dram_ctrl.cc (10207:3112b31596f0) dram_ctrl.cc (10208:c249f7660eb7)
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software

--- 31 unchanged lines hidden (view full) ---

40 * Authors: Andreas Hansson
41 * Ani Udipi
42 * Neha Agarwal
43 */
44
45#include "base/bitfield.hh"
46#include "base/trace.hh"
47#include "debug/DRAM.hh"
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software

--- 31 unchanged lines hidden (view full) ---

40 * Authors: Andreas Hansson
41 * Ani Udipi
42 * Neha Agarwal
43 */
44
45#include "base/bitfield.hh"
46#include "base/trace.hh"
47#include "debug/DRAM.hh"
48#include "debug/DRAMState.hh"
48#include "debug/Drain.hh"
49#include "mem/dram_ctrl.hh"
50#include "sim/system.hh"
51
52using namespace std;
53
54DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
55 AbstractMemory(p),
56 port(name() + ".port", *this),
57 retryRdReq(false), retryWrReq(false),
58 rowHitFlag(false), busState(READ),
49#include "debug/Drain.hh"
50#include "mem/dram_ctrl.hh"
51#include "sim/system.hh"
52
53using namespace std;
54
55DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
56 AbstractMemory(p),
57 port(name() + ".port", *this),
58 retryRdReq(false), retryWrReq(false),
59 rowHitFlag(false), busState(READ),
59 respondEvent(this), refreshEvent(this),
60 nextReqEvent(this), drainManager(NULL),
60 nextReqEvent(this), respondEvent(this), activateEvent(this),
61 prechargeEvent(this), refreshEvent(this), powerEvent(this),
62 drainManager(NULL),
61 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
62 deviceRowBufferSize(p->device_rowbuffer_size),
63 devicesPerRank(p->devices_per_rank),
64 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
65 rowBufferSize(devicesPerRank * deviceRowBufferSize),
66 columnsPerRowBuffer(rowBufferSize / burstSize),
67 ranksPerChannel(p->ranks_per_channel),
68 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),

--- 7 unchanged lines hidden (view full) ---

76 tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
77 tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
78 tXAW(p->tXAW), activationLimit(p->activation_limit),
79 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
80 pageMgmt(p->page_policy),
81 maxAccessesPerRow(p->max_accesses_per_row),
82 frontendLatency(p->static_frontend_latency),
83 backendLatency(p->static_backend_latency),
63 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
64 deviceRowBufferSize(p->device_rowbuffer_size),
65 devicesPerRank(p->devices_per_rank),
66 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
67 rowBufferSize(devicesPerRank * deviceRowBufferSize),
68 columnsPerRowBuffer(rowBufferSize / burstSize),
69 ranksPerChannel(p->ranks_per_channel),
70 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),

--- 7 unchanged lines hidden (view full) ---

78 tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
79 tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
80 tXAW(p->tXAW), activationLimit(p->activation_limit),
81 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
82 pageMgmt(p->page_policy),
83 maxAccessesPerRow(p->max_accesses_per_row),
84 frontendLatency(p->static_frontend_latency),
85 backendLatency(p->static_backend_latency),
84 busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE), prevArrival(0),
85 nextReqTime(0), idleStartTick(0), numBanksActive(0)
86 busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE),
87 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0),
88 nextReqTime(0), pwrStateTick(0), numBanksActive(0)
86{
87 // create the bank states based on the dimensions of the ranks and
88 // banks
89 banks.resize(ranksPerChannel);
90 actTicks.resize(ranksPerChannel);
91 for (size_t c = 0; c < ranksPerChannel; ++c) {
92 banks[c].resize(banksPerRank);
93 actTicks[c].resize(activationLimit, 0);

--- 55 unchanged lines hidden (view full) ---

149 }
150}
151
152void
153DRAMCtrl::startup()
154{
155 // update the start tick for the precharge accounting to the
156 // current tick
89{
90 // create the bank states based on the dimensions of the ranks and
91 // banks
92 banks.resize(ranksPerChannel);
93 actTicks.resize(ranksPerChannel);
94 for (size_t c = 0; c < ranksPerChannel; ++c) {
95 banks[c].resize(banksPerRank);
96 actTicks[c].resize(activationLimit, 0);

--- 55 unchanged lines hidden (view full) ---

152 }
153}
154
155void
156DRAMCtrl::startup()
157{
158 // update the start tick for the precharge accounting to the
159 // current tick
157 idleStartTick = curTick();
160 pwrStateTick = curTick();
158
159 // shift the bus busy time sufficiently far ahead that we never
160 // have to worry about negative values when computing the time for
161 // the next request, this will add an insignificant bubble at the
162 // start of simulation
163 busBusyUntil = curTick() + tRP + tRCD + tCL;
164
165 // print the configuration of the controller

--- 714 unchanged lines hidden (view full) ---

880DRAMCtrl::recordActivate(Tick act_tick, uint8_t rank, uint8_t bank,
881 uint16_t row)
882{
883 assert(0 <= rank && rank < ranksPerChannel);
884 assert(actTicks[rank].size() == activationLimit);
885
886 DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
887
161
162 // shift the bus busy time sufficiently far ahead that we never
163 // have to worry about negative values when computing the time for
164 // the next request, this will add an insignificant bubble at the
165 // start of simulation
166 busBusyUntil = curTick() + tRP + tRCD + tCL;
167
168 // print the configuration of the controller

--- 714 unchanged lines hidden (view full) ---

883DRAMCtrl::recordActivate(Tick act_tick, uint8_t rank, uint8_t bank,
884 uint16_t row)
885{
886 assert(0 <= rank && rank < ranksPerChannel);
887 assert(actTicks[rank].size() == activationLimit);
888
889 DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
890
888 // idleStartTick is the tick when all the banks were
889 // precharged. Thus, the difference between act_tick and
890 // idleStartTick gives the time for which the DRAM is in an idle
891 // state with all banks precharged. Note that we may end up
892 // "changing history" by scheduling an activation before an
893 // already scheduled precharge, effectively canceling it out.
894 if (numBanksActive == 0 && act_tick > idleStartTick) {
895 prechargeAllTime += act_tick - idleStartTick;
896 }
897
898 // update the open row
899 assert(banks[rank][bank].openRow == Bank::NO_ROW);
900 banks[rank][bank].openRow = row;
901
902 // start counting anew, this covers both the case when we
903 // auto-precharged, and when this access is forced to
904 // precharge
905 banks[rank][bank].bytesAccessed = 0;

--- 5 unchanged lines hidden (view full) ---

911 DPRINTF(DRAM, "Activate bank at tick %lld, now got %d active\n",
912 act_tick, numBanksActive);
913
914 // start by enforcing tRRD
915 for(int i = 0; i < banksPerRank; i++) {
916 // next activate must not happen before tRRD
917 banks[rank][i].actAllowedAt = act_tick + tRRD;
918 }
891 // update the open row
892 assert(banks[rank][bank].openRow == Bank::NO_ROW);
893 banks[rank][bank].openRow = row;
894
895 // start counting anew, this covers both the case when we
896 // auto-precharged, and when this access is forced to
897 // precharge
898 banks[rank][bank].bytesAccessed = 0;

--- 5 unchanged lines hidden (view full) ---

904 DPRINTF(DRAM, "Activate bank at tick %lld, now got %d active\n",
905 act_tick, numBanksActive);
906
907 // start by enforcing tRRD
908 for(int i = 0; i < banksPerRank; i++) {
909 // next activate must not happen before tRRD
910 banks[rank][i].actAllowedAt = act_tick + tRRD;
911 }
912
919 // tRC should be added to activation tick of the bank currently accessed,
920 // where tRC = tRAS + tRP, this is just for a check as actAllowedAt for same
921 // bank is already captured by bank.freeAt and bank.tRASDoneAt
922 banks[rank][bank].actAllowedAt = act_tick + tRAS + tRP;
923
924 // next, we deal with tXAW, if the activation limit is disabled
925 // then we are done
926 if (actTicks[rank].empty())

--- 19 unchanged lines hidden (view full) ---

946 // oldest in our window of X
947 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
948 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
949 "than %d\n", activationLimit, actTicks[rank].back() + tXAW);
950 for(int j = 0; j < banksPerRank; j++)
951 // next activate must not happen before end of window
952 banks[rank][j].actAllowedAt = actTicks[rank].back() + tXAW;
953 }
913 // tRC should be added to activation tick of the bank currently accessed,
914 // where tRC = tRAS + tRP, this is just for a check as actAllowedAt for same
915 // bank is already captured by bank.freeAt and bank.tRASDoneAt
916 banks[rank][bank].actAllowedAt = act_tick + tRAS + tRP;
917
918 // next, we deal with tXAW, if the activation limit is disabled
919 // then we are done
920 if (actTicks[rank].empty())

--- 19 unchanged lines hidden (view full) ---

940 // oldest in our window of X
941 if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
942 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
943 "than %d\n", activationLimit, actTicks[rank].back() + tXAW);
944 for(int j = 0; j < banksPerRank; j++)
945 // next activate must not happen before end of window
946 banks[rank][j].actAllowedAt = actTicks[rank].back() + tXAW;
947 }
948
949 // at the point when this activate takes place, make sure we
950 // transition to the active power state
951 if (!activateEvent.scheduled())
952 schedule(activateEvent, act_tick);
953 else if (activateEvent.when() > act_tick)
954 // move it sooner in time
955 reschedule(activateEvent, act_tick);
954}
955
956void
956}
957
958void
959DRAMCtrl::processActivateEvent()
960{
961 // we should transition to the active state as soon as any bank is active
962 if (pwrState != PWR_ACT)
963 // note that at this point numBanksActive could be back at
964 // zero again due to a precharge scheduled in the future
965 schedulePowerEvent(PWR_ACT, curTick());
966}
967
968void
957DRAMCtrl::prechargeBank(Bank& bank, Tick free_at)
958{
959 // make sure the bank has an open row
960 assert(bank.openRow != Bank::NO_ROW);
961
962 // sample the bytes per activate here since we are closing
963 // the page
964 bytesPerActivate.sample(bank.bytesAccessed);
965
966 bank.openRow = Bank::NO_ROW;
967
968 bank.freeAt = free_at;
969
970 assert(numBanksActive != 0);
971 --numBanksActive;
972
973 DPRINTF(DRAM, "Precharged bank, done at tick %lld, now got %d active\n",
974 bank.freeAt, numBanksActive);
975
969DRAMCtrl::prechargeBank(Bank& bank, Tick free_at)
970{
971 // make sure the bank has an open row
972 assert(bank.openRow != Bank::NO_ROW);
973
974 // sample the bytes per activate here since we are closing
975 // the page
976 bytesPerActivate.sample(bank.bytesAccessed);
977
978 bank.openRow = Bank::NO_ROW;
979
980 bank.freeAt = free_at;
981
982 assert(numBanksActive != 0);
983 --numBanksActive;
984
985 DPRINTF(DRAM, "Precharged bank, done at tick %lld, now got %d active\n",
986 bank.freeAt, numBanksActive);
987
988 // if we look at the current number of active banks we might be
989 // tempted to think the DRAM is now idle, however this can be
990 // undone by an activate that is scheduled to happen before we
991 // would have reached the idle state, so schedule an event and
992 // rather check once we actually make it to the point in time when
993 // the (last) precharge takes place
994 if (!prechargeEvent.scheduled())
995 schedule(prechargeEvent, free_at);
996 else if (prechargeEvent.when() < free_at)
997 reschedule(prechargeEvent, free_at);
998}
999
1000void
1001DRAMCtrl::processPrechargeEvent()
1002{
976 // if we reached zero, then special conditions apply as we track
977 // if all banks are precharged for the power models
978 if (numBanksActive == 0) {
1003 // if we reached zero, then special conditions apply as we track
1004 // if all banks are precharged for the power models
1005 if (numBanksActive == 0) {
979 idleStartTick = std::max(idleStartTick, bank.freeAt);
980 DPRINTF(DRAM, "All banks precharged at tick: %ld\n",
981 idleStartTick);
1006 // we should transition to the idle state when the last bank
1007 // is precharged
1008 schedulePowerEvent(PWR_IDLE, curTick());
982 }
983}
984
985void
986DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
987{
988
989 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",

--- 417 unchanged lines hidden (view full) ---

1407 return;
1408 } else {
1409 refreshState = REF_PRE;
1410 }
1411 }
1412
1413 // at this point, ensure that all banks are precharged
1414 if (refreshState == REF_PRE) {
1009 }
1010}
1011
1012void
1013DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1014{
1015
1016 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",

--- 417 unchanged lines hidden (view full) ---

1434 return;
1435 } else {
1436 refreshState = REF_PRE;
1437 }
1438 }
1439
1440 // at this point, ensure that all banks are precharged
1441 if (refreshState == REF_PRE) {
1415 DPRINTF(DRAM, "Precharging all\n");
1442 // precharge any active bank if we are not already in the idle
1443 // state
1444 if (pwrState != PWR_IDLE) {
1445 DPRINTF(DRAM, "Precharging all\n");
1446 for (int i = 0; i < ranksPerChannel; i++) {
1447 for (int j = 0; j < banksPerRank; j++) {
1448 if (banks[i][j].openRow != Bank::NO_ROW) {
1449 // respect both causality and any existing bank
1450 // constraints
1451 Tick free_at =
1452 std::max(std::max(banks[i][j].freeAt,
1453 banks[i][j].tRASDoneAt),
1454 curTick()) + tRP;
1416
1455
1417 // precharge any active bank
1418 for (int i = 0; i < ranksPerChannel; i++) {
1419 for (int j = 0; j < banksPerRank; j++) {
1420 if (banks[i][j].openRow != Bank::NO_ROW) {
1421 // respect both causality and any existing bank
1422 // constraints
1423 Tick free_at = std::max(std::max(banks[i][j].freeAt,
1424 banks[i][j].tRASDoneAt),
1425 curTick()) + tRP;
1426
1427 prechargeBank(banks[i][j], free_at);
1456 prechargeBank(banks[i][j], free_at);
1457 }
1428 }
1429 }
1458 }
1459 }
1460 } else {
1461 DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1462
1463 // go ahead and kick the power state machine into gear if
1464 // we are already idle
1465 schedulePowerEvent(PWR_REF, curTick());
1430 }
1431
1466 }
1467
1432 if (numBanksActive != 0)
1433 panic("Refresh scheduled with %d active banks\n", numBanksActive);
1434
1435 // advance the state
1436 refreshState = REF_RUN;
1468 refreshState = REF_RUN;
1469 assert(numBanksActive == 0);
1437
1470
1438 // call ourselves in the future
1439 schedule(refreshEvent, std::max(curTick(), idleStartTick));
1471 // wait for all banks to be precharged, at which point the
1472 // power state machine will transition to the idle state, and
1473 // automatically move to a refresh, at that point it will also
1474 // call this method to get the refresh event loop going again
1440 return;
1441 }
1442
1443 // last but not least we perform the actual refresh
1444 if (refreshState == REF_RUN) {
1445 // should never get here with any banks active
1446 assert(numBanksActive == 0);
1475 return;
1476 }
1477
1478 // last but not least we perform the actual refresh
1479 if (refreshState == REF_RUN) {
1480 // should never get here with any banks active
1481 assert(numBanksActive == 0);
1482 assert(pwrState == PWR_REF);
1447
1448 Tick banksFree = curTick() + tRFC;
1449
1450 for (int i = 0; i < ranksPerChannel; i++) {
1451 for (int j = 0; j < banksPerRank; j++) {
1452 banks[i][j].freeAt = banksFree;
1453 }
1454 }
1455
1456 // make sure we did not wait so long that we cannot make up
1457 // for it
1458 if (refreshDueAt + tREFI < banksFree) {
1459 fatal("Refresh was delayed so long we cannot catch up\n");
1460 }
1461
1462 // compensate for the delay in actually performing the refresh
1463 // when scheduling the next one
1464 schedule(refreshEvent, refreshDueAt + tREFI - tRP);
1465
1483
1484 Tick banksFree = curTick() + tRFC;
1485
1486 for (int i = 0; i < ranksPerChannel; i++) {
1487 for (int j = 0; j < banksPerRank; j++) {
1488 banks[i][j].freeAt = banksFree;
1489 }
1490 }
1491
1492 // make sure we did not wait so long that we cannot make up
1493 // for it
1494 if (refreshDueAt + tREFI < banksFree) {
1495 fatal("Refresh was delayed so long we cannot catch up\n");
1496 }
1497
1498 // compensate for the delay in actually performing the refresh
1499 // when scheduling the next one
1500 schedule(refreshEvent, refreshDueAt + tREFI - tRP);
1501
1466 // back to business as usual
1467 refreshState = REF_IDLE;
1502 assert(!powerEvent.scheduled());
1468
1503
1469 // we are now refreshing until tRFC is done
1470 idleStartTick = banksFree;
1504 // move to the idle power state once the refresh is done, this
1505 // will also move the refresh state machine to the refresh
1506 // idle state
1507 schedulePowerEvent(PWR_IDLE, banksFree);
1471
1508
1472 // kick the normal request processing loop into action again
1473 // as early as possible, i.e. when the request is done, the
1474 // scheduling of this event also prevents any new requests
1475 // from going ahead before the scheduled point in time
1476 nextReqTime = banksFree;
1477 schedule(nextReqEvent, nextReqTime);
1509 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1510 banksFree, refreshDueAt + tREFI);
1478 }
1479}
1480
1481void
1511 }
1512}
1513
1514void
1515DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick)
1516{
1517 // respect causality
1518 assert(tick >= curTick());
1519
1520 if (!powerEvent.scheduled()) {
1521 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1522 tick, pwr_state);
1523
1524 // insert the new transition
1525 pwrStateTrans = pwr_state;
1526
1527 schedule(powerEvent, tick);
1528 } else {
1529 panic("Scheduled power event at %llu to state %d, "
1530 "with scheduled event at %llu to %d\n", tick, pwr_state,
1531 powerEvent.when(), pwrStateTrans);
1532 }
1533}
1534
1535void
1536DRAMCtrl::processPowerEvent()
1537{
1538 // remember where we were, and for how long
1539 Tick duration = curTick() - pwrStateTick;
1540 PowerState prev_state = pwrState;
1541
1542 // update the accounting
1543 pwrStateTime[prev_state] += duration;
1544
1545 pwrState = pwrStateTrans;
1546 pwrStateTick = curTick();
1547
1548 if (pwrState == PWR_IDLE) {
1549 DPRINTF(DRAMState, "All banks precharged\n");
1550
1551 // if we were refreshing, make sure we start scheduling requests again
1552 if (prev_state == PWR_REF) {
1553 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1554 assert(pwrState == PWR_IDLE);
1555
1556 // kick things into action again
1557 refreshState = REF_IDLE;
1558 assert(!nextReqEvent.scheduled());
1559 schedule(nextReqEvent, curTick());
1560 } else {
1561 assert(prev_state == PWR_ACT);
1562
1563 // if we have a pending refresh, and are now moving to
1564 // the idle state, direclty transition to a refresh
1565 if (refreshState == REF_RUN) {
1566 // there should be nothing waiting at this point
1567 assert(!powerEvent.scheduled());
1568
1569 // update the state in zero time and proceed below
1570 pwrState = PWR_REF;
1571 }
1572 }
1573 }
1574
1575 // we transition to the refresh state, let the refresh state
1576 // machine know of this state update and let it deal with the
1577 // scheduling of the next power state transition as well as the
1578 // following refresh
1579 if (pwrState == PWR_REF) {
1580 DPRINTF(DRAMState, "Refreshing\n");
1581 // kick the refresh event loop into action again, and that
1582 // in turn will schedule a transition to the idle power
1583 // state once the refresh is done
1584 assert(refreshState == REF_RUN);
1585 processRefreshEvent();
1586 }
1587}
1588
1589void
1482DRAMCtrl::regStats()
1483{
1484 using namespace Stats;
1485
1486 AbstractMemory::regStats();
1487
1488 readReqs
1489 .name(name() + ".readReqs")

--- 249 unchanged lines hidden (view full) ---

1739 pageHitRate
1740 .name(name() + ".pageHitRate")
1741 .desc("Row buffer hit rate, read and write combined")
1742 .precision(2);
1743
1744 pageHitRate = (writeRowHits + readRowHits) /
1745 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
1746
1590DRAMCtrl::regStats()
1591{
1592 using namespace Stats;
1593
1594 AbstractMemory::regStats();
1595
1596 readReqs
1597 .name(name() + ".readReqs")

--- 249 unchanged lines hidden (view full) ---

1847 pageHitRate
1848 .name(name() + ".pageHitRate")
1849 .desc("Row buffer hit rate, read and write combined")
1850 .precision(2);
1851
1852 pageHitRate = (writeRowHits + readRowHits) /
1853 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
1854
1747 prechargeAllPercent
1748 .name(name() + ".prechargeAllPercent")
1749 .desc("Percentage of time for which DRAM has all the banks in "
1750 "precharge state")
1751 .precision(2);
1752
1753 prechargeAllPercent = prechargeAllTime / simTicks * 100;
1855 pwrStateTime
1856 .init(5)
1857 .name(name() + ".memoryStateTime")
1858 .desc("Time in different power states");
1859 pwrStateTime.subname(0, "IDLE");
1860 pwrStateTime.subname(1, "REF");
1861 pwrStateTime.subname(2, "PRE_PDN");
1862 pwrStateTime.subname(3, "ACT");
1863 pwrStateTime.subname(4, "ACT_PDN");
1754}
1755
1756void
1757DRAMCtrl::recvFunctional(PacketPtr pkt)
1758{
1759 // rely on the abstract memory
1760 functionalAccess(pkt);
1761}

--- 86 unchanged lines hidden ---
1864}
1865
1866void
1867DRAMCtrl::recvFunctional(PacketPtr pkt)
1868{
1869 // rely on the abstract memory
1870 functionalAccess(pkt);
1871}

--- 86 unchanged lines hidden ---