dram_ctrl.cc (11194:c3ba89c653a9) dram_ctrl.cc (11284:b3926db25371)
1/*
2 * Copyright (c) 2010-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 * Ani Udipi
42 * Neha Agarwal
43 * Omar Naji
44 */
45
46#include "base/bitfield.hh"
47#include "base/trace.hh"
48#include "debug/DRAM.hh"
49#include "debug/DRAMPower.hh"
50#include "debug/DRAMState.hh"
51#include "debug/Drain.hh"
52#include "mem/dram_ctrl.hh"
53#include "sim/system.hh"
54
55using namespace std;
56using namespace Data;
57
58DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
59 AbstractMemory(p),
60 port(name() + ".port", *this), isTimingMode(false),
61 retryRdReq(false), retryWrReq(false),
62 busState(READ),
63 nextReqEvent(this), respondEvent(this),
64 deviceSize(p->device_size),
65 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
66 deviceRowBufferSize(p->device_rowbuffer_size),
67 devicesPerRank(p->devices_per_rank),
68 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
69 rowBufferSize(devicesPerRank * deviceRowBufferSize),
70 columnsPerRowBuffer(rowBufferSize / burstSize),
71 columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1),
72 ranksPerChannel(p->ranks_per_channel),
73 bankGroupsPerRank(p->bank_groups_per_rank),
74 bankGroupArch(p->bank_groups_per_rank > 0),
75 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
76 readBufferSize(p->read_buffer_size),
77 writeBufferSize(p->write_buffer_size),
78 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
79 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
80 minWritesPerSwitch(p->min_writes_per_switch),
81 writesThisTime(0), readsThisTime(0),
82 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
83 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
84 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
85 tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit),
86 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
87 pageMgmt(p->page_policy),
88 maxAccessesPerRow(p->max_accesses_per_row),
89 frontendLatency(p->static_frontend_latency),
90 backendLatency(p->static_backend_latency),
91 busBusyUntil(0), prevArrival(0),
92 nextReqTime(0), activeRank(0), timeStampOffset(0)
93{
94 // sanity check the ranks since we rely on bit slicing for the
95 // address decoding
96 fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not "
97 "allowed, must be a power of two\n", ranksPerChannel);
98
99 fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, "
100 "must be a power of two\n", burstSize);
101
102 for (int i = 0; i < ranksPerChannel; i++) {
103 Rank* rank = new Rank(*this, p);
104 ranks.push_back(rank);
105
106 rank->actTicks.resize(activationLimit, 0);
107 rank->banks.resize(banksPerRank);
108 rank->rank = i;
109
110 for (int b = 0; b < banksPerRank; b++) {
111 rank->banks[b].bank = b;
112 // GDDR addressing of banks to BG is linear.
113 // Here we assume that all DRAM generations address bank groups as
114 // follows:
115 if (bankGroupArch) {
116 // Simply assign lower bits to bank group in order to
117 // rotate across bank groups as banks are incremented
118 // e.g. with 4 banks per bank group and 16 banks total:
119 // banks 0,4,8,12 are in bank group 0
120 // banks 1,5,9,13 are in bank group 1
121 // banks 2,6,10,14 are in bank group 2
122 // banks 3,7,11,15 are in bank group 3
123 rank->banks[b].bankgr = b % bankGroupsPerRank;
124 } else {
125 // No bank groups; simply assign to bank number
126 rank->banks[b].bankgr = b;
127 }
128 }
129 }
130
131 // perform a basic check of the write thresholds
132 if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
133 fatal("Write buffer low threshold %d must be smaller than the "
134 "high threshold %d\n", p->write_low_thresh_perc,
135 p->write_high_thresh_perc);
136
137 // determine the rows per bank by looking at the total capacity
138 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
139
140 // determine the dram actual capacity from the DRAM config in Mbytes
141 uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
142 ranksPerChannel;
143
144 // if actual DRAM size does not match memory capacity in system warn!
145 if (deviceCapacity != capacity / (1024 * 1024))
146 warn("DRAM device capacity (%d Mbytes) does not match the "
147 "address range assigned (%d Mbytes)\n", deviceCapacity,
148 capacity / (1024 * 1024));
149
150 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
151 AbstractMemory::size());
152
153 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
154 rowBufferSize, columnsPerRowBuffer);
155
156 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
157
158 // some basic sanity checks
159 if (tREFI <= tRP || tREFI <= tRFC) {
160 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
161 tREFI, tRP, tRFC);
162 }
163
164 // basic bank group architecture checks ->
165 if (bankGroupArch) {
166 // must have at least one bank per bank group
167 if (bankGroupsPerRank > banksPerRank) {
168 fatal("banks per rank (%d) must be equal to or larger than "
169 "banks groups per rank (%d)\n",
170 banksPerRank, bankGroupsPerRank);
171 }
172 // must have same number of banks in each bank group
173 if ((banksPerRank % bankGroupsPerRank) != 0) {
174 fatal("Banks per rank (%d) must be evenly divisible by bank groups "
175 "per rank (%d) for equal banks per bank group\n",
176 banksPerRank, bankGroupsPerRank);
177 }
178 // tCCD_L should be greater than minimal, back-to-back burst delay
179 if (tCCD_L <= tBURST) {
180 fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
181 "bank groups per rank (%d) is greater than 1\n",
182 tCCD_L, tBURST, bankGroupsPerRank);
183 }
184 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
185 // some datasheets might specify it equal to tRRD
186 if (tRRD_L < tRRD) {
187 fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
188 "bank groups per rank (%d) is greater than 1\n",
189 tRRD_L, tRRD, bankGroupsPerRank);
190 }
191 }
192
193}
194
195void
196DRAMCtrl::init()
197{
198 AbstractMemory::init();
199
200 if (!port.isConnected()) {
201 fatal("DRAMCtrl %s is unconnected!\n", name());
202 } else {
203 port.sendRangeChange();
204 }
205
206 // a bit of sanity checks on the interleaving, save it for here to
207 // ensure that the system pointer is initialised
208 if (range.interleaved()) {
209 if (channels != range.stripes())
210 fatal("%s has %d interleaved address stripes but %d channel(s)\n",
211 name(), range.stripes(), channels);
212
213 if (addrMapping == Enums::RoRaBaChCo) {
214 if (rowBufferSize != range.granularity()) {
215 fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
216 "address map\n", name());
217 }
218 } else if (addrMapping == Enums::RoRaBaCoCh ||
219 addrMapping == Enums::RoCoRaBaCh) {
220 // for the interleavings with channel bits in the bottom,
221 // if the system uses a channel striping granularity that
222 // is larger than the DRAM burst size, then map the
223 // sequential accesses within a stripe to a number of
224 // columns in the DRAM, effectively placing some of the
225 // lower-order column bits as the least-significant bits
226 // of the address (above the ones denoting the burst size)
227 assert(columnsPerStripe >= 1);
228
229 // channel striping has to be done at a granularity that
230 // is equal or larger to a cache line
231 if (system()->cacheLineSize() > range.granularity()) {
232 fatal("Channel interleaving of %s must be at least as large "
233 "as the cache line size\n", name());
234 }
235
236 // ...and equal or smaller than the row-buffer size
237 if (rowBufferSize < range.granularity()) {
238 fatal("Channel interleaving of %s must be at most as large "
239 "as the row-buffer size\n", name());
240 }
241 // this is essentially the check above, so just to be sure
242 assert(columnsPerStripe <= columnsPerRowBuffer);
243 }
244 }
245}
246
247void
248DRAMCtrl::startup()
249{
250 // remember the memory system mode of operation
251 isTimingMode = system()->isTimingMode();
252
253 if (isTimingMode) {
254 // timestamp offset should be in clock cycles for DRAMPower
255 timeStampOffset = divCeil(curTick(), tCK);
256
257 // update the start tick for the precharge accounting to the
258 // current tick
259 for (auto r : ranks) {
260 r->startup(curTick() + tREFI - tRP);
261 }
262
263 // shift the bus busy time sufficiently far ahead that we never
264 // have to worry about negative values when computing the time for
265 // the next request, this will add an insignificant bubble at the
266 // start of simulation
267 busBusyUntil = curTick() + tRP + tRCD + tCL;
268 }
269}
270
271Tick
272DRAMCtrl::recvAtomic(PacketPtr pkt)
273{
274 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
275
276 // do the actual memory access and turn the packet into a response
277 access(pkt);
278
279 Tick latency = 0;
1/*
2 * Copyright (c) 2010-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 * Ani Udipi
42 * Neha Agarwal
43 * Omar Naji
44 */
45
46#include "base/bitfield.hh"
47#include "base/trace.hh"
48#include "debug/DRAM.hh"
49#include "debug/DRAMPower.hh"
50#include "debug/DRAMState.hh"
51#include "debug/Drain.hh"
52#include "mem/dram_ctrl.hh"
53#include "sim/system.hh"
54
55using namespace std;
56using namespace Data;
57
58DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
59 AbstractMemory(p),
60 port(name() + ".port", *this), isTimingMode(false),
61 retryRdReq(false), retryWrReq(false),
62 busState(READ),
63 nextReqEvent(this), respondEvent(this),
64 deviceSize(p->device_size),
65 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
66 deviceRowBufferSize(p->device_rowbuffer_size),
67 devicesPerRank(p->devices_per_rank),
68 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
69 rowBufferSize(devicesPerRank * deviceRowBufferSize),
70 columnsPerRowBuffer(rowBufferSize / burstSize),
71 columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1),
72 ranksPerChannel(p->ranks_per_channel),
73 bankGroupsPerRank(p->bank_groups_per_rank),
74 bankGroupArch(p->bank_groups_per_rank > 0),
75 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
76 readBufferSize(p->read_buffer_size),
77 writeBufferSize(p->write_buffer_size),
78 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
79 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
80 minWritesPerSwitch(p->min_writes_per_switch),
81 writesThisTime(0), readsThisTime(0),
82 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
83 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
84 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
85 tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit),
86 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
87 pageMgmt(p->page_policy),
88 maxAccessesPerRow(p->max_accesses_per_row),
89 frontendLatency(p->static_frontend_latency),
90 backendLatency(p->static_backend_latency),
91 busBusyUntil(0), prevArrival(0),
92 nextReqTime(0), activeRank(0), timeStampOffset(0)
93{
94 // sanity check the ranks since we rely on bit slicing for the
95 // address decoding
96 fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not "
97 "allowed, must be a power of two\n", ranksPerChannel);
98
99 fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, "
100 "must be a power of two\n", burstSize);
101
102 for (int i = 0; i < ranksPerChannel; i++) {
103 Rank* rank = new Rank(*this, p);
104 ranks.push_back(rank);
105
106 rank->actTicks.resize(activationLimit, 0);
107 rank->banks.resize(banksPerRank);
108 rank->rank = i;
109
110 for (int b = 0; b < banksPerRank; b++) {
111 rank->banks[b].bank = b;
112 // GDDR addressing of banks to BG is linear.
113 // Here we assume that all DRAM generations address bank groups as
114 // follows:
115 if (bankGroupArch) {
116 // Simply assign lower bits to bank group in order to
117 // rotate across bank groups as banks are incremented
118 // e.g. with 4 banks per bank group and 16 banks total:
119 // banks 0,4,8,12 are in bank group 0
120 // banks 1,5,9,13 are in bank group 1
121 // banks 2,6,10,14 are in bank group 2
122 // banks 3,7,11,15 are in bank group 3
123 rank->banks[b].bankgr = b % bankGroupsPerRank;
124 } else {
125 // No bank groups; simply assign to bank number
126 rank->banks[b].bankgr = b;
127 }
128 }
129 }
130
131 // perform a basic check of the write thresholds
132 if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
133 fatal("Write buffer low threshold %d must be smaller than the "
134 "high threshold %d\n", p->write_low_thresh_perc,
135 p->write_high_thresh_perc);
136
137 // determine the rows per bank by looking at the total capacity
138 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
139
140 // determine the dram actual capacity from the DRAM config in Mbytes
141 uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
142 ranksPerChannel;
143
144 // if actual DRAM size does not match memory capacity in system warn!
145 if (deviceCapacity != capacity / (1024 * 1024))
146 warn("DRAM device capacity (%d Mbytes) does not match the "
147 "address range assigned (%d Mbytes)\n", deviceCapacity,
148 capacity / (1024 * 1024));
149
150 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
151 AbstractMemory::size());
152
153 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
154 rowBufferSize, columnsPerRowBuffer);
155
156 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
157
158 // some basic sanity checks
159 if (tREFI <= tRP || tREFI <= tRFC) {
160 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
161 tREFI, tRP, tRFC);
162 }
163
164 // basic bank group architecture checks ->
165 if (bankGroupArch) {
166 // must have at least one bank per bank group
167 if (bankGroupsPerRank > banksPerRank) {
168 fatal("banks per rank (%d) must be equal to or larger than "
169 "banks groups per rank (%d)\n",
170 banksPerRank, bankGroupsPerRank);
171 }
172 // must have same number of banks in each bank group
173 if ((banksPerRank % bankGroupsPerRank) != 0) {
174 fatal("Banks per rank (%d) must be evenly divisible by bank groups "
175 "per rank (%d) for equal banks per bank group\n",
176 banksPerRank, bankGroupsPerRank);
177 }
178 // tCCD_L should be greater than minimal, back-to-back burst delay
179 if (tCCD_L <= tBURST) {
180 fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
181 "bank groups per rank (%d) is greater than 1\n",
182 tCCD_L, tBURST, bankGroupsPerRank);
183 }
184 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
185 // some datasheets might specify it equal to tRRD
186 if (tRRD_L < tRRD) {
187 fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
188 "bank groups per rank (%d) is greater than 1\n",
189 tRRD_L, tRRD, bankGroupsPerRank);
190 }
191 }
192
193}
194
195void
196DRAMCtrl::init()
197{
198 AbstractMemory::init();
199
200 if (!port.isConnected()) {
201 fatal("DRAMCtrl %s is unconnected!\n", name());
202 } else {
203 port.sendRangeChange();
204 }
205
206 // a bit of sanity checks on the interleaving, save it for here to
207 // ensure that the system pointer is initialised
208 if (range.interleaved()) {
209 if (channels != range.stripes())
210 fatal("%s has %d interleaved address stripes but %d channel(s)\n",
211 name(), range.stripes(), channels);
212
213 if (addrMapping == Enums::RoRaBaChCo) {
214 if (rowBufferSize != range.granularity()) {
215 fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
216 "address map\n", name());
217 }
218 } else if (addrMapping == Enums::RoRaBaCoCh ||
219 addrMapping == Enums::RoCoRaBaCh) {
220 // for the interleavings with channel bits in the bottom,
221 // if the system uses a channel striping granularity that
222 // is larger than the DRAM burst size, then map the
223 // sequential accesses within a stripe to a number of
224 // columns in the DRAM, effectively placing some of the
225 // lower-order column bits as the least-significant bits
226 // of the address (above the ones denoting the burst size)
227 assert(columnsPerStripe >= 1);
228
229 // channel striping has to be done at a granularity that
230 // is equal or larger to a cache line
231 if (system()->cacheLineSize() > range.granularity()) {
232 fatal("Channel interleaving of %s must be at least as large "
233 "as the cache line size\n", name());
234 }
235
236 // ...and equal or smaller than the row-buffer size
237 if (rowBufferSize < range.granularity()) {
238 fatal("Channel interleaving of %s must be at most as large "
239 "as the row-buffer size\n", name());
240 }
241 // this is essentially the check above, so just to be sure
242 assert(columnsPerStripe <= columnsPerRowBuffer);
243 }
244 }
245}
246
247void
248DRAMCtrl::startup()
249{
250 // remember the memory system mode of operation
251 isTimingMode = system()->isTimingMode();
252
253 if (isTimingMode) {
254 // timestamp offset should be in clock cycles for DRAMPower
255 timeStampOffset = divCeil(curTick(), tCK);
256
257 // update the start tick for the precharge accounting to the
258 // current tick
259 for (auto r : ranks) {
260 r->startup(curTick() + tREFI - tRP);
261 }
262
263 // shift the bus busy time sufficiently far ahead that we never
264 // have to worry about negative values when computing the time for
265 // the next request, this will add an insignificant bubble at the
266 // start of simulation
267 busBusyUntil = curTick() + tRP + tRCD + tCL;
268 }
269}
270
271Tick
272DRAMCtrl::recvAtomic(PacketPtr pkt)
273{
274 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
275
276 // do the actual memory access and turn the packet into a response
277 access(pkt);
278
279 Tick latency = 0;
280 if (!pkt->memInhibitAsserted() && pkt->hasData()) {
280 if (!pkt->cacheResponding() && pkt->hasData()) {
281 // this value is not supposed to be accurate, just enough to
282 // keep things going, mimic a closed page
283 latency = tRP + tRCD + tCL;
284 }
285 return latency;
286}
287
288bool
289DRAMCtrl::readQueueFull(unsigned int neededEntries) const
290{
291 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
292 readBufferSize, readQueue.size() + respQueue.size(),
293 neededEntries);
294
295 return
296 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
297}
298
299bool
300DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
301{
302 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
303 writeBufferSize, writeQueue.size(), neededEntries);
304 return (writeQueue.size() + neededEntries) > writeBufferSize;
305}
306
307DRAMCtrl::DRAMPacket*
308DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
309 bool isRead)
310{
311 // decode the address based on the address mapping scheme, with
312 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
313 // channel, respectively
314 uint8_t rank;
315 uint8_t bank;
316 // use a 64-bit unsigned during the computations as the row is
317 // always the top bits, and check before creating the DRAMPacket
318 uint64_t row;
319
320 // truncate the address to a DRAM burst, which makes it unique to
321 // a specific column, row, bank, rank and channel
322 Addr addr = dramPktAddr / burstSize;
323
324 // we have removed the lowest order address bits that denote the
325 // position within the column
326 if (addrMapping == Enums::RoRaBaChCo) {
327 // the lowest order bits denote the column to ensure that
328 // sequential cache lines occupy the same row
329 addr = addr / columnsPerRowBuffer;
330
331 // take out the channel part of the address
332 addr = addr / channels;
333
334 // after the channel bits, get the bank bits to interleave
335 // over the banks
336 bank = addr % banksPerRank;
337 addr = addr / banksPerRank;
338
339 // after the bank, we get the rank bits which thus interleaves
340 // over the ranks
341 rank = addr % ranksPerChannel;
342 addr = addr / ranksPerChannel;
343
344 // lastly, get the row bits, no need to remove them from addr
345 row = addr % rowsPerBank;
346 } else if (addrMapping == Enums::RoRaBaCoCh) {
347 // take out the lower-order column bits
348 addr = addr / columnsPerStripe;
349
350 // take out the channel part of the address
351 addr = addr / channels;
352
353 // next, the higher-order column bites
354 addr = addr / (columnsPerRowBuffer / columnsPerStripe);
355
356 // after the column bits, we get the bank bits to interleave
357 // over the banks
358 bank = addr % banksPerRank;
359 addr = addr / banksPerRank;
360
361 // after the bank, we get the rank bits which thus interleaves
362 // over the ranks
363 rank = addr % ranksPerChannel;
364 addr = addr / ranksPerChannel;
365
366 // lastly, get the row bits, no need to remove them from addr
367 row = addr % rowsPerBank;
368 } else if (addrMapping == Enums::RoCoRaBaCh) {
369 // optimise for closed page mode and utilise maximum
370 // parallelism of the DRAM (at the cost of power)
371
372 // take out the lower-order column bits
373 addr = addr / columnsPerStripe;
374
375 // take out the channel part of the address, not that this has
376 // to match with how accesses are interleaved between the
377 // controllers in the address mapping
378 addr = addr / channels;
379
380 // start with the bank bits, as this provides the maximum
381 // opportunity for parallelism between requests
382 bank = addr % banksPerRank;
383 addr = addr / banksPerRank;
384
385 // next get the rank bits
386 rank = addr % ranksPerChannel;
387 addr = addr / ranksPerChannel;
388
389 // next, the higher-order column bites
390 addr = addr / (columnsPerRowBuffer / columnsPerStripe);
391
392 // lastly, get the row bits, no need to remove them from addr
393 row = addr % rowsPerBank;
394 } else
395 panic("Unknown address mapping policy chosen!");
396
397 assert(rank < ranksPerChannel);
398 assert(bank < banksPerRank);
399 assert(row < rowsPerBank);
400 assert(row < Bank::NO_ROW);
401
402 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
403 dramPktAddr, rank, bank, row);
404
405 // create the corresponding DRAM packet with the entry time and
406 // ready time set to the current tick, the latter will be updated
407 // later
408 uint16_t bank_id = banksPerRank * rank + bank;
409 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
410 size, ranks[rank]->banks[bank], *ranks[rank]);
411}
412
413void
414DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
415{
416 // only add to the read queue here. whenever the request is
417 // eventually done, set the readyTime, and call schedule()
418 assert(!pkt->isWrite());
419
420 assert(pktCount != 0);
421
422 // if the request size is larger than burst size, the pkt is split into
423 // multiple DRAM packets
424 // Note if the pkt starting address is not aligened to burst size, the
425 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
426 // are aligned to burst size boundaries. This is to ensure we accurately
427 // check read packets against packets in write queue.
428 Addr addr = pkt->getAddr();
429 unsigned pktsServicedByWrQ = 0;
430 BurstHelper* burst_helper = NULL;
431 for (int cnt = 0; cnt < pktCount; ++cnt) {
432 unsigned size = std::min((addr | (burstSize - 1)) + 1,
433 pkt->getAddr() + pkt->getSize()) - addr;
434 readPktSize[ceilLog2(size)]++;
435 readBursts++;
436
437 // First check write buffer to see if the data is already at
438 // the controller
439 bool foundInWrQ = false;
440 Addr burst_addr = burstAlign(addr);
441 // if the burst address is not present then there is no need
442 // looking any further
443 if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) {
444 for (const auto& p : writeQueue) {
445 // check if the read is subsumed in the write queue
446 // packet we are looking at
447 if (p->addr <= addr && (addr + size) <= (p->addr + p->size)) {
448 foundInWrQ = true;
449 servicedByWrQ++;
450 pktsServicedByWrQ++;
451 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
452 "write queue\n", addr, size);
453 bytesReadWrQ += burstSize;
454 break;
455 }
456 }
457 }
458
459 // If not found in the write q, make a DRAM packet and
460 // push it onto the read queue
461 if (!foundInWrQ) {
462
463 // Make the burst helper for split packets
464 if (pktCount > 1 && burst_helper == NULL) {
465 DPRINTF(DRAM, "Read to addr %lld translates to %d "
466 "dram requests\n", pkt->getAddr(), pktCount);
467 burst_helper = new BurstHelper(pktCount);
468 }
469
470 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
471 dram_pkt->burstHelper = burst_helper;
472
473 assert(!readQueueFull(1));
474 rdQLenPdf[readQueue.size() + respQueue.size()]++;
475
476 DPRINTF(DRAM, "Adding to read queue\n");
477
478 readQueue.push_back(dram_pkt);
479
480 // Update stats
481 avgRdQLen = readQueue.size() + respQueue.size();
482 }
483
484 // Starting address of next dram pkt (aligend to burstSize boundary)
485 addr = (addr | (burstSize - 1)) + 1;
486 }
487
488 // If all packets are serviced by write queue, we send the repsonse back
489 if (pktsServicedByWrQ == pktCount) {
490 accessAndRespond(pkt, frontendLatency);
491 return;
492 }
493
494 // Update how many split packets are serviced by write queue
495 if (burst_helper != NULL)
496 burst_helper->burstsServiced = pktsServicedByWrQ;
497
498 // If we are not already scheduled to get a request out of the
499 // queue, do so now
500 if (!nextReqEvent.scheduled()) {
501 DPRINTF(DRAM, "Request scheduled immediately\n");
502 schedule(nextReqEvent, curTick());
503 }
504}
505
506void
507DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
508{
509 // only add to the write queue here. whenever the request is
510 // eventually done, set the readyTime, and call schedule()
511 assert(pkt->isWrite());
512
513 // if the request size is larger than burst size, the pkt is split into
514 // multiple DRAM packets
515 Addr addr = pkt->getAddr();
516 for (int cnt = 0; cnt < pktCount; ++cnt) {
517 unsigned size = std::min((addr | (burstSize - 1)) + 1,
518 pkt->getAddr() + pkt->getSize()) - addr;
519 writePktSize[ceilLog2(size)]++;
520 writeBursts++;
521
522 // see if we can merge with an existing item in the write
523 // queue and keep track of whether we have merged or not
524 bool merged = isInWriteQueue.find(burstAlign(addr)) !=
525 isInWriteQueue.end();
526
527 // if the item was not merged we need to create a new write
528 // and enqueue it
529 if (!merged) {
530 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
531
532 assert(writeQueue.size() < writeBufferSize);
533 wrQLenPdf[writeQueue.size()]++;
534
535 DPRINTF(DRAM, "Adding to write queue\n");
536
537 writeQueue.push_back(dram_pkt);
538 isInWriteQueue.insert(burstAlign(addr));
539 assert(writeQueue.size() == isInWriteQueue.size());
540
541 // Update stats
542 avgWrQLen = writeQueue.size();
543 } else {
544 DPRINTF(DRAM, "Merging write burst with existing queue entry\n");
545
546 // keep track of the fact that this burst effectively
547 // disappeared as it was merged with an existing one
548 mergedWrBursts++;
549 }
550
551 // Starting address of next dram pkt (aligend to burstSize boundary)
552 addr = (addr | (burstSize - 1)) + 1;
553 }
554
555 // we do not wait for the writes to be send to the actual memory,
556 // but instead take responsibility for the consistency here and
557 // snoop the write queue for any upcoming reads
558 // @todo, if a pkt size is larger than burst size, we might need a
559 // different front end latency
560 accessAndRespond(pkt, frontendLatency);
561
562 // If we are not already scheduled to get a request out of the
563 // queue, do so now
564 if (!nextReqEvent.scheduled()) {
565 DPRINTF(DRAM, "Request scheduled immediately\n");
566 schedule(nextReqEvent, curTick());
567 }
568}
569
570void
571DRAMCtrl::printQs() const {
572 DPRINTF(DRAM, "===READ QUEUE===\n\n");
573 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) {
574 DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
575 }
576 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
577 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) {
578 DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
579 }
580 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
581 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) {
582 DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
583 }
584}
585
586bool
587DRAMCtrl::recvTimingReq(PacketPtr pkt)
588{
589 // This is where we enter from the outside world
590 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
591 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
592
281 // this value is not supposed to be accurate, just enough to
282 // keep things going, mimic a closed page
283 latency = tRP + tRCD + tCL;
284 }
285 return latency;
286}
287
288bool
289DRAMCtrl::readQueueFull(unsigned int neededEntries) const
290{
291 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
292 readBufferSize, readQueue.size() + respQueue.size(),
293 neededEntries);
294
295 return
296 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
297}
298
299bool
300DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
301{
302 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
303 writeBufferSize, writeQueue.size(), neededEntries);
304 return (writeQueue.size() + neededEntries) > writeBufferSize;
305}
306
307DRAMCtrl::DRAMPacket*
308DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
309 bool isRead)
310{
311 // decode the address based on the address mapping scheme, with
312 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
313 // channel, respectively
314 uint8_t rank;
315 uint8_t bank;
316 // use a 64-bit unsigned during the computations as the row is
317 // always the top bits, and check before creating the DRAMPacket
318 uint64_t row;
319
320 // truncate the address to a DRAM burst, which makes it unique to
321 // a specific column, row, bank, rank and channel
322 Addr addr = dramPktAddr / burstSize;
323
324 // we have removed the lowest order address bits that denote the
325 // position within the column
326 if (addrMapping == Enums::RoRaBaChCo) {
327 // the lowest order bits denote the column to ensure that
328 // sequential cache lines occupy the same row
329 addr = addr / columnsPerRowBuffer;
330
331 // take out the channel part of the address
332 addr = addr / channels;
333
334 // after the channel bits, get the bank bits to interleave
335 // over the banks
336 bank = addr % banksPerRank;
337 addr = addr / banksPerRank;
338
339 // after the bank, we get the rank bits which thus interleaves
340 // over the ranks
341 rank = addr % ranksPerChannel;
342 addr = addr / ranksPerChannel;
343
344 // lastly, get the row bits, no need to remove them from addr
345 row = addr % rowsPerBank;
346 } else if (addrMapping == Enums::RoRaBaCoCh) {
347 // take out the lower-order column bits
348 addr = addr / columnsPerStripe;
349
350 // take out the channel part of the address
351 addr = addr / channels;
352
353 // next, the higher-order column bites
354 addr = addr / (columnsPerRowBuffer / columnsPerStripe);
355
356 // after the column bits, we get the bank bits to interleave
357 // over the banks
358 bank = addr % banksPerRank;
359 addr = addr / banksPerRank;
360
361 // after the bank, we get the rank bits which thus interleaves
362 // over the ranks
363 rank = addr % ranksPerChannel;
364 addr = addr / ranksPerChannel;
365
366 // lastly, get the row bits, no need to remove them from addr
367 row = addr % rowsPerBank;
368 } else if (addrMapping == Enums::RoCoRaBaCh) {
369 // optimise for closed page mode and utilise maximum
370 // parallelism of the DRAM (at the cost of power)
371
372 // take out the lower-order column bits
373 addr = addr / columnsPerStripe;
374
375 // take out the channel part of the address, not that this has
376 // to match with how accesses are interleaved between the
377 // controllers in the address mapping
378 addr = addr / channels;
379
380 // start with the bank bits, as this provides the maximum
381 // opportunity for parallelism between requests
382 bank = addr % banksPerRank;
383 addr = addr / banksPerRank;
384
385 // next get the rank bits
386 rank = addr % ranksPerChannel;
387 addr = addr / ranksPerChannel;
388
389 // next, the higher-order column bites
390 addr = addr / (columnsPerRowBuffer / columnsPerStripe);
391
392 // lastly, get the row bits, no need to remove them from addr
393 row = addr % rowsPerBank;
394 } else
395 panic("Unknown address mapping policy chosen!");
396
397 assert(rank < ranksPerChannel);
398 assert(bank < banksPerRank);
399 assert(row < rowsPerBank);
400 assert(row < Bank::NO_ROW);
401
402 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
403 dramPktAddr, rank, bank, row);
404
405 // create the corresponding DRAM packet with the entry time and
406 // ready time set to the current tick, the latter will be updated
407 // later
408 uint16_t bank_id = banksPerRank * rank + bank;
409 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
410 size, ranks[rank]->banks[bank], *ranks[rank]);
411}
412
413void
414DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
415{
416 // only add to the read queue here. whenever the request is
417 // eventually done, set the readyTime, and call schedule()
418 assert(!pkt->isWrite());
419
420 assert(pktCount != 0);
421
422 // if the request size is larger than burst size, the pkt is split into
423 // multiple DRAM packets
424 // Note if the pkt starting address is not aligened to burst size, the
425 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
426 // are aligned to burst size boundaries. This is to ensure we accurately
427 // check read packets against packets in write queue.
428 Addr addr = pkt->getAddr();
429 unsigned pktsServicedByWrQ = 0;
430 BurstHelper* burst_helper = NULL;
431 for (int cnt = 0; cnt < pktCount; ++cnt) {
432 unsigned size = std::min((addr | (burstSize - 1)) + 1,
433 pkt->getAddr() + pkt->getSize()) - addr;
434 readPktSize[ceilLog2(size)]++;
435 readBursts++;
436
437 // First check write buffer to see if the data is already at
438 // the controller
439 bool foundInWrQ = false;
440 Addr burst_addr = burstAlign(addr);
441 // if the burst address is not present then there is no need
442 // looking any further
443 if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) {
444 for (const auto& p : writeQueue) {
445 // check if the read is subsumed in the write queue
446 // packet we are looking at
447 if (p->addr <= addr && (addr + size) <= (p->addr + p->size)) {
448 foundInWrQ = true;
449 servicedByWrQ++;
450 pktsServicedByWrQ++;
451 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
452 "write queue\n", addr, size);
453 bytesReadWrQ += burstSize;
454 break;
455 }
456 }
457 }
458
459 // If not found in the write q, make a DRAM packet and
460 // push it onto the read queue
461 if (!foundInWrQ) {
462
463 // Make the burst helper for split packets
464 if (pktCount > 1 && burst_helper == NULL) {
465 DPRINTF(DRAM, "Read to addr %lld translates to %d "
466 "dram requests\n", pkt->getAddr(), pktCount);
467 burst_helper = new BurstHelper(pktCount);
468 }
469
470 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
471 dram_pkt->burstHelper = burst_helper;
472
473 assert(!readQueueFull(1));
474 rdQLenPdf[readQueue.size() + respQueue.size()]++;
475
476 DPRINTF(DRAM, "Adding to read queue\n");
477
478 readQueue.push_back(dram_pkt);
479
480 // Update stats
481 avgRdQLen = readQueue.size() + respQueue.size();
482 }
483
484 // Starting address of next dram pkt (aligend to burstSize boundary)
485 addr = (addr | (burstSize - 1)) + 1;
486 }
487
488 // If all packets are serviced by write queue, we send the repsonse back
489 if (pktsServicedByWrQ == pktCount) {
490 accessAndRespond(pkt, frontendLatency);
491 return;
492 }
493
494 // Update how many split packets are serviced by write queue
495 if (burst_helper != NULL)
496 burst_helper->burstsServiced = pktsServicedByWrQ;
497
498 // If we are not already scheduled to get a request out of the
499 // queue, do so now
500 if (!nextReqEvent.scheduled()) {
501 DPRINTF(DRAM, "Request scheduled immediately\n");
502 schedule(nextReqEvent, curTick());
503 }
504}
505
506void
507DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
508{
509 // only add to the write queue here. whenever the request is
510 // eventually done, set the readyTime, and call schedule()
511 assert(pkt->isWrite());
512
513 // if the request size is larger than burst size, the pkt is split into
514 // multiple DRAM packets
515 Addr addr = pkt->getAddr();
516 for (int cnt = 0; cnt < pktCount; ++cnt) {
517 unsigned size = std::min((addr | (burstSize - 1)) + 1,
518 pkt->getAddr() + pkt->getSize()) - addr;
519 writePktSize[ceilLog2(size)]++;
520 writeBursts++;
521
522 // see if we can merge with an existing item in the write
523 // queue and keep track of whether we have merged or not
524 bool merged = isInWriteQueue.find(burstAlign(addr)) !=
525 isInWriteQueue.end();
526
527 // if the item was not merged we need to create a new write
528 // and enqueue it
529 if (!merged) {
530 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
531
532 assert(writeQueue.size() < writeBufferSize);
533 wrQLenPdf[writeQueue.size()]++;
534
535 DPRINTF(DRAM, "Adding to write queue\n");
536
537 writeQueue.push_back(dram_pkt);
538 isInWriteQueue.insert(burstAlign(addr));
539 assert(writeQueue.size() == isInWriteQueue.size());
540
541 // Update stats
542 avgWrQLen = writeQueue.size();
543 } else {
544 DPRINTF(DRAM, "Merging write burst with existing queue entry\n");
545
546 // keep track of the fact that this burst effectively
547 // disappeared as it was merged with an existing one
548 mergedWrBursts++;
549 }
550
551 // Starting address of next dram pkt (aligend to burstSize boundary)
552 addr = (addr | (burstSize - 1)) + 1;
553 }
554
555 // we do not wait for the writes to be send to the actual memory,
556 // but instead take responsibility for the consistency here and
557 // snoop the write queue for any upcoming reads
558 // @todo, if a pkt size is larger than burst size, we might need a
559 // different front end latency
560 accessAndRespond(pkt, frontendLatency);
561
562 // If we are not already scheduled to get a request out of the
563 // queue, do so now
564 if (!nextReqEvent.scheduled()) {
565 DPRINTF(DRAM, "Request scheduled immediately\n");
566 schedule(nextReqEvent, curTick());
567 }
568}
569
570void
571DRAMCtrl::printQs() const {
572 DPRINTF(DRAM, "===READ QUEUE===\n\n");
573 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) {
574 DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
575 }
576 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
577 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) {
578 DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
579 }
580 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
581 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) {
582 DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
583 }
584}
585
586bool
587DRAMCtrl::recvTimingReq(PacketPtr pkt)
588{
589 // This is where we enter from the outside world
590 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
591 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
592
593 // sink inhibited packets without further action
594 if (pkt->memInhibitAsserted()) {
593 // if a cache is responding, sink the packet without further action
594 if (pkt->cacheResponding()) {
595 pendingDelete.reset(pkt);
596 return true;
597 }
598
599 // Calc avg gap between requests
600 if (prevArrival != 0) {
601 totGap += curTick() - prevArrival;
602 }
603 prevArrival = curTick();
604
605
606 // Find out how many dram packets a pkt translates to
607 // If the burst size is equal or larger than the pkt size, then a pkt
608 // translates to only one dram packet. Otherwise, a pkt translates to
609 // multiple dram packets
610 unsigned size = pkt->getSize();
611 unsigned offset = pkt->getAddr() & (burstSize - 1);
612 unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
613
614 // check local buffers and do not accept if full
615 if (pkt->isRead()) {
616 assert(size != 0);
617 if (readQueueFull(dram_pkt_count)) {
618 DPRINTF(DRAM, "Read queue full, not accepting\n");
619 // remember that we have to retry this port
620 retryRdReq = true;
621 numRdRetry++;
622 return false;
623 } else {
624 addToReadQueue(pkt, dram_pkt_count);
625 readReqs++;
626 bytesReadSys += size;
627 }
628 } else if (pkt->isWrite()) {
629 assert(size != 0);
630 if (writeQueueFull(dram_pkt_count)) {
631 DPRINTF(DRAM, "Write queue full, not accepting\n");
632 // remember that we have to retry this port
633 retryWrReq = true;
634 numWrRetry++;
635 return false;
636 } else {
637 addToWriteQueue(pkt, dram_pkt_count);
638 writeReqs++;
639 bytesWrittenSys += size;
640 }
641 } else {
642 DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
643 neitherReadNorWrite++;
644 accessAndRespond(pkt, 1);
645 }
646
647 return true;
648}
649
650void
651DRAMCtrl::processRespondEvent()
652{
653 DPRINTF(DRAM,
654 "processRespondEvent(): Some req has reached its readyTime\n");
655
656 DRAMPacket* dram_pkt = respQueue.front();
657
658 if (dram_pkt->burstHelper) {
659 // it is a split packet
660 dram_pkt->burstHelper->burstsServiced++;
661 if (dram_pkt->burstHelper->burstsServiced ==
662 dram_pkt->burstHelper->burstCount) {
663 // we have now serviced all children packets of a system packet
664 // so we can now respond to the requester
665 // @todo we probably want to have a different front end and back
666 // end latency for split packets
667 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
668 delete dram_pkt->burstHelper;
669 dram_pkt->burstHelper = NULL;
670 }
671 } else {
672 // it is not a split packet
673 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
674 }
675
676 delete respQueue.front();
677 respQueue.pop_front();
678
679 if (!respQueue.empty()) {
680 assert(respQueue.front()->readyTime >= curTick());
681 assert(!respondEvent.scheduled());
682 schedule(respondEvent, respQueue.front()->readyTime);
683 } else {
684 // if there is nothing left in any queue, signal a drain
685 if (drainState() == DrainState::Draining &&
686 writeQueue.empty() && readQueue.empty()) {
687
688 DPRINTF(Drain, "DRAM controller done draining\n");
689 signalDrainDone();
690 }
691 }
692
693 // We have made a location in the queue available at this point,
694 // so if there is a read that was forced to wait, retry now
695 if (retryRdReq) {
696 retryRdReq = false;
697 port.sendRetryReq();
698 }
699}
700
701bool
702DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
703{
704 // This method does the arbitration between requests. The chosen
705 // packet is simply moved to the head of the queue. The other
706 // methods know that this is the place to look. For example, with
707 // FCFS, this method does nothing
708 assert(!queue.empty());
709
710 // bool to indicate if a packet to an available rank is found
711 bool found_packet = false;
712 if (queue.size() == 1) {
713 DRAMPacket* dram_pkt = queue.front();
714 // available rank corresponds to state refresh idle
715 if (ranks[dram_pkt->rank]->isAvailable()) {
716 found_packet = true;
717 DPRINTF(DRAM, "Single request, going to a free rank\n");
718 } else {
719 DPRINTF(DRAM, "Single request, going to a busy rank\n");
720 }
721 return found_packet;
722 }
723
724 if (memSchedPolicy == Enums::fcfs) {
725 // check if there is a packet going to a free rank
726 for(auto i = queue.begin(); i != queue.end() ; ++i) {
727 DRAMPacket* dram_pkt = *i;
728 if (ranks[dram_pkt->rank]->isAvailable()) {
729 queue.erase(i);
730 queue.push_front(dram_pkt);
731 found_packet = true;
732 break;
733 }
734 }
735 } else if (memSchedPolicy == Enums::frfcfs) {
736 found_packet = reorderQueue(queue, extra_col_delay);
737 } else
738 panic("No scheduling policy chosen\n");
739 return found_packet;
740}
741
742bool
743DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
744{
745 // Only determine this if needed
746 uint64_t earliest_banks = 0;
747 bool hidden_bank_prep = false;
748
749 // search for seamless row hits first, if no seamless row hit is
750 // found then determine if there are other packets that can be issued
751 // without incurring additional bus delay due to bank timing
752 // Will select closed rows first to enable more open row possibilies
753 // in future selections
754 bool found_hidden_bank = false;
755
756 // remember if we found a row hit, not seamless, but bank prepped
757 // and ready
758 bool found_prepped_pkt = false;
759
760 // if we have no row hit, prepped or not, and no seamless packet,
761 // just go for the earliest possible
762 bool found_earliest_pkt = false;
763
764 auto selected_pkt_it = queue.end();
765
766 // time we need to issue a column command to be seamless
767 const Tick min_col_at = std::max(busBusyUntil - tCL + extra_col_delay,
768 curTick());
769
770 for (auto i = queue.begin(); i != queue.end() ; ++i) {
771 DRAMPacket* dram_pkt = *i;
772 const Bank& bank = dram_pkt->bankRef;
773
774 // check if rank is available, if not, jump to the next packet
775 if (dram_pkt->rankRef.isAvailable()) {
776 // check if it is a row hit
777 if (bank.openRow == dram_pkt->row) {
778 // no additional rank-to-rank or same bank-group
779 // delays, or we switched read/write and might as well
780 // go for the row hit
781 if (bank.colAllowedAt <= min_col_at) {
782 // FCFS within the hits, giving priority to
783 // commands that can issue seamlessly, without
784 // additional delay, such as same rank accesses
785 // and/or different bank-group accesses
786 DPRINTF(DRAM, "Seamless row buffer hit\n");
787 selected_pkt_it = i;
788 // no need to look through the remaining queue entries
789 break;
790 } else if (!found_hidden_bank && !found_prepped_pkt) {
791 // if we did not find a packet to a closed row that can
792 // issue the bank commands without incurring delay, and
793 // did not yet find a packet to a prepped row, remember
794 // the current one
795 selected_pkt_it = i;
796 found_prepped_pkt = true;
797 DPRINTF(DRAM, "Prepped row buffer hit\n");
798 }
799 } else if (!found_earliest_pkt) {
800 // if we have not initialised the bank status, do it
801 // now, and only once per scheduling decisions
802 if (earliest_banks == 0) {
803 // determine entries with earliest bank delay
804 pair<uint64_t, bool> bankStatus =
805 minBankPrep(queue, min_col_at);
806 earliest_banks = bankStatus.first;
807 hidden_bank_prep = bankStatus.second;
808 }
809
810 // bank is amongst first available banks
811 // minBankPrep will give priority to packets that can
812 // issue seamlessly
813 if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
814 found_earliest_pkt = true;
815 found_hidden_bank = hidden_bank_prep;
816
817 // give priority to packets that can issue
818 // bank commands 'behind the scenes'
819 // any additional delay if any will be due to
820 // col-to-col command requirements
821 if (hidden_bank_prep || !found_prepped_pkt)
822 selected_pkt_it = i;
823 }
824 }
825 }
826 }
827
828 if (selected_pkt_it != queue.end()) {
829 DRAMPacket* selected_pkt = *selected_pkt_it;
830 queue.erase(selected_pkt_it);
831 queue.push_front(selected_pkt);
832 return true;
833 }
834
835 return false;
836}
837
838void
839DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
840{
841 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
842
843 bool needsResponse = pkt->needsResponse();
844 // do the actual memory access which also turns the packet into a
845 // response
846 access(pkt);
847
848 // turn packet around to go back to requester if response expected
849 if (needsResponse) {
850 // access already turned the packet into a response
851 assert(pkt->isResponse());
852 // response_time consumes the static latency and is charged also
853 // with headerDelay that takes into account the delay provided by
854 // the xbar and also the payloadDelay that takes into account the
855 // number of data beats.
856 Tick response_time = curTick() + static_latency + pkt->headerDelay +
857 pkt->payloadDelay;
858 // Here we reset the timing of the packet before sending it out.
859 pkt->headerDelay = pkt->payloadDelay = 0;
860
861 // queue the packet in the response queue to be sent out after
862 // the static latency has passed
863 port.schedTimingResp(pkt, response_time, true);
864 } else {
865 // @todo the packet is going to be deleted, and the DRAMPacket
866 // is still having a pointer to it
867 pendingDelete.reset(pkt);
868 }
869
870 DPRINTF(DRAM, "Done\n");
871
872 return;
873}
874
875void
876DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref,
877 Tick act_tick, uint32_t row)
878{
879 assert(rank_ref.actTicks.size() == activationLimit);
880
881 DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
882
883 // update the open row
884 assert(bank_ref.openRow == Bank::NO_ROW);
885 bank_ref.openRow = row;
886
887 // start counting anew, this covers both the case when we
888 // auto-precharged, and when this access is forced to
889 // precharge
890 bank_ref.bytesAccessed = 0;
891 bank_ref.rowAccesses = 0;
892
893 ++rank_ref.numBanksActive;
894 assert(rank_ref.numBanksActive <= banksPerRank);
895
896 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
897 bank_ref.bank, rank_ref.rank, act_tick,
898 ranks[rank_ref.rank]->numBanksActive);
899
900 rank_ref.power.powerlib.doCommand(MemCommand::ACT, bank_ref.bank,
901 divCeil(act_tick, tCK) -
902 timeStampOffset);
903
904 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
905 timeStampOffset, bank_ref.bank, rank_ref.rank);
906
907 // The next access has to respect tRAS for this bank
908 bank_ref.preAllowedAt = act_tick + tRAS;
909
910 // Respect the row-to-column command delay
911 bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt);
912
913 // start by enforcing tRRD
914 for(int i = 0; i < banksPerRank; i++) {
915 // next activate to any bank in this rank must not happen
916 // before tRRD
917 if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) {
918 // bank group architecture requires longer delays between
919 // ACT commands within the same bank group. Use tRRD_L
920 // in this case
921 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L,
922 rank_ref.banks[i].actAllowedAt);
923 } else {
924 // use shorter tRRD value when either
925 // 1) bank group architecture is not supportted
926 // 2) bank is in a different bank group
927 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD,
928 rank_ref.banks[i].actAllowedAt);
929 }
930 }
931
932 // next, we deal with tXAW, if the activation limit is disabled
933 // then we directly schedule an activate power event
934 if (!rank_ref.actTicks.empty()) {
935 // sanity check
936 if (rank_ref.actTicks.back() &&
937 (act_tick - rank_ref.actTicks.back()) < tXAW) {
938 panic("Got %d activates in window %d (%llu - %llu) which "
939 "is smaller than %llu\n", activationLimit, act_tick -
940 rank_ref.actTicks.back(), act_tick,
941 rank_ref.actTicks.back(), tXAW);
942 }
943
944 // shift the times used for the book keeping, the last element
945 // (highest index) is the oldest one and hence the lowest value
946 rank_ref.actTicks.pop_back();
947
948 // record an new activation (in the future)
949 rank_ref.actTicks.push_front(act_tick);
950
951 // cannot activate more than X times in time window tXAW, push the
952 // next one (the X + 1'st activate) to be tXAW away from the
953 // oldest in our window of X
954 if (rank_ref.actTicks.back() &&
955 (act_tick - rank_ref.actTicks.back()) < tXAW) {
956 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
957 "no earlier than %llu\n", activationLimit,
958 rank_ref.actTicks.back() + tXAW);
959 for(int j = 0; j < banksPerRank; j++)
960 // next activate must not happen before end of window
961 rank_ref.banks[j].actAllowedAt =
962 std::max(rank_ref.actTicks.back() + tXAW,
963 rank_ref.banks[j].actAllowedAt);
964 }
965 }
966
967 // at the point when this activate takes place, make sure we
968 // transition to the active power state
969 if (!rank_ref.activateEvent.scheduled())
970 schedule(rank_ref.activateEvent, act_tick);
971 else if (rank_ref.activateEvent.when() > act_tick)
972 // move it sooner in time
973 reschedule(rank_ref.activateEvent, act_tick);
974}
975
976void
977DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace)
978{
979 // make sure the bank has an open row
980 assert(bank.openRow != Bank::NO_ROW);
981
982 // sample the bytes per activate here since we are closing
983 // the page
984 bytesPerActivate.sample(bank.bytesAccessed);
985
986 bank.openRow = Bank::NO_ROW;
987
988 // no precharge allowed before this one
989 bank.preAllowedAt = pre_at;
990
991 Tick pre_done_at = pre_at + tRP;
992
993 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
994
995 assert(rank_ref.numBanksActive != 0);
996 --rank_ref.numBanksActive;
997
998 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
999 "%d active\n", bank.bank, rank_ref.rank, pre_at,
1000 rank_ref.numBanksActive);
1001
1002 if (trace) {
1003
1004 rank_ref.power.powerlib.doCommand(MemCommand::PRE, bank.bank,
1005 divCeil(pre_at, tCK) -
1006 timeStampOffset);
1007 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
1008 timeStampOffset, bank.bank, rank_ref.rank);
1009 }
1010 // if we look at the current number of active banks we might be
1011 // tempted to think the DRAM is now idle, however this can be
1012 // undone by an activate that is scheduled to happen before we
1013 // would have reached the idle state, so schedule an event and
1014 // rather check once we actually make it to the point in time when
1015 // the (last) precharge takes place
1016 if (!rank_ref.prechargeEvent.scheduled())
1017 schedule(rank_ref.prechargeEvent, pre_done_at);
1018 else if (rank_ref.prechargeEvent.when() < pre_done_at)
1019 reschedule(rank_ref.prechargeEvent, pre_done_at);
1020}
1021
1022void
1023DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1024{
1025 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1026 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1027
1028 // get the rank
1029 Rank& rank = dram_pkt->rankRef;
1030
1031 // get the bank
1032 Bank& bank = dram_pkt->bankRef;
1033
1034 // for the state we need to track if it is a row hit or not
1035 bool row_hit = true;
1036
1037 // respect any constraints on the command (e.g. tRCD or tCCD)
1038 Tick cmd_at = std::max(bank.colAllowedAt, curTick());
1039
1040 // Determine the access latency and update the bank state
1041 if (bank.openRow == dram_pkt->row) {
1042 // nothing to do
1043 } else {
1044 row_hit = false;
1045
1046 // If there is a page open, precharge it.
1047 if (bank.openRow != Bank::NO_ROW) {
1048 prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick()));
1049 }
1050
1051 // next we need to account for the delay in activating the
1052 // page
1053 Tick act_tick = std::max(bank.actAllowedAt, curTick());
1054
1055 // Record the activation and deal with all the global timing
1056 // constraints caused be a new activation (tRRD and tXAW)
1057 activateBank(rank, bank, act_tick, dram_pkt->row);
1058
1059 // issue the command as early as possible
1060 cmd_at = bank.colAllowedAt;
1061 }
1062
1063 // we need to wait until the bus is available before we can issue
1064 // the command
1065 cmd_at = std::max(cmd_at, busBusyUntil - tCL);
1066
1067 // update the packet ready time
1068 dram_pkt->readyTime = cmd_at + tCL + tBURST;
1069
1070 // only one burst can use the bus at any one point in time
1071 assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1072
1073 // update the time for the next read/write burst for each
1074 // bank (add a max with tCCD/tCCD_L here)
1075 Tick cmd_dly;
1076 for(int j = 0; j < ranksPerChannel; j++) {
1077 for(int i = 0; i < banksPerRank; i++) {
1078 // next burst to same bank group in this rank must not happen
1079 // before tCCD_L. Different bank group timing requirement is
1080 // tBURST; Add tCS for different ranks
1081 if (dram_pkt->rank == j) {
1082 if (bankGroupArch &&
1083 (bank.bankgr == ranks[j]->banks[i].bankgr)) {
1084 // bank group architecture requires longer delays between
1085 // RD/WR burst commands to the same bank group.
1086 // Use tCCD_L in this case
1087 cmd_dly = tCCD_L;
1088 } else {
1089 // use tBURST (equivalent to tCCD_S), the shorter
1090 // cas-to-cas delay value, when either:
1091 // 1) bank group architecture is not supportted
1092 // 2) bank is in a different bank group
1093 cmd_dly = tBURST;
1094 }
1095 } else {
1096 // different rank is by default in a different bank group
1097 // use tBURST (equivalent to tCCD_S), which is the shorter
1098 // cas-to-cas delay in this case
1099 // Add tCS to account for rank-to-rank bus delay requirements
1100 cmd_dly = tBURST + tCS;
1101 }
1102 ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly,
1103 ranks[j]->banks[i].colAllowedAt);
1104 }
1105 }
1106
1107 // Save rank of current access
1108 activeRank = dram_pkt->rank;
1109
1110 // If this is a write, we also need to respect the write recovery
1111 // time before a precharge, in the case of a read, respect the
1112 // read to precharge constraint
1113 bank.preAllowedAt = std::max(bank.preAllowedAt,
1114 dram_pkt->isRead ? cmd_at + tRTP :
1115 dram_pkt->readyTime + tWR);
1116
1117 // increment the bytes accessed and the accesses per row
1118 bank.bytesAccessed += burstSize;
1119 ++bank.rowAccesses;
1120
1121 // if we reached the max, then issue with an auto-precharge
1122 bool auto_precharge = pageMgmt == Enums::close ||
1123 bank.rowAccesses == maxAccessesPerRow;
1124
1125 // if we did not hit the limit, we might still want to
1126 // auto-precharge
1127 if (!auto_precharge &&
1128 (pageMgmt == Enums::open_adaptive ||
1129 pageMgmt == Enums::close_adaptive)) {
1130 // a twist on the open and close page policies:
1131 // 1) open_adaptive page policy does not blindly keep the
1132 // page open, but close it if there are no row hits, and there
1133 // are bank conflicts in the queue
1134 // 2) close_adaptive page policy does not blindly close the
1135 // page, but closes it only if there are no row hits in the queue.
1136 // In this case, only force an auto precharge when there
1137 // are no same page hits in the queue
1138 bool got_more_hits = false;
1139 bool got_bank_conflict = false;
1140
1141 // either look at the read queue or write queue
1142 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1143 writeQueue;
1144 auto p = queue.begin();
1145 // make sure we are not considering the packet that we are
1146 // currently dealing with (which is the head of the queue)
1147 ++p;
1148
1149 // keep on looking until we find a hit or reach the end of the queue
1150 // 1) if a hit is found, then both open and close adaptive policies keep
1151 // the page open
1152 // 2) if no hit is found, got_bank_conflict is set to true if a bank
1153 // conflict request is waiting in the queue
1154 while (!got_more_hits && p != queue.end()) {
1155 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1156 (dram_pkt->bank == (*p)->bank);
1157 bool same_row = dram_pkt->row == (*p)->row;
1158 got_more_hits |= same_rank_bank && same_row;
1159 got_bank_conflict |= same_rank_bank && !same_row;
1160 ++p;
1161 }
1162
1163 // auto pre-charge when either
1164 // 1) open_adaptive policy, we have not got any more hits, and
1165 // have a bank conflict
1166 // 2) close_adaptive policy and we have not got any more hits
1167 auto_precharge = !got_more_hits &&
1168 (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1169 }
1170
1171 // DRAMPower trace command to be written
1172 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1173
1174 // MemCommand required for DRAMPower library
1175 MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1176 MemCommand::WR;
1177
1178 // if this access should use auto-precharge, then we are
1179 // closing the row
1180 if (auto_precharge) {
1181 // if auto-precharge push a PRE command at the correct tick to the
1182 // list used by DRAMPower library to calculate power
1183 prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt));
1184
1185 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1186 }
1187
1188 // Update bus state
1189 busBusyUntil = dram_pkt->readyTime;
1190
1191 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1192 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1193
1194 dram_pkt->rankRef.power.powerlib.doCommand(command, dram_pkt->bank,
1195 divCeil(cmd_at, tCK) -
1196 timeStampOffset);
1197
1198 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1199 timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1200
1201 // Update the minimum timing between the requests, this is a
1202 // conservative estimate of when we have to schedule the next
1203 // request to not introduce any unecessary bubbles. In most cases
1204 // we will wake up sooner than we have to.
1205 nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1206
1207 // Update the stats and schedule the next request
1208 if (dram_pkt->isRead) {
1209 ++readsThisTime;
1210 if (row_hit)
1211 readRowHits++;
1212 bytesReadDRAM += burstSize;
1213 perBankRdBursts[dram_pkt->bankId]++;
1214
1215 // Update latency stats
1216 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1217 totBusLat += tBURST;
1218 totQLat += cmd_at - dram_pkt->entryTime;
1219 } else {
1220 ++writesThisTime;
1221 if (row_hit)
1222 writeRowHits++;
1223 bytesWritten += burstSize;
1224 perBankWrBursts[dram_pkt->bankId]++;
1225 }
1226}
1227
1228void
1229DRAMCtrl::processNextReqEvent()
1230{
1231 int busyRanks = 0;
1232 for (auto r : ranks) {
1233 if (!r->isAvailable()) {
1234 // rank is busy refreshing
1235 busyRanks++;
1236
1237 // let the rank know that if it was waiting to drain, it
1238 // is now done and ready to proceed
1239 r->checkDrainDone();
1240 }
1241 }
1242
1243 if (busyRanks == ranksPerChannel) {
1244 // if all ranks are refreshing wait for them to finish
1245 // and stall this state machine without taking any further
1246 // action, and do not schedule a new nextReqEvent
1247 return;
1248 }
1249
1250 // pre-emptively set to false. Overwrite if in READ_TO_WRITE
1251 // or WRITE_TO_READ state
1252 bool switched_cmd_type = false;
1253 if (busState == READ_TO_WRITE) {
1254 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1255 "waiting\n", readsThisTime, readQueue.size());
1256
1257 // sample and reset the read-related stats as we are now
1258 // transitioning to writes, and all reads are done
1259 rdPerTurnAround.sample(readsThisTime);
1260 readsThisTime = 0;
1261
1262 // now proceed to do the actual writes
1263 busState = WRITE;
1264 switched_cmd_type = true;
1265 } else if (busState == WRITE_TO_READ) {
1266 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1267 "waiting\n", writesThisTime, writeQueue.size());
1268
1269 wrPerTurnAround.sample(writesThisTime);
1270 writesThisTime = 0;
1271
1272 busState = READ;
1273 switched_cmd_type = true;
1274 }
1275
1276 // when we get here it is either a read or a write
1277 if (busState == READ) {
1278
1279 // track if we should switch or not
1280 bool switch_to_writes = false;
1281
1282 if (readQueue.empty()) {
1283 // In the case there is no read request to go next,
1284 // trigger writes if we have passed the low threshold (or
1285 // if we are draining)
1286 if (!writeQueue.empty() &&
1287 (drainState() == DrainState::Draining ||
1288 writeQueue.size() > writeLowThreshold)) {
1289
1290 switch_to_writes = true;
1291 } else {
1292 // check if we are drained
1293 if (drainState() == DrainState::Draining &&
1294 respQueue.empty()) {
1295
1296 DPRINTF(Drain, "DRAM controller done draining\n");
1297 signalDrainDone();
1298 }
1299
1300 // nothing to do, not even any point in scheduling an
1301 // event for the next request
1302 return;
1303 }
1304 } else {
1305 // bool to check if there is a read to a free rank
1306 bool found_read = false;
1307
1308 // Figure out which read request goes next, and move it to the
1309 // front of the read queue
1310 // If we are changing command type, incorporate the minimum
1311 // bus turnaround delay which will be tCS (different rank) case
1312 found_read = chooseNext(readQueue,
1313 switched_cmd_type ? tCS : 0);
1314
1315 // if no read to an available rank is found then return
1316 // at this point. There could be writes to the available ranks
1317 // which are above the required threshold. However, to
1318 // avoid adding more complexity to the code, return and wait
1319 // for a refresh event to kick things into action again.
1320 if (!found_read)
1321 return;
1322
1323 DRAMPacket* dram_pkt = readQueue.front();
1324 assert(dram_pkt->rankRef.isAvailable());
1325 // here we get a bit creative and shift the bus busy time not
1326 // just the tWTR, but also a CAS latency to capture the fact
1327 // that we are allowed to prepare a new bank, but not issue a
1328 // read command until after tWTR, in essence we capture a
1329 // bubble on the data bus that is tWTR + tCL
1330 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1331 busBusyUntil += tWTR + tCL;
1332 }
1333
1334 doDRAMAccess(dram_pkt);
1335
1336 // At this point we're done dealing with the request
1337 readQueue.pop_front();
1338
1339 // sanity check
1340 assert(dram_pkt->size <= burstSize);
1341 assert(dram_pkt->readyTime >= curTick());
1342
1343 // Insert into response queue. It will be sent back to the
1344 // requestor at its readyTime
1345 if (respQueue.empty()) {
1346 assert(!respondEvent.scheduled());
1347 schedule(respondEvent, dram_pkt->readyTime);
1348 } else {
1349 assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1350 assert(respondEvent.scheduled());
1351 }
1352
1353 respQueue.push_back(dram_pkt);
1354
1355 // we have so many writes that we have to transition
1356 if (writeQueue.size() > writeHighThreshold) {
1357 switch_to_writes = true;
1358 }
1359 }
1360
1361 // switching to writes, either because the read queue is empty
1362 // and the writes have passed the low threshold (or we are
1363 // draining), or because the writes hit the hight threshold
1364 if (switch_to_writes) {
1365 // transition to writing
1366 busState = READ_TO_WRITE;
1367 }
1368 } else {
1369 // bool to check if write to free rank is found
1370 bool found_write = false;
1371
1372 // If we are changing command type, incorporate the minimum
1373 // bus turnaround delay
1374 found_write = chooseNext(writeQueue,
1375 switched_cmd_type ? std::min(tRTW, tCS) : 0);
1376
1377 // if no writes to an available rank are found then return.
1378 // There could be reads to the available ranks. However, to avoid
1379 // adding more complexity to the code, return at this point and wait
1380 // for a refresh event to kick things into action again.
1381 if (!found_write)
1382 return;
1383
1384 DRAMPacket* dram_pkt = writeQueue.front();
1385 assert(dram_pkt->rankRef.isAvailable());
1386 // sanity check
1387 assert(dram_pkt->size <= burstSize);
1388
1389 // add a bubble to the data bus, as defined by the
1390 // tRTW when access is to the same rank as previous burst
1391 // Different rank timing is handled with tCS, which is
1392 // applied to colAllowedAt
1393 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1394 busBusyUntil += tRTW;
1395 }
1396
1397 doDRAMAccess(dram_pkt);
1398
1399 writeQueue.pop_front();
1400 isInWriteQueue.erase(burstAlign(dram_pkt->addr));
1401 delete dram_pkt;
1402
1403 // If we emptied the write queue, or got sufficiently below the
1404 // threshold (using the minWritesPerSwitch as the hysteresis) and
1405 // are not draining, or we have reads waiting and have done enough
1406 // writes, then switch to reads.
1407 if (writeQueue.empty() ||
1408 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1409 drainState() != DrainState::Draining) ||
1410 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1411 // turn the bus back around for reads again
1412 busState = WRITE_TO_READ;
1413
1414 // note that the we switch back to reads also in the idle
1415 // case, which eventually will check for any draining and
1416 // also pause any further scheduling if there is really
1417 // nothing to do
1418 }
1419 }
1420 // It is possible that a refresh to another rank kicks things back into
1421 // action before reaching this point.
1422 if (!nextReqEvent.scheduled())
1423 schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1424
1425 // If there is space available and we have writes waiting then let
1426 // them retry. This is done here to ensure that the retry does not
1427 // cause a nextReqEvent to be scheduled before we do so as part of
1428 // the next request processing
1429 if (retryWrReq && writeQueue.size() < writeBufferSize) {
1430 retryWrReq = false;
1431 port.sendRetryReq();
1432 }
1433}
1434
1435pair<uint64_t, bool>
1436DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1437 Tick min_col_at) const
1438{
1439 uint64_t bank_mask = 0;
1440 Tick min_act_at = MaxTick;
1441
1442 // latest Tick for which ACT can occur without incurring additoinal
1443 // delay on the data bus
1444 const Tick hidden_act_max = std::max(min_col_at - tRCD, curTick());
1445
1446 // Flag condition when burst can issue back-to-back with previous burst
1447 bool found_seamless_bank = false;
1448
1449 // Flag condition when bank can be opened without incurring additional
1450 // delay on the data bus
1451 bool hidden_bank_prep = false;
1452
1453 // determine if we have queued transactions targetting the
1454 // bank in question
1455 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1456 for (const auto& p : queue) {
1457 if(p->rankRef.isAvailable())
1458 got_waiting[p->bankId] = true;
1459 }
1460
1461 // Find command with optimal bank timing
1462 // Will prioritize commands that can issue seamlessly.
1463 for (int i = 0; i < ranksPerChannel; i++) {
1464 for (int j = 0; j < banksPerRank; j++) {
1465 uint16_t bank_id = i * banksPerRank + j;
1466
1467 // if we have waiting requests for the bank, and it is
1468 // amongst the first available, update the mask
1469 if (got_waiting[bank_id]) {
1470 // make sure this rank is not currently refreshing.
1471 assert(ranks[i]->isAvailable());
1472 // simplistic approximation of when the bank can issue
1473 // an activate, ignoring any rank-to-rank switching
1474 // cost in this calculation
1475 Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ?
1476 std::max(ranks[i]->banks[j].actAllowedAt, curTick()) :
1477 std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP;
1478
1479 // When is the earliest the R/W burst can issue?
1480 Tick col_at = std::max(ranks[i]->banks[j].colAllowedAt,
1481 act_at + tRCD);
1482
1483 // bank can issue burst back-to-back (seamlessly) with
1484 // previous burst
1485 bool new_seamless_bank = col_at <= min_col_at;
1486
1487 // if we found a new seamless bank or we have no
1488 // seamless banks, and got a bank with an earlier
1489 // activate time, it should be added to the bit mask
1490 if (new_seamless_bank ||
1491 (!found_seamless_bank && act_at <= min_act_at)) {
1492 // if we did not have a seamless bank before, and
1493 // we do now, reset the bank mask, also reset it
1494 // if we have not yet found a seamless bank and
1495 // the activate time is smaller than what we have
1496 // seen so far
1497 if (!found_seamless_bank &&
1498 (new_seamless_bank || act_at < min_act_at)) {
1499 bank_mask = 0;
1500 }
1501
1502 found_seamless_bank |= new_seamless_bank;
1503
1504 // ACT can occur 'behind the scenes'
1505 hidden_bank_prep = act_at <= hidden_act_max;
1506
1507 // set the bit corresponding to the available bank
1508 replaceBits(bank_mask, bank_id, bank_id, 1);
1509 min_act_at = act_at;
1510 }
1511 }
1512 }
1513 }
1514
1515 return make_pair(bank_mask, hidden_bank_prep);
1516}
1517
1518DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p)
1519 : EventManager(&_memory), memory(_memory),
1520 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), pwrStateTick(0),
1521 refreshState(REF_IDLE), refreshDueAt(0),
1522 power(_p, false), numBanksActive(0),
1523 activateEvent(*this), prechargeEvent(*this),
1524 refreshEvent(*this), powerEvent(*this)
1525{ }
1526
1527void
1528DRAMCtrl::Rank::startup(Tick ref_tick)
1529{
1530 assert(ref_tick > curTick());
1531
1532 pwrStateTick = curTick();
1533
1534 // kick off the refresh, and give ourselves enough time to
1535 // precharge
1536 schedule(refreshEvent, ref_tick);
1537}
1538
1539void
1540DRAMCtrl::Rank::suspend()
1541{
1542 deschedule(refreshEvent);
1543}
1544
1545void
1546DRAMCtrl::Rank::checkDrainDone()
1547{
1548 // if this rank was waiting to drain it is now able to proceed to
1549 // precharge
1550 if (refreshState == REF_DRAIN) {
1551 DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1552
1553 refreshState = REF_PRE;
1554
1555 // hand control back to the refresh event loop
1556 schedule(refreshEvent, curTick());
1557 }
1558}
1559
1560void
1561DRAMCtrl::Rank::processActivateEvent()
1562{
1563 // we should transition to the active state as soon as any bank is active
1564 if (pwrState != PWR_ACT)
1565 // note that at this point numBanksActive could be back at
1566 // zero again due to a precharge scheduled in the future
1567 schedulePowerEvent(PWR_ACT, curTick());
1568}
1569
1570void
1571DRAMCtrl::Rank::processPrechargeEvent()
1572{
1573 // if we reached zero, then special conditions apply as we track
1574 // if all banks are precharged for the power models
1575 if (numBanksActive == 0) {
1576 // we should transition to the idle state when the last bank
1577 // is precharged
1578 schedulePowerEvent(PWR_IDLE, curTick());
1579 }
1580}
1581
1582void
1583DRAMCtrl::Rank::processRefreshEvent()
1584{
1585 // when first preparing the refresh, remember when it was due
1586 if (refreshState == REF_IDLE) {
1587 // remember when the refresh is due
1588 refreshDueAt = curTick();
1589
1590 // proceed to drain
1591 refreshState = REF_DRAIN;
1592
1593 DPRINTF(DRAM, "Refresh due\n");
1594 }
1595
1596 // let any scheduled read or write to the same rank go ahead,
1597 // after which it will
1598 // hand control back to this event loop
1599 if (refreshState == REF_DRAIN) {
1600 // if a request is at the moment being handled and this request is
1601 // accessing the current rank then wait for it to finish
1602 if ((rank == memory.activeRank)
1603 && (memory.nextReqEvent.scheduled())) {
1604 // hand control over to the request loop until it is
1605 // evaluated next
1606 DPRINTF(DRAM, "Refresh awaiting draining\n");
1607
1608 return;
1609 } else {
1610 refreshState = REF_PRE;
1611 }
1612 }
1613
1614 // at this point, ensure that all banks are precharged
1615 if (refreshState == REF_PRE) {
1616 // precharge any active bank if we are not already in the idle
1617 // state
1618 if (pwrState != PWR_IDLE) {
1619 // at the moment, we use a precharge all even if there is
1620 // only a single bank open
1621 DPRINTF(DRAM, "Precharging all\n");
1622
1623 // first determine when we can precharge
1624 Tick pre_at = curTick();
1625
1626 for (auto &b : banks) {
1627 // respect both causality and any existing bank
1628 // constraints, some banks could already have a
1629 // (auto) precharge scheduled
1630 pre_at = std::max(b.preAllowedAt, pre_at);
1631 }
1632
1633 // make sure all banks per rank are precharged, and for those that
1634 // already are, update their availability
1635 Tick act_allowed_at = pre_at + memory.tRP;
1636
1637 for (auto &b : banks) {
1638 if (b.openRow != Bank::NO_ROW) {
1639 memory.prechargeBank(*this, b, pre_at, false);
1640 } else {
1641 b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at);
1642 b.preAllowedAt = std::max(b.preAllowedAt, pre_at);
1643 }
1644 }
1645
1646 // precharge all banks in rank
1647 power.powerlib.doCommand(MemCommand::PREA, 0,
1648 divCeil(pre_at, memory.tCK) -
1649 memory.timeStampOffset);
1650
1651 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
1652 divCeil(pre_at, memory.tCK) -
1653 memory.timeStampOffset, rank);
1654 } else {
1655 DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1656
1657 // go ahead and kick the power state machine into gear if
1658 // we are already idle
1659 schedulePowerEvent(PWR_REF, curTick());
1660 }
1661
1662 refreshState = REF_RUN;
1663 assert(numBanksActive == 0);
1664
1665 // wait for all banks to be precharged, at which point the
1666 // power state machine will transition to the idle state, and
1667 // automatically move to a refresh, at that point it will also
1668 // call this method to get the refresh event loop going again
1669 return;
1670 }
1671
1672 // last but not least we perform the actual refresh
1673 if (refreshState == REF_RUN) {
1674 // should never get here with any banks active
1675 assert(numBanksActive == 0);
1676 assert(pwrState == PWR_REF);
1677
1678 Tick ref_done_at = curTick() + memory.tRFC;
1679
1680 for (auto &b : banks) {
1681 b.actAllowedAt = ref_done_at;
1682 }
1683
1684 // at the moment this affects all ranks
1685 power.powerlib.doCommand(MemCommand::REF, 0,
1686 divCeil(curTick(), memory.tCK) -
1687 memory.timeStampOffset);
1688
1689 // at the moment sort the list of commands and update the counters
1690 // for DRAMPower libray when doing a refresh
1691 sort(power.powerlib.cmdList.begin(),
1692 power.powerlib.cmdList.end(), DRAMCtrl::sortTime);
1693
1694 // update the counters for DRAMPower, passing false to
1695 // indicate that this is not the last command in the
1696 // list. DRAMPower requires this information for the
1697 // correct calculation of the background energy at the end
1698 // of the simulation. Ideally we would want to call this
1699 // function with true once at the end of the
1700 // simulation. However, the discarded energy is extremly
1701 // small and does not effect the final results.
1702 power.powerlib.updateCounters(false);
1703
1704 // call the energy function
1705 power.powerlib.calcEnergy();
1706
1707 // Update the stats
1708 updatePowerStats();
1709
1710 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
1711 memory.timeStampOffset, rank);
1712
1713 // make sure we did not wait so long that we cannot make up
1714 // for it
1715 if (refreshDueAt + memory.tREFI < ref_done_at) {
1716 fatal("Refresh was delayed so long we cannot catch up\n");
1717 }
1718
1719 // compensate for the delay in actually performing the refresh
1720 // when scheduling the next one
1721 schedule(refreshEvent, refreshDueAt + memory.tREFI - memory.tRP);
1722
1723 assert(!powerEvent.scheduled());
1724
1725 // move to the idle power state once the refresh is done, this
1726 // will also move the refresh state machine to the refresh
1727 // idle state
1728 schedulePowerEvent(PWR_IDLE, ref_done_at);
1729
1730 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1731 ref_done_at, refreshDueAt + memory.tREFI);
1732 }
1733}
1734
1735void
1736DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick)
1737{
1738 // respect causality
1739 assert(tick >= curTick());
1740
1741 if (!powerEvent.scheduled()) {
1742 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1743 tick, pwr_state);
1744
1745 // insert the new transition
1746 pwrStateTrans = pwr_state;
1747
1748 schedule(powerEvent, tick);
1749 } else {
1750 panic("Scheduled power event at %llu to state %d, "
1751 "with scheduled event at %llu to %d\n", tick, pwr_state,
1752 powerEvent.when(), pwrStateTrans);
1753 }
1754}
1755
1756void
1757DRAMCtrl::Rank::processPowerEvent()
1758{
1759 // remember where we were, and for how long
1760 Tick duration = curTick() - pwrStateTick;
1761 PowerState prev_state = pwrState;
1762
1763 // update the accounting
1764 pwrStateTime[prev_state] += duration;
1765
1766 pwrState = pwrStateTrans;
1767 pwrStateTick = curTick();
1768
1769 if (pwrState == PWR_IDLE) {
1770 DPRINTF(DRAMState, "All banks precharged\n");
1771
1772 // if we were refreshing, make sure we start scheduling requests again
1773 if (prev_state == PWR_REF) {
1774 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1775 assert(pwrState == PWR_IDLE);
1776
1777 // kick things into action again
1778 refreshState = REF_IDLE;
1779 // a request event could be already scheduled by the state
1780 // machine of the other rank
1781 if (!memory.nextReqEvent.scheduled())
1782 schedule(memory.nextReqEvent, curTick());
1783 } else {
1784 assert(prev_state == PWR_ACT);
1785
1786 // if we have a pending refresh, and are now moving to
1787 // the idle state, direclty transition to a refresh
1788 if (refreshState == REF_RUN) {
1789 // there should be nothing waiting at this point
1790 assert(!powerEvent.scheduled());
1791
1792 // update the state in zero time and proceed below
1793 pwrState = PWR_REF;
1794 }
1795 }
1796 }
1797
1798 // we transition to the refresh state, let the refresh state
1799 // machine know of this state update and let it deal with the
1800 // scheduling of the next power state transition as well as the
1801 // following refresh
1802 if (pwrState == PWR_REF) {
1803 DPRINTF(DRAMState, "Refreshing\n");
1804 // kick the refresh event loop into action again, and that
1805 // in turn will schedule a transition to the idle power
1806 // state once the refresh is done
1807 assert(refreshState == REF_RUN);
1808 processRefreshEvent();
1809 }
1810}
1811
1812void
1813DRAMCtrl::Rank::updatePowerStats()
1814{
1815 // Get the energy and power from DRAMPower
1816 Data::MemoryPowerModel::Energy energy =
1817 power.powerlib.getEnergy();
1818 Data::MemoryPowerModel::Power rank_power =
1819 power.powerlib.getPower();
1820
1821 actEnergy = energy.act_energy * memory.devicesPerRank;
1822 preEnergy = energy.pre_energy * memory.devicesPerRank;
1823 readEnergy = energy.read_energy * memory.devicesPerRank;
1824 writeEnergy = energy.write_energy * memory.devicesPerRank;
1825 refreshEnergy = energy.ref_energy * memory.devicesPerRank;
1826 actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank;
1827 preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank;
1828 totalEnergy = energy.total_energy * memory.devicesPerRank;
1829 averagePower = rank_power.average_power * memory.devicesPerRank;
1830}
1831
1832void
1833DRAMCtrl::Rank::regStats()
1834{
1835 using namespace Stats;
1836
1837 pwrStateTime
1838 .init(5)
1839 .name(name() + ".memoryStateTime")
1840 .desc("Time in different power states");
1841 pwrStateTime.subname(0, "IDLE");
1842 pwrStateTime.subname(1, "REF");
1843 pwrStateTime.subname(2, "PRE_PDN");
1844 pwrStateTime.subname(3, "ACT");
1845 pwrStateTime.subname(4, "ACT_PDN");
1846
1847 actEnergy
1848 .name(name() + ".actEnergy")
1849 .desc("Energy for activate commands per rank (pJ)");
1850
1851 preEnergy
1852 .name(name() + ".preEnergy")
1853 .desc("Energy for precharge commands per rank (pJ)");
1854
1855 readEnergy
1856 .name(name() + ".readEnergy")
1857 .desc("Energy for read commands per rank (pJ)");
1858
1859 writeEnergy
1860 .name(name() + ".writeEnergy")
1861 .desc("Energy for write commands per rank (pJ)");
1862
1863 refreshEnergy
1864 .name(name() + ".refreshEnergy")
1865 .desc("Energy for refresh commands per rank (pJ)");
1866
1867 actBackEnergy
1868 .name(name() + ".actBackEnergy")
1869 .desc("Energy for active background per rank (pJ)");
1870
1871 preBackEnergy
1872 .name(name() + ".preBackEnergy")
1873 .desc("Energy for precharge background per rank (pJ)");
1874
1875 totalEnergy
1876 .name(name() + ".totalEnergy")
1877 .desc("Total energy per rank (pJ)");
1878
1879 averagePower
1880 .name(name() + ".averagePower")
1881 .desc("Core power per rank (mW)");
1882}
1883void
1884DRAMCtrl::regStats()
1885{
1886 using namespace Stats;
1887
1888 AbstractMemory::regStats();
1889
1890 for (auto r : ranks) {
1891 r->regStats();
1892 }
1893
1894 readReqs
1895 .name(name() + ".readReqs")
1896 .desc("Number of read requests accepted");
1897
1898 writeReqs
1899 .name(name() + ".writeReqs")
1900 .desc("Number of write requests accepted");
1901
1902 readBursts
1903 .name(name() + ".readBursts")
1904 .desc("Number of DRAM read bursts, "
1905 "including those serviced by the write queue");
1906
1907 writeBursts
1908 .name(name() + ".writeBursts")
1909 .desc("Number of DRAM write bursts, "
1910 "including those merged in the write queue");
1911
1912 servicedByWrQ
1913 .name(name() + ".servicedByWrQ")
1914 .desc("Number of DRAM read bursts serviced by the write queue");
1915
1916 mergedWrBursts
1917 .name(name() + ".mergedWrBursts")
1918 .desc("Number of DRAM write bursts merged with an existing one");
1919
1920 neitherReadNorWrite
1921 .name(name() + ".neitherReadNorWriteReqs")
1922 .desc("Number of requests that are neither read nor write");
1923
1924 perBankRdBursts
1925 .init(banksPerRank * ranksPerChannel)
1926 .name(name() + ".perBankRdBursts")
1927 .desc("Per bank write bursts");
1928
1929 perBankWrBursts
1930 .init(banksPerRank * ranksPerChannel)
1931 .name(name() + ".perBankWrBursts")
1932 .desc("Per bank write bursts");
1933
1934 avgRdQLen
1935 .name(name() + ".avgRdQLen")
1936 .desc("Average read queue length when enqueuing")
1937 .precision(2);
1938
1939 avgWrQLen
1940 .name(name() + ".avgWrQLen")
1941 .desc("Average write queue length when enqueuing")
1942 .precision(2);
1943
1944 totQLat
1945 .name(name() + ".totQLat")
1946 .desc("Total ticks spent queuing");
1947
1948 totBusLat
1949 .name(name() + ".totBusLat")
1950 .desc("Total ticks spent in databus transfers");
1951
1952 totMemAccLat
1953 .name(name() + ".totMemAccLat")
1954 .desc("Total ticks spent from burst creation until serviced "
1955 "by the DRAM");
1956
1957 avgQLat
1958 .name(name() + ".avgQLat")
1959 .desc("Average queueing delay per DRAM burst")
1960 .precision(2);
1961
1962 avgQLat = totQLat / (readBursts - servicedByWrQ);
1963
1964 avgBusLat
1965 .name(name() + ".avgBusLat")
1966 .desc("Average bus latency per DRAM burst")
1967 .precision(2);
1968
1969 avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1970
1971 avgMemAccLat
1972 .name(name() + ".avgMemAccLat")
1973 .desc("Average memory access latency per DRAM burst")
1974 .precision(2);
1975
1976 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
1977
1978 numRdRetry
1979 .name(name() + ".numRdRetry")
1980 .desc("Number of times read queue was full causing retry");
1981
1982 numWrRetry
1983 .name(name() + ".numWrRetry")
1984 .desc("Number of times write queue was full causing retry");
1985
1986 readRowHits
1987 .name(name() + ".readRowHits")
1988 .desc("Number of row buffer hits during reads");
1989
1990 writeRowHits
1991 .name(name() + ".writeRowHits")
1992 .desc("Number of row buffer hits during writes");
1993
1994 readRowHitRate
1995 .name(name() + ".readRowHitRate")
1996 .desc("Row buffer hit rate for reads")
1997 .precision(2);
1998
1999 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
2000
2001 writeRowHitRate
2002 .name(name() + ".writeRowHitRate")
2003 .desc("Row buffer hit rate for writes")
2004 .precision(2);
2005
2006 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
2007
2008 readPktSize
2009 .init(ceilLog2(burstSize) + 1)
2010 .name(name() + ".readPktSize")
2011 .desc("Read request sizes (log2)");
2012
2013 writePktSize
2014 .init(ceilLog2(burstSize) + 1)
2015 .name(name() + ".writePktSize")
2016 .desc("Write request sizes (log2)");
2017
2018 rdQLenPdf
2019 .init(readBufferSize)
2020 .name(name() + ".rdQLenPdf")
2021 .desc("What read queue length does an incoming req see");
2022
2023 wrQLenPdf
2024 .init(writeBufferSize)
2025 .name(name() + ".wrQLenPdf")
2026 .desc("What write queue length does an incoming req see");
2027
2028 bytesPerActivate
2029 .init(maxAccessesPerRow)
2030 .name(name() + ".bytesPerActivate")
2031 .desc("Bytes accessed per row activation")
2032 .flags(nozero);
2033
2034 rdPerTurnAround
2035 .init(readBufferSize)
2036 .name(name() + ".rdPerTurnAround")
2037 .desc("Reads before turning the bus around for writes")
2038 .flags(nozero);
2039
2040 wrPerTurnAround
2041 .init(writeBufferSize)
2042 .name(name() + ".wrPerTurnAround")
2043 .desc("Writes before turning the bus around for reads")
2044 .flags(nozero);
2045
2046 bytesReadDRAM
2047 .name(name() + ".bytesReadDRAM")
2048 .desc("Total number of bytes read from DRAM");
2049
2050 bytesReadWrQ
2051 .name(name() + ".bytesReadWrQ")
2052 .desc("Total number of bytes read from write queue");
2053
2054 bytesWritten
2055 .name(name() + ".bytesWritten")
2056 .desc("Total number of bytes written to DRAM");
2057
2058 bytesReadSys
2059 .name(name() + ".bytesReadSys")
2060 .desc("Total read bytes from the system interface side");
2061
2062 bytesWrittenSys
2063 .name(name() + ".bytesWrittenSys")
2064 .desc("Total written bytes from the system interface side");
2065
2066 avgRdBW
2067 .name(name() + ".avgRdBW")
2068 .desc("Average DRAM read bandwidth in MiByte/s")
2069 .precision(2);
2070
2071 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
2072
2073 avgWrBW
2074 .name(name() + ".avgWrBW")
2075 .desc("Average achieved write bandwidth in MiByte/s")
2076 .precision(2);
2077
2078 avgWrBW = (bytesWritten / 1000000) / simSeconds;
2079
2080 avgRdBWSys
2081 .name(name() + ".avgRdBWSys")
2082 .desc("Average system read bandwidth in MiByte/s")
2083 .precision(2);
2084
2085 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
2086
2087 avgWrBWSys
2088 .name(name() + ".avgWrBWSys")
2089 .desc("Average system write bandwidth in MiByte/s")
2090 .precision(2);
2091
2092 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
2093
2094 peakBW
2095 .name(name() + ".peakBW")
2096 .desc("Theoretical peak bandwidth in MiByte/s")
2097 .precision(2);
2098
2099 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
2100
2101 busUtil
2102 .name(name() + ".busUtil")
2103 .desc("Data bus utilization in percentage")
2104 .precision(2);
2105 busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
2106
2107 totGap
2108 .name(name() + ".totGap")
2109 .desc("Total gap between requests");
2110
2111 avgGap
2112 .name(name() + ".avgGap")
2113 .desc("Average gap between requests")
2114 .precision(2);
2115
2116 avgGap = totGap / (readReqs + writeReqs);
2117
2118 // Stats for DRAM Power calculation based on Micron datasheet
2119 busUtilRead
2120 .name(name() + ".busUtilRead")
2121 .desc("Data bus utilization in percentage for reads")
2122 .precision(2);
2123
2124 busUtilRead = avgRdBW / peakBW * 100;
2125
2126 busUtilWrite
2127 .name(name() + ".busUtilWrite")
2128 .desc("Data bus utilization in percentage for writes")
2129 .precision(2);
2130
2131 busUtilWrite = avgWrBW / peakBW * 100;
2132
2133 pageHitRate
2134 .name(name() + ".pageHitRate")
2135 .desc("Row buffer hit rate, read and write combined")
2136 .precision(2);
2137
2138 pageHitRate = (writeRowHits + readRowHits) /
2139 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
2140}
2141
2142void
2143DRAMCtrl::recvFunctional(PacketPtr pkt)
2144{
2145 // rely on the abstract memory
2146 functionalAccess(pkt);
2147}
2148
2149BaseSlavePort&
2150DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2151{
2152 if (if_name != "port") {
2153 return MemObject::getSlavePort(if_name, idx);
2154 } else {
2155 return port;
2156 }
2157}
2158
2159DrainState
2160DRAMCtrl::drain()
2161{
2162 // if there is anything in any of our internal queues, keep track
2163 // of that as well
2164 if (!(writeQueue.empty() && readQueue.empty() && respQueue.empty())) {
2165 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2166 " resp: %d\n", writeQueue.size(), readQueue.size(),
2167 respQueue.size());
2168
2169 // the only part that is not drained automatically over time
2170 // is the write queue, thus kick things into action if needed
2171 if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2172 schedule(nextReqEvent, curTick());
2173 }
2174 return DrainState::Draining;
2175 } else {
2176 return DrainState::Drained;
2177 }
2178}
2179
2180void
2181DRAMCtrl::drainResume()
2182{
2183 if (!isTimingMode && system()->isTimingMode()) {
2184 // if we switched to timing mode, kick things into action,
2185 // and behave as if we restored from a checkpoint
2186 startup();
2187 } else if (isTimingMode && !system()->isTimingMode()) {
2188 // if we switch from timing mode, stop the refresh events to
2189 // not cause issues with KVM
2190 for (auto r : ranks) {
2191 r->suspend();
2192 }
2193 }
2194
2195 // update the mode
2196 isTimingMode = system()->isTimingMode();
2197}
2198
2199DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2200 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2201 memory(_memory)
2202{ }
2203
2204AddrRangeList
2205DRAMCtrl::MemoryPort::getAddrRanges() const
2206{
2207 AddrRangeList ranges;
2208 ranges.push_back(memory.getAddrRange());
2209 return ranges;
2210}
2211
2212void
2213DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2214{
2215 pkt->pushLabel(memory.name());
2216
2217 if (!queue.checkFunctional(pkt)) {
2218 // Default implementation of SimpleTimingPort::recvFunctional()
2219 // calls recvAtomic() and throws away the latency; we can save a
2220 // little here by just not calculating the latency.
2221 memory.recvFunctional(pkt);
2222 }
2223
2224 pkt->popLabel();
2225}
2226
2227Tick
2228DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2229{
2230 return memory.recvAtomic(pkt);
2231}
2232
2233bool
2234DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2235{
2236 // pass it to the memory controller
2237 return memory.recvTimingReq(pkt);
2238}
2239
2240DRAMCtrl*
2241DRAMCtrlParams::create()
2242{
2243 return new DRAMCtrl(this);
2244}
595 pendingDelete.reset(pkt);
596 return true;
597 }
598
599 // Calc avg gap between requests
600 if (prevArrival != 0) {
601 totGap += curTick() - prevArrival;
602 }
603 prevArrival = curTick();
604
605
606 // Find out how many dram packets a pkt translates to
607 // If the burst size is equal or larger than the pkt size, then a pkt
608 // translates to only one dram packet. Otherwise, a pkt translates to
609 // multiple dram packets
610 unsigned size = pkt->getSize();
611 unsigned offset = pkt->getAddr() & (burstSize - 1);
612 unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
613
614 // check local buffers and do not accept if full
615 if (pkt->isRead()) {
616 assert(size != 0);
617 if (readQueueFull(dram_pkt_count)) {
618 DPRINTF(DRAM, "Read queue full, not accepting\n");
619 // remember that we have to retry this port
620 retryRdReq = true;
621 numRdRetry++;
622 return false;
623 } else {
624 addToReadQueue(pkt, dram_pkt_count);
625 readReqs++;
626 bytesReadSys += size;
627 }
628 } else if (pkt->isWrite()) {
629 assert(size != 0);
630 if (writeQueueFull(dram_pkt_count)) {
631 DPRINTF(DRAM, "Write queue full, not accepting\n");
632 // remember that we have to retry this port
633 retryWrReq = true;
634 numWrRetry++;
635 return false;
636 } else {
637 addToWriteQueue(pkt, dram_pkt_count);
638 writeReqs++;
639 bytesWrittenSys += size;
640 }
641 } else {
642 DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
643 neitherReadNorWrite++;
644 accessAndRespond(pkt, 1);
645 }
646
647 return true;
648}
649
650void
651DRAMCtrl::processRespondEvent()
652{
653 DPRINTF(DRAM,
654 "processRespondEvent(): Some req has reached its readyTime\n");
655
656 DRAMPacket* dram_pkt = respQueue.front();
657
658 if (dram_pkt->burstHelper) {
659 // it is a split packet
660 dram_pkt->burstHelper->burstsServiced++;
661 if (dram_pkt->burstHelper->burstsServiced ==
662 dram_pkt->burstHelper->burstCount) {
663 // we have now serviced all children packets of a system packet
664 // so we can now respond to the requester
665 // @todo we probably want to have a different front end and back
666 // end latency for split packets
667 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
668 delete dram_pkt->burstHelper;
669 dram_pkt->burstHelper = NULL;
670 }
671 } else {
672 // it is not a split packet
673 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
674 }
675
676 delete respQueue.front();
677 respQueue.pop_front();
678
679 if (!respQueue.empty()) {
680 assert(respQueue.front()->readyTime >= curTick());
681 assert(!respondEvent.scheduled());
682 schedule(respondEvent, respQueue.front()->readyTime);
683 } else {
684 // if there is nothing left in any queue, signal a drain
685 if (drainState() == DrainState::Draining &&
686 writeQueue.empty() && readQueue.empty()) {
687
688 DPRINTF(Drain, "DRAM controller done draining\n");
689 signalDrainDone();
690 }
691 }
692
693 // We have made a location in the queue available at this point,
694 // so if there is a read that was forced to wait, retry now
695 if (retryRdReq) {
696 retryRdReq = false;
697 port.sendRetryReq();
698 }
699}
700
701bool
702DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
703{
704 // This method does the arbitration between requests. The chosen
705 // packet is simply moved to the head of the queue. The other
706 // methods know that this is the place to look. For example, with
707 // FCFS, this method does nothing
708 assert(!queue.empty());
709
710 // bool to indicate if a packet to an available rank is found
711 bool found_packet = false;
712 if (queue.size() == 1) {
713 DRAMPacket* dram_pkt = queue.front();
714 // available rank corresponds to state refresh idle
715 if (ranks[dram_pkt->rank]->isAvailable()) {
716 found_packet = true;
717 DPRINTF(DRAM, "Single request, going to a free rank\n");
718 } else {
719 DPRINTF(DRAM, "Single request, going to a busy rank\n");
720 }
721 return found_packet;
722 }
723
724 if (memSchedPolicy == Enums::fcfs) {
725 // check if there is a packet going to a free rank
726 for(auto i = queue.begin(); i != queue.end() ; ++i) {
727 DRAMPacket* dram_pkt = *i;
728 if (ranks[dram_pkt->rank]->isAvailable()) {
729 queue.erase(i);
730 queue.push_front(dram_pkt);
731 found_packet = true;
732 break;
733 }
734 }
735 } else if (memSchedPolicy == Enums::frfcfs) {
736 found_packet = reorderQueue(queue, extra_col_delay);
737 } else
738 panic("No scheduling policy chosen\n");
739 return found_packet;
740}
741
742bool
743DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
744{
745 // Only determine this if needed
746 uint64_t earliest_banks = 0;
747 bool hidden_bank_prep = false;
748
749 // search for seamless row hits first, if no seamless row hit is
750 // found then determine if there are other packets that can be issued
751 // without incurring additional bus delay due to bank timing
752 // Will select closed rows first to enable more open row possibilies
753 // in future selections
754 bool found_hidden_bank = false;
755
756 // remember if we found a row hit, not seamless, but bank prepped
757 // and ready
758 bool found_prepped_pkt = false;
759
760 // if we have no row hit, prepped or not, and no seamless packet,
761 // just go for the earliest possible
762 bool found_earliest_pkt = false;
763
764 auto selected_pkt_it = queue.end();
765
766 // time we need to issue a column command to be seamless
767 const Tick min_col_at = std::max(busBusyUntil - tCL + extra_col_delay,
768 curTick());
769
770 for (auto i = queue.begin(); i != queue.end() ; ++i) {
771 DRAMPacket* dram_pkt = *i;
772 const Bank& bank = dram_pkt->bankRef;
773
774 // check if rank is available, if not, jump to the next packet
775 if (dram_pkt->rankRef.isAvailable()) {
776 // check if it is a row hit
777 if (bank.openRow == dram_pkt->row) {
778 // no additional rank-to-rank or same bank-group
779 // delays, or we switched read/write and might as well
780 // go for the row hit
781 if (bank.colAllowedAt <= min_col_at) {
782 // FCFS within the hits, giving priority to
783 // commands that can issue seamlessly, without
784 // additional delay, such as same rank accesses
785 // and/or different bank-group accesses
786 DPRINTF(DRAM, "Seamless row buffer hit\n");
787 selected_pkt_it = i;
788 // no need to look through the remaining queue entries
789 break;
790 } else if (!found_hidden_bank && !found_prepped_pkt) {
791 // if we did not find a packet to a closed row that can
792 // issue the bank commands without incurring delay, and
793 // did not yet find a packet to a prepped row, remember
794 // the current one
795 selected_pkt_it = i;
796 found_prepped_pkt = true;
797 DPRINTF(DRAM, "Prepped row buffer hit\n");
798 }
799 } else if (!found_earliest_pkt) {
800 // if we have not initialised the bank status, do it
801 // now, and only once per scheduling decisions
802 if (earliest_banks == 0) {
803 // determine entries with earliest bank delay
804 pair<uint64_t, bool> bankStatus =
805 minBankPrep(queue, min_col_at);
806 earliest_banks = bankStatus.first;
807 hidden_bank_prep = bankStatus.second;
808 }
809
810 // bank is amongst first available banks
811 // minBankPrep will give priority to packets that can
812 // issue seamlessly
813 if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
814 found_earliest_pkt = true;
815 found_hidden_bank = hidden_bank_prep;
816
817 // give priority to packets that can issue
818 // bank commands 'behind the scenes'
819 // any additional delay if any will be due to
820 // col-to-col command requirements
821 if (hidden_bank_prep || !found_prepped_pkt)
822 selected_pkt_it = i;
823 }
824 }
825 }
826 }
827
828 if (selected_pkt_it != queue.end()) {
829 DRAMPacket* selected_pkt = *selected_pkt_it;
830 queue.erase(selected_pkt_it);
831 queue.push_front(selected_pkt);
832 return true;
833 }
834
835 return false;
836}
837
838void
839DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
840{
841 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
842
843 bool needsResponse = pkt->needsResponse();
844 // do the actual memory access which also turns the packet into a
845 // response
846 access(pkt);
847
848 // turn packet around to go back to requester if response expected
849 if (needsResponse) {
850 // access already turned the packet into a response
851 assert(pkt->isResponse());
852 // response_time consumes the static latency and is charged also
853 // with headerDelay that takes into account the delay provided by
854 // the xbar and also the payloadDelay that takes into account the
855 // number of data beats.
856 Tick response_time = curTick() + static_latency + pkt->headerDelay +
857 pkt->payloadDelay;
858 // Here we reset the timing of the packet before sending it out.
859 pkt->headerDelay = pkt->payloadDelay = 0;
860
861 // queue the packet in the response queue to be sent out after
862 // the static latency has passed
863 port.schedTimingResp(pkt, response_time, true);
864 } else {
865 // @todo the packet is going to be deleted, and the DRAMPacket
866 // is still having a pointer to it
867 pendingDelete.reset(pkt);
868 }
869
870 DPRINTF(DRAM, "Done\n");
871
872 return;
873}
874
875void
876DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref,
877 Tick act_tick, uint32_t row)
878{
879 assert(rank_ref.actTicks.size() == activationLimit);
880
881 DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
882
883 // update the open row
884 assert(bank_ref.openRow == Bank::NO_ROW);
885 bank_ref.openRow = row;
886
887 // start counting anew, this covers both the case when we
888 // auto-precharged, and when this access is forced to
889 // precharge
890 bank_ref.bytesAccessed = 0;
891 bank_ref.rowAccesses = 0;
892
893 ++rank_ref.numBanksActive;
894 assert(rank_ref.numBanksActive <= banksPerRank);
895
896 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
897 bank_ref.bank, rank_ref.rank, act_tick,
898 ranks[rank_ref.rank]->numBanksActive);
899
900 rank_ref.power.powerlib.doCommand(MemCommand::ACT, bank_ref.bank,
901 divCeil(act_tick, tCK) -
902 timeStampOffset);
903
904 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
905 timeStampOffset, bank_ref.bank, rank_ref.rank);
906
907 // The next access has to respect tRAS for this bank
908 bank_ref.preAllowedAt = act_tick + tRAS;
909
910 // Respect the row-to-column command delay
911 bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt);
912
913 // start by enforcing tRRD
914 for(int i = 0; i < banksPerRank; i++) {
915 // next activate to any bank in this rank must not happen
916 // before tRRD
917 if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) {
918 // bank group architecture requires longer delays between
919 // ACT commands within the same bank group. Use tRRD_L
920 // in this case
921 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L,
922 rank_ref.banks[i].actAllowedAt);
923 } else {
924 // use shorter tRRD value when either
925 // 1) bank group architecture is not supportted
926 // 2) bank is in a different bank group
927 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD,
928 rank_ref.banks[i].actAllowedAt);
929 }
930 }
931
932 // next, we deal with tXAW, if the activation limit is disabled
933 // then we directly schedule an activate power event
934 if (!rank_ref.actTicks.empty()) {
935 // sanity check
936 if (rank_ref.actTicks.back() &&
937 (act_tick - rank_ref.actTicks.back()) < tXAW) {
938 panic("Got %d activates in window %d (%llu - %llu) which "
939 "is smaller than %llu\n", activationLimit, act_tick -
940 rank_ref.actTicks.back(), act_tick,
941 rank_ref.actTicks.back(), tXAW);
942 }
943
944 // shift the times used for the book keeping, the last element
945 // (highest index) is the oldest one and hence the lowest value
946 rank_ref.actTicks.pop_back();
947
948 // record an new activation (in the future)
949 rank_ref.actTicks.push_front(act_tick);
950
951 // cannot activate more than X times in time window tXAW, push the
952 // next one (the X + 1'st activate) to be tXAW away from the
953 // oldest in our window of X
954 if (rank_ref.actTicks.back() &&
955 (act_tick - rank_ref.actTicks.back()) < tXAW) {
956 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
957 "no earlier than %llu\n", activationLimit,
958 rank_ref.actTicks.back() + tXAW);
959 for(int j = 0; j < banksPerRank; j++)
960 // next activate must not happen before end of window
961 rank_ref.banks[j].actAllowedAt =
962 std::max(rank_ref.actTicks.back() + tXAW,
963 rank_ref.banks[j].actAllowedAt);
964 }
965 }
966
967 // at the point when this activate takes place, make sure we
968 // transition to the active power state
969 if (!rank_ref.activateEvent.scheduled())
970 schedule(rank_ref.activateEvent, act_tick);
971 else if (rank_ref.activateEvent.when() > act_tick)
972 // move it sooner in time
973 reschedule(rank_ref.activateEvent, act_tick);
974}
975
976void
977DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace)
978{
979 // make sure the bank has an open row
980 assert(bank.openRow != Bank::NO_ROW);
981
982 // sample the bytes per activate here since we are closing
983 // the page
984 bytesPerActivate.sample(bank.bytesAccessed);
985
986 bank.openRow = Bank::NO_ROW;
987
988 // no precharge allowed before this one
989 bank.preAllowedAt = pre_at;
990
991 Tick pre_done_at = pre_at + tRP;
992
993 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
994
995 assert(rank_ref.numBanksActive != 0);
996 --rank_ref.numBanksActive;
997
998 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
999 "%d active\n", bank.bank, rank_ref.rank, pre_at,
1000 rank_ref.numBanksActive);
1001
1002 if (trace) {
1003
1004 rank_ref.power.powerlib.doCommand(MemCommand::PRE, bank.bank,
1005 divCeil(pre_at, tCK) -
1006 timeStampOffset);
1007 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
1008 timeStampOffset, bank.bank, rank_ref.rank);
1009 }
1010 // if we look at the current number of active banks we might be
1011 // tempted to think the DRAM is now idle, however this can be
1012 // undone by an activate that is scheduled to happen before we
1013 // would have reached the idle state, so schedule an event and
1014 // rather check once we actually make it to the point in time when
1015 // the (last) precharge takes place
1016 if (!rank_ref.prechargeEvent.scheduled())
1017 schedule(rank_ref.prechargeEvent, pre_done_at);
1018 else if (rank_ref.prechargeEvent.when() < pre_done_at)
1019 reschedule(rank_ref.prechargeEvent, pre_done_at);
1020}
1021
1022void
1023DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1024{
1025 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1026 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1027
1028 // get the rank
1029 Rank& rank = dram_pkt->rankRef;
1030
1031 // get the bank
1032 Bank& bank = dram_pkt->bankRef;
1033
1034 // for the state we need to track if it is a row hit or not
1035 bool row_hit = true;
1036
1037 // respect any constraints on the command (e.g. tRCD or tCCD)
1038 Tick cmd_at = std::max(bank.colAllowedAt, curTick());
1039
1040 // Determine the access latency and update the bank state
1041 if (bank.openRow == dram_pkt->row) {
1042 // nothing to do
1043 } else {
1044 row_hit = false;
1045
1046 // If there is a page open, precharge it.
1047 if (bank.openRow != Bank::NO_ROW) {
1048 prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick()));
1049 }
1050
1051 // next we need to account for the delay in activating the
1052 // page
1053 Tick act_tick = std::max(bank.actAllowedAt, curTick());
1054
1055 // Record the activation and deal with all the global timing
1056 // constraints caused be a new activation (tRRD and tXAW)
1057 activateBank(rank, bank, act_tick, dram_pkt->row);
1058
1059 // issue the command as early as possible
1060 cmd_at = bank.colAllowedAt;
1061 }
1062
1063 // we need to wait until the bus is available before we can issue
1064 // the command
1065 cmd_at = std::max(cmd_at, busBusyUntil - tCL);
1066
1067 // update the packet ready time
1068 dram_pkt->readyTime = cmd_at + tCL + tBURST;
1069
1070 // only one burst can use the bus at any one point in time
1071 assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1072
1073 // update the time for the next read/write burst for each
1074 // bank (add a max with tCCD/tCCD_L here)
1075 Tick cmd_dly;
1076 for(int j = 0; j < ranksPerChannel; j++) {
1077 for(int i = 0; i < banksPerRank; i++) {
1078 // next burst to same bank group in this rank must not happen
1079 // before tCCD_L. Different bank group timing requirement is
1080 // tBURST; Add tCS for different ranks
1081 if (dram_pkt->rank == j) {
1082 if (bankGroupArch &&
1083 (bank.bankgr == ranks[j]->banks[i].bankgr)) {
1084 // bank group architecture requires longer delays between
1085 // RD/WR burst commands to the same bank group.
1086 // Use tCCD_L in this case
1087 cmd_dly = tCCD_L;
1088 } else {
1089 // use tBURST (equivalent to tCCD_S), the shorter
1090 // cas-to-cas delay value, when either:
1091 // 1) bank group architecture is not supportted
1092 // 2) bank is in a different bank group
1093 cmd_dly = tBURST;
1094 }
1095 } else {
1096 // different rank is by default in a different bank group
1097 // use tBURST (equivalent to tCCD_S), which is the shorter
1098 // cas-to-cas delay in this case
1099 // Add tCS to account for rank-to-rank bus delay requirements
1100 cmd_dly = tBURST + tCS;
1101 }
1102 ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly,
1103 ranks[j]->banks[i].colAllowedAt);
1104 }
1105 }
1106
1107 // Save rank of current access
1108 activeRank = dram_pkt->rank;
1109
1110 // If this is a write, we also need to respect the write recovery
1111 // time before a precharge, in the case of a read, respect the
1112 // read to precharge constraint
1113 bank.preAllowedAt = std::max(bank.preAllowedAt,
1114 dram_pkt->isRead ? cmd_at + tRTP :
1115 dram_pkt->readyTime + tWR);
1116
1117 // increment the bytes accessed and the accesses per row
1118 bank.bytesAccessed += burstSize;
1119 ++bank.rowAccesses;
1120
1121 // if we reached the max, then issue with an auto-precharge
1122 bool auto_precharge = pageMgmt == Enums::close ||
1123 bank.rowAccesses == maxAccessesPerRow;
1124
1125 // if we did not hit the limit, we might still want to
1126 // auto-precharge
1127 if (!auto_precharge &&
1128 (pageMgmt == Enums::open_adaptive ||
1129 pageMgmt == Enums::close_adaptive)) {
1130 // a twist on the open and close page policies:
1131 // 1) open_adaptive page policy does not blindly keep the
1132 // page open, but close it if there are no row hits, and there
1133 // are bank conflicts in the queue
1134 // 2) close_adaptive page policy does not blindly close the
1135 // page, but closes it only if there are no row hits in the queue.
1136 // In this case, only force an auto precharge when there
1137 // are no same page hits in the queue
1138 bool got_more_hits = false;
1139 bool got_bank_conflict = false;
1140
1141 // either look at the read queue or write queue
1142 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1143 writeQueue;
1144 auto p = queue.begin();
1145 // make sure we are not considering the packet that we are
1146 // currently dealing with (which is the head of the queue)
1147 ++p;
1148
1149 // keep on looking until we find a hit or reach the end of the queue
1150 // 1) if a hit is found, then both open and close adaptive policies keep
1151 // the page open
1152 // 2) if no hit is found, got_bank_conflict is set to true if a bank
1153 // conflict request is waiting in the queue
1154 while (!got_more_hits && p != queue.end()) {
1155 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1156 (dram_pkt->bank == (*p)->bank);
1157 bool same_row = dram_pkt->row == (*p)->row;
1158 got_more_hits |= same_rank_bank && same_row;
1159 got_bank_conflict |= same_rank_bank && !same_row;
1160 ++p;
1161 }
1162
1163 // auto pre-charge when either
1164 // 1) open_adaptive policy, we have not got any more hits, and
1165 // have a bank conflict
1166 // 2) close_adaptive policy and we have not got any more hits
1167 auto_precharge = !got_more_hits &&
1168 (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1169 }
1170
1171 // DRAMPower trace command to be written
1172 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1173
1174 // MemCommand required for DRAMPower library
1175 MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1176 MemCommand::WR;
1177
1178 // if this access should use auto-precharge, then we are
1179 // closing the row
1180 if (auto_precharge) {
1181 // if auto-precharge push a PRE command at the correct tick to the
1182 // list used by DRAMPower library to calculate power
1183 prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt));
1184
1185 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1186 }
1187
1188 // Update bus state
1189 busBusyUntil = dram_pkt->readyTime;
1190
1191 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1192 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1193
1194 dram_pkt->rankRef.power.powerlib.doCommand(command, dram_pkt->bank,
1195 divCeil(cmd_at, tCK) -
1196 timeStampOffset);
1197
1198 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1199 timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1200
1201 // Update the minimum timing between the requests, this is a
1202 // conservative estimate of when we have to schedule the next
1203 // request to not introduce any unecessary bubbles. In most cases
1204 // we will wake up sooner than we have to.
1205 nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1206
1207 // Update the stats and schedule the next request
1208 if (dram_pkt->isRead) {
1209 ++readsThisTime;
1210 if (row_hit)
1211 readRowHits++;
1212 bytesReadDRAM += burstSize;
1213 perBankRdBursts[dram_pkt->bankId]++;
1214
1215 // Update latency stats
1216 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1217 totBusLat += tBURST;
1218 totQLat += cmd_at - dram_pkt->entryTime;
1219 } else {
1220 ++writesThisTime;
1221 if (row_hit)
1222 writeRowHits++;
1223 bytesWritten += burstSize;
1224 perBankWrBursts[dram_pkt->bankId]++;
1225 }
1226}
1227
1228void
1229DRAMCtrl::processNextReqEvent()
1230{
1231 int busyRanks = 0;
1232 for (auto r : ranks) {
1233 if (!r->isAvailable()) {
1234 // rank is busy refreshing
1235 busyRanks++;
1236
1237 // let the rank know that if it was waiting to drain, it
1238 // is now done and ready to proceed
1239 r->checkDrainDone();
1240 }
1241 }
1242
1243 if (busyRanks == ranksPerChannel) {
1244 // if all ranks are refreshing wait for them to finish
1245 // and stall this state machine without taking any further
1246 // action, and do not schedule a new nextReqEvent
1247 return;
1248 }
1249
1250 // pre-emptively set to false. Overwrite if in READ_TO_WRITE
1251 // or WRITE_TO_READ state
1252 bool switched_cmd_type = false;
1253 if (busState == READ_TO_WRITE) {
1254 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1255 "waiting\n", readsThisTime, readQueue.size());
1256
1257 // sample and reset the read-related stats as we are now
1258 // transitioning to writes, and all reads are done
1259 rdPerTurnAround.sample(readsThisTime);
1260 readsThisTime = 0;
1261
1262 // now proceed to do the actual writes
1263 busState = WRITE;
1264 switched_cmd_type = true;
1265 } else if (busState == WRITE_TO_READ) {
1266 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1267 "waiting\n", writesThisTime, writeQueue.size());
1268
1269 wrPerTurnAround.sample(writesThisTime);
1270 writesThisTime = 0;
1271
1272 busState = READ;
1273 switched_cmd_type = true;
1274 }
1275
1276 // when we get here it is either a read or a write
1277 if (busState == READ) {
1278
1279 // track if we should switch or not
1280 bool switch_to_writes = false;
1281
1282 if (readQueue.empty()) {
1283 // In the case there is no read request to go next,
1284 // trigger writes if we have passed the low threshold (or
1285 // if we are draining)
1286 if (!writeQueue.empty() &&
1287 (drainState() == DrainState::Draining ||
1288 writeQueue.size() > writeLowThreshold)) {
1289
1290 switch_to_writes = true;
1291 } else {
1292 // check if we are drained
1293 if (drainState() == DrainState::Draining &&
1294 respQueue.empty()) {
1295
1296 DPRINTF(Drain, "DRAM controller done draining\n");
1297 signalDrainDone();
1298 }
1299
1300 // nothing to do, not even any point in scheduling an
1301 // event for the next request
1302 return;
1303 }
1304 } else {
1305 // bool to check if there is a read to a free rank
1306 bool found_read = false;
1307
1308 // Figure out which read request goes next, and move it to the
1309 // front of the read queue
1310 // If we are changing command type, incorporate the minimum
1311 // bus turnaround delay which will be tCS (different rank) case
1312 found_read = chooseNext(readQueue,
1313 switched_cmd_type ? tCS : 0);
1314
1315 // if no read to an available rank is found then return
1316 // at this point. There could be writes to the available ranks
1317 // which are above the required threshold. However, to
1318 // avoid adding more complexity to the code, return and wait
1319 // for a refresh event to kick things into action again.
1320 if (!found_read)
1321 return;
1322
1323 DRAMPacket* dram_pkt = readQueue.front();
1324 assert(dram_pkt->rankRef.isAvailable());
1325 // here we get a bit creative and shift the bus busy time not
1326 // just the tWTR, but also a CAS latency to capture the fact
1327 // that we are allowed to prepare a new bank, but not issue a
1328 // read command until after tWTR, in essence we capture a
1329 // bubble on the data bus that is tWTR + tCL
1330 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1331 busBusyUntil += tWTR + tCL;
1332 }
1333
1334 doDRAMAccess(dram_pkt);
1335
1336 // At this point we're done dealing with the request
1337 readQueue.pop_front();
1338
1339 // sanity check
1340 assert(dram_pkt->size <= burstSize);
1341 assert(dram_pkt->readyTime >= curTick());
1342
1343 // Insert into response queue. It will be sent back to the
1344 // requestor at its readyTime
1345 if (respQueue.empty()) {
1346 assert(!respondEvent.scheduled());
1347 schedule(respondEvent, dram_pkt->readyTime);
1348 } else {
1349 assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1350 assert(respondEvent.scheduled());
1351 }
1352
1353 respQueue.push_back(dram_pkt);
1354
1355 // we have so many writes that we have to transition
1356 if (writeQueue.size() > writeHighThreshold) {
1357 switch_to_writes = true;
1358 }
1359 }
1360
1361 // switching to writes, either because the read queue is empty
1362 // and the writes have passed the low threshold (or we are
1363 // draining), or because the writes hit the hight threshold
1364 if (switch_to_writes) {
1365 // transition to writing
1366 busState = READ_TO_WRITE;
1367 }
1368 } else {
1369 // bool to check if write to free rank is found
1370 bool found_write = false;
1371
1372 // If we are changing command type, incorporate the minimum
1373 // bus turnaround delay
1374 found_write = chooseNext(writeQueue,
1375 switched_cmd_type ? std::min(tRTW, tCS) : 0);
1376
1377 // if no writes to an available rank are found then return.
1378 // There could be reads to the available ranks. However, to avoid
1379 // adding more complexity to the code, return at this point and wait
1380 // for a refresh event to kick things into action again.
1381 if (!found_write)
1382 return;
1383
1384 DRAMPacket* dram_pkt = writeQueue.front();
1385 assert(dram_pkt->rankRef.isAvailable());
1386 // sanity check
1387 assert(dram_pkt->size <= burstSize);
1388
1389 // add a bubble to the data bus, as defined by the
1390 // tRTW when access is to the same rank as previous burst
1391 // Different rank timing is handled with tCS, which is
1392 // applied to colAllowedAt
1393 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1394 busBusyUntil += tRTW;
1395 }
1396
1397 doDRAMAccess(dram_pkt);
1398
1399 writeQueue.pop_front();
1400 isInWriteQueue.erase(burstAlign(dram_pkt->addr));
1401 delete dram_pkt;
1402
1403 // If we emptied the write queue, or got sufficiently below the
1404 // threshold (using the minWritesPerSwitch as the hysteresis) and
1405 // are not draining, or we have reads waiting and have done enough
1406 // writes, then switch to reads.
1407 if (writeQueue.empty() ||
1408 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1409 drainState() != DrainState::Draining) ||
1410 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1411 // turn the bus back around for reads again
1412 busState = WRITE_TO_READ;
1413
1414 // note that the we switch back to reads also in the idle
1415 // case, which eventually will check for any draining and
1416 // also pause any further scheduling if there is really
1417 // nothing to do
1418 }
1419 }
1420 // It is possible that a refresh to another rank kicks things back into
1421 // action before reaching this point.
1422 if (!nextReqEvent.scheduled())
1423 schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1424
1425 // If there is space available and we have writes waiting then let
1426 // them retry. This is done here to ensure that the retry does not
1427 // cause a nextReqEvent to be scheduled before we do so as part of
1428 // the next request processing
1429 if (retryWrReq && writeQueue.size() < writeBufferSize) {
1430 retryWrReq = false;
1431 port.sendRetryReq();
1432 }
1433}
1434
1435pair<uint64_t, bool>
1436DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1437 Tick min_col_at) const
1438{
1439 uint64_t bank_mask = 0;
1440 Tick min_act_at = MaxTick;
1441
1442 // latest Tick for which ACT can occur without incurring additoinal
1443 // delay on the data bus
1444 const Tick hidden_act_max = std::max(min_col_at - tRCD, curTick());
1445
1446 // Flag condition when burst can issue back-to-back with previous burst
1447 bool found_seamless_bank = false;
1448
1449 // Flag condition when bank can be opened without incurring additional
1450 // delay on the data bus
1451 bool hidden_bank_prep = false;
1452
1453 // determine if we have queued transactions targetting the
1454 // bank in question
1455 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1456 for (const auto& p : queue) {
1457 if(p->rankRef.isAvailable())
1458 got_waiting[p->bankId] = true;
1459 }
1460
1461 // Find command with optimal bank timing
1462 // Will prioritize commands that can issue seamlessly.
1463 for (int i = 0; i < ranksPerChannel; i++) {
1464 for (int j = 0; j < banksPerRank; j++) {
1465 uint16_t bank_id = i * banksPerRank + j;
1466
1467 // if we have waiting requests for the bank, and it is
1468 // amongst the first available, update the mask
1469 if (got_waiting[bank_id]) {
1470 // make sure this rank is not currently refreshing.
1471 assert(ranks[i]->isAvailable());
1472 // simplistic approximation of when the bank can issue
1473 // an activate, ignoring any rank-to-rank switching
1474 // cost in this calculation
1475 Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ?
1476 std::max(ranks[i]->banks[j].actAllowedAt, curTick()) :
1477 std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP;
1478
1479 // When is the earliest the R/W burst can issue?
1480 Tick col_at = std::max(ranks[i]->banks[j].colAllowedAt,
1481 act_at + tRCD);
1482
1483 // bank can issue burst back-to-back (seamlessly) with
1484 // previous burst
1485 bool new_seamless_bank = col_at <= min_col_at;
1486
1487 // if we found a new seamless bank or we have no
1488 // seamless banks, and got a bank with an earlier
1489 // activate time, it should be added to the bit mask
1490 if (new_seamless_bank ||
1491 (!found_seamless_bank && act_at <= min_act_at)) {
1492 // if we did not have a seamless bank before, and
1493 // we do now, reset the bank mask, also reset it
1494 // if we have not yet found a seamless bank and
1495 // the activate time is smaller than what we have
1496 // seen so far
1497 if (!found_seamless_bank &&
1498 (new_seamless_bank || act_at < min_act_at)) {
1499 bank_mask = 0;
1500 }
1501
1502 found_seamless_bank |= new_seamless_bank;
1503
1504 // ACT can occur 'behind the scenes'
1505 hidden_bank_prep = act_at <= hidden_act_max;
1506
1507 // set the bit corresponding to the available bank
1508 replaceBits(bank_mask, bank_id, bank_id, 1);
1509 min_act_at = act_at;
1510 }
1511 }
1512 }
1513 }
1514
1515 return make_pair(bank_mask, hidden_bank_prep);
1516}
1517
1518DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p)
1519 : EventManager(&_memory), memory(_memory),
1520 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), pwrStateTick(0),
1521 refreshState(REF_IDLE), refreshDueAt(0),
1522 power(_p, false), numBanksActive(0),
1523 activateEvent(*this), prechargeEvent(*this),
1524 refreshEvent(*this), powerEvent(*this)
1525{ }
1526
1527void
1528DRAMCtrl::Rank::startup(Tick ref_tick)
1529{
1530 assert(ref_tick > curTick());
1531
1532 pwrStateTick = curTick();
1533
1534 // kick off the refresh, and give ourselves enough time to
1535 // precharge
1536 schedule(refreshEvent, ref_tick);
1537}
1538
1539void
1540DRAMCtrl::Rank::suspend()
1541{
1542 deschedule(refreshEvent);
1543}
1544
1545void
1546DRAMCtrl::Rank::checkDrainDone()
1547{
1548 // if this rank was waiting to drain it is now able to proceed to
1549 // precharge
1550 if (refreshState == REF_DRAIN) {
1551 DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1552
1553 refreshState = REF_PRE;
1554
1555 // hand control back to the refresh event loop
1556 schedule(refreshEvent, curTick());
1557 }
1558}
1559
1560void
1561DRAMCtrl::Rank::processActivateEvent()
1562{
1563 // we should transition to the active state as soon as any bank is active
1564 if (pwrState != PWR_ACT)
1565 // note that at this point numBanksActive could be back at
1566 // zero again due to a precharge scheduled in the future
1567 schedulePowerEvent(PWR_ACT, curTick());
1568}
1569
1570void
1571DRAMCtrl::Rank::processPrechargeEvent()
1572{
1573 // if we reached zero, then special conditions apply as we track
1574 // if all banks are precharged for the power models
1575 if (numBanksActive == 0) {
1576 // we should transition to the idle state when the last bank
1577 // is precharged
1578 schedulePowerEvent(PWR_IDLE, curTick());
1579 }
1580}
1581
1582void
1583DRAMCtrl::Rank::processRefreshEvent()
1584{
1585 // when first preparing the refresh, remember when it was due
1586 if (refreshState == REF_IDLE) {
1587 // remember when the refresh is due
1588 refreshDueAt = curTick();
1589
1590 // proceed to drain
1591 refreshState = REF_DRAIN;
1592
1593 DPRINTF(DRAM, "Refresh due\n");
1594 }
1595
1596 // let any scheduled read or write to the same rank go ahead,
1597 // after which it will
1598 // hand control back to this event loop
1599 if (refreshState == REF_DRAIN) {
1600 // if a request is at the moment being handled and this request is
1601 // accessing the current rank then wait for it to finish
1602 if ((rank == memory.activeRank)
1603 && (memory.nextReqEvent.scheduled())) {
1604 // hand control over to the request loop until it is
1605 // evaluated next
1606 DPRINTF(DRAM, "Refresh awaiting draining\n");
1607
1608 return;
1609 } else {
1610 refreshState = REF_PRE;
1611 }
1612 }
1613
1614 // at this point, ensure that all banks are precharged
1615 if (refreshState == REF_PRE) {
1616 // precharge any active bank if we are not already in the idle
1617 // state
1618 if (pwrState != PWR_IDLE) {
1619 // at the moment, we use a precharge all even if there is
1620 // only a single bank open
1621 DPRINTF(DRAM, "Precharging all\n");
1622
1623 // first determine when we can precharge
1624 Tick pre_at = curTick();
1625
1626 for (auto &b : banks) {
1627 // respect both causality and any existing bank
1628 // constraints, some banks could already have a
1629 // (auto) precharge scheduled
1630 pre_at = std::max(b.preAllowedAt, pre_at);
1631 }
1632
1633 // make sure all banks per rank are precharged, and for those that
1634 // already are, update their availability
1635 Tick act_allowed_at = pre_at + memory.tRP;
1636
1637 for (auto &b : banks) {
1638 if (b.openRow != Bank::NO_ROW) {
1639 memory.prechargeBank(*this, b, pre_at, false);
1640 } else {
1641 b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at);
1642 b.preAllowedAt = std::max(b.preAllowedAt, pre_at);
1643 }
1644 }
1645
1646 // precharge all banks in rank
1647 power.powerlib.doCommand(MemCommand::PREA, 0,
1648 divCeil(pre_at, memory.tCK) -
1649 memory.timeStampOffset);
1650
1651 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
1652 divCeil(pre_at, memory.tCK) -
1653 memory.timeStampOffset, rank);
1654 } else {
1655 DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1656
1657 // go ahead and kick the power state machine into gear if
1658 // we are already idle
1659 schedulePowerEvent(PWR_REF, curTick());
1660 }
1661
1662 refreshState = REF_RUN;
1663 assert(numBanksActive == 0);
1664
1665 // wait for all banks to be precharged, at which point the
1666 // power state machine will transition to the idle state, and
1667 // automatically move to a refresh, at that point it will also
1668 // call this method to get the refresh event loop going again
1669 return;
1670 }
1671
1672 // last but not least we perform the actual refresh
1673 if (refreshState == REF_RUN) {
1674 // should never get here with any banks active
1675 assert(numBanksActive == 0);
1676 assert(pwrState == PWR_REF);
1677
1678 Tick ref_done_at = curTick() + memory.tRFC;
1679
1680 for (auto &b : banks) {
1681 b.actAllowedAt = ref_done_at;
1682 }
1683
1684 // at the moment this affects all ranks
1685 power.powerlib.doCommand(MemCommand::REF, 0,
1686 divCeil(curTick(), memory.tCK) -
1687 memory.timeStampOffset);
1688
1689 // at the moment sort the list of commands and update the counters
1690 // for DRAMPower libray when doing a refresh
1691 sort(power.powerlib.cmdList.begin(),
1692 power.powerlib.cmdList.end(), DRAMCtrl::sortTime);
1693
1694 // update the counters for DRAMPower, passing false to
1695 // indicate that this is not the last command in the
1696 // list. DRAMPower requires this information for the
1697 // correct calculation of the background energy at the end
1698 // of the simulation. Ideally we would want to call this
1699 // function with true once at the end of the
1700 // simulation. However, the discarded energy is extremly
1701 // small and does not effect the final results.
1702 power.powerlib.updateCounters(false);
1703
1704 // call the energy function
1705 power.powerlib.calcEnergy();
1706
1707 // Update the stats
1708 updatePowerStats();
1709
1710 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
1711 memory.timeStampOffset, rank);
1712
1713 // make sure we did not wait so long that we cannot make up
1714 // for it
1715 if (refreshDueAt + memory.tREFI < ref_done_at) {
1716 fatal("Refresh was delayed so long we cannot catch up\n");
1717 }
1718
1719 // compensate for the delay in actually performing the refresh
1720 // when scheduling the next one
1721 schedule(refreshEvent, refreshDueAt + memory.tREFI - memory.tRP);
1722
1723 assert(!powerEvent.scheduled());
1724
1725 // move to the idle power state once the refresh is done, this
1726 // will also move the refresh state machine to the refresh
1727 // idle state
1728 schedulePowerEvent(PWR_IDLE, ref_done_at);
1729
1730 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1731 ref_done_at, refreshDueAt + memory.tREFI);
1732 }
1733}
1734
1735void
1736DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick)
1737{
1738 // respect causality
1739 assert(tick >= curTick());
1740
1741 if (!powerEvent.scheduled()) {
1742 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1743 tick, pwr_state);
1744
1745 // insert the new transition
1746 pwrStateTrans = pwr_state;
1747
1748 schedule(powerEvent, tick);
1749 } else {
1750 panic("Scheduled power event at %llu to state %d, "
1751 "with scheduled event at %llu to %d\n", tick, pwr_state,
1752 powerEvent.when(), pwrStateTrans);
1753 }
1754}
1755
1756void
1757DRAMCtrl::Rank::processPowerEvent()
1758{
1759 // remember where we were, and for how long
1760 Tick duration = curTick() - pwrStateTick;
1761 PowerState prev_state = pwrState;
1762
1763 // update the accounting
1764 pwrStateTime[prev_state] += duration;
1765
1766 pwrState = pwrStateTrans;
1767 pwrStateTick = curTick();
1768
1769 if (pwrState == PWR_IDLE) {
1770 DPRINTF(DRAMState, "All banks precharged\n");
1771
1772 // if we were refreshing, make sure we start scheduling requests again
1773 if (prev_state == PWR_REF) {
1774 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1775 assert(pwrState == PWR_IDLE);
1776
1777 // kick things into action again
1778 refreshState = REF_IDLE;
1779 // a request event could be already scheduled by the state
1780 // machine of the other rank
1781 if (!memory.nextReqEvent.scheduled())
1782 schedule(memory.nextReqEvent, curTick());
1783 } else {
1784 assert(prev_state == PWR_ACT);
1785
1786 // if we have a pending refresh, and are now moving to
1787 // the idle state, direclty transition to a refresh
1788 if (refreshState == REF_RUN) {
1789 // there should be nothing waiting at this point
1790 assert(!powerEvent.scheduled());
1791
1792 // update the state in zero time and proceed below
1793 pwrState = PWR_REF;
1794 }
1795 }
1796 }
1797
1798 // we transition to the refresh state, let the refresh state
1799 // machine know of this state update and let it deal with the
1800 // scheduling of the next power state transition as well as the
1801 // following refresh
1802 if (pwrState == PWR_REF) {
1803 DPRINTF(DRAMState, "Refreshing\n");
1804 // kick the refresh event loop into action again, and that
1805 // in turn will schedule a transition to the idle power
1806 // state once the refresh is done
1807 assert(refreshState == REF_RUN);
1808 processRefreshEvent();
1809 }
1810}
1811
1812void
1813DRAMCtrl::Rank::updatePowerStats()
1814{
1815 // Get the energy and power from DRAMPower
1816 Data::MemoryPowerModel::Energy energy =
1817 power.powerlib.getEnergy();
1818 Data::MemoryPowerModel::Power rank_power =
1819 power.powerlib.getPower();
1820
1821 actEnergy = energy.act_energy * memory.devicesPerRank;
1822 preEnergy = energy.pre_energy * memory.devicesPerRank;
1823 readEnergy = energy.read_energy * memory.devicesPerRank;
1824 writeEnergy = energy.write_energy * memory.devicesPerRank;
1825 refreshEnergy = energy.ref_energy * memory.devicesPerRank;
1826 actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank;
1827 preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank;
1828 totalEnergy = energy.total_energy * memory.devicesPerRank;
1829 averagePower = rank_power.average_power * memory.devicesPerRank;
1830}
1831
1832void
1833DRAMCtrl::Rank::regStats()
1834{
1835 using namespace Stats;
1836
1837 pwrStateTime
1838 .init(5)
1839 .name(name() + ".memoryStateTime")
1840 .desc("Time in different power states");
1841 pwrStateTime.subname(0, "IDLE");
1842 pwrStateTime.subname(1, "REF");
1843 pwrStateTime.subname(2, "PRE_PDN");
1844 pwrStateTime.subname(3, "ACT");
1845 pwrStateTime.subname(4, "ACT_PDN");
1846
1847 actEnergy
1848 .name(name() + ".actEnergy")
1849 .desc("Energy for activate commands per rank (pJ)");
1850
1851 preEnergy
1852 .name(name() + ".preEnergy")
1853 .desc("Energy for precharge commands per rank (pJ)");
1854
1855 readEnergy
1856 .name(name() + ".readEnergy")
1857 .desc("Energy for read commands per rank (pJ)");
1858
1859 writeEnergy
1860 .name(name() + ".writeEnergy")
1861 .desc("Energy for write commands per rank (pJ)");
1862
1863 refreshEnergy
1864 .name(name() + ".refreshEnergy")
1865 .desc("Energy for refresh commands per rank (pJ)");
1866
1867 actBackEnergy
1868 .name(name() + ".actBackEnergy")
1869 .desc("Energy for active background per rank (pJ)");
1870
1871 preBackEnergy
1872 .name(name() + ".preBackEnergy")
1873 .desc("Energy for precharge background per rank (pJ)");
1874
1875 totalEnergy
1876 .name(name() + ".totalEnergy")
1877 .desc("Total energy per rank (pJ)");
1878
1879 averagePower
1880 .name(name() + ".averagePower")
1881 .desc("Core power per rank (mW)");
1882}
1883void
1884DRAMCtrl::regStats()
1885{
1886 using namespace Stats;
1887
1888 AbstractMemory::regStats();
1889
1890 for (auto r : ranks) {
1891 r->regStats();
1892 }
1893
1894 readReqs
1895 .name(name() + ".readReqs")
1896 .desc("Number of read requests accepted");
1897
1898 writeReqs
1899 .name(name() + ".writeReqs")
1900 .desc("Number of write requests accepted");
1901
1902 readBursts
1903 .name(name() + ".readBursts")
1904 .desc("Number of DRAM read bursts, "
1905 "including those serviced by the write queue");
1906
1907 writeBursts
1908 .name(name() + ".writeBursts")
1909 .desc("Number of DRAM write bursts, "
1910 "including those merged in the write queue");
1911
1912 servicedByWrQ
1913 .name(name() + ".servicedByWrQ")
1914 .desc("Number of DRAM read bursts serviced by the write queue");
1915
1916 mergedWrBursts
1917 .name(name() + ".mergedWrBursts")
1918 .desc("Number of DRAM write bursts merged with an existing one");
1919
1920 neitherReadNorWrite
1921 .name(name() + ".neitherReadNorWriteReqs")
1922 .desc("Number of requests that are neither read nor write");
1923
1924 perBankRdBursts
1925 .init(banksPerRank * ranksPerChannel)
1926 .name(name() + ".perBankRdBursts")
1927 .desc("Per bank write bursts");
1928
1929 perBankWrBursts
1930 .init(banksPerRank * ranksPerChannel)
1931 .name(name() + ".perBankWrBursts")
1932 .desc("Per bank write bursts");
1933
1934 avgRdQLen
1935 .name(name() + ".avgRdQLen")
1936 .desc("Average read queue length when enqueuing")
1937 .precision(2);
1938
1939 avgWrQLen
1940 .name(name() + ".avgWrQLen")
1941 .desc("Average write queue length when enqueuing")
1942 .precision(2);
1943
1944 totQLat
1945 .name(name() + ".totQLat")
1946 .desc("Total ticks spent queuing");
1947
1948 totBusLat
1949 .name(name() + ".totBusLat")
1950 .desc("Total ticks spent in databus transfers");
1951
1952 totMemAccLat
1953 .name(name() + ".totMemAccLat")
1954 .desc("Total ticks spent from burst creation until serviced "
1955 "by the DRAM");
1956
1957 avgQLat
1958 .name(name() + ".avgQLat")
1959 .desc("Average queueing delay per DRAM burst")
1960 .precision(2);
1961
1962 avgQLat = totQLat / (readBursts - servicedByWrQ);
1963
1964 avgBusLat
1965 .name(name() + ".avgBusLat")
1966 .desc("Average bus latency per DRAM burst")
1967 .precision(2);
1968
1969 avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1970
1971 avgMemAccLat
1972 .name(name() + ".avgMemAccLat")
1973 .desc("Average memory access latency per DRAM burst")
1974 .precision(2);
1975
1976 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
1977
1978 numRdRetry
1979 .name(name() + ".numRdRetry")
1980 .desc("Number of times read queue was full causing retry");
1981
1982 numWrRetry
1983 .name(name() + ".numWrRetry")
1984 .desc("Number of times write queue was full causing retry");
1985
1986 readRowHits
1987 .name(name() + ".readRowHits")
1988 .desc("Number of row buffer hits during reads");
1989
1990 writeRowHits
1991 .name(name() + ".writeRowHits")
1992 .desc("Number of row buffer hits during writes");
1993
1994 readRowHitRate
1995 .name(name() + ".readRowHitRate")
1996 .desc("Row buffer hit rate for reads")
1997 .precision(2);
1998
1999 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
2000
2001 writeRowHitRate
2002 .name(name() + ".writeRowHitRate")
2003 .desc("Row buffer hit rate for writes")
2004 .precision(2);
2005
2006 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
2007
2008 readPktSize
2009 .init(ceilLog2(burstSize) + 1)
2010 .name(name() + ".readPktSize")
2011 .desc("Read request sizes (log2)");
2012
2013 writePktSize
2014 .init(ceilLog2(burstSize) + 1)
2015 .name(name() + ".writePktSize")
2016 .desc("Write request sizes (log2)");
2017
2018 rdQLenPdf
2019 .init(readBufferSize)
2020 .name(name() + ".rdQLenPdf")
2021 .desc("What read queue length does an incoming req see");
2022
2023 wrQLenPdf
2024 .init(writeBufferSize)
2025 .name(name() + ".wrQLenPdf")
2026 .desc("What write queue length does an incoming req see");
2027
2028 bytesPerActivate
2029 .init(maxAccessesPerRow)
2030 .name(name() + ".bytesPerActivate")
2031 .desc("Bytes accessed per row activation")
2032 .flags(nozero);
2033
2034 rdPerTurnAround
2035 .init(readBufferSize)
2036 .name(name() + ".rdPerTurnAround")
2037 .desc("Reads before turning the bus around for writes")
2038 .flags(nozero);
2039
2040 wrPerTurnAround
2041 .init(writeBufferSize)
2042 .name(name() + ".wrPerTurnAround")
2043 .desc("Writes before turning the bus around for reads")
2044 .flags(nozero);
2045
2046 bytesReadDRAM
2047 .name(name() + ".bytesReadDRAM")
2048 .desc("Total number of bytes read from DRAM");
2049
2050 bytesReadWrQ
2051 .name(name() + ".bytesReadWrQ")
2052 .desc("Total number of bytes read from write queue");
2053
2054 bytesWritten
2055 .name(name() + ".bytesWritten")
2056 .desc("Total number of bytes written to DRAM");
2057
2058 bytesReadSys
2059 .name(name() + ".bytesReadSys")
2060 .desc("Total read bytes from the system interface side");
2061
2062 bytesWrittenSys
2063 .name(name() + ".bytesWrittenSys")
2064 .desc("Total written bytes from the system interface side");
2065
2066 avgRdBW
2067 .name(name() + ".avgRdBW")
2068 .desc("Average DRAM read bandwidth in MiByte/s")
2069 .precision(2);
2070
2071 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
2072
2073 avgWrBW
2074 .name(name() + ".avgWrBW")
2075 .desc("Average achieved write bandwidth in MiByte/s")
2076 .precision(2);
2077
2078 avgWrBW = (bytesWritten / 1000000) / simSeconds;
2079
2080 avgRdBWSys
2081 .name(name() + ".avgRdBWSys")
2082 .desc("Average system read bandwidth in MiByte/s")
2083 .precision(2);
2084
2085 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
2086
2087 avgWrBWSys
2088 .name(name() + ".avgWrBWSys")
2089 .desc("Average system write bandwidth in MiByte/s")
2090 .precision(2);
2091
2092 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
2093
2094 peakBW
2095 .name(name() + ".peakBW")
2096 .desc("Theoretical peak bandwidth in MiByte/s")
2097 .precision(2);
2098
2099 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
2100
2101 busUtil
2102 .name(name() + ".busUtil")
2103 .desc("Data bus utilization in percentage")
2104 .precision(2);
2105 busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
2106
2107 totGap
2108 .name(name() + ".totGap")
2109 .desc("Total gap between requests");
2110
2111 avgGap
2112 .name(name() + ".avgGap")
2113 .desc("Average gap between requests")
2114 .precision(2);
2115
2116 avgGap = totGap / (readReqs + writeReqs);
2117
2118 // Stats for DRAM Power calculation based on Micron datasheet
2119 busUtilRead
2120 .name(name() + ".busUtilRead")
2121 .desc("Data bus utilization in percentage for reads")
2122 .precision(2);
2123
2124 busUtilRead = avgRdBW / peakBW * 100;
2125
2126 busUtilWrite
2127 .name(name() + ".busUtilWrite")
2128 .desc("Data bus utilization in percentage for writes")
2129 .precision(2);
2130
2131 busUtilWrite = avgWrBW / peakBW * 100;
2132
2133 pageHitRate
2134 .name(name() + ".pageHitRate")
2135 .desc("Row buffer hit rate, read and write combined")
2136 .precision(2);
2137
2138 pageHitRate = (writeRowHits + readRowHits) /
2139 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
2140}
2141
2142void
2143DRAMCtrl::recvFunctional(PacketPtr pkt)
2144{
2145 // rely on the abstract memory
2146 functionalAccess(pkt);
2147}
2148
2149BaseSlavePort&
2150DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2151{
2152 if (if_name != "port") {
2153 return MemObject::getSlavePort(if_name, idx);
2154 } else {
2155 return port;
2156 }
2157}
2158
2159DrainState
2160DRAMCtrl::drain()
2161{
2162 // if there is anything in any of our internal queues, keep track
2163 // of that as well
2164 if (!(writeQueue.empty() && readQueue.empty() && respQueue.empty())) {
2165 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2166 " resp: %d\n", writeQueue.size(), readQueue.size(),
2167 respQueue.size());
2168
2169 // the only part that is not drained automatically over time
2170 // is the write queue, thus kick things into action if needed
2171 if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2172 schedule(nextReqEvent, curTick());
2173 }
2174 return DrainState::Draining;
2175 } else {
2176 return DrainState::Drained;
2177 }
2178}
2179
2180void
2181DRAMCtrl::drainResume()
2182{
2183 if (!isTimingMode && system()->isTimingMode()) {
2184 // if we switched to timing mode, kick things into action,
2185 // and behave as if we restored from a checkpoint
2186 startup();
2187 } else if (isTimingMode && !system()->isTimingMode()) {
2188 // if we switch from timing mode, stop the refresh events to
2189 // not cause issues with KVM
2190 for (auto r : ranks) {
2191 r->suspend();
2192 }
2193 }
2194
2195 // update the mode
2196 isTimingMode = system()->isTimingMode();
2197}
2198
2199DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2200 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2201 memory(_memory)
2202{ }
2203
2204AddrRangeList
2205DRAMCtrl::MemoryPort::getAddrRanges() const
2206{
2207 AddrRangeList ranges;
2208 ranges.push_back(memory.getAddrRange());
2209 return ranges;
2210}
2211
2212void
2213DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2214{
2215 pkt->pushLabel(memory.name());
2216
2217 if (!queue.checkFunctional(pkt)) {
2218 // Default implementation of SimpleTimingPort::recvFunctional()
2219 // calls recvAtomic() and throws away the latency; we can save a
2220 // little here by just not calculating the latency.
2221 memory.recvFunctional(pkt);
2222 }
2223
2224 pkt->popLabel();
2225}
2226
2227Tick
2228DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2229{
2230 return memory.recvAtomic(pkt);
2231}
2232
2233bool
2234DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2235{
2236 // pass it to the memory controller
2237 return memory.recvTimingReq(pkt);
2238}
2239
2240DRAMCtrl*
2241DRAMCtrlParams::create()
2242{
2243 return new DRAMCtrl(this);
2244}