
1484
1485 doDRAMAccess(dram_pkt);
1486
1487 writeQueue.pop_front();
1488
1489 // removed write from queue, decrement count
1490 --dram_pkt->rankRef.writeEntries;
1491
1492 // Schedule write done event to decrement event count
1493 // after the readyTime has been reached
1494 // Only schedule latest write event to minimize events
1495 // required; only need to ensure that final event scheduled covers
1496 // the time that writes are outstanding and bus is active
1497 // to holdoff power-down entry events
1498 if (!dram_pkt->rankRef.writeDoneEvent.scheduled()) {
1499 schedule(dram_pkt->rankRef.writeDoneEvent, dram_pkt->readyTime);
1500 // New event, increment count
1501 ++dram_pkt->rankRef.outstandingEvents;
1502
1503 } else if (dram_pkt->rankRef.writeDoneEvent.when() <
1504 dram_pkt-> readyTime) {
1505 reschedule(dram_pkt->rankRef.writeDoneEvent, dram_pkt->readyTime);
1506 }
1507
1401 isInWriteQueue.erase(burstAlign(dram_pkt->addr));
1402 delete dram_pkt;
1403
1404 // If we emptied the write queue, or got sufficiently below the
1405 // threshold (using the minWritesPerSwitch as the hysteresis) and
1406 // are not draining, or we have reads waiting and have done enough
1407 // writes, then switch to reads.
1408 if (writeQueue.empty() ||
1409 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1410 drainState() != DrainState::Draining) ||
1411 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1412 // turn the bus back around for reads again
1508 isInWriteQueue.erase(burstAlign(dram_pkt->addr));
1509 delete dram_pkt;
1510
1511 // If we emptied the write queue, or got sufficiently below the
1512 // threshold (using the minWritesPerSwitch as the hysteresis) and
1513 // are not draining, or we have reads waiting and have done enough
1514 // writes, then switch to reads.
1515 if (writeQueue.empty() ||
1516 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1517 drainState() != DrainState::Draining) ||
1518 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1519 // turn the bus back around for reads again
1413 busState = WRITE_TO_READ;
1520 busStateNext = READ;
1414
1415 // note that the we switch back to reads also in the idle
1416 // case, which eventually will check for any draining and
1417 // also pause any further scheduling if there is really
1418 // nothing to do
1419 }
1420 }
1421 // It is possible that a refresh to another rank kicks things back into

--- 91 unchanged lines hidden (view full) ---

1513 }
1514 }
1515
1516 return make_pair(bank_mask, hidden_bank_prep);
1517}
1518
1519DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p)
1520 : EventManager(&_memory), memory(_memory),
1521
1522 // note that the we switch back to reads also in the idle
1523 // case, which eventually will check for any draining and
1524 // also pause any further scheduling if there is really
1525 // nothing to do
1526 }
1527 }
1528 // It is possible that a refresh to another rank kicks things back into

--- 91 unchanged lines hidden (view full) ---

1620 }
1621 }
1622
1623 return make_pair(bank_mask, hidden_bank_prep);
1624}
1625
1626DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p)
1627 : EventManager(&_memory), memory(_memory),
1521 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), pwrStateTick(0),
1522 refreshState(REF_IDLE), refreshDueAt(0),
1523 power(_p, false), numBanksActive(0),
1524 activateEvent(*this), prechargeEvent(*this),
1525 refreshEvent(*this), powerEvent(*this)
1628 pwrStateTrans(PWR_IDLE), pwrStatePostRefresh(PWR_IDLE),
1629 pwrStateTick(0), refreshDueAt(0), pwrState(PWR_IDLE),
1630 refreshState(REF_IDLE), inLowPowerState(false), rank(0),
1631 readEntries(0), writeEntries(0), outstandingEvents(0),
1632 wakeUpAllowedAt(0), power(_p, false), numBanksActive(0),
1633 writeDoneEvent(*this), activateEvent(*this), prechargeEvent(*this),
1634 refreshEvent(*this), powerEvent(*this), wakeUpEvent(*this)
1526{ }
1527
1528void
1529DRAMCtrl::Rank::startup(Tick ref_tick)
1530{
1531 assert(ref_tick > curTick());
1532
1533 pwrStateTick = curTick();

--- 5 unchanged lines hidden (view full) ---

1539
1540void
1541DRAMCtrl::Rank::suspend()
1542{
1543 deschedule(refreshEvent);
1544
1545 // Update the stats
1546 updatePowerStats();
1635{ }
1636
1637void
1638DRAMCtrl::Rank::startup(Tick ref_tick)
1639{
1640 assert(ref_tick > curTick());
1641
1642 pwrStateTick = curTick();

--- 5 unchanged lines hidden (view full) ---

1648
1649void
1650DRAMCtrl::Rank::suspend()
1651{
1652 deschedule(refreshEvent);
1653
1654 // Update the stats
1655 updatePowerStats();
1656
1657 // don't automatically transition back to LP state after next REF
1658 pwrStatePostRefresh = PWR_IDLE;
1547}
1548
1659}
1660
1661bool
1662DRAMCtrl::Rank::lowPowerEntryReady() const
1663{
1664 bool no_queued_cmds = ((memory.busStateNext == READ) && (readEntries == 0))
1665 || ((memory.busStateNext == WRITE) &&
1666 (writeEntries == 0));
1667
1668 if (refreshState == REF_RUN) {
1669 // have not decremented outstandingEvents for refresh command
1670 // still check if there are no commands queued to force PD
1671 // entry after refresh completes
1672 return no_queued_cmds;
1673 } else {
1674 // ensure no commands in Q and no commands scheduled
1675 return (no_queued_cmds && (outstandingEvents == 0));
1676 }
1677}
1678
1549void
1550DRAMCtrl::Rank::checkDrainDone()
1551{
1552 // if this rank was waiting to drain it is now able to proceed to
1553 // precharge
1554 if (refreshState == REF_DRAIN) {
1555 DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1556
1679void
1680DRAMCtrl::Rank::checkDrainDone()
1681{
1682 // if this rank was waiting to drain it is now able to proceed to
1683 // precharge
1684 if (refreshState == REF_DRAIN) {
1685 DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1686
1557 refreshState = REF_PRE;
1687 refreshState = REF_PD_EXIT;
1558
1559 // hand control back to the refresh event loop
1560 schedule(refreshEvent, curTick());
1561 }
1562}
1563
1564void
1565DRAMCtrl::Rank::flushCmdList()

--- 31 unchanged lines hidden (view full) ---

1597 // note that at this point numBanksActive could be back at
1598 // zero again due to a precharge scheduled in the future
1599 schedulePowerEvent(PWR_ACT, curTick());
1600}
1601
1602void
1603DRAMCtrl::Rank::processPrechargeEvent()
1604{
1688
1689 // hand control back to the refresh event loop
1690 schedule(refreshEvent, curTick());
1691 }
1692}
1693
1694void
1695DRAMCtrl::Rank::flushCmdList()

--- 31 unchanged lines hidden (view full) ---

1727 // note that at this point numBanksActive could be back at
1728 // zero again due to a precharge scheduled in the future
1729 schedulePowerEvent(PWR_ACT, curTick());
1730}
1731
1732void
1733DRAMCtrl::Rank::processPrechargeEvent()
1734{
1735 // counter should at least indicate one outstanding request
1736 // for this precharge
1737 assert(outstandingEvents > 0);
1738 // precharge complete, decrement count
1739 --outstandingEvents;
1740
1605 // if we reached zero, then special conditions apply as we track
1606 // if all banks are precharged for the power models
1607 if (numBanksActive == 0) {
1741 // if we reached zero, then special conditions apply as we track
1742 // if all banks are precharged for the power models
1743 if (numBanksActive == 0) {
1608 // we should transition to the idle state when the last bank
1609 // is precharged
1610 schedulePowerEvent(PWR_IDLE, curTick());
1744 // no reads to this rank in the Q and no pending
1745 // RD/WR or refresh commands
1746 if (lowPowerEntryReady()) {
1747 // should still be in ACT state since bank still open
1748 assert(pwrState == PWR_ACT);
1749
1750 // All banks closed - switch to precharge power down state.
1751 DPRINTF(DRAMState, "Rank %d sleep at tick %d\n",
1752 rank, curTick());
1753 powerDownSleep(PWR_PRE_PDN, curTick());
1754 } else {
1755 // we should transition to the idle state when the last bank
1756 // is precharged
1757 schedulePowerEvent(PWR_IDLE, curTick());
1758 }
1611 }
1612}
1613
1614void
1759 }
1760}
1761
1762void
1763DRAMCtrl::Rank::processWriteDoneEvent()
1764{
1765 // counter should at least indicate one outstanding request
1766 // for this write
1767 assert(outstandingEvents > 0);
1768 // Write transfer on bus has completed
1769 // decrement per rank counter
1770 --outstandingEvents;
1771}
1772
1773void
1615DRAMCtrl::Rank::processRefreshEvent()
1616{
1617 // when first preparing the refresh, remember when it was due
1774DRAMCtrl::Rank::processRefreshEvent()
1775{
1776 // when first preparing the refresh, remember when it was due
1618 if (refreshState == REF_IDLE) {
1777 if ((refreshState == REF_IDLE) || (refreshState == REF_SREF_EXIT)) {
1619 // remember when the refresh is due
1620 refreshDueAt = curTick();
1621
1622 // proceed to drain
1623 refreshState = REF_DRAIN;
1624
1778 // remember when the refresh is due
1779 refreshDueAt = curTick();
1780
1781 // proceed to drain
1782 refreshState = REF_DRAIN;
1783
1784 // make nonzero while refresh is pending to ensure
1785 // power down and self-refresh are not entered
1786 ++outstandingEvents;
1787
1625 DPRINTF(DRAM, "Refresh due\n");
1626 }
1627
1628 // let any scheduled read or write to the same rank go ahead,
1629 // after which it will
1630 // hand control back to this event loop
1631 if (refreshState == REF_DRAIN) {
1632 // if a request is at the moment being handled and this request is
1633 // accessing the current rank then wait for it to finish
1634 if ((rank == memory.activeRank)
1635 && (memory.nextReqEvent.scheduled())) {
1636 // hand control over to the request loop until it is
1637 // evaluated next
1638 DPRINTF(DRAM, "Refresh awaiting draining\n");
1639
1640 return;
1641 } else {
1788 DPRINTF(DRAM, "Refresh due\n");
1789 }
1790
1791 // let any scheduled read or write to the same rank go ahead,
1792 // after which it will
1793 // hand control back to this event loop
1794 if (refreshState == REF_DRAIN) {
1795 // if a request is at the moment being handled and this request is
1796 // accessing the current rank then wait for it to finish
1797 if ((rank == memory.activeRank)
1798 && (memory.nextReqEvent.scheduled())) {
1799 // hand control over to the request loop until it is
1800 // evaluated next
1801 DPRINTF(DRAM, "Refresh awaiting draining\n");
1802
1803 return;
1804 } else {
1805 refreshState = REF_PD_EXIT;
1806 }
1807 }
1808
1809 // at this point, ensure that rank is not in a power-down state
1810 if (refreshState == REF_PD_EXIT) {
1811 // if rank was sleeping and we have't started exit process,
1812 // wake-up for refresh
1813 if (inLowPowerState) {
1814 DPRINTF(DRAM, "Wake Up for refresh\n");
1815 // save state and return after refresh completes
1816 scheduleWakeUpEvent(memory.tXP);
1817 return;
1818 } else {
1642 refreshState = REF_PRE;
1643 }
1644 }
1645
1646 // at this point, ensure that all banks are precharged
1647 if (refreshState == REF_PRE) {
1819 refreshState = REF_PRE;
1820 }
1821 }
1822
1823 // at this point, ensure that all banks are precharged
1824 if (refreshState == REF_PRE) {
1648 // precharge any active bank if we are not already in the idle
1649 // state
1650 if (pwrState != PWR_IDLE) {
1825 // precharge any active bank
1826 if (numBanksActive != 0) {
1651 // at the moment, we use a precharge all even if there is
1652 // only a single bank open
1653 DPRINTF(DRAM, "Precharging all\n");
1654
1655 // first determine when we can precharge
1656 Tick pre_at = curTick();
1657
1658 for (auto &b : banks) {

--- 17 unchanged lines hidden (view full) ---

1676 }
1677
1678 // precharge all banks in rank
1679 cmdList.push_back(Command(MemCommand::PREA, 0, pre_at));
1680
1681 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
1682 divCeil(pre_at, memory.tCK) -
1683 memory.timeStampOffset, rank);
1827 // at the moment, we use a precharge all even if there is
1828 // only a single bank open
1829 DPRINTF(DRAM, "Precharging all\n");
1830
1831 // first determine when we can precharge
1832 Tick pre_at = curTick();
1833
1834 for (auto &b : banks) {

--- 17 unchanged lines hidden (view full) ---

1852 }
1853
1854 // precharge all banks in rank
1855 cmdList.push_back(Command(MemCommand::PREA, 0, pre_at));
1856
1857 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
1858 divCeil(pre_at, memory.tCK) -
1859 memory.timeStampOffset, rank);
1684 } else {
1860 } else if ((pwrState == PWR_IDLE) && (outstandingEvents == 1)) {
1861 // Banks are closed, have transitioned to IDLE state, and
1862 // no outstanding ACT,RD/WR,Auto-PRE sequence scheduled
1685 DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1686
1863 DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1864
1687 // go ahead and kick the power state machine into gear if
1865 // go ahead and kick the power state machine into gear since
1688 // we are already idle
1689 schedulePowerEvent(PWR_REF, curTick());
1866 // we are already idle
1867 schedulePowerEvent(PWR_REF, curTick());
1868 } else {
1869 // banks state is closed but haven't transitioned pwrState to IDLE
1870 // or have outstanding ACT,RD/WR,Auto-PRE sequence scheduled
1871 // should have outstanding precharge event in this case
1872 assert(prechargeEvent.scheduled());
1873 // will start refresh when pwrState transitions to IDLE
1690 }
1691
1874 }
1875
1692 refreshState = REF_RUN;
1693 assert(numBanksActive == 0);
1694
1695 // wait for all banks to be precharged, at which point the
1696 // power state machine will transition to the idle state, and
1697 // automatically move to a refresh, at that point it will also
1698 // call this method to get the refresh event loop going again
1699 return;
1700 }
1701
1702 // last but not least we perform the actual refresh
1876 assert(numBanksActive == 0);
1877
1878 // wait for all banks to be precharged, at which point the
1879 // power state machine will transition to the idle state, and
1880 // automatically move to a refresh, at that point it will also
1881 // call this method to get the refresh event loop going again
1882 return;
1883 }
1884
1885 // last but not least we perform the actual refresh
1703 if (refreshState == REF_RUN) {
1886 if (refreshState == REF_START) {
1704 // should never get here with any banks active
1705 assert(numBanksActive == 0);
1706 assert(pwrState == PWR_REF);
1707
1708 Tick ref_done_at = curTick() + memory.tRFC;
1709
1710 for (auto &b : banks) {
1711 b.actAllowedAt = ref_done_at;
1712 }
1713
1714 // at the moment this affects all ranks
1715 cmdList.push_back(Command(MemCommand::REF, 0, curTick()));
1716
1717 // Update the stats
1718 updatePowerStats();
1719
1720 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
1721 memory.timeStampOffset, rank);
1722
1887 // should never get here with any banks active
1888 assert(numBanksActive == 0);
1889 assert(pwrState == PWR_REF);
1890
1891 Tick ref_done_at = curTick() + memory.tRFC;
1892
1893 for (auto &b : banks) {
1894 b.actAllowedAt = ref_done_at;
1895 }
1896
1897 // at the moment this affects all ranks
1898 cmdList.push_back(Command(MemCommand::REF, 0, curTick()));
1899
1900 // Update the stats
1901 updatePowerStats();
1902
1903 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
1904 memory.timeStampOffset, rank);
1905
1906 // Update for next refresh
1907 refreshDueAt += memory.tREFI;
1908
1723 // make sure we did not wait so long that we cannot make up
1724 // for it
1909 // make sure we did not wait so long that we cannot make up
1910 // for it
1725 if (refreshDueAt + memory.tREFI < ref_done_at) {
1911 if (refreshDueAt < ref_done_at) {
1726 fatal("Refresh was delayed so long we cannot catch up\n");
1727 }
1728
1912 fatal("Refresh was delayed so long we cannot catch up\n");
1913 }
1914
1729 // compensate for the delay in actually performing the refresh
1730 // when scheduling the next one
1731 schedule(refreshEvent, refreshDueAt + memory.tREFI - memory.tRP);
1915 // Run the refresh and schedule event to transition power states
1916 // when refresh completes
1917 refreshState = REF_RUN;
1918 schedule(refreshEvent, ref_done_at);
1919 return;
1920 }
1732
1921
1922 if (refreshState == REF_RUN) {
1923 // should never get here with any banks active
1924 assert(numBanksActive == 0);
1925 assert(pwrState == PWR_REF);
1926
1733 assert(!powerEvent.scheduled());
1734
1927 assert(!powerEvent.scheduled());
1928
1735 // move to the idle power state once the refresh is done, this
1736 // will also move the refresh state machine to the refresh
1737 // idle state
1738 schedulePowerEvent(PWR_IDLE, ref_done_at);
1929 if ((memory.drainState() == DrainState::Draining) ||
1930 (memory.drainState() == DrainState::Drained)) {
1931 // if draining, do not re-enter low-power mode.
1932 // simply go to IDLE and wait
1933 schedulePowerEvent(PWR_IDLE, curTick());
1934 } else {
1935 // At the moment, we sleep when the refresh ends and wait to be
1936 // woken up again if previously in a low-power state.
1937 if (pwrStatePostRefresh != PWR_IDLE) {
1938 // power State should be power Refresh
1939 assert(pwrState == PWR_REF);
1940 DPRINTF(DRAMState, "Rank %d sleeping after refresh and was in "
1941 "power state %d before refreshing\n", rank,
1942 pwrStatePostRefresh);
1943 powerDownSleep(pwrState, curTick());
1739
1944
1740 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1741 ref_done_at, refreshDueAt + memory.tREFI);
1945 // Force PRE power-down if there are no outstanding commands
1946 // in Q after refresh.
1947 } else if (lowPowerEntryReady()) {
1948 DPRINTF(DRAMState, "Rank %d sleeping after refresh but was NOT"
1949 " in a low power state before refreshing\n", rank);
1950 powerDownSleep(PWR_PRE_PDN, curTick());
1951
1952 } else {
1953 // move to the idle power state once the refresh is done, this
1954 // will also move the refresh state machine to the refresh
1955 // idle state
1956 schedulePowerEvent(PWR_IDLE, curTick());
1957 }
1958 }
1959
1960 // if transitioning to self refresh do not schedule a new refresh;
1961 // when waking from self refresh, a refresh is scheduled again.
1962 if (pwrStateTrans != PWR_SREF) {
1963 // compensate for the delay in actually performing the refresh
1964 // when scheduling the next one
1965 schedule(refreshEvent, refreshDueAt - memory.tRP);
1966
1967 DPRINTF(DRAMState, "Refresh done at %llu and next refresh"
1968 " at %llu\n", curTick(), refreshDueAt);
1969 }
1742 }
1743}
1744
1745void
1746DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick)
1747{
1748 // respect causality
1749 assert(tick >= curTick());

--- 9 unchanged lines hidden (view full) ---

1759 } else {
1760 panic("Scheduled power event at %llu to state %d, "
1761 "with scheduled event at %llu to %d\n", tick, pwr_state,
1762 powerEvent.when(), pwrStateTrans);
1763 }
1764}
1765
1766void
1970 }
1971}
1972
1973void
1974DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick)
1975{
1976 // respect causality
1977 assert(tick >= curTick());

--- 9 unchanged lines hidden (view full) ---

1987 } else {
1988 panic("Scheduled power event at %llu to state %d, "
1989 "with scheduled event at %llu to %d\n", tick, pwr_state,
1990 powerEvent.when(), pwrStateTrans);
1991 }
1992}
1993
1994void
1995DRAMCtrl::Rank::powerDownSleep(PowerState pwr_state, Tick tick)
1996{
1997 // if low power state is active low, schedule to active low power state.
1998 // in reality tCKE is needed to enter active low power. This is neglected
1999 // here and could be added in the future.
2000 if (pwr_state == PWR_ACT_PDN) {
2001 schedulePowerEvent(pwr_state, tick);
2002 // push command to DRAMPower
2003 cmdList.push_back(Command(MemCommand::PDN_F_ACT, 0, tick));
2004 DPRINTF(DRAMPower, "%llu,PDN_F_ACT,0,%d\n", divCeil(tick,
2005 memory.tCK) - memory.timeStampOffset, rank);
2006 } else if (pwr_state == PWR_PRE_PDN) {
2007 // if low power state is precharge low, schedule to precharge low
2008 // power state. In reality tCKE is needed to enter active low power.
2009 // This is neglected here.
2010 schedulePowerEvent(pwr_state, tick);
2011 //push Command to DRAMPower
2012 cmdList.push_back(Command(MemCommand::PDN_F_PRE, 0, tick));
2013 DPRINTF(DRAMPower, "%llu,PDN_F_PRE,0,%d\n", divCeil(tick,
2014 memory.tCK) - memory.timeStampOffset, rank);
2015 } else if (pwr_state == PWR_REF) {
2016 // if a refresh just occured
2017 // transition to PRE_PDN now that all banks are closed
2018 // do not transition to SREF if commands are in Q; stay in PRE_PDN
2019 if (pwrStatePostRefresh == PWR_ACT_PDN || !lowPowerEntryReady()) {
2020 // prechage power down requires tCKE to enter. For simplicity
2021 // this is not considered.
2022 schedulePowerEvent(PWR_PRE_PDN, tick);
2023 //push Command to DRAMPower
2024 cmdList.push_back(Command(MemCommand::PDN_F_PRE, 0, tick));
2025 DPRINTF(DRAMPower, "%llu,PDN_F_PRE,0,%d\n", divCeil(tick,
2026 memory.tCK) - memory.timeStampOffset, rank);
2027 } else {
2028 // last low power State was power precharge
2029 assert(pwrStatePostRefresh == PWR_PRE_PDN);
2030 // self refresh requires time tCKESR to enter. For simplicity,
2031 // this is not considered.
2032 schedulePowerEvent(PWR_SREF, tick);
2033 // push Command to DRAMPower
2034 cmdList.push_back(Command(MemCommand::SREN, 0, tick));
2035 DPRINTF(DRAMPower, "%llu,SREN,0,%d\n", divCeil(tick,
2036 memory.tCK) - memory.timeStampOffset, rank);
2037 }
2038 }
2039 // Ensure that we don't power-down and back up in same tick
2040 // Once we commit to PD entry, do it and wait for at least 1tCK
2041 // This could be replaced with tCKE if/when that is added to the model
2042 wakeUpAllowedAt = tick + memory.tCK;
2043
2044 // Transitioning to a low power state, set flag
2045 inLowPowerState = true;
2046}
2047
2048void
2049DRAMCtrl::Rank::scheduleWakeUpEvent(Tick exit_delay)
2050{
2051 Tick wake_up_tick = std::max(curTick(), wakeUpAllowedAt);
2052
2053 DPRINTF(DRAMState, "Scheduling wake-up for rank %d at tick %d\n",
2054 rank, wake_up_tick);
2055
2056 // if waking for refresh, hold previous state
2057 // else reset state back to IDLE
2058 if (refreshState == REF_PD_EXIT) {
2059 pwrStatePostRefresh = pwrState;
2060 } else {
2061 // don't automatically transition back to LP state after next REF
2062 pwrStatePostRefresh = PWR_IDLE;
2063 }
2064
2065 // schedule wake-up with event to ensure entry has completed before
2066 // we try to wake-up
2067 schedule(wakeUpEvent, wake_up_tick);
2068
2069 for (auto &b : banks) {
2070 // respect both causality and any existing bank
2071 // constraints, some banks could already have a
2072 // (auto) precharge scheduled
2073 b.colAllowedAt = std::max(wake_up_tick + exit_delay, b.colAllowedAt);
2074 b.preAllowedAt = std::max(wake_up_tick + exit_delay, b.preAllowedAt);
2075 b.actAllowedAt = std::max(wake_up_tick + exit_delay, b.actAllowedAt);
2076 }
2077 // Transitioning out of low power state, clear flag
2078 inLowPowerState = false;
2079
2080 // push to DRAMPower
2081 // use pwrStateTrans for cases where we have a power event scheduled
2082 // to enter low power that has not yet been processed
2083 if (pwrStateTrans == PWR_ACT_PDN) {
2084 cmdList.push_back(Command(MemCommand::PUP_ACT, 0, wake_up_tick));
2085 DPRINTF(DRAMPower, "%llu,PUP_ACT,0,%d\n", divCeil(wake_up_tick,
2086 memory.tCK) - memory.timeStampOffset, rank);
2087
2088 } else if (pwrStateTrans == PWR_PRE_PDN) {
2089 cmdList.push_back(Command(MemCommand::PUP_PRE, 0, wake_up_tick));
2090 DPRINTF(DRAMPower, "%llu,PUP_PRE,0,%d\n", divCeil(wake_up_tick,
2091 memory.tCK) - memory.timeStampOffset, rank);
2092 } else if (pwrStateTrans == PWR_SREF) {
2093 cmdList.push_back(Command(MemCommand::SREX, 0, wake_up_tick));
2094 DPRINTF(DRAMPower, "%llu,SREX,0,%d\n", divCeil(wake_up_tick,
2095 memory.tCK) - memory.timeStampOffset, rank);
2096 }
2097}
2098
2099void
2100DRAMCtrl::Rank::processWakeUpEvent()
2101{
2102 // Should be in a power-down or self-refresh state
2103 assert((pwrState == PWR_ACT_PDN) || (pwrState == PWR_PRE_PDN) ||
2104 (pwrState == PWR_SREF));
2105
2106 // Check current state to determine transition state
2107 if (pwrState == PWR_ACT_PDN) {
2108 // banks still open, transition to PWR_ACT
2109 schedulePowerEvent(PWR_ACT, curTick());
2110 } else {
2111 // transitioning from a precharge power-down or self-refresh state
2112 // banks are closed - transition to PWR_IDLE
2113 schedulePowerEvent(PWR_IDLE, curTick());
2114 }
2115}
2116
2117void
1767DRAMCtrl::Rank::processPowerEvent()
1768{
2118DRAMCtrl::Rank::processPowerEvent()
2119{
2120 assert(curTick() >= pwrStateTick);
1769 // remember where we were, and for how long
1770 Tick duration = curTick() - pwrStateTick;
1771 PowerState prev_state = pwrState;
1772
1773 // update the accounting
1774 pwrStateTime[prev_state] += duration;
1775
2121 // remember where we were, and for how long
2122 Tick duration = curTick() - pwrStateTick;
2123 PowerState prev_state = pwrState;
2124
2125 // update the accounting
2126 pwrStateTime[prev_state] += duration;
2127
2128 // track to total idle time
2129 if ((prev_state == PWR_PRE_PDN) || (prev_state == PWR_ACT_PDN) ||
2130 (prev_state == PWR_SREF)) {
2131 totalIdleTime += duration;
2132 }
2133
1776 pwrState = pwrStateTrans;
1777 pwrStateTick = curTick();
1778
2134 pwrState = pwrStateTrans;
2135 pwrStateTick = curTick();
2136
1779 if (pwrState == PWR_IDLE) {
1780 DPRINTF(DRAMState, "All banks precharged\n");
2137 // if rank was refreshing, make sure to start scheduling requests again
2138 if (prev_state == PWR_REF) {
2139 // bus IDLED prior to REF
2140 // counter should be one for refresh command only
2141 assert(outstandingEvents == 1);
2142 // REF complete, decrement count
2143 --outstandingEvents;
1781
2144
1782 // if we were refreshing, make sure we start scheduling requests again
1783 if (prev_state == PWR_REF) {
1784 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1785 assert(pwrState == PWR_IDLE);
1786
1787 // kick things into action again
2145 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
2146 // if sleeping after refresh
2147 if (pwrState != PWR_IDLE) {
2148 assert((pwrState == PWR_PRE_PDN) || (pwrState == PWR_SREF));
2149 DPRINTF(DRAMState, "Switching to power down state after refreshing"
2150 " rank %d at %llu tick\n", rank, curTick());
2151 }
2152 if (pwrState != PWR_SREF) {
2153 // rank is not available in SREF
2154 // don't transition to IDLE in this case
1788 refreshState = REF_IDLE;
2155 refreshState = REF_IDLE;
1789 // a request event could be already scheduled by the state
1790 // machine of the other rank
1791 if (!memory.nextReqEvent.scheduled())
1792 schedule(memory.nextReqEvent, curTick());
1793 } else {
1794 assert(prev_state == PWR_ACT);
2156 }
2157 // a request event could be already scheduled by the state
2158 // machine of the other rank
2159 if (!memory.nextReqEvent.scheduled()) {
2160 DPRINTF(DRAM, "Scheduling next request after refreshing rank %d\n",
2161 rank);
2162 schedule(memory.nextReqEvent, curTick());
2163 }
2164 } else if (pwrState == PWR_ACT) {
2165 if (refreshState == REF_PD_EXIT) {
2166 // kick the refresh event loop into action again
2167 assert(prev_state == PWR_ACT_PDN);
1795
2168
2169 // go back to REF event and close banks
2170 refreshState = REF_PRE;
2171 schedule(refreshEvent, curTick());
2172 }
2173 } else if (pwrState == PWR_IDLE) {
2174 DPRINTF(DRAMState, "All banks precharged\n");
2175 if (prev_state == PWR_SREF) {
2176 // set refresh state to REF_SREF_EXIT, ensuring isAvailable
2177 // continues to return false during tXS after SREF exit
2178 // Schedule a refresh which kicks things back into action
2179 // when it finishes
2180 refreshState = REF_SREF_EXIT;
2181 schedule(refreshEvent, curTick() + memory.tXS);
2182 } else {
1796 // if we have a pending refresh, and are now moving to
2183 // if we have a pending refresh, and are now moving to
1797 // the idle state, direclty transition to a refresh
1798 if (refreshState == REF_RUN) {
1799 // there should be nothing waiting at this point
1800 assert(!powerEvent.scheduled());
1801
1802 // update the state in zero time and proceed below
1803 pwrState = PWR_REF;
2184 // the idle state, directly transition to a refresh
2185 if ((refreshState == REF_PRE) || (refreshState == REF_PD_EXIT)) {
2186 // ensure refresh is restarted only after final PRE command.
2187 // do not restart refresh if controller is in an intermediate
2188 // state, after PRE_PDN exit, when banks are IDLE but an
2189 // ACT is scheduled.
2190 if (!activateEvent.scheduled()) {
2191 // there should be nothing waiting at this point
2192 assert(!powerEvent.scheduled());
2193 // update the state in zero time and proceed below
2194 pwrState = PWR_REF;
2195 } else {
2196 // must have PRE scheduled to transition back to IDLE
2197 // and re-kick off refresh
2198 assert(prechargeEvent.scheduled());
2199 }
1804 }
2200 }
1805 }
2201 }
1806 }
1807
1808 // we transition to the refresh state, let the refresh state
1809 // machine know of this state update and let it deal with the
1810 // scheduling of the next power state transition as well as the
1811 // following refresh
1812 if (pwrState == PWR_REF) {
2202 }
2203
2204 // we transition to the refresh state, let the refresh state
2205 // machine know of this state update and let it deal with the
2206 // scheduling of the next power state transition as well as the
2207 // following refresh
2208 if (pwrState == PWR_REF) {
2209 assert(refreshState == REF_PRE || refreshState == REF_PD_EXIT);
1813 DPRINTF(DRAMState, "Refreshing\n");
2210 DPRINTF(DRAMState, "Refreshing\n");
2211
1814 // kick the refresh event loop into action again, and that
1815 // in turn will schedule a transition to the idle power
1816 // state once the refresh is done
2212 // kick the refresh event loop into action again, and that
2213 // in turn will schedule a transition to the idle power
2214 // state once the refresh is done
1817 assert(refreshState == REF_RUN);
1818 processRefreshEvent();
2215 if (refreshState == REF_PD_EXIT) {
2216 // Wait for PD exit timing to complete before issuing REF
2217 schedule(refreshEvent, curTick() + memory.tXP);
2218 } else {
2219 schedule(refreshEvent, curTick());
2220 }
2221 // Banks transitioned to IDLE, start REF
2222 refreshState = REF_START;
1819 }
1820}
1821
1822void
1823DRAMCtrl::Rank::updatePowerStats()
1824{
1825 // All commands up to refresh have completed
1826 // flush cmdList to DRAMPower

--- 20 unchanged lines hidden (view full) ---

1847
1848 actEnergy = energy.act_energy * memory.devicesPerRank;
1849 preEnergy = energy.pre_energy * memory.devicesPerRank;
1850 readEnergy = energy.read_energy * memory.devicesPerRank;
1851 writeEnergy = energy.write_energy * memory.devicesPerRank;
1852 refreshEnergy = energy.ref_energy * memory.devicesPerRank;
1853 actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank;
1854 preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank;
2223 }
2224}
2225
2226void
2227DRAMCtrl::Rank::updatePowerStats()
2228{
2229 // All commands up to refresh have completed
2230 // flush cmdList to DRAMPower

--- 20 unchanged lines hidden (view full) ---

2251
2252 actEnergy = energy.act_energy * memory.devicesPerRank;
2253 preEnergy = energy.pre_energy * memory.devicesPerRank;
2254 readEnergy = energy.read_energy * memory.devicesPerRank;
2255 writeEnergy = energy.write_energy * memory.devicesPerRank;
2256 refreshEnergy = energy.ref_energy * memory.devicesPerRank;
2257 actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank;
2258 preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank;
2259 actPowerDownEnergy = energy.f_act_pd_energy * memory.devicesPerRank;
2260 prePowerDownEnergy = energy.f_pre_pd_energy * memory.devicesPerRank;
2261 selfRefreshEnergy = energy.sref_energy * memory.devicesPerRank;
1855 totalEnergy = energy.total_energy * memory.devicesPerRank;
1856 averagePower = rank_power.average_power * memory.devicesPerRank;
1857}
1858
1859void
1860DRAMCtrl::Rank::computeStats()
1861{
1862 DPRINTF(DRAM,"Computing final stats\n");

--- 12 unchanged lines hidden (view full) ---

1875}
1876
1877void
1878DRAMCtrl::Rank::regStats()
1879{
1880 using namespace Stats;
1881
1882 pwrStateTime
2262 totalEnergy = energy.total_energy * memory.devicesPerRank;
2263 averagePower = rank_power.average_power * memory.devicesPerRank;
2264}
2265
2266void
2267DRAMCtrl::Rank::computeStats()
2268{
2269 DPRINTF(DRAM,"Computing final stats\n");

--- 12 unchanged lines hidden (view full) ---

2282}
2283
2284void
2285DRAMCtrl::Rank::regStats()
2286{
2287 using namespace Stats;
2288
2289 pwrStateTime
1883 .init(5)
2290 .init(6)
1884 .name(name() + ".memoryStateTime")
1885 .desc("Time in different power states");
1886 pwrStateTime.subname(0, "IDLE");
1887 pwrStateTime.subname(1, "REF");
2291 .name(name() + ".memoryStateTime")
2292 .desc("Time in different power states");
2293 pwrStateTime.subname(0, "IDLE");
2294 pwrStateTime.subname(1, "REF");
1888 pwrStateTime.subname(2, "PRE_PDN");
1889 pwrStateTime.subname(3, "ACT");
1890 pwrStateTime.subname(4, "ACT_PDN");
2295 pwrStateTime.subname(2, "SREF");
2296 pwrStateTime.subname(3, "PRE_PDN");
2297 pwrStateTime.subname(4, "ACT");
2298 pwrStateTime.subname(5, "ACT_PDN");
1891
1892 actEnergy
1893 .name(name() + ".actEnergy")
1894 .desc("Energy for activate commands per rank (pJ)");
1895
1896 preEnergy
1897 .name(name() + ".preEnergy")
1898 .desc("Energy for precharge commands per rank (pJ)");

--- 13 unchanged lines hidden (view full) ---

1912 actBackEnergy
1913 .name(name() + ".actBackEnergy")
1914 .desc("Energy for active background per rank (pJ)");
1915
1916 preBackEnergy
1917 .name(name() + ".preBackEnergy")
1918 .desc("Energy for precharge background per rank (pJ)");
1919
2299
2300 actEnergy
2301 .name(name() + ".actEnergy")
2302 .desc("Energy for activate commands per rank (pJ)");
2303
2304 preEnergy
2305 .name(name() + ".preEnergy")
2306 .desc("Energy for precharge commands per rank (pJ)");

--- 13 unchanged lines hidden (view full) ---

2320 actBackEnergy
2321 .name(name() + ".actBackEnergy")
2322 .desc("Energy for active background per rank (pJ)");
2323
2324 preBackEnergy
2325 .name(name() + ".preBackEnergy")
2326 .desc("Energy for precharge background per rank (pJ)");
2327
2328 actPowerDownEnergy
2329 .name(name() + ".actPowerDownEnergy")
2330 .desc("Energy for active power-down per rank (pJ)");
2331
2332 prePowerDownEnergy
2333 .name(name() + ".prePowerDownEnergy")
2334 .desc("Energy for precharge power-down per rank (pJ)");
2335
2336 selfRefreshEnergy
2337 .name(name() + ".selfRefreshEnergy")
2338 .desc("Energy for self refresh per rank (pJ)");
2339
1920 totalEnergy
1921 .name(name() + ".totalEnergy")
1922 .desc("Total energy per rank (pJ)");
1923
1924 averagePower
1925 .name(name() + ".averagePower")
1926 .desc("Core power per rank (mW)");
1927
2340 totalEnergy
2341 .name(name() + ".totalEnergy")
2342 .desc("Total energy per rank (pJ)");
2343
2344 averagePower
2345 .name(name() + ".averagePower")
2346 .desc("Core power per rank (mW)");
2347
2348 totalIdleTime
2349 .name(name() + ".totalIdleTime")
2350 .desc("Total Idle time Per DRAM Rank");
2351
1928 registerDumpCallback(new RankDumpCallback(this));
1929}
1930void
1931DRAMCtrl::regStats()
1932{
1933 using namespace Stats;
1934
1935 AbstractMemory::regStats();

--- 274 unchanged lines hidden (view full) ---

2210 // of that as well
2211 if (!(writeQueue.empty() && readQueue.empty() && respQueue.empty() &&
2212 allRanksDrained())) {
2213
2214 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2215 " resp: %d\n", writeQueue.size(), readQueue.size(),
2216 respQueue.size());
2217
2352 registerDumpCallback(new RankDumpCallback(this));
2353}
2354void
2355DRAMCtrl::regStats()
2356{
2357 using namespace Stats;
2358
2359 AbstractMemory::regStats();

--- 274 unchanged lines hidden (view full) ---

2634 // of that as well
2635 if (!(writeQueue.empty() && readQueue.empty() && respQueue.empty() &&
2636 allRanksDrained())) {
2637
2638 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2639 " resp: %d\n", writeQueue.size(), readQueue.size(),
2640 respQueue.size());
2641
2218 // the only part that is not drained automatically over time
2642 // the only queue that is not drained automatically over time
2219 // is the write queue, thus kick things into action if needed
2220 if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2221 schedule(nextReqEvent, curTick());
2222 }
2643 // is the write queue, thus kick things into action if needed
2644 if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2645 schedule(nextReqEvent, curTick());
2646 }
2647
2648 // also need to kick off events to exit self-refresh
2649 for (auto r : ranks) {
2650 // force self-refresh exit, which in turn will issue auto-refresh
2651 if (r->pwrState == PWR_SREF) {
2652 DPRINTF(DRAM,"Rank%d: Forcing self-refresh wakeup in drain\n",
2653 r->rank);
2654 r->scheduleWakeUpEvent(tXS);
2655 }
2656 }
2657
2223 return DrainState::Draining;
2224 } else {
2225 return DrainState::Drained;
2226 }
2227}
2228
2229bool
2230DRAMCtrl::allRanksDrained() const

--- 76 unchanged lines hidden ---
2658 return DrainState::Draining;
2659 } else {
2660 return DrainState::Drained;
2661 }
2662}
2663
2664bool
2665DRAMCtrl::allRanksDrained() const

--- 76 unchanged lines hidden ---