dram_ctrl.cc (10721:3e6a3eaac71b) dram_ctrl.cc (10809:e3963342ead4)
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 * Ani Udipi
42 * Neha Agarwal
43 * Omar Naji
44 */
45
46#include "base/bitfield.hh"
47#include "base/trace.hh"
48#include "debug/DRAM.hh"
49#include "debug/DRAMPower.hh"
50#include "debug/DRAMState.hh"
51#include "debug/Drain.hh"
52#include "mem/dram_ctrl.hh"
53#include "sim/system.hh"
54
55using namespace std;
56using namespace Data;
57
58DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
59 AbstractMemory(p),
60 port(name() + ".port", *this), isTimingMode(false),
61 retryRdReq(false), retryWrReq(false),
62 busState(READ),
63 nextReqEvent(this), respondEvent(this),
64 drainManager(NULL),
65 deviceSize(p->device_size),
66 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
67 deviceRowBufferSize(p->device_rowbuffer_size),
68 devicesPerRank(p->devices_per_rank),
69 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
70 rowBufferSize(devicesPerRank * deviceRowBufferSize),
71 columnsPerRowBuffer(rowBufferSize / burstSize),
72 columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1),
73 ranksPerChannel(p->ranks_per_channel),
74 bankGroupsPerRank(p->bank_groups_per_rank),
75 bankGroupArch(p->bank_groups_per_rank > 0),
76 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
77 readBufferSize(p->read_buffer_size),
78 writeBufferSize(p->write_buffer_size),
79 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
80 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
81 minWritesPerSwitch(p->min_writes_per_switch),
82 writesThisTime(0), readsThisTime(0),
83 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
84 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
85 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
86 tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit),
87 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
88 pageMgmt(p->page_policy),
89 maxAccessesPerRow(p->max_accesses_per_row),
90 frontendLatency(p->static_frontend_latency),
91 backendLatency(p->static_backend_latency),
92 busBusyUntil(0), prevArrival(0),
93 nextReqTime(0), activeRank(0), timeStampOffset(0)
94{
95 // sanity check the ranks since we rely on bit slicing for the
96 // address decoding
97 fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not "
98 "allowed, must be a power of two\n", ranksPerChannel);
99
100 for (int i = 0; i < ranksPerChannel; i++) {
101 Rank* rank = new Rank(*this, p);
102 ranks.push_back(rank);
103
104 rank->actTicks.resize(activationLimit, 0);
105 rank->banks.resize(banksPerRank);
106 rank->rank = i;
107
108 for (int b = 0; b < banksPerRank; b++) {
109 rank->banks[b].bank = b;
110 // GDDR addressing of banks to BG is linear.
111 // Here we assume that all DRAM generations address bank groups as
112 // follows:
113 if (bankGroupArch) {
114 // Simply assign lower bits to bank group in order to
115 // rotate across bank groups as banks are incremented
116 // e.g. with 4 banks per bank group and 16 banks total:
117 // banks 0,4,8,12 are in bank group 0
118 // banks 1,5,9,13 are in bank group 1
119 // banks 2,6,10,14 are in bank group 2
120 // banks 3,7,11,15 are in bank group 3
121 rank->banks[b].bankgr = b % bankGroupsPerRank;
122 } else {
123 // No bank groups; simply assign to bank number
124 rank->banks[b].bankgr = b;
125 }
126 }
127 }
128
129 // perform a basic check of the write thresholds
130 if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
131 fatal("Write buffer low threshold %d must be smaller than the "
132 "high threshold %d\n", p->write_low_thresh_perc,
133 p->write_high_thresh_perc);
134
135 // determine the rows per bank by looking at the total capacity
136 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
137
138 // determine the dram actual capacity from the DRAM config in Mbytes
139 uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
140 ranksPerChannel;
141
142 // if actual DRAM size does not match memory capacity in system warn!
143 if (deviceCapacity != capacity / (1024 * 1024))
144 warn("DRAM device capacity (%d Mbytes) does not match the "
145 "address range assigned (%d Mbytes)\n", deviceCapacity,
146 capacity / (1024 * 1024));
147
148 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
149 AbstractMemory::size());
150
151 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
152 rowBufferSize, columnsPerRowBuffer);
153
154 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
155
156 // some basic sanity checks
157 if (tREFI <= tRP || tREFI <= tRFC) {
158 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
159 tREFI, tRP, tRFC);
160 }
161
162 // basic bank group architecture checks ->
163 if (bankGroupArch) {
164 // must have at least one bank per bank group
165 if (bankGroupsPerRank > banksPerRank) {
166 fatal("banks per rank (%d) must be equal to or larger than "
167 "banks groups per rank (%d)\n",
168 banksPerRank, bankGroupsPerRank);
169 }
170 // must have same number of banks in each bank group
171 if ((banksPerRank % bankGroupsPerRank) != 0) {
172 fatal("Banks per rank (%d) must be evenly divisible by bank groups "
173 "per rank (%d) for equal banks per bank group\n",
174 banksPerRank, bankGroupsPerRank);
175 }
176 // tCCD_L should be greater than minimal, back-to-back burst delay
177 if (tCCD_L <= tBURST) {
178 fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
179 "bank groups per rank (%d) is greater than 1\n",
180 tCCD_L, tBURST, bankGroupsPerRank);
181 }
182 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
183 // some datasheets might specify it equal to tRRD
184 if (tRRD_L < tRRD) {
185 fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
186 "bank groups per rank (%d) is greater than 1\n",
187 tRRD_L, tRRD, bankGroupsPerRank);
188 }
189 }
190
191}
192
193void
194DRAMCtrl::init()
195{
196 AbstractMemory::init();
197
198 if (!port.isConnected()) {
199 fatal("DRAMCtrl %s is unconnected!\n", name());
200 } else {
201 port.sendRangeChange();
202 }
203
204 // a bit of sanity checks on the interleaving, save it for here to
205 // ensure that the system pointer is initialised
206 if (range.interleaved()) {
207 if (channels != range.stripes())
208 fatal("%s has %d interleaved address stripes but %d channel(s)\n",
209 name(), range.stripes(), channels);
210
211 if (addrMapping == Enums::RoRaBaChCo) {
212 if (rowBufferSize != range.granularity()) {
213 fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
214 "address map\n", name());
215 }
216 } else if (addrMapping == Enums::RoRaBaCoCh ||
217 addrMapping == Enums::RoCoRaBaCh) {
218 // for the interleavings with channel bits in the bottom,
219 // if the system uses a channel striping granularity that
220 // is larger than the DRAM burst size, then map the
221 // sequential accesses within a stripe to a number of
222 // columns in the DRAM, effectively placing some of the
223 // lower-order column bits as the least-significant bits
224 // of the address (above the ones denoting the burst size)
225 assert(columnsPerStripe >= 1);
226
227 // channel striping has to be done at a granularity that
228 // is equal or larger to a cache line
229 if (system()->cacheLineSize() > range.granularity()) {
230 fatal("Channel interleaving of %s must be at least as large "
231 "as the cache line size\n", name());
232 }
233
234 // ...and equal or smaller than the row-buffer size
235 if (rowBufferSize < range.granularity()) {
236 fatal("Channel interleaving of %s must be at most as large "
237 "as the row-buffer size\n", name());
238 }
239 // this is essentially the check above, so just to be sure
240 assert(columnsPerStripe <= columnsPerRowBuffer);
241 }
242 }
243}
244
245void
246DRAMCtrl::startup()
247{
248 // remember the memory system mode of operation
249 isTimingMode = system()->isTimingMode();
250
251 if (isTimingMode) {
252 // timestamp offset should be in clock cycles for DRAMPower
253 timeStampOffset = divCeil(curTick(), tCK);
254
255 // update the start tick for the precharge accounting to the
256 // current tick
257 for (auto r : ranks) {
258 r->startup(curTick() + tREFI - tRP);
259 }
260
261 // shift the bus busy time sufficiently far ahead that we never
262 // have to worry about negative values when computing the time for
263 // the next request, this will add an insignificant bubble at the
264 // start of simulation
265 busBusyUntil = curTick() + tRP + tRCD + tCL;
266 }
267}
268
269Tick
270DRAMCtrl::recvAtomic(PacketPtr pkt)
271{
272 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
273
274 // do the actual memory access and turn the packet into a response
275 access(pkt);
276
277 Tick latency = 0;
278 if (!pkt->memInhibitAsserted() && pkt->hasData()) {
279 // this value is not supposed to be accurate, just enough to
280 // keep things going, mimic a closed page
281 latency = tRP + tRCD + tCL;
282 }
283 return latency;
284}
285
286bool
287DRAMCtrl::readQueueFull(unsigned int neededEntries) const
288{
289 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
290 readBufferSize, readQueue.size() + respQueue.size(),
291 neededEntries);
292
293 return
294 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
295}
296
297bool
298DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
299{
300 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
301 writeBufferSize, writeQueue.size(), neededEntries);
302 return (writeQueue.size() + neededEntries) > writeBufferSize;
303}
304
305DRAMCtrl::DRAMPacket*
306DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
307 bool isRead)
308{
309 // decode the address based on the address mapping scheme, with
310 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
311 // channel, respectively
312 uint8_t rank;
313 uint8_t bank;
314 // use a 64-bit unsigned during the computations as the row is
315 // always the top bits, and check before creating the DRAMPacket
316 uint64_t row;
317
318 // truncate the address to a DRAM burst, which makes it unique to
319 // a specific column, row, bank, rank and channel
320 Addr addr = dramPktAddr / burstSize;
321
322 // we have removed the lowest order address bits that denote the
323 // position within the column
324 if (addrMapping == Enums::RoRaBaChCo) {
325 // the lowest order bits denote the column to ensure that
326 // sequential cache lines occupy the same row
327 addr = addr / columnsPerRowBuffer;
328
329 // take out the channel part of the address
330 addr = addr / channels;
331
332 // after the channel bits, get the bank bits to interleave
333 // over the banks
334 bank = addr % banksPerRank;
335 addr = addr / banksPerRank;
336
337 // after the bank, we get the rank bits which thus interleaves
338 // over the ranks
339 rank = addr % ranksPerChannel;
340 addr = addr / ranksPerChannel;
341
342 // lastly, get the row bits
343 row = addr % rowsPerBank;
344 addr = addr / rowsPerBank;
345 } else if (addrMapping == Enums::RoRaBaCoCh) {
346 // take out the lower-order column bits
347 addr = addr / columnsPerStripe;
348
349 // take out the channel part of the address
350 addr = addr / channels;
351
352 // next, the higher-order column bites
353 addr = addr / (columnsPerRowBuffer / columnsPerStripe);
354
355 // after the column bits, we get the bank bits to interleave
356 // over the banks
357 bank = addr % banksPerRank;
358 addr = addr / banksPerRank;
359
360 // after the bank, we get the rank bits which thus interleaves
361 // over the ranks
362 rank = addr % ranksPerChannel;
363 addr = addr / ranksPerChannel;
364
365 // lastly, get the row bits
366 row = addr % rowsPerBank;
367 addr = addr / rowsPerBank;
368 } else if (addrMapping == Enums::RoCoRaBaCh) {
369 // optimise for closed page mode and utilise maximum
370 // parallelism of the DRAM (at the cost of power)
371
372 // take out the lower-order column bits
373 addr = addr / columnsPerStripe;
374
375 // take out the channel part of the address, not that this has
376 // to match with how accesses are interleaved between the
377 // controllers in the address mapping
378 addr = addr / channels;
379
380 // start with the bank bits, as this provides the maximum
381 // opportunity for parallelism between requests
382 bank = addr % banksPerRank;
383 addr = addr / banksPerRank;
384
385 // next get the rank bits
386 rank = addr % ranksPerChannel;
387 addr = addr / ranksPerChannel;
388
389 // next, the higher-order column bites
390 addr = addr / (columnsPerRowBuffer / columnsPerStripe);
391
392 // lastly, get the row bits
393 row = addr % rowsPerBank;
394 addr = addr / rowsPerBank;
395 } else
396 panic("Unknown address mapping policy chosen!");
397
398 assert(rank < ranksPerChannel);
399 assert(bank < banksPerRank);
400 assert(row < rowsPerBank);
401 assert(row < Bank::NO_ROW);
402
403 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
404 dramPktAddr, rank, bank, row);
405
406 // create the corresponding DRAM packet with the entry time and
407 // ready time set to the current tick, the latter will be updated
408 // later
409 uint16_t bank_id = banksPerRank * rank + bank;
410 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
411 size, ranks[rank]->banks[bank], *ranks[rank]);
412}
413
414void
415DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
416{
417 // only add to the read queue here. whenever the request is
418 // eventually done, set the readyTime, and call schedule()
419 assert(!pkt->isWrite());
420
421 assert(pktCount != 0);
422
423 // if the request size is larger than burst size, the pkt is split into
424 // multiple DRAM packets
425 // Note if the pkt starting address is not aligened to burst size, the
426 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
427 // are aligned to burst size boundaries. This is to ensure we accurately
428 // check read packets against packets in write queue.
429 Addr addr = pkt->getAddr();
430 unsigned pktsServicedByWrQ = 0;
431 BurstHelper* burst_helper = NULL;
432 for (int cnt = 0; cnt < pktCount; ++cnt) {
433 unsigned size = std::min((addr | (burstSize - 1)) + 1,
434 pkt->getAddr() + pkt->getSize()) - addr;
435 readPktSize[ceilLog2(size)]++;
436 readBursts++;
437
438 // First check write buffer to see if the data is already at
439 // the controller
440 bool foundInWrQ = false;
441 for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
442 // check if the read is subsumed in the write entry we are
443 // looking at
444 if ((*i)->addr <= addr &&
445 (addr + size) <= ((*i)->addr + (*i)->size)) {
446 foundInWrQ = true;
447 servicedByWrQ++;
448 pktsServicedByWrQ++;
449 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
450 "write queue\n", addr, size);
451 bytesReadWrQ += burstSize;
452 break;
453 }
454 }
455
456 // If not found in the write q, make a DRAM packet and
457 // push it onto the read queue
458 if (!foundInWrQ) {
459
460 // Make the burst helper for split packets
461 if (pktCount > 1 && burst_helper == NULL) {
462 DPRINTF(DRAM, "Read to addr %lld translates to %d "
463 "dram requests\n", pkt->getAddr(), pktCount);
464 burst_helper = new BurstHelper(pktCount);
465 }
466
467 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
468 dram_pkt->burstHelper = burst_helper;
469
470 assert(!readQueueFull(1));
471 rdQLenPdf[readQueue.size() + respQueue.size()]++;
472
473 DPRINTF(DRAM, "Adding to read queue\n");
474
475 readQueue.push_back(dram_pkt);
476
477 // Update stats
478 avgRdQLen = readQueue.size() + respQueue.size();
479 }
480
481 // Starting address of next dram pkt (aligend to burstSize boundary)
482 addr = (addr | (burstSize - 1)) + 1;
483 }
484
485 // If all packets are serviced by write queue, we send the repsonse back
486 if (pktsServicedByWrQ == pktCount) {
487 accessAndRespond(pkt, frontendLatency);
488 return;
489 }
490
491 // Update how many split packets are serviced by write queue
492 if (burst_helper != NULL)
493 burst_helper->burstsServiced = pktsServicedByWrQ;
494
495 // If we are not already scheduled to get a request out of the
496 // queue, do so now
497 if (!nextReqEvent.scheduled()) {
498 DPRINTF(DRAM, "Request scheduled immediately\n");
499 schedule(nextReqEvent, curTick());
500 }
501}
502
503void
504DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
505{
506 // only add to the write queue here. whenever the request is
507 // eventually done, set the readyTime, and call schedule()
508 assert(pkt->isWrite());
509
510 // if the request size is larger than burst size, the pkt is split into
511 // multiple DRAM packets
512 Addr addr = pkt->getAddr();
513 for (int cnt = 0; cnt < pktCount; ++cnt) {
514 unsigned size = std::min((addr | (burstSize - 1)) + 1,
515 pkt->getAddr() + pkt->getSize()) - addr;
516 writePktSize[ceilLog2(size)]++;
517 writeBursts++;
518
519 // see if we can merge with an existing item in the write
520 // queue and keep track of whether we have merged or not so we
521 // can stop at that point and also avoid enqueueing a new
522 // request
523 bool merged = false;
524 auto w = writeQueue.begin();
525
526 while(!merged && w != writeQueue.end()) {
527 // either of the two could be first, if they are the same
528 // it does not matter which way we go
529 if ((*w)->addr >= addr) {
530 // the existing one starts after the new one, figure
531 // out where the new one ends with respect to the
532 // existing one
533 if ((addr + size) >= ((*w)->addr + (*w)->size)) {
534 // check if the existing one is completely
535 // subsumed in the new one
536 DPRINTF(DRAM, "Merging write covering existing burst\n");
537 merged = true;
538 // update both the address and the size
539 (*w)->addr = addr;
540 (*w)->size = size;
541 } else if ((addr + size) >= (*w)->addr &&
542 ((*w)->addr + (*w)->size - addr) <= burstSize) {
543 // the new one is just before or partially
544 // overlapping with the existing one, and together
545 // they fit within a burst
546 DPRINTF(DRAM, "Merging write before existing burst\n");
547 merged = true;
548 // the existing queue item needs to be adjusted with
549 // respect to both address and size
550 (*w)->size = (*w)->addr + (*w)->size - addr;
551 (*w)->addr = addr;
552 }
553 } else {
554 // the new one starts after the current one, figure
555 // out where the existing one ends with respect to the
556 // new one
557 if (((*w)->addr + (*w)->size) >= (addr + size)) {
558 // check if the new one is completely subsumed in the
559 // existing one
560 DPRINTF(DRAM, "Merging write into existing burst\n");
561 merged = true;
562 // no adjustments necessary
563 } else if (((*w)->addr + (*w)->size) >= addr &&
564 (addr + size - (*w)->addr) <= burstSize) {
565 // the existing one is just before or partially
566 // overlapping with the new one, and together
567 // they fit within a burst
568 DPRINTF(DRAM, "Merging write after existing burst\n");
569 merged = true;
570 // the address is right, and only the size has
571 // to be adjusted
572 (*w)->size = addr + size - (*w)->addr;
573 }
574 }
575 ++w;
576 }
577
578 // if the item was not merged we need to create a new write
579 // and enqueue it
580 if (!merged) {
581 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
582
583 assert(writeQueue.size() < writeBufferSize);
584 wrQLenPdf[writeQueue.size()]++;
585
586 DPRINTF(DRAM, "Adding to write queue\n");
587
588 writeQueue.push_back(dram_pkt);
589
590 // Update stats
591 avgWrQLen = writeQueue.size();
592 } else {
593 // keep track of the fact that this burst effectively
594 // disappeared as it was merged with an existing one
595 mergedWrBursts++;
596 }
597
598 // Starting address of next dram pkt (aligend to burstSize boundary)
599 addr = (addr | (burstSize - 1)) + 1;
600 }
601
602 // we do not wait for the writes to be send to the actual memory,
603 // but instead take responsibility for the consistency here and
604 // snoop the write queue for any upcoming reads
605 // @todo, if a pkt size is larger than burst size, we might need a
606 // different front end latency
607 accessAndRespond(pkt, frontendLatency);
608
609 // If we are not already scheduled to get a request out of the
610 // queue, do so now
611 if (!nextReqEvent.scheduled()) {
612 DPRINTF(DRAM, "Request scheduled immediately\n");
613 schedule(nextReqEvent, curTick());
614 }
615}
616
617void
618DRAMCtrl::printQs() const {
619 DPRINTF(DRAM, "===READ QUEUE===\n\n");
620 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) {
621 DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
622 }
623 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
624 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) {
625 DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
626 }
627 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
628 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) {
629 DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
630 }
631}
632
633bool
634DRAMCtrl::recvTimingReq(PacketPtr pkt)
635{
636 /// @todo temporary hack to deal with memory corruption issues until
637 /// 4-phase transactions are complete
638 for (int x = 0; x < pendingDelete.size(); x++)
639 delete pendingDelete[x];
640 pendingDelete.clear();
641
642 // This is where we enter from the outside world
643 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
644 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
645
646 // simply drop inhibited packets for now
647 if (pkt->memInhibitAsserted()) {
648 DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
649 pendingDelete.push_back(pkt);
650 return true;
651 }
652
653 // Calc avg gap between requests
654 if (prevArrival != 0) {
655 totGap += curTick() - prevArrival;
656 }
657 prevArrival = curTick();
658
659
660 // Find out how many dram packets a pkt translates to
661 // If the burst size is equal or larger than the pkt size, then a pkt
662 // translates to only one dram packet. Otherwise, a pkt translates to
663 // multiple dram packets
664 unsigned size = pkt->getSize();
665 unsigned offset = pkt->getAddr() & (burstSize - 1);
666 unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
667
668 // check local buffers and do not accept if full
669 if (pkt->isRead()) {
670 assert(size != 0);
671 if (readQueueFull(dram_pkt_count)) {
672 DPRINTF(DRAM, "Read queue full, not accepting\n");
673 // remember that we have to retry this port
674 retryRdReq = true;
675 numRdRetry++;
676 return false;
677 } else {
678 addToReadQueue(pkt, dram_pkt_count);
679 readReqs++;
680 bytesReadSys += size;
681 }
682 } else if (pkt->isWrite()) {
683 assert(size != 0);
684 if (writeQueueFull(dram_pkt_count)) {
685 DPRINTF(DRAM, "Write queue full, not accepting\n");
686 // remember that we have to retry this port
687 retryWrReq = true;
688 numWrRetry++;
689 return false;
690 } else {
691 addToWriteQueue(pkt, dram_pkt_count);
692 writeReqs++;
693 bytesWrittenSys += size;
694 }
695 } else {
696 DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
697 neitherReadNorWrite++;
698 accessAndRespond(pkt, 1);
699 }
700
701 return true;
702}
703
704void
705DRAMCtrl::processRespondEvent()
706{
707 DPRINTF(DRAM,
708 "processRespondEvent(): Some req has reached its readyTime\n");
709
710 DRAMPacket* dram_pkt = respQueue.front();
711
712 if (dram_pkt->burstHelper) {
713 // it is a split packet
714 dram_pkt->burstHelper->burstsServiced++;
715 if (dram_pkt->burstHelper->burstsServiced ==
716 dram_pkt->burstHelper->burstCount) {
717 // we have now serviced all children packets of a system packet
718 // so we can now respond to the requester
719 // @todo we probably want to have a different front end and back
720 // end latency for split packets
721 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
722 delete dram_pkt->burstHelper;
723 dram_pkt->burstHelper = NULL;
724 }
725 } else {
726 // it is not a split packet
727 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
728 }
729
730 delete respQueue.front();
731 respQueue.pop_front();
732
733 if (!respQueue.empty()) {
734 assert(respQueue.front()->readyTime >= curTick());
735 assert(!respondEvent.scheduled());
736 schedule(respondEvent, respQueue.front()->readyTime);
737 } else {
738 // if there is nothing left in any queue, signal a drain
739 if (writeQueue.empty() && readQueue.empty() &&
740 drainManager) {
741 DPRINTF(Drain, "DRAM controller done draining\n");
742 drainManager->signalDrainDone();
743 drainManager = NULL;
744 }
745 }
746
747 // We have made a location in the queue available at this point,
748 // so if there is a read that was forced to wait, retry now
749 if (retryRdReq) {
750 retryRdReq = false;
751 port.sendRetryReq();
752 }
753}
754
755bool
756DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
757{
758 // This method does the arbitration between requests. The chosen
759 // packet is simply moved to the head of the queue. The other
760 // methods know that this is the place to look. For example, with
761 // FCFS, this method does nothing
762 assert(!queue.empty());
763
764 // bool to indicate if a packet to an available rank is found
765 bool found_packet = false;
766 if (queue.size() == 1) {
767 DRAMPacket* dram_pkt = queue.front();
768 // available rank corresponds to state refresh idle
769 if (ranks[dram_pkt->rank]->isAvailable()) {
770 found_packet = true;
771 DPRINTF(DRAM, "Single request, going to a free rank\n");
772 } else {
773 DPRINTF(DRAM, "Single request, going to a busy rank\n");
774 }
775 return found_packet;
776 }
777
778 if (memSchedPolicy == Enums::fcfs) {
779 // check if there is a packet going to a free rank
780 for(auto i = queue.begin(); i != queue.end() ; ++i) {
781 DRAMPacket* dram_pkt = *i;
782 if (ranks[dram_pkt->rank]->isAvailable()) {
783 queue.erase(i);
784 queue.push_front(dram_pkt);
785 found_packet = true;
786 break;
787 }
788 }
789 } else if (memSchedPolicy == Enums::frfcfs) {
790 found_packet = reorderQueue(queue, switched_cmd_type);
791 } else
792 panic("No scheduling policy chosen\n");
793 return found_packet;
794}
795
796bool
797DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
798{
799 // Only determine this when needed
800 uint64_t earliest_banks = 0;
801
802 // Search for row hits first, if no row hit is found then schedule the
803 // packet to one of the earliest banks available
804 bool found_packet = false;
805 bool found_earliest_pkt = false;
806 bool found_prepped_diff_rank_pkt = false;
807 auto selected_pkt_it = queue.end();
808
809 for (auto i = queue.begin(); i != queue.end() ; ++i) {
810 DRAMPacket* dram_pkt = *i;
811 const Bank& bank = dram_pkt->bankRef;
812 // check if rank is busy. If this is the case jump to the next packet
813 // Check if it is a row hit
814 if (dram_pkt->rankRef.isAvailable()) {
815 if (bank.openRow == dram_pkt->row) {
816 if (dram_pkt->rank == activeRank || switched_cmd_type) {
817 // FCFS within the hits, giving priority to commands
818 // that access the same rank as the previous burst
819 // to minimize bus turnaround delays
820 // Only give rank prioity when command type is
821 // not changing
822 DPRINTF(DRAM, "Row buffer hit\n");
823 selected_pkt_it = i;
824 break;
825 } else if (!found_prepped_diff_rank_pkt) {
826 // found row hit for command on different rank
827 // than prev burst
828 selected_pkt_it = i;
829 found_prepped_diff_rank_pkt = true;
830 }
831 } else if (!found_earliest_pkt & !found_prepped_diff_rank_pkt) {
832 // packet going to a rank which is currently not waiting for a
833 // refresh, No row hit and
834 // haven't found an entry with a row hit to a new rank
835 if (earliest_banks == 0)
836 // Determine entries with earliest bank prep delay
837 // Function will give priority to commands that access the
838 // same rank as previous burst and can prep
839 // the bank seamlessly
840 earliest_banks = minBankPrep(queue, switched_cmd_type);
841
842 // FCFS - Bank is first available bank
843 if (bits(earliest_banks, dram_pkt->bankId,
844 dram_pkt->bankId)) {
845 // Remember the packet to be scheduled to one of
846 // the earliest banks available, FCFS amongst the
847 // earliest banks
848 selected_pkt_it = i;
849 //if the packet found is going to a rank that is currently
850 //not busy then update the found_packet to true
851 found_earliest_pkt = true;
852 }
853 }
854 }
855 }
856
857 if (selected_pkt_it != queue.end()) {
858 DRAMPacket* selected_pkt = *selected_pkt_it;
859 queue.erase(selected_pkt_it);
860 queue.push_front(selected_pkt);
861 found_packet = true;
862 }
863 return found_packet;
864}
865
866void
867DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
868{
869 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
870
871 bool needsResponse = pkt->needsResponse();
872 // do the actual memory access which also turns the packet into a
873 // response
874 access(pkt);
875
876 // turn packet around to go back to requester if response expected
877 if (needsResponse) {
878 // access already turned the packet into a response
879 assert(pkt->isResponse());
880 // response_time consumes the static latency and is charged also
881 // with headerDelay that takes into account the delay provided by
882 // the xbar and also the payloadDelay that takes into account the
883 // number of data beats.
884 Tick response_time = curTick() + static_latency + pkt->headerDelay +
885 pkt->payloadDelay;
886 // Here we reset the timing of the packet before sending it out.
887 pkt->headerDelay = pkt->payloadDelay = 0;
888
889 // queue the packet in the response queue to be sent out after
890 // the static latency has passed
891 port.schedTimingResp(pkt, response_time);
892 } else {
893 // @todo the packet is going to be deleted, and the DRAMPacket
894 // is still having a pointer to it
895 pendingDelete.push_back(pkt);
896 }
897
898 DPRINTF(DRAM, "Done\n");
899
900 return;
901}
902
903void
904DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref,
905 Tick act_tick, uint32_t row)
906{
907 assert(rank_ref.actTicks.size() == activationLimit);
908
909 DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
910
911 // update the open row
912 assert(bank_ref.openRow == Bank::NO_ROW);
913 bank_ref.openRow = row;
914
915 // start counting anew, this covers both the case when we
916 // auto-precharged, and when this access is forced to
917 // precharge
918 bank_ref.bytesAccessed = 0;
919 bank_ref.rowAccesses = 0;
920
921 ++rank_ref.numBanksActive;
922 assert(rank_ref.numBanksActive <= banksPerRank);
923
924 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
925 bank_ref.bank, rank_ref.rank, act_tick,
926 ranks[rank_ref.rank]->numBanksActive);
927
928 rank_ref.power.powerlib.doCommand(MemCommand::ACT, bank_ref.bank,
929 divCeil(act_tick, tCK) -
930 timeStampOffset);
931
932 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
933 timeStampOffset, bank_ref.bank, rank_ref.rank);
934
935 // The next access has to respect tRAS for this bank
936 bank_ref.preAllowedAt = act_tick + tRAS;
937
938 // Respect the row-to-column command delay
939 bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt);
940
941 // start by enforcing tRRD
942 for(int i = 0; i < banksPerRank; i++) {
943 // next activate to any bank in this rank must not happen
944 // before tRRD
945 if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) {
946 // bank group architecture requires longer delays between
947 // ACT commands within the same bank group. Use tRRD_L
948 // in this case
949 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L,
950 rank_ref.banks[i].actAllowedAt);
951 } else {
952 // use shorter tRRD value when either
953 // 1) bank group architecture is not supportted
954 // 2) bank is in a different bank group
955 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD,
956 rank_ref.banks[i].actAllowedAt);
957 }
958 }
959
960 // next, we deal with tXAW, if the activation limit is disabled
961 // then we directly schedule an activate power event
962 if (!rank_ref.actTicks.empty()) {
963 // sanity check
964 if (rank_ref.actTicks.back() &&
965 (act_tick - rank_ref.actTicks.back()) < tXAW) {
966 panic("Got %d activates in window %d (%llu - %llu) which "
967 "is smaller than %llu\n", activationLimit, act_tick -
968 rank_ref.actTicks.back(), act_tick,
969 rank_ref.actTicks.back(), tXAW);
970 }
971
972 // shift the times used for the book keeping, the last element
973 // (highest index) is the oldest one and hence the lowest value
974 rank_ref.actTicks.pop_back();
975
976 // record an new activation (in the future)
977 rank_ref.actTicks.push_front(act_tick);
978
979 // cannot activate more than X times in time window tXAW, push the
980 // next one (the X + 1'st activate) to be tXAW away from the
981 // oldest in our window of X
982 if (rank_ref.actTicks.back() &&
983 (act_tick - rank_ref.actTicks.back()) < tXAW) {
984 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
985 "no earlier than %llu\n", activationLimit,
986 rank_ref.actTicks.back() + tXAW);
987 for(int j = 0; j < banksPerRank; j++)
988 // next activate must not happen before end of window
989 rank_ref.banks[j].actAllowedAt =
990 std::max(rank_ref.actTicks.back() + tXAW,
991 rank_ref.banks[j].actAllowedAt);
992 }
993 }
994
995 // at the point when this activate takes place, make sure we
996 // transition to the active power state
997 if (!rank_ref.activateEvent.scheduled())
998 schedule(rank_ref.activateEvent, act_tick);
999 else if (rank_ref.activateEvent.when() > act_tick)
1000 // move it sooner in time
1001 reschedule(rank_ref.activateEvent, act_tick);
1002}
1003
1004void
1005DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace)
1006{
1007 // make sure the bank has an open row
1008 assert(bank.openRow != Bank::NO_ROW);
1009
1010 // sample the bytes per activate here since we are closing
1011 // the page
1012 bytesPerActivate.sample(bank.bytesAccessed);
1013
1014 bank.openRow = Bank::NO_ROW;
1015
1016 // no precharge allowed before this one
1017 bank.preAllowedAt = pre_at;
1018
1019 Tick pre_done_at = pre_at + tRP;
1020
1021 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
1022
1023 assert(rank_ref.numBanksActive != 0);
1024 --rank_ref.numBanksActive;
1025
1026 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
1027 "%d active\n", bank.bank, rank_ref.rank, pre_at,
1028 rank_ref.numBanksActive);
1029
1030 if (trace) {
1031
1032 rank_ref.power.powerlib.doCommand(MemCommand::PRE, bank.bank,
1033 divCeil(pre_at, tCK) -
1034 timeStampOffset);
1035 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
1036 timeStampOffset, bank.bank, rank_ref.rank);
1037 }
1038 // if we look at the current number of active banks we might be
1039 // tempted to think the DRAM is now idle, however this can be
1040 // undone by an activate that is scheduled to happen before we
1041 // would have reached the idle state, so schedule an event and
1042 // rather check once we actually make it to the point in time when
1043 // the (last) precharge takes place
1044 if (!rank_ref.prechargeEvent.scheduled())
1045 schedule(rank_ref.prechargeEvent, pre_done_at);
1046 else if (rank_ref.prechargeEvent.when() < pre_done_at)
1047 reschedule(rank_ref.prechargeEvent, pre_done_at);
1048}
1049
1050void
1051DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1052{
1053 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1054 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1055
1056 // get the rank
1057 Rank& rank = dram_pkt->rankRef;
1058
1059 // get the bank
1060 Bank& bank = dram_pkt->bankRef;
1061
1062 // for the state we need to track if it is a row hit or not
1063 bool row_hit = true;
1064
1065 // respect any constraints on the command (e.g. tRCD or tCCD)
1066 Tick cmd_at = std::max(bank.colAllowedAt, curTick());
1067
1068 // Determine the access latency and update the bank state
1069 if (bank.openRow == dram_pkt->row) {
1070 // nothing to do
1071 } else {
1072 row_hit = false;
1073
1074 // If there is a page open, precharge it.
1075 if (bank.openRow != Bank::NO_ROW) {
1076 prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick()));
1077 }
1078
1079 // next we need to account for the delay in activating the
1080 // page
1081 Tick act_tick = std::max(bank.actAllowedAt, curTick());
1082
1083 // Record the activation and deal with all the global timing
1084 // constraints caused be a new activation (tRRD and tXAW)
1085 activateBank(rank, bank, act_tick, dram_pkt->row);
1086
1087 // issue the command as early as possible
1088 cmd_at = bank.colAllowedAt;
1089 }
1090
1091 // we need to wait until the bus is available before we can issue
1092 // the command
1093 cmd_at = std::max(cmd_at, busBusyUntil - tCL);
1094
1095 // update the packet ready time
1096 dram_pkt->readyTime = cmd_at + tCL + tBURST;
1097
1098 // only one burst can use the bus at any one point in time
1099 assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1100
1101 // update the time for the next read/write burst for each
1102 // bank (add a max with tCCD/tCCD_L here)
1103 Tick cmd_dly;
1104 for(int j = 0; j < ranksPerChannel; j++) {
1105 for(int i = 0; i < banksPerRank; i++) {
1106 // next burst to same bank group in this rank must not happen
1107 // before tCCD_L. Different bank group timing requirement is
1108 // tBURST; Add tCS for different ranks
1109 if (dram_pkt->rank == j) {
1110 if (bankGroupArch &&
1111 (bank.bankgr == ranks[j]->banks[i].bankgr)) {
1112 // bank group architecture requires longer delays between
1113 // RD/WR burst commands to the same bank group.
1114 // Use tCCD_L in this case
1115 cmd_dly = tCCD_L;
1116 } else {
1117 // use tBURST (equivalent to tCCD_S), the shorter
1118 // cas-to-cas delay value, when either:
1119 // 1) bank group architecture is not supportted
1120 // 2) bank is in a different bank group
1121 cmd_dly = tBURST;
1122 }
1123 } else {
1124 // different rank is by default in a different bank group
1125 // use tBURST (equivalent to tCCD_S), which is the shorter
1126 // cas-to-cas delay in this case
1127 // Add tCS to account for rank-to-rank bus delay requirements
1128 cmd_dly = tBURST + tCS;
1129 }
1130 ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly,
1131 ranks[j]->banks[i].colAllowedAt);
1132 }
1133 }
1134
1135 // Save rank of current access
1136 activeRank = dram_pkt->rank;
1137
1138 // If this is a write, we also need to respect the write recovery
1139 // time before a precharge, in the case of a read, respect the
1140 // read to precharge constraint
1141 bank.preAllowedAt = std::max(bank.preAllowedAt,
1142 dram_pkt->isRead ? cmd_at + tRTP :
1143 dram_pkt->readyTime + tWR);
1144
1145 // increment the bytes accessed and the accesses per row
1146 bank.bytesAccessed += burstSize;
1147 ++bank.rowAccesses;
1148
1149 // if we reached the max, then issue with an auto-precharge
1150 bool auto_precharge = pageMgmt == Enums::close ||
1151 bank.rowAccesses == maxAccessesPerRow;
1152
1153 // if we did not hit the limit, we might still want to
1154 // auto-precharge
1155 if (!auto_precharge &&
1156 (pageMgmt == Enums::open_adaptive ||
1157 pageMgmt == Enums::close_adaptive)) {
1158 // a twist on the open and close page policies:
1159 // 1) open_adaptive page policy does not blindly keep the
1160 // page open, but close it if there are no row hits, and there
1161 // are bank conflicts in the queue
1162 // 2) close_adaptive page policy does not blindly close the
1163 // page, but closes it only if there are no row hits in the queue.
1164 // In this case, only force an auto precharge when there
1165 // are no same page hits in the queue
1166 bool got_more_hits = false;
1167 bool got_bank_conflict = false;
1168
1169 // either look at the read queue or write queue
1170 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1171 writeQueue;
1172 auto p = queue.begin();
1173 // make sure we are not considering the packet that we are
1174 // currently dealing with (which is the head of the queue)
1175 ++p;
1176
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 * Ani Udipi
42 * Neha Agarwal
43 * Omar Naji
44 */
45
46#include "base/bitfield.hh"
47#include "base/trace.hh"
48#include "debug/DRAM.hh"
49#include "debug/DRAMPower.hh"
50#include "debug/DRAMState.hh"
51#include "debug/Drain.hh"
52#include "mem/dram_ctrl.hh"
53#include "sim/system.hh"
54
55using namespace std;
56using namespace Data;
57
58DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
59 AbstractMemory(p),
60 port(name() + ".port", *this), isTimingMode(false),
61 retryRdReq(false), retryWrReq(false),
62 busState(READ),
63 nextReqEvent(this), respondEvent(this),
64 drainManager(NULL),
65 deviceSize(p->device_size),
66 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
67 deviceRowBufferSize(p->device_rowbuffer_size),
68 devicesPerRank(p->devices_per_rank),
69 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
70 rowBufferSize(devicesPerRank * deviceRowBufferSize),
71 columnsPerRowBuffer(rowBufferSize / burstSize),
72 columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1),
73 ranksPerChannel(p->ranks_per_channel),
74 bankGroupsPerRank(p->bank_groups_per_rank),
75 bankGroupArch(p->bank_groups_per_rank > 0),
76 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
77 readBufferSize(p->read_buffer_size),
78 writeBufferSize(p->write_buffer_size),
79 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
80 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
81 minWritesPerSwitch(p->min_writes_per_switch),
82 writesThisTime(0), readsThisTime(0),
83 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
84 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
85 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
86 tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit),
87 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
88 pageMgmt(p->page_policy),
89 maxAccessesPerRow(p->max_accesses_per_row),
90 frontendLatency(p->static_frontend_latency),
91 backendLatency(p->static_backend_latency),
92 busBusyUntil(0), prevArrival(0),
93 nextReqTime(0), activeRank(0), timeStampOffset(0)
94{
95 // sanity check the ranks since we rely on bit slicing for the
96 // address decoding
97 fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not "
98 "allowed, must be a power of two\n", ranksPerChannel);
99
100 for (int i = 0; i < ranksPerChannel; i++) {
101 Rank* rank = new Rank(*this, p);
102 ranks.push_back(rank);
103
104 rank->actTicks.resize(activationLimit, 0);
105 rank->banks.resize(banksPerRank);
106 rank->rank = i;
107
108 for (int b = 0; b < banksPerRank; b++) {
109 rank->banks[b].bank = b;
110 // GDDR addressing of banks to BG is linear.
111 // Here we assume that all DRAM generations address bank groups as
112 // follows:
113 if (bankGroupArch) {
114 // Simply assign lower bits to bank group in order to
115 // rotate across bank groups as banks are incremented
116 // e.g. with 4 banks per bank group and 16 banks total:
117 // banks 0,4,8,12 are in bank group 0
118 // banks 1,5,9,13 are in bank group 1
119 // banks 2,6,10,14 are in bank group 2
120 // banks 3,7,11,15 are in bank group 3
121 rank->banks[b].bankgr = b % bankGroupsPerRank;
122 } else {
123 // No bank groups; simply assign to bank number
124 rank->banks[b].bankgr = b;
125 }
126 }
127 }
128
129 // perform a basic check of the write thresholds
130 if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
131 fatal("Write buffer low threshold %d must be smaller than the "
132 "high threshold %d\n", p->write_low_thresh_perc,
133 p->write_high_thresh_perc);
134
135 // determine the rows per bank by looking at the total capacity
136 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
137
138 // determine the dram actual capacity from the DRAM config in Mbytes
139 uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
140 ranksPerChannel;
141
142 // if actual DRAM size does not match memory capacity in system warn!
143 if (deviceCapacity != capacity / (1024 * 1024))
144 warn("DRAM device capacity (%d Mbytes) does not match the "
145 "address range assigned (%d Mbytes)\n", deviceCapacity,
146 capacity / (1024 * 1024));
147
148 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
149 AbstractMemory::size());
150
151 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
152 rowBufferSize, columnsPerRowBuffer);
153
154 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
155
156 // some basic sanity checks
157 if (tREFI <= tRP || tREFI <= tRFC) {
158 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
159 tREFI, tRP, tRFC);
160 }
161
162 // basic bank group architecture checks ->
163 if (bankGroupArch) {
164 // must have at least one bank per bank group
165 if (bankGroupsPerRank > banksPerRank) {
166 fatal("banks per rank (%d) must be equal to or larger than "
167 "banks groups per rank (%d)\n",
168 banksPerRank, bankGroupsPerRank);
169 }
170 // must have same number of banks in each bank group
171 if ((banksPerRank % bankGroupsPerRank) != 0) {
172 fatal("Banks per rank (%d) must be evenly divisible by bank groups "
173 "per rank (%d) for equal banks per bank group\n",
174 banksPerRank, bankGroupsPerRank);
175 }
176 // tCCD_L should be greater than minimal, back-to-back burst delay
177 if (tCCD_L <= tBURST) {
178 fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
179 "bank groups per rank (%d) is greater than 1\n",
180 tCCD_L, tBURST, bankGroupsPerRank);
181 }
182 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
183 // some datasheets might specify it equal to tRRD
184 if (tRRD_L < tRRD) {
185 fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
186 "bank groups per rank (%d) is greater than 1\n",
187 tRRD_L, tRRD, bankGroupsPerRank);
188 }
189 }
190
191}
192
193void
194DRAMCtrl::init()
195{
196 AbstractMemory::init();
197
198 if (!port.isConnected()) {
199 fatal("DRAMCtrl %s is unconnected!\n", name());
200 } else {
201 port.sendRangeChange();
202 }
203
204 // a bit of sanity checks on the interleaving, save it for here to
205 // ensure that the system pointer is initialised
206 if (range.interleaved()) {
207 if (channels != range.stripes())
208 fatal("%s has %d interleaved address stripes but %d channel(s)\n",
209 name(), range.stripes(), channels);
210
211 if (addrMapping == Enums::RoRaBaChCo) {
212 if (rowBufferSize != range.granularity()) {
213 fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
214 "address map\n", name());
215 }
216 } else if (addrMapping == Enums::RoRaBaCoCh ||
217 addrMapping == Enums::RoCoRaBaCh) {
218 // for the interleavings with channel bits in the bottom,
219 // if the system uses a channel striping granularity that
220 // is larger than the DRAM burst size, then map the
221 // sequential accesses within a stripe to a number of
222 // columns in the DRAM, effectively placing some of the
223 // lower-order column bits as the least-significant bits
224 // of the address (above the ones denoting the burst size)
225 assert(columnsPerStripe >= 1);
226
227 // channel striping has to be done at a granularity that
228 // is equal or larger to a cache line
229 if (system()->cacheLineSize() > range.granularity()) {
230 fatal("Channel interleaving of %s must be at least as large "
231 "as the cache line size\n", name());
232 }
233
234 // ...and equal or smaller than the row-buffer size
235 if (rowBufferSize < range.granularity()) {
236 fatal("Channel interleaving of %s must be at most as large "
237 "as the row-buffer size\n", name());
238 }
239 // this is essentially the check above, so just to be sure
240 assert(columnsPerStripe <= columnsPerRowBuffer);
241 }
242 }
243}
244
245void
246DRAMCtrl::startup()
247{
248 // remember the memory system mode of operation
249 isTimingMode = system()->isTimingMode();
250
251 if (isTimingMode) {
252 // timestamp offset should be in clock cycles for DRAMPower
253 timeStampOffset = divCeil(curTick(), tCK);
254
255 // update the start tick for the precharge accounting to the
256 // current tick
257 for (auto r : ranks) {
258 r->startup(curTick() + tREFI - tRP);
259 }
260
261 // shift the bus busy time sufficiently far ahead that we never
262 // have to worry about negative values when computing the time for
263 // the next request, this will add an insignificant bubble at the
264 // start of simulation
265 busBusyUntil = curTick() + tRP + tRCD + tCL;
266 }
267}
268
269Tick
270DRAMCtrl::recvAtomic(PacketPtr pkt)
271{
272 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
273
274 // do the actual memory access and turn the packet into a response
275 access(pkt);
276
277 Tick latency = 0;
278 if (!pkt->memInhibitAsserted() && pkt->hasData()) {
279 // this value is not supposed to be accurate, just enough to
280 // keep things going, mimic a closed page
281 latency = tRP + tRCD + tCL;
282 }
283 return latency;
284}
285
286bool
287DRAMCtrl::readQueueFull(unsigned int neededEntries) const
288{
289 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
290 readBufferSize, readQueue.size() + respQueue.size(),
291 neededEntries);
292
293 return
294 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
295}
296
297bool
298DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
299{
300 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
301 writeBufferSize, writeQueue.size(), neededEntries);
302 return (writeQueue.size() + neededEntries) > writeBufferSize;
303}
304
305DRAMCtrl::DRAMPacket*
306DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
307 bool isRead)
308{
309 // decode the address based on the address mapping scheme, with
310 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
311 // channel, respectively
312 uint8_t rank;
313 uint8_t bank;
314 // use a 64-bit unsigned during the computations as the row is
315 // always the top bits, and check before creating the DRAMPacket
316 uint64_t row;
317
318 // truncate the address to a DRAM burst, which makes it unique to
319 // a specific column, row, bank, rank and channel
320 Addr addr = dramPktAddr / burstSize;
321
322 // we have removed the lowest order address bits that denote the
323 // position within the column
324 if (addrMapping == Enums::RoRaBaChCo) {
325 // the lowest order bits denote the column to ensure that
326 // sequential cache lines occupy the same row
327 addr = addr / columnsPerRowBuffer;
328
329 // take out the channel part of the address
330 addr = addr / channels;
331
332 // after the channel bits, get the bank bits to interleave
333 // over the banks
334 bank = addr % banksPerRank;
335 addr = addr / banksPerRank;
336
337 // after the bank, we get the rank bits which thus interleaves
338 // over the ranks
339 rank = addr % ranksPerChannel;
340 addr = addr / ranksPerChannel;
341
342 // lastly, get the row bits
343 row = addr % rowsPerBank;
344 addr = addr / rowsPerBank;
345 } else if (addrMapping == Enums::RoRaBaCoCh) {
346 // take out the lower-order column bits
347 addr = addr / columnsPerStripe;
348
349 // take out the channel part of the address
350 addr = addr / channels;
351
352 // next, the higher-order column bites
353 addr = addr / (columnsPerRowBuffer / columnsPerStripe);
354
355 // after the column bits, we get the bank bits to interleave
356 // over the banks
357 bank = addr % banksPerRank;
358 addr = addr / banksPerRank;
359
360 // after the bank, we get the rank bits which thus interleaves
361 // over the ranks
362 rank = addr % ranksPerChannel;
363 addr = addr / ranksPerChannel;
364
365 // lastly, get the row bits
366 row = addr % rowsPerBank;
367 addr = addr / rowsPerBank;
368 } else if (addrMapping == Enums::RoCoRaBaCh) {
369 // optimise for closed page mode and utilise maximum
370 // parallelism of the DRAM (at the cost of power)
371
372 // take out the lower-order column bits
373 addr = addr / columnsPerStripe;
374
375 // take out the channel part of the address, not that this has
376 // to match with how accesses are interleaved between the
377 // controllers in the address mapping
378 addr = addr / channels;
379
380 // start with the bank bits, as this provides the maximum
381 // opportunity for parallelism between requests
382 bank = addr % banksPerRank;
383 addr = addr / banksPerRank;
384
385 // next get the rank bits
386 rank = addr % ranksPerChannel;
387 addr = addr / ranksPerChannel;
388
389 // next, the higher-order column bites
390 addr = addr / (columnsPerRowBuffer / columnsPerStripe);
391
392 // lastly, get the row bits
393 row = addr % rowsPerBank;
394 addr = addr / rowsPerBank;
395 } else
396 panic("Unknown address mapping policy chosen!");
397
398 assert(rank < ranksPerChannel);
399 assert(bank < banksPerRank);
400 assert(row < rowsPerBank);
401 assert(row < Bank::NO_ROW);
402
403 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
404 dramPktAddr, rank, bank, row);
405
406 // create the corresponding DRAM packet with the entry time and
407 // ready time set to the current tick, the latter will be updated
408 // later
409 uint16_t bank_id = banksPerRank * rank + bank;
410 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
411 size, ranks[rank]->banks[bank], *ranks[rank]);
412}
413
414void
415DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
416{
417 // only add to the read queue here. whenever the request is
418 // eventually done, set the readyTime, and call schedule()
419 assert(!pkt->isWrite());
420
421 assert(pktCount != 0);
422
423 // if the request size is larger than burst size, the pkt is split into
424 // multiple DRAM packets
425 // Note if the pkt starting address is not aligened to burst size, the
426 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
427 // are aligned to burst size boundaries. This is to ensure we accurately
428 // check read packets against packets in write queue.
429 Addr addr = pkt->getAddr();
430 unsigned pktsServicedByWrQ = 0;
431 BurstHelper* burst_helper = NULL;
432 for (int cnt = 0; cnt < pktCount; ++cnt) {
433 unsigned size = std::min((addr | (burstSize - 1)) + 1,
434 pkt->getAddr() + pkt->getSize()) - addr;
435 readPktSize[ceilLog2(size)]++;
436 readBursts++;
437
438 // First check write buffer to see if the data is already at
439 // the controller
440 bool foundInWrQ = false;
441 for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
442 // check if the read is subsumed in the write entry we are
443 // looking at
444 if ((*i)->addr <= addr &&
445 (addr + size) <= ((*i)->addr + (*i)->size)) {
446 foundInWrQ = true;
447 servicedByWrQ++;
448 pktsServicedByWrQ++;
449 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
450 "write queue\n", addr, size);
451 bytesReadWrQ += burstSize;
452 break;
453 }
454 }
455
456 // If not found in the write q, make a DRAM packet and
457 // push it onto the read queue
458 if (!foundInWrQ) {
459
460 // Make the burst helper for split packets
461 if (pktCount > 1 && burst_helper == NULL) {
462 DPRINTF(DRAM, "Read to addr %lld translates to %d "
463 "dram requests\n", pkt->getAddr(), pktCount);
464 burst_helper = new BurstHelper(pktCount);
465 }
466
467 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
468 dram_pkt->burstHelper = burst_helper;
469
470 assert(!readQueueFull(1));
471 rdQLenPdf[readQueue.size() + respQueue.size()]++;
472
473 DPRINTF(DRAM, "Adding to read queue\n");
474
475 readQueue.push_back(dram_pkt);
476
477 // Update stats
478 avgRdQLen = readQueue.size() + respQueue.size();
479 }
480
481 // Starting address of next dram pkt (aligend to burstSize boundary)
482 addr = (addr | (burstSize - 1)) + 1;
483 }
484
485 // If all packets are serviced by write queue, we send the repsonse back
486 if (pktsServicedByWrQ == pktCount) {
487 accessAndRespond(pkt, frontendLatency);
488 return;
489 }
490
491 // Update how many split packets are serviced by write queue
492 if (burst_helper != NULL)
493 burst_helper->burstsServiced = pktsServicedByWrQ;
494
495 // If we are not already scheduled to get a request out of the
496 // queue, do so now
497 if (!nextReqEvent.scheduled()) {
498 DPRINTF(DRAM, "Request scheduled immediately\n");
499 schedule(nextReqEvent, curTick());
500 }
501}
502
503void
504DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
505{
506 // only add to the write queue here. whenever the request is
507 // eventually done, set the readyTime, and call schedule()
508 assert(pkt->isWrite());
509
510 // if the request size is larger than burst size, the pkt is split into
511 // multiple DRAM packets
512 Addr addr = pkt->getAddr();
513 for (int cnt = 0; cnt < pktCount; ++cnt) {
514 unsigned size = std::min((addr | (burstSize - 1)) + 1,
515 pkt->getAddr() + pkt->getSize()) - addr;
516 writePktSize[ceilLog2(size)]++;
517 writeBursts++;
518
519 // see if we can merge with an existing item in the write
520 // queue and keep track of whether we have merged or not so we
521 // can stop at that point and also avoid enqueueing a new
522 // request
523 bool merged = false;
524 auto w = writeQueue.begin();
525
526 while(!merged && w != writeQueue.end()) {
527 // either of the two could be first, if they are the same
528 // it does not matter which way we go
529 if ((*w)->addr >= addr) {
530 // the existing one starts after the new one, figure
531 // out where the new one ends with respect to the
532 // existing one
533 if ((addr + size) >= ((*w)->addr + (*w)->size)) {
534 // check if the existing one is completely
535 // subsumed in the new one
536 DPRINTF(DRAM, "Merging write covering existing burst\n");
537 merged = true;
538 // update both the address and the size
539 (*w)->addr = addr;
540 (*w)->size = size;
541 } else if ((addr + size) >= (*w)->addr &&
542 ((*w)->addr + (*w)->size - addr) <= burstSize) {
543 // the new one is just before or partially
544 // overlapping with the existing one, and together
545 // they fit within a burst
546 DPRINTF(DRAM, "Merging write before existing burst\n");
547 merged = true;
548 // the existing queue item needs to be adjusted with
549 // respect to both address and size
550 (*w)->size = (*w)->addr + (*w)->size - addr;
551 (*w)->addr = addr;
552 }
553 } else {
554 // the new one starts after the current one, figure
555 // out where the existing one ends with respect to the
556 // new one
557 if (((*w)->addr + (*w)->size) >= (addr + size)) {
558 // check if the new one is completely subsumed in the
559 // existing one
560 DPRINTF(DRAM, "Merging write into existing burst\n");
561 merged = true;
562 // no adjustments necessary
563 } else if (((*w)->addr + (*w)->size) >= addr &&
564 (addr + size - (*w)->addr) <= burstSize) {
565 // the existing one is just before or partially
566 // overlapping with the new one, and together
567 // they fit within a burst
568 DPRINTF(DRAM, "Merging write after existing burst\n");
569 merged = true;
570 // the address is right, and only the size has
571 // to be adjusted
572 (*w)->size = addr + size - (*w)->addr;
573 }
574 }
575 ++w;
576 }
577
578 // if the item was not merged we need to create a new write
579 // and enqueue it
580 if (!merged) {
581 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
582
583 assert(writeQueue.size() < writeBufferSize);
584 wrQLenPdf[writeQueue.size()]++;
585
586 DPRINTF(DRAM, "Adding to write queue\n");
587
588 writeQueue.push_back(dram_pkt);
589
590 // Update stats
591 avgWrQLen = writeQueue.size();
592 } else {
593 // keep track of the fact that this burst effectively
594 // disappeared as it was merged with an existing one
595 mergedWrBursts++;
596 }
597
598 // Starting address of next dram pkt (aligend to burstSize boundary)
599 addr = (addr | (burstSize - 1)) + 1;
600 }
601
602 // we do not wait for the writes to be send to the actual memory,
603 // but instead take responsibility for the consistency here and
604 // snoop the write queue for any upcoming reads
605 // @todo, if a pkt size is larger than burst size, we might need a
606 // different front end latency
607 accessAndRespond(pkt, frontendLatency);
608
609 // If we are not already scheduled to get a request out of the
610 // queue, do so now
611 if (!nextReqEvent.scheduled()) {
612 DPRINTF(DRAM, "Request scheduled immediately\n");
613 schedule(nextReqEvent, curTick());
614 }
615}
616
617void
618DRAMCtrl::printQs() const {
619 DPRINTF(DRAM, "===READ QUEUE===\n\n");
620 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) {
621 DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
622 }
623 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
624 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) {
625 DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
626 }
627 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
628 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) {
629 DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
630 }
631}
632
633bool
634DRAMCtrl::recvTimingReq(PacketPtr pkt)
635{
636 /// @todo temporary hack to deal with memory corruption issues until
637 /// 4-phase transactions are complete
638 for (int x = 0; x < pendingDelete.size(); x++)
639 delete pendingDelete[x];
640 pendingDelete.clear();
641
642 // This is where we enter from the outside world
643 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
644 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
645
646 // simply drop inhibited packets for now
647 if (pkt->memInhibitAsserted()) {
648 DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
649 pendingDelete.push_back(pkt);
650 return true;
651 }
652
653 // Calc avg gap between requests
654 if (prevArrival != 0) {
655 totGap += curTick() - prevArrival;
656 }
657 prevArrival = curTick();
658
659
660 // Find out how many dram packets a pkt translates to
661 // If the burst size is equal or larger than the pkt size, then a pkt
662 // translates to only one dram packet. Otherwise, a pkt translates to
663 // multiple dram packets
664 unsigned size = pkt->getSize();
665 unsigned offset = pkt->getAddr() & (burstSize - 1);
666 unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
667
668 // check local buffers and do not accept if full
669 if (pkt->isRead()) {
670 assert(size != 0);
671 if (readQueueFull(dram_pkt_count)) {
672 DPRINTF(DRAM, "Read queue full, not accepting\n");
673 // remember that we have to retry this port
674 retryRdReq = true;
675 numRdRetry++;
676 return false;
677 } else {
678 addToReadQueue(pkt, dram_pkt_count);
679 readReqs++;
680 bytesReadSys += size;
681 }
682 } else if (pkt->isWrite()) {
683 assert(size != 0);
684 if (writeQueueFull(dram_pkt_count)) {
685 DPRINTF(DRAM, "Write queue full, not accepting\n");
686 // remember that we have to retry this port
687 retryWrReq = true;
688 numWrRetry++;
689 return false;
690 } else {
691 addToWriteQueue(pkt, dram_pkt_count);
692 writeReqs++;
693 bytesWrittenSys += size;
694 }
695 } else {
696 DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
697 neitherReadNorWrite++;
698 accessAndRespond(pkt, 1);
699 }
700
701 return true;
702}
703
704void
705DRAMCtrl::processRespondEvent()
706{
707 DPRINTF(DRAM,
708 "processRespondEvent(): Some req has reached its readyTime\n");
709
710 DRAMPacket* dram_pkt = respQueue.front();
711
712 if (dram_pkt->burstHelper) {
713 // it is a split packet
714 dram_pkt->burstHelper->burstsServiced++;
715 if (dram_pkt->burstHelper->burstsServiced ==
716 dram_pkt->burstHelper->burstCount) {
717 // we have now serviced all children packets of a system packet
718 // so we can now respond to the requester
719 // @todo we probably want to have a different front end and back
720 // end latency for split packets
721 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
722 delete dram_pkt->burstHelper;
723 dram_pkt->burstHelper = NULL;
724 }
725 } else {
726 // it is not a split packet
727 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
728 }
729
730 delete respQueue.front();
731 respQueue.pop_front();
732
733 if (!respQueue.empty()) {
734 assert(respQueue.front()->readyTime >= curTick());
735 assert(!respondEvent.scheduled());
736 schedule(respondEvent, respQueue.front()->readyTime);
737 } else {
738 // if there is nothing left in any queue, signal a drain
739 if (writeQueue.empty() && readQueue.empty() &&
740 drainManager) {
741 DPRINTF(Drain, "DRAM controller done draining\n");
742 drainManager->signalDrainDone();
743 drainManager = NULL;
744 }
745 }
746
747 // We have made a location in the queue available at this point,
748 // so if there is a read that was forced to wait, retry now
749 if (retryRdReq) {
750 retryRdReq = false;
751 port.sendRetryReq();
752 }
753}
754
755bool
756DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
757{
758 // This method does the arbitration between requests. The chosen
759 // packet is simply moved to the head of the queue. The other
760 // methods know that this is the place to look. For example, with
761 // FCFS, this method does nothing
762 assert(!queue.empty());
763
764 // bool to indicate if a packet to an available rank is found
765 bool found_packet = false;
766 if (queue.size() == 1) {
767 DRAMPacket* dram_pkt = queue.front();
768 // available rank corresponds to state refresh idle
769 if (ranks[dram_pkt->rank]->isAvailable()) {
770 found_packet = true;
771 DPRINTF(DRAM, "Single request, going to a free rank\n");
772 } else {
773 DPRINTF(DRAM, "Single request, going to a busy rank\n");
774 }
775 return found_packet;
776 }
777
778 if (memSchedPolicy == Enums::fcfs) {
779 // check if there is a packet going to a free rank
780 for(auto i = queue.begin(); i != queue.end() ; ++i) {
781 DRAMPacket* dram_pkt = *i;
782 if (ranks[dram_pkt->rank]->isAvailable()) {
783 queue.erase(i);
784 queue.push_front(dram_pkt);
785 found_packet = true;
786 break;
787 }
788 }
789 } else if (memSchedPolicy == Enums::frfcfs) {
790 found_packet = reorderQueue(queue, switched_cmd_type);
791 } else
792 panic("No scheduling policy chosen\n");
793 return found_packet;
794}
795
796bool
797DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
798{
799 // Only determine this when needed
800 uint64_t earliest_banks = 0;
801
802 // Search for row hits first, if no row hit is found then schedule the
803 // packet to one of the earliest banks available
804 bool found_packet = false;
805 bool found_earliest_pkt = false;
806 bool found_prepped_diff_rank_pkt = false;
807 auto selected_pkt_it = queue.end();
808
809 for (auto i = queue.begin(); i != queue.end() ; ++i) {
810 DRAMPacket* dram_pkt = *i;
811 const Bank& bank = dram_pkt->bankRef;
812 // check if rank is busy. If this is the case jump to the next packet
813 // Check if it is a row hit
814 if (dram_pkt->rankRef.isAvailable()) {
815 if (bank.openRow == dram_pkt->row) {
816 if (dram_pkt->rank == activeRank || switched_cmd_type) {
817 // FCFS within the hits, giving priority to commands
818 // that access the same rank as the previous burst
819 // to minimize bus turnaround delays
820 // Only give rank prioity when command type is
821 // not changing
822 DPRINTF(DRAM, "Row buffer hit\n");
823 selected_pkt_it = i;
824 break;
825 } else if (!found_prepped_diff_rank_pkt) {
826 // found row hit for command on different rank
827 // than prev burst
828 selected_pkt_it = i;
829 found_prepped_diff_rank_pkt = true;
830 }
831 } else if (!found_earliest_pkt & !found_prepped_diff_rank_pkt) {
832 // packet going to a rank which is currently not waiting for a
833 // refresh, No row hit and
834 // haven't found an entry with a row hit to a new rank
835 if (earliest_banks == 0)
836 // Determine entries with earliest bank prep delay
837 // Function will give priority to commands that access the
838 // same rank as previous burst and can prep
839 // the bank seamlessly
840 earliest_banks = minBankPrep(queue, switched_cmd_type);
841
842 // FCFS - Bank is first available bank
843 if (bits(earliest_banks, dram_pkt->bankId,
844 dram_pkt->bankId)) {
845 // Remember the packet to be scheduled to one of
846 // the earliest banks available, FCFS amongst the
847 // earliest banks
848 selected_pkt_it = i;
849 //if the packet found is going to a rank that is currently
850 //not busy then update the found_packet to true
851 found_earliest_pkt = true;
852 }
853 }
854 }
855 }
856
857 if (selected_pkt_it != queue.end()) {
858 DRAMPacket* selected_pkt = *selected_pkt_it;
859 queue.erase(selected_pkt_it);
860 queue.push_front(selected_pkt);
861 found_packet = true;
862 }
863 return found_packet;
864}
865
866void
867DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
868{
869 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
870
871 bool needsResponse = pkt->needsResponse();
872 // do the actual memory access which also turns the packet into a
873 // response
874 access(pkt);
875
876 // turn packet around to go back to requester if response expected
877 if (needsResponse) {
878 // access already turned the packet into a response
879 assert(pkt->isResponse());
880 // response_time consumes the static latency and is charged also
881 // with headerDelay that takes into account the delay provided by
882 // the xbar and also the payloadDelay that takes into account the
883 // number of data beats.
884 Tick response_time = curTick() + static_latency + pkt->headerDelay +
885 pkt->payloadDelay;
886 // Here we reset the timing of the packet before sending it out.
887 pkt->headerDelay = pkt->payloadDelay = 0;
888
889 // queue the packet in the response queue to be sent out after
890 // the static latency has passed
891 port.schedTimingResp(pkt, response_time);
892 } else {
893 // @todo the packet is going to be deleted, and the DRAMPacket
894 // is still having a pointer to it
895 pendingDelete.push_back(pkt);
896 }
897
898 DPRINTF(DRAM, "Done\n");
899
900 return;
901}
902
903void
904DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref,
905 Tick act_tick, uint32_t row)
906{
907 assert(rank_ref.actTicks.size() == activationLimit);
908
909 DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
910
911 // update the open row
912 assert(bank_ref.openRow == Bank::NO_ROW);
913 bank_ref.openRow = row;
914
915 // start counting anew, this covers both the case when we
916 // auto-precharged, and when this access is forced to
917 // precharge
918 bank_ref.bytesAccessed = 0;
919 bank_ref.rowAccesses = 0;
920
921 ++rank_ref.numBanksActive;
922 assert(rank_ref.numBanksActive <= banksPerRank);
923
924 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
925 bank_ref.bank, rank_ref.rank, act_tick,
926 ranks[rank_ref.rank]->numBanksActive);
927
928 rank_ref.power.powerlib.doCommand(MemCommand::ACT, bank_ref.bank,
929 divCeil(act_tick, tCK) -
930 timeStampOffset);
931
932 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
933 timeStampOffset, bank_ref.bank, rank_ref.rank);
934
935 // The next access has to respect tRAS for this bank
936 bank_ref.preAllowedAt = act_tick + tRAS;
937
938 // Respect the row-to-column command delay
939 bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt);
940
941 // start by enforcing tRRD
942 for(int i = 0; i < banksPerRank; i++) {
943 // next activate to any bank in this rank must not happen
944 // before tRRD
945 if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) {
946 // bank group architecture requires longer delays between
947 // ACT commands within the same bank group. Use tRRD_L
948 // in this case
949 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L,
950 rank_ref.banks[i].actAllowedAt);
951 } else {
952 // use shorter tRRD value when either
953 // 1) bank group architecture is not supportted
954 // 2) bank is in a different bank group
955 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD,
956 rank_ref.banks[i].actAllowedAt);
957 }
958 }
959
960 // next, we deal with tXAW, if the activation limit is disabled
961 // then we directly schedule an activate power event
962 if (!rank_ref.actTicks.empty()) {
963 // sanity check
964 if (rank_ref.actTicks.back() &&
965 (act_tick - rank_ref.actTicks.back()) < tXAW) {
966 panic("Got %d activates in window %d (%llu - %llu) which "
967 "is smaller than %llu\n", activationLimit, act_tick -
968 rank_ref.actTicks.back(), act_tick,
969 rank_ref.actTicks.back(), tXAW);
970 }
971
972 // shift the times used for the book keeping, the last element
973 // (highest index) is the oldest one and hence the lowest value
974 rank_ref.actTicks.pop_back();
975
976 // record an new activation (in the future)
977 rank_ref.actTicks.push_front(act_tick);
978
979 // cannot activate more than X times in time window tXAW, push the
980 // next one (the X + 1'st activate) to be tXAW away from the
981 // oldest in our window of X
982 if (rank_ref.actTicks.back() &&
983 (act_tick - rank_ref.actTicks.back()) < tXAW) {
984 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
985 "no earlier than %llu\n", activationLimit,
986 rank_ref.actTicks.back() + tXAW);
987 for(int j = 0; j < banksPerRank; j++)
988 // next activate must not happen before end of window
989 rank_ref.banks[j].actAllowedAt =
990 std::max(rank_ref.actTicks.back() + tXAW,
991 rank_ref.banks[j].actAllowedAt);
992 }
993 }
994
995 // at the point when this activate takes place, make sure we
996 // transition to the active power state
997 if (!rank_ref.activateEvent.scheduled())
998 schedule(rank_ref.activateEvent, act_tick);
999 else if (rank_ref.activateEvent.when() > act_tick)
1000 // move it sooner in time
1001 reschedule(rank_ref.activateEvent, act_tick);
1002}
1003
1004void
1005DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace)
1006{
1007 // make sure the bank has an open row
1008 assert(bank.openRow != Bank::NO_ROW);
1009
1010 // sample the bytes per activate here since we are closing
1011 // the page
1012 bytesPerActivate.sample(bank.bytesAccessed);
1013
1014 bank.openRow = Bank::NO_ROW;
1015
1016 // no precharge allowed before this one
1017 bank.preAllowedAt = pre_at;
1018
1019 Tick pre_done_at = pre_at + tRP;
1020
1021 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
1022
1023 assert(rank_ref.numBanksActive != 0);
1024 --rank_ref.numBanksActive;
1025
1026 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
1027 "%d active\n", bank.bank, rank_ref.rank, pre_at,
1028 rank_ref.numBanksActive);
1029
1030 if (trace) {
1031
1032 rank_ref.power.powerlib.doCommand(MemCommand::PRE, bank.bank,
1033 divCeil(pre_at, tCK) -
1034 timeStampOffset);
1035 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
1036 timeStampOffset, bank.bank, rank_ref.rank);
1037 }
1038 // if we look at the current number of active banks we might be
1039 // tempted to think the DRAM is now idle, however this can be
1040 // undone by an activate that is scheduled to happen before we
1041 // would have reached the idle state, so schedule an event and
1042 // rather check once we actually make it to the point in time when
1043 // the (last) precharge takes place
1044 if (!rank_ref.prechargeEvent.scheduled())
1045 schedule(rank_ref.prechargeEvent, pre_done_at);
1046 else if (rank_ref.prechargeEvent.when() < pre_done_at)
1047 reschedule(rank_ref.prechargeEvent, pre_done_at);
1048}
1049
1050void
1051DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1052{
1053 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1054 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1055
1056 // get the rank
1057 Rank& rank = dram_pkt->rankRef;
1058
1059 // get the bank
1060 Bank& bank = dram_pkt->bankRef;
1061
1062 // for the state we need to track if it is a row hit or not
1063 bool row_hit = true;
1064
1065 // respect any constraints on the command (e.g. tRCD or tCCD)
1066 Tick cmd_at = std::max(bank.colAllowedAt, curTick());
1067
1068 // Determine the access latency and update the bank state
1069 if (bank.openRow == dram_pkt->row) {
1070 // nothing to do
1071 } else {
1072 row_hit = false;
1073
1074 // If there is a page open, precharge it.
1075 if (bank.openRow != Bank::NO_ROW) {
1076 prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick()));
1077 }
1078
1079 // next we need to account for the delay in activating the
1080 // page
1081 Tick act_tick = std::max(bank.actAllowedAt, curTick());
1082
1083 // Record the activation and deal with all the global timing
1084 // constraints caused be a new activation (tRRD and tXAW)
1085 activateBank(rank, bank, act_tick, dram_pkt->row);
1086
1087 // issue the command as early as possible
1088 cmd_at = bank.colAllowedAt;
1089 }
1090
1091 // we need to wait until the bus is available before we can issue
1092 // the command
1093 cmd_at = std::max(cmd_at, busBusyUntil - tCL);
1094
1095 // update the packet ready time
1096 dram_pkt->readyTime = cmd_at + tCL + tBURST;
1097
1098 // only one burst can use the bus at any one point in time
1099 assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1100
1101 // update the time for the next read/write burst for each
1102 // bank (add a max with tCCD/tCCD_L here)
1103 Tick cmd_dly;
1104 for(int j = 0; j < ranksPerChannel; j++) {
1105 for(int i = 0; i < banksPerRank; i++) {
1106 // next burst to same bank group in this rank must not happen
1107 // before tCCD_L. Different bank group timing requirement is
1108 // tBURST; Add tCS for different ranks
1109 if (dram_pkt->rank == j) {
1110 if (bankGroupArch &&
1111 (bank.bankgr == ranks[j]->banks[i].bankgr)) {
1112 // bank group architecture requires longer delays between
1113 // RD/WR burst commands to the same bank group.
1114 // Use tCCD_L in this case
1115 cmd_dly = tCCD_L;
1116 } else {
1117 // use tBURST (equivalent to tCCD_S), the shorter
1118 // cas-to-cas delay value, when either:
1119 // 1) bank group architecture is not supportted
1120 // 2) bank is in a different bank group
1121 cmd_dly = tBURST;
1122 }
1123 } else {
1124 // different rank is by default in a different bank group
1125 // use tBURST (equivalent to tCCD_S), which is the shorter
1126 // cas-to-cas delay in this case
1127 // Add tCS to account for rank-to-rank bus delay requirements
1128 cmd_dly = tBURST + tCS;
1129 }
1130 ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly,
1131 ranks[j]->banks[i].colAllowedAt);
1132 }
1133 }
1134
1135 // Save rank of current access
1136 activeRank = dram_pkt->rank;
1137
1138 // If this is a write, we also need to respect the write recovery
1139 // time before a precharge, in the case of a read, respect the
1140 // read to precharge constraint
1141 bank.preAllowedAt = std::max(bank.preAllowedAt,
1142 dram_pkt->isRead ? cmd_at + tRTP :
1143 dram_pkt->readyTime + tWR);
1144
1145 // increment the bytes accessed and the accesses per row
1146 bank.bytesAccessed += burstSize;
1147 ++bank.rowAccesses;
1148
1149 // if we reached the max, then issue with an auto-precharge
1150 bool auto_precharge = pageMgmt == Enums::close ||
1151 bank.rowAccesses == maxAccessesPerRow;
1152
1153 // if we did not hit the limit, we might still want to
1154 // auto-precharge
1155 if (!auto_precharge &&
1156 (pageMgmt == Enums::open_adaptive ||
1157 pageMgmt == Enums::close_adaptive)) {
1158 // a twist on the open and close page policies:
1159 // 1) open_adaptive page policy does not blindly keep the
1160 // page open, but close it if there are no row hits, and there
1161 // are bank conflicts in the queue
1162 // 2) close_adaptive page policy does not blindly close the
1163 // page, but closes it only if there are no row hits in the queue.
1164 // In this case, only force an auto precharge when there
1165 // are no same page hits in the queue
1166 bool got_more_hits = false;
1167 bool got_bank_conflict = false;
1168
1169 // either look at the read queue or write queue
1170 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1171 writeQueue;
1172 auto p = queue.begin();
1173 // make sure we are not considering the packet that we are
1174 // currently dealing with (which is the head of the queue)
1175 ++p;
1176
1177 // keep on looking until we have found required condition or
1178 // reached the end
1179 while (!(got_more_hits &&
1180 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
1181 p != queue.end()) {
1177 // keep on looking until we find a hit or reach the end of the queue
1178 // 1) if a hit is found, then both open and close adaptive policies keep
1179 // the page open
1180 // 2) if no hit is found, got_bank_conflict is set to true if a bank
1181 // conflict request is waiting in the queue
1182 while (!got_more_hits && p != queue.end()) {
1182 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1183 (dram_pkt->bank == (*p)->bank);
1184 bool same_row = dram_pkt->row == (*p)->row;
1185 got_more_hits |= same_rank_bank && same_row;
1186 got_bank_conflict |= same_rank_bank && !same_row;
1187 ++p;
1188 }
1189
1190 // auto pre-charge when either
1191 // 1) open_adaptive policy, we have not got any more hits, and
1192 // have a bank conflict
1193 // 2) close_adaptive policy and we have not got any more hits
1194 auto_precharge = !got_more_hits &&
1195 (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1196 }
1197
1198 // DRAMPower trace command to be written
1199 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1200
1201 // MemCommand required for DRAMPower library
1202 MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1203 MemCommand::WR;
1204
1205 // if this access should use auto-precharge, then we are
1206 // closing the row
1207 if (auto_precharge) {
1208 // if auto-precharge push a PRE command at the correct tick to the
1209 // list used by DRAMPower library to calculate power
1210 prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt));
1211
1212 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1213 }
1214
1215 // Update bus state
1216 busBusyUntil = dram_pkt->readyTime;
1217
1218 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1219 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1220
1221 dram_pkt->rankRef.power.powerlib.doCommand(command, dram_pkt->bank,
1222 divCeil(cmd_at, tCK) -
1223 timeStampOffset);
1224
1225 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1226 timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1227
1228 // Update the minimum timing between the requests, this is a
1229 // conservative estimate of when we have to schedule the next
1230 // request to not introduce any unecessary bubbles. In most cases
1231 // we will wake up sooner than we have to.
1232 nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1233
1234 // Update the stats and schedule the next request
1235 if (dram_pkt->isRead) {
1236 ++readsThisTime;
1237 if (row_hit)
1238 readRowHits++;
1239 bytesReadDRAM += burstSize;
1240 perBankRdBursts[dram_pkt->bankId]++;
1241
1242 // Update latency stats
1243 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1244 totBusLat += tBURST;
1245 totQLat += cmd_at - dram_pkt->entryTime;
1246 } else {
1247 ++writesThisTime;
1248 if (row_hit)
1249 writeRowHits++;
1250 bytesWritten += burstSize;
1251 perBankWrBursts[dram_pkt->bankId]++;
1252 }
1253}
1254
1255void
1256DRAMCtrl::processNextReqEvent()
1257{
1258 int busyRanks = 0;
1259 for (auto r : ranks) {
1260 if (!r->isAvailable()) {
1261 // rank is busy refreshing
1262 busyRanks++;
1263
1264 // let the rank know that if it was waiting to drain, it
1265 // is now done and ready to proceed
1266 r->checkDrainDone();
1267 }
1268 }
1269
1270 if (busyRanks == ranksPerChannel) {
1271 // if all ranks are refreshing wait for them to finish
1272 // and stall this state machine without taking any further
1273 // action, and do not schedule a new nextReqEvent
1274 return;
1275 }
1276
1277 // pre-emptively set to false. Overwrite if in READ_TO_WRITE
1278 // or WRITE_TO_READ state
1279 bool switched_cmd_type = false;
1280 if (busState == READ_TO_WRITE) {
1281 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1282 "waiting\n", readsThisTime, readQueue.size());
1283
1284 // sample and reset the read-related stats as we are now
1285 // transitioning to writes, and all reads are done
1286 rdPerTurnAround.sample(readsThisTime);
1287 readsThisTime = 0;
1288
1289 // now proceed to do the actual writes
1290 busState = WRITE;
1291 switched_cmd_type = true;
1292 } else if (busState == WRITE_TO_READ) {
1293 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1294 "waiting\n", writesThisTime, writeQueue.size());
1295
1296 wrPerTurnAround.sample(writesThisTime);
1297 writesThisTime = 0;
1298
1299 busState = READ;
1300 switched_cmd_type = true;
1301 }
1302
1303 // when we get here it is either a read or a write
1304 if (busState == READ) {
1305
1306 // track if we should switch or not
1307 bool switch_to_writes = false;
1308
1309 if (readQueue.empty()) {
1310 // In the case there is no read request to go next,
1311 // trigger writes if we have passed the low threshold (or
1312 // if we are draining)
1313 if (!writeQueue.empty() &&
1314 (drainManager || writeQueue.size() > writeLowThreshold)) {
1315
1316 switch_to_writes = true;
1317 } else {
1318 // check if we are drained
1319 if (respQueue.empty () && drainManager) {
1320 DPRINTF(Drain, "DRAM controller done draining\n");
1321 drainManager->signalDrainDone();
1322 drainManager = NULL;
1323 }
1324
1325 // nothing to do, not even any point in scheduling an
1326 // event for the next request
1327 return;
1328 }
1329 } else {
1330 // bool to check if there is a read to a free rank
1331 bool found_read = false;
1332
1333 // Figure out which read request goes next, and move it to the
1334 // front of the read queue
1335 found_read = chooseNext(readQueue, switched_cmd_type);
1336
1337 // if no read to an available rank is found then return
1338 // at this point. There could be writes to the available ranks
1339 // which are above the required threshold. However, to
1340 // avoid adding more complexity to the code, return and wait
1341 // for a refresh event to kick things into action again.
1342 if (!found_read)
1343 return;
1344
1345 DRAMPacket* dram_pkt = readQueue.front();
1346 assert(dram_pkt->rankRef.isAvailable());
1347 // here we get a bit creative and shift the bus busy time not
1348 // just the tWTR, but also a CAS latency to capture the fact
1349 // that we are allowed to prepare a new bank, but not issue a
1350 // read command until after tWTR, in essence we capture a
1351 // bubble on the data bus that is tWTR + tCL
1352 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1353 busBusyUntil += tWTR + tCL;
1354 }
1355
1356 doDRAMAccess(dram_pkt);
1357
1358 // At this point we're done dealing with the request
1359 readQueue.pop_front();
1360
1361 // sanity check
1362 assert(dram_pkt->size <= burstSize);
1363 assert(dram_pkt->readyTime >= curTick());
1364
1365 // Insert into response queue. It will be sent back to the
1366 // requestor at its readyTime
1367 if (respQueue.empty()) {
1368 assert(!respondEvent.scheduled());
1369 schedule(respondEvent, dram_pkt->readyTime);
1370 } else {
1371 assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1372 assert(respondEvent.scheduled());
1373 }
1374
1375 respQueue.push_back(dram_pkt);
1376
1377 // we have so many writes that we have to transition
1378 if (writeQueue.size() > writeHighThreshold) {
1379 switch_to_writes = true;
1380 }
1381 }
1382
1383 // switching to writes, either because the read queue is empty
1384 // and the writes have passed the low threshold (or we are
1385 // draining), or because the writes hit the hight threshold
1386 if (switch_to_writes) {
1387 // transition to writing
1388 busState = READ_TO_WRITE;
1389 }
1390 } else {
1391 // bool to check if write to free rank is found
1392 bool found_write = false;
1393
1394 found_write = chooseNext(writeQueue, switched_cmd_type);
1395
1396 // if no writes to an available rank are found then return.
1397 // There could be reads to the available ranks. However, to avoid
1398 // adding more complexity to the code, return at this point and wait
1399 // for a refresh event to kick things into action again.
1400 if (!found_write)
1401 return;
1402
1403 DRAMPacket* dram_pkt = writeQueue.front();
1404 assert(dram_pkt->rankRef.isAvailable());
1405 // sanity check
1406 assert(dram_pkt->size <= burstSize);
1407
1408 // add a bubble to the data bus, as defined by the
1409 // tRTW when access is to the same rank as previous burst
1410 // Different rank timing is handled with tCS, which is
1411 // applied to colAllowedAt
1412 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1413 busBusyUntil += tRTW;
1414 }
1415
1416 doDRAMAccess(dram_pkt);
1417
1418 writeQueue.pop_front();
1419 delete dram_pkt;
1420
1421 // If we emptied the write queue, or got sufficiently below the
1422 // threshold (using the minWritesPerSwitch as the hysteresis) and
1423 // are not draining, or we have reads waiting and have done enough
1424 // writes, then switch to reads.
1425 if (writeQueue.empty() ||
1426 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1427 !drainManager) ||
1428 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1429 // turn the bus back around for reads again
1430 busState = WRITE_TO_READ;
1431
1432 // note that the we switch back to reads also in the idle
1433 // case, which eventually will check for any draining and
1434 // also pause any further scheduling if there is really
1435 // nothing to do
1436 }
1437 }
1438 // It is possible that a refresh to another rank kicks things back into
1439 // action before reaching this point.
1440 if (!nextReqEvent.scheduled())
1441 schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1442
1443 // If there is space available and we have writes waiting then let
1444 // them retry. This is done here to ensure that the retry does not
1445 // cause a nextReqEvent to be scheduled before we do so as part of
1446 // the next request processing
1447 if (retryWrReq && writeQueue.size() < writeBufferSize) {
1448 retryWrReq = false;
1449 port.sendRetryReq();
1450 }
1451}
1452
1453uint64_t
1454DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1455 bool switched_cmd_type) const
1456{
1457 uint64_t bank_mask = 0;
1458 Tick min_act_at = MaxTick;
1459
1460 uint64_t bank_mask_same_rank = 0;
1461 Tick min_act_at_same_rank = MaxTick;
1462
1463 // Give precedence to commands that access same rank as previous command
1464 bool same_rank_match = false;
1465
1466 // determine if we have queued transactions targetting the
1467 // bank in question
1468 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1469 for (const auto& p : queue) {
1470 if(p->rankRef.isAvailable())
1471 got_waiting[p->bankId] = true;
1472 }
1473
1474 for (int i = 0; i < ranksPerChannel; i++) {
1475 for (int j = 0; j < banksPerRank; j++) {
1476 uint16_t bank_id = i * banksPerRank + j;
1477
1478 // if we have waiting requests for the bank, and it is
1479 // amongst the first available, update the mask
1480 if (got_waiting[bank_id]) {
1481 // make sure this rank is not currently refreshing.
1482 assert(ranks[i]->isAvailable());
1483 // simplistic approximation of when the bank can issue
1484 // an activate, ignoring any rank-to-rank switching
1485 // cost in this calculation
1486 Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ?
1487 ranks[i]->banks[j].actAllowedAt :
1488 std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP;
1489
1490 // prioritize commands that access the
1491 // same rank as previous burst
1492 // Calculate bank mask separately for the case and
1493 // evaluate after loop iterations complete
1494 if (i == activeRank && ranksPerChannel > 1) {
1495 if (act_at <= min_act_at_same_rank) {
1496 // reset same rank bank mask if new minimum is found
1497 // and previous minimum could not immediately send ACT
1498 if (act_at < min_act_at_same_rank &&
1499 min_act_at_same_rank > curTick())
1500 bank_mask_same_rank = 0;
1501
1502 // Set flag indicating that a same rank
1503 // opportunity was found
1504 same_rank_match = true;
1505
1506 // set the bit corresponding to the available bank
1507 replaceBits(bank_mask_same_rank, bank_id, bank_id, 1);
1508 min_act_at_same_rank = act_at;
1509 }
1510 } else {
1511 if (act_at <= min_act_at) {
1512 // reset bank mask if new minimum is found
1513 // and either previous minimum could not immediately send ACT
1514 if (act_at < min_act_at && min_act_at > curTick())
1515 bank_mask = 0;
1516 // set the bit corresponding to the available bank
1517 replaceBits(bank_mask, bank_id, bank_id, 1);
1518 min_act_at = act_at;
1519 }
1520 }
1521 }
1522 }
1523 }
1524
1525 // Determine the earliest time when the next burst can issue based
1526 // on the current busBusyUntil delay.
1527 // Offset by tRCD to correlate with ACT timing variables
1528 Tick min_cmd_at = busBusyUntil - tCL - tRCD;
1529
1530 // if we have multiple ranks and all
1531 // waiting packets are accessing a rank which was previously active
1532 // then bank_mask_same_rank will be set to a value while bank_mask will
1533 // remain 0. In this case, the function should return the value of
1534 // bank_mask_same_rank.
1535 // else if waiting packets access a rank which was previously active and
1536 // other ranks, prioritize same rank accesses that can issue B2B
1537 // Only optimize for same ranks when the command type
1538 // does not change; do not want to unnecessarily incur tWTR
1539 //
1540 // Resulting FCFS prioritization Order is:
1541 // 1) Commands that access the same rank as previous burst
1542 // and can prep the bank seamlessly.
1543 // 2) Commands (any rank) with earliest bank prep
1544 if ((bank_mask == 0) || (!switched_cmd_type && same_rank_match &&
1545 min_act_at_same_rank <= min_cmd_at)) {
1546 bank_mask = bank_mask_same_rank;
1547 }
1548
1549 return bank_mask;
1550}
1551
1552DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p)
1553 : EventManager(&_memory), memory(_memory),
1554 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), pwrStateTick(0),
1555 refreshState(REF_IDLE), refreshDueAt(0),
1556 power(_p, false), numBanksActive(0),
1557 activateEvent(*this), prechargeEvent(*this),
1558 refreshEvent(*this), powerEvent(*this)
1559{ }
1560
1561void
1562DRAMCtrl::Rank::startup(Tick ref_tick)
1563{
1564 assert(ref_tick > curTick());
1565
1566 pwrStateTick = curTick();
1567
1568 // kick off the refresh, and give ourselves enough time to
1569 // precharge
1570 schedule(refreshEvent, ref_tick);
1571}
1572
1573void
1574DRAMCtrl::Rank::suspend()
1575{
1576 deschedule(refreshEvent);
1577}
1578
1579void
1580DRAMCtrl::Rank::checkDrainDone()
1581{
1582 // if this rank was waiting to drain it is now able to proceed to
1583 // precharge
1584 if (refreshState == REF_DRAIN) {
1585 DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1586
1587 refreshState = REF_PRE;
1588
1589 // hand control back to the refresh event loop
1590 schedule(refreshEvent, curTick());
1591 }
1592}
1593
1594void
1595DRAMCtrl::Rank::processActivateEvent()
1596{
1597 // we should transition to the active state as soon as any bank is active
1598 if (pwrState != PWR_ACT)
1599 // note that at this point numBanksActive could be back at
1600 // zero again due to a precharge scheduled in the future
1601 schedulePowerEvent(PWR_ACT, curTick());
1602}
1603
1604void
1605DRAMCtrl::Rank::processPrechargeEvent()
1606{
1607 // if we reached zero, then special conditions apply as we track
1608 // if all banks are precharged for the power models
1609 if (numBanksActive == 0) {
1610 // we should transition to the idle state when the last bank
1611 // is precharged
1612 schedulePowerEvent(PWR_IDLE, curTick());
1613 }
1614}
1615
1616void
1617DRAMCtrl::Rank::processRefreshEvent()
1618{
1619 // when first preparing the refresh, remember when it was due
1620 if (refreshState == REF_IDLE) {
1621 // remember when the refresh is due
1622 refreshDueAt = curTick();
1623
1624 // proceed to drain
1625 refreshState = REF_DRAIN;
1626
1627 DPRINTF(DRAM, "Refresh due\n");
1628 }
1629
1630 // let any scheduled read or write to the same rank go ahead,
1631 // after which it will
1632 // hand control back to this event loop
1633 if (refreshState == REF_DRAIN) {
1634 // if a request is at the moment being handled and this request is
1635 // accessing the current rank then wait for it to finish
1636 if ((rank == memory.activeRank)
1637 && (memory.nextReqEvent.scheduled())) {
1638 // hand control over to the request loop until it is
1639 // evaluated next
1640 DPRINTF(DRAM, "Refresh awaiting draining\n");
1641
1642 return;
1643 } else {
1644 refreshState = REF_PRE;
1645 }
1646 }
1647
1648 // at this point, ensure that all banks are precharged
1649 if (refreshState == REF_PRE) {
1650 // precharge any active bank if we are not already in the idle
1651 // state
1652 if (pwrState != PWR_IDLE) {
1653 // at the moment, we use a precharge all even if there is
1654 // only a single bank open
1655 DPRINTF(DRAM, "Precharging all\n");
1656
1657 // first determine when we can precharge
1658 Tick pre_at = curTick();
1659
1660 for (auto &b : banks) {
1661 // respect both causality and any existing bank
1662 // constraints, some banks could already have a
1663 // (auto) precharge scheduled
1664 pre_at = std::max(b.preAllowedAt, pre_at);
1665 }
1666
1667 // make sure all banks per rank are precharged, and for those that
1668 // already are, update their availability
1669 Tick act_allowed_at = pre_at + memory.tRP;
1670
1671 for (auto &b : banks) {
1672 if (b.openRow != Bank::NO_ROW) {
1673 memory.prechargeBank(*this, b, pre_at, false);
1674 } else {
1675 b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at);
1676 b.preAllowedAt = std::max(b.preAllowedAt, pre_at);
1677 }
1678 }
1679
1680 // precharge all banks in rank
1681 power.powerlib.doCommand(MemCommand::PREA, 0,
1682 divCeil(pre_at, memory.tCK) -
1683 memory.timeStampOffset);
1684
1685 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
1686 divCeil(pre_at, memory.tCK) -
1687 memory.timeStampOffset, rank);
1688 } else {
1689 DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1690
1691 // go ahead and kick the power state machine into gear if
1692 // we are already idle
1693 schedulePowerEvent(PWR_REF, curTick());
1694 }
1695
1696 refreshState = REF_RUN;
1697 assert(numBanksActive == 0);
1698
1699 // wait for all banks to be precharged, at which point the
1700 // power state machine will transition to the idle state, and
1701 // automatically move to a refresh, at that point it will also
1702 // call this method to get the refresh event loop going again
1703 return;
1704 }
1705
1706 // last but not least we perform the actual refresh
1707 if (refreshState == REF_RUN) {
1708 // should never get here with any banks active
1709 assert(numBanksActive == 0);
1710 assert(pwrState == PWR_REF);
1711
1712 Tick ref_done_at = curTick() + memory.tRFC;
1713
1714 for (auto &b : banks) {
1715 b.actAllowedAt = ref_done_at;
1716 }
1717
1718 // at the moment this affects all ranks
1719 power.powerlib.doCommand(MemCommand::REF, 0,
1720 divCeil(curTick(), memory.tCK) -
1721 memory.timeStampOffset);
1722
1723 // at the moment sort the list of commands and update the counters
1724 // for DRAMPower libray when doing a refresh
1725 sort(power.powerlib.cmdList.begin(),
1726 power.powerlib.cmdList.end(), DRAMCtrl::sortTime);
1727
1728 // update the counters for DRAMPower, passing false to
1729 // indicate that this is not the last command in the
1730 // list. DRAMPower requires this information for the
1731 // correct calculation of the background energy at the end
1732 // of the simulation. Ideally we would want to call this
1733 // function with true once at the end of the
1734 // simulation. However, the discarded energy is extremly
1735 // small and does not effect the final results.
1736 power.powerlib.updateCounters(false);
1737
1738 // call the energy function
1739 power.powerlib.calcEnergy();
1740
1741 // Update the stats
1742 updatePowerStats();
1743
1744 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
1745 memory.timeStampOffset, rank);
1746
1747 // make sure we did not wait so long that we cannot make up
1748 // for it
1749 if (refreshDueAt + memory.tREFI < ref_done_at) {
1750 fatal("Refresh was delayed so long we cannot catch up\n");
1751 }
1752
1753 // compensate for the delay in actually performing the refresh
1754 // when scheduling the next one
1755 schedule(refreshEvent, refreshDueAt + memory.tREFI - memory.tRP);
1756
1757 assert(!powerEvent.scheduled());
1758
1759 // move to the idle power state once the refresh is done, this
1760 // will also move the refresh state machine to the refresh
1761 // idle state
1762 schedulePowerEvent(PWR_IDLE, ref_done_at);
1763
1764 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1765 ref_done_at, refreshDueAt + memory.tREFI);
1766 }
1767}
1768
1769void
1770DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick)
1771{
1772 // respect causality
1773 assert(tick >= curTick());
1774
1775 if (!powerEvent.scheduled()) {
1776 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1777 tick, pwr_state);
1778
1779 // insert the new transition
1780 pwrStateTrans = pwr_state;
1781
1782 schedule(powerEvent, tick);
1783 } else {
1784 panic("Scheduled power event at %llu to state %d, "
1785 "with scheduled event at %llu to %d\n", tick, pwr_state,
1786 powerEvent.when(), pwrStateTrans);
1787 }
1788}
1789
1790void
1791DRAMCtrl::Rank::processPowerEvent()
1792{
1793 // remember where we were, and for how long
1794 Tick duration = curTick() - pwrStateTick;
1795 PowerState prev_state = pwrState;
1796
1797 // update the accounting
1798 pwrStateTime[prev_state] += duration;
1799
1800 pwrState = pwrStateTrans;
1801 pwrStateTick = curTick();
1802
1803 if (pwrState == PWR_IDLE) {
1804 DPRINTF(DRAMState, "All banks precharged\n");
1805
1806 // if we were refreshing, make sure we start scheduling requests again
1807 if (prev_state == PWR_REF) {
1808 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1809 assert(pwrState == PWR_IDLE);
1810
1811 // kick things into action again
1812 refreshState = REF_IDLE;
1813 // a request event could be already scheduled by the state
1814 // machine of the other rank
1815 if (!memory.nextReqEvent.scheduled())
1816 schedule(memory.nextReqEvent, curTick());
1817 } else {
1818 assert(prev_state == PWR_ACT);
1819
1820 // if we have a pending refresh, and are now moving to
1821 // the idle state, direclty transition to a refresh
1822 if (refreshState == REF_RUN) {
1823 // there should be nothing waiting at this point
1824 assert(!powerEvent.scheduled());
1825
1826 // update the state in zero time and proceed below
1827 pwrState = PWR_REF;
1828 }
1829 }
1830 }
1831
1832 // we transition to the refresh state, let the refresh state
1833 // machine know of this state update and let it deal with the
1834 // scheduling of the next power state transition as well as the
1835 // following refresh
1836 if (pwrState == PWR_REF) {
1837 DPRINTF(DRAMState, "Refreshing\n");
1838 // kick the refresh event loop into action again, and that
1839 // in turn will schedule a transition to the idle power
1840 // state once the refresh is done
1841 assert(refreshState == REF_RUN);
1842 processRefreshEvent();
1843 }
1844}
1845
1846void
1847DRAMCtrl::Rank::updatePowerStats()
1848{
1849 // Get the energy and power from DRAMPower
1850 Data::MemoryPowerModel::Energy energy =
1851 power.powerlib.getEnergy();
1852 Data::MemoryPowerModel::Power rank_power =
1853 power.powerlib.getPower();
1854
1855 actEnergy = energy.act_energy * memory.devicesPerRank;
1856 preEnergy = energy.pre_energy * memory.devicesPerRank;
1857 readEnergy = energy.read_energy * memory.devicesPerRank;
1858 writeEnergy = energy.write_energy * memory.devicesPerRank;
1859 refreshEnergy = energy.ref_energy * memory.devicesPerRank;
1860 actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank;
1861 preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank;
1862 totalEnergy = energy.total_energy * memory.devicesPerRank;
1863 averagePower = rank_power.average_power * memory.devicesPerRank;
1864}
1865
1866void
1867DRAMCtrl::Rank::regStats()
1868{
1869 using namespace Stats;
1870
1871 pwrStateTime
1872 .init(5)
1873 .name(name() + ".memoryStateTime")
1874 .desc("Time in different power states");
1875 pwrStateTime.subname(0, "IDLE");
1876 pwrStateTime.subname(1, "REF");
1877 pwrStateTime.subname(2, "PRE_PDN");
1878 pwrStateTime.subname(3, "ACT");
1879 pwrStateTime.subname(4, "ACT_PDN");
1880
1881 actEnergy
1882 .name(name() + ".actEnergy")
1883 .desc("Energy for activate commands per rank (pJ)");
1884
1885 preEnergy
1886 .name(name() + ".preEnergy")
1887 .desc("Energy for precharge commands per rank (pJ)");
1888
1889 readEnergy
1890 .name(name() + ".readEnergy")
1891 .desc("Energy for read commands per rank (pJ)");
1892
1893 writeEnergy
1894 .name(name() + ".writeEnergy")
1895 .desc("Energy for write commands per rank (pJ)");
1896
1897 refreshEnergy
1898 .name(name() + ".refreshEnergy")
1899 .desc("Energy for refresh commands per rank (pJ)");
1900
1901 actBackEnergy
1902 .name(name() + ".actBackEnergy")
1903 .desc("Energy for active background per rank (pJ)");
1904
1905 preBackEnergy
1906 .name(name() + ".preBackEnergy")
1907 .desc("Energy for precharge background per rank (pJ)");
1908
1909 totalEnergy
1910 .name(name() + ".totalEnergy")
1911 .desc("Total energy per rank (pJ)");
1912
1913 averagePower
1914 .name(name() + ".averagePower")
1915 .desc("Core power per rank (mW)");
1916}
1917void
1918DRAMCtrl::regStats()
1919{
1920 using namespace Stats;
1921
1922 AbstractMemory::regStats();
1923
1924 for (auto r : ranks) {
1925 r->regStats();
1926 }
1927
1928 readReqs
1929 .name(name() + ".readReqs")
1930 .desc("Number of read requests accepted");
1931
1932 writeReqs
1933 .name(name() + ".writeReqs")
1934 .desc("Number of write requests accepted");
1935
1936 readBursts
1937 .name(name() + ".readBursts")
1938 .desc("Number of DRAM read bursts, "
1939 "including those serviced by the write queue");
1940
1941 writeBursts
1942 .name(name() + ".writeBursts")
1943 .desc("Number of DRAM write bursts, "
1944 "including those merged in the write queue");
1945
1946 servicedByWrQ
1947 .name(name() + ".servicedByWrQ")
1948 .desc("Number of DRAM read bursts serviced by the write queue");
1949
1950 mergedWrBursts
1951 .name(name() + ".mergedWrBursts")
1952 .desc("Number of DRAM write bursts merged with an existing one");
1953
1954 neitherReadNorWrite
1955 .name(name() + ".neitherReadNorWriteReqs")
1956 .desc("Number of requests that are neither read nor write");
1957
1958 perBankRdBursts
1959 .init(banksPerRank * ranksPerChannel)
1960 .name(name() + ".perBankRdBursts")
1961 .desc("Per bank write bursts");
1962
1963 perBankWrBursts
1964 .init(banksPerRank * ranksPerChannel)
1965 .name(name() + ".perBankWrBursts")
1966 .desc("Per bank write bursts");
1967
1968 avgRdQLen
1969 .name(name() + ".avgRdQLen")
1970 .desc("Average read queue length when enqueuing")
1971 .precision(2);
1972
1973 avgWrQLen
1974 .name(name() + ".avgWrQLen")
1975 .desc("Average write queue length when enqueuing")
1976 .precision(2);
1977
1978 totQLat
1979 .name(name() + ".totQLat")
1980 .desc("Total ticks spent queuing");
1981
1982 totBusLat
1983 .name(name() + ".totBusLat")
1984 .desc("Total ticks spent in databus transfers");
1985
1986 totMemAccLat
1987 .name(name() + ".totMemAccLat")
1988 .desc("Total ticks spent from burst creation until serviced "
1989 "by the DRAM");
1990
1991 avgQLat
1992 .name(name() + ".avgQLat")
1993 .desc("Average queueing delay per DRAM burst")
1994 .precision(2);
1995
1996 avgQLat = totQLat / (readBursts - servicedByWrQ);
1997
1998 avgBusLat
1999 .name(name() + ".avgBusLat")
2000 .desc("Average bus latency per DRAM burst")
2001 .precision(2);
2002
2003 avgBusLat = totBusLat / (readBursts - servicedByWrQ);
2004
2005 avgMemAccLat
2006 .name(name() + ".avgMemAccLat")
2007 .desc("Average memory access latency per DRAM burst")
2008 .precision(2);
2009
2010 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
2011
2012 numRdRetry
2013 .name(name() + ".numRdRetry")
2014 .desc("Number of times read queue was full causing retry");
2015
2016 numWrRetry
2017 .name(name() + ".numWrRetry")
2018 .desc("Number of times write queue was full causing retry");
2019
2020 readRowHits
2021 .name(name() + ".readRowHits")
2022 .desc("Number of row buffer hits during reads");
2023
2024 writeRowHits
2025 .name(name() + ".writeRowHits")
2026 .desc("Number of row buffer hits during writes");
2027
2028 readRowHitRate
2029 .name(name() + ".readRowHitRate")
2030 .desc("Row buffer hit rate for reads")
2031 .precision(2);
2032
2033 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
2034
2035 writeRowHitRate
2036 .name(name() + ".writeRowHitRate")
2037 .desc("Row buffer hit rate for writes")
2038 .precision(2);
2039
2040 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
2041
2042 readPktSize
2043 .init(ceilLog2(burstSize) + 1)
2044 .name(name() + ".readPktSize")
2045 .desc("Read request sizes (log2)");
2046
2047 writePktSize
2048 .init(ceilLog2(burstSize) + 1)
2049 .name(name() + ".writePktSize")
2050 .desc("Write request sizes (log2)");
2051
2052 rdQLenPdf
2053 .init(readBufferSize)
2054 .name(name() + ".rdQLenPdf")
2055 .desc("What read queue length does an incoming req see");
2056
2057 wrQLenPdf
2058 .init(writeBufferSize)
2059 .name(name() + ".wrQLenPdf")
2060 .desc("What write queue length does an incoming req see");
2061
2062 bytesPerActivate
2063 .init(maxAccessesPerRow)
2064 .name(name() + ".bytesPerActivate")
2065 .desc("Bytes accessed per row activation")
2066 .flags(nozero);
2067
2068 rdPerTurnAround
2069 .init(readBufferSize)
2070 .name(name() + ".rdPerTurnAround")
2071 .desc("Reads before turning the bus around for writes")
2072 .flags(nozero);
2073
2074 wrPerTurnAround
2075 .init(writeBufferSize)
2076 .name(name() + ".wrPerTurnAround")
2077 .desc("Writes before turning the bus around for reads")
2078 .flags(nozero);
2079
2080 bytesReadDRAM
2081 .name(name() + ".bytesReadDRAM")
2082 .desc("Total number of bytes read from DRAM");
2083
2084 bytesReadWrQ
2085 .name(name() + ".bytesReadWrQ")
2086 .desc("Total number of bytes read from write queue");
2087
2088 bytesWritten
2089 .name(name() + ".bytesWritten")
2090 .desc("Total number of bytes written to DRAM");
2091
2092 bytesReadSys
2093 .name(name() + ".bytesReadSys")
2094 .desc("Total read bytes from the system interface side");
2095
2096 bytesWrittenSys
2097 .name(name() + ".bytesWrittenSys")
2098 .desc("Total written bytes from the system interface side");
2099
2100 avgRdBW
2101 .name(name() + ".avgRdBW")
2102 .desc("Average DRAM read bandwidth in MiByte/s")
2103 .precision(2);
2104
2105 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
2106
2107 avgWrBW
2108 .name(name() + ".avgWrBW")
2109 .desc("Average achieved write bandwidth in MiByte/s")
2110 .precision(2);
2111
2112 avgWrBW = (bytesWritten / 1000000) / simSeconds;
2113
2114 avgRdBWSys
2115 .name(name() + ".avgRdBWSys")
2116 .desc("Average system read bandwidth in MiByte/s")
2117 .precision(2);
2118
2119 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
2120
2121 avgWrBWSys
2122 .name(name() + ".avgWrBWSys")
2123 .desc("Average system write bandwidth in MiByte/s")
2124 .precision(2);
2125
2126 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
2127
2128 peakBW
2129 .name(name() + ".peakBW")
2130 .desc("Theoretical peak bandwidth in MiByte/s")
2131 .precision(2);
2132
2133 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
2134
2135 busUtil
2136 .name(name() + ".busUtil")
2137 .desc("Data bus utilization in percentage")
2138 .precision(2);
2139 busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
2140
2141 totGap
2142 .name(name() + ".totGap")
2143 .desc("Total gap between requests");
2144
2145 avgGap
2146 .name(name() + ".avgGap")
2147 .desc("Average gap between requests")
2148 .precision(2);
2149
2150 avgGap = totGap / (readReqs + writeReqs);
2151
2152 // Stats for DRAM Power calculation based on Micron datasheet
2153 busUtilRead
2154 .name(name() + ".busUtilRead")
2155 .desc("Data bus utilization in percentage for reads")
2156 .precision(2);
2157
2158 busUtilRead = avgRdBW / peakBW * 100;
2159
2160 busUtilWrite
2161 .name(name() + ".busUtilWrite")
2162 .desc("Data bus utilization in percentage for writes")
2163 .precision(2);
2164
2165 busUtilWrite = avgWrBW / peakBW * 100;
2166
2167 pageHitRate
2168 .name(name() + ".pageHitRate")
2169 .desc("Row buffer hit rate, read and write combined")
2170 .precision(2);
2171
2172 pageHitRate = (writeRowHits + readRowHits) /
2173 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
2174}
2175
2176void
2177DRAMCtrl::recvFunctional(PacketPtr pkt)
2178{
2179 // rely on the abstract memory
2180 functionalAccess(pkt);
2181}
2182
2183BaseSlavePort&
2184DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2185{
2186 if (if_name != "port") {
2187 return MemObject::getSlavePort(if_name, idx);
2188 } else {
2189 return port;
2190 }
2191}
2192
2193unsigned int
2194DRAMCtrl::drain(DrainManager *dm)
2195{
2196 unsigned int count = port.drain(dm);
2197
2198 // if there is anything in any of our internal queues, keep track
2199 // of that as well
2200 if (!(writeQueue.empty() && readQueue.empty() &&
2201 respQueue.empty())) {
2202 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2203 " resp: %d\n", writeQueue.size(), readQueue.size(),
2204 respQueue.size());
2205 ++count;
2206 drainManager = dm;
2207
2208 // the only part that is not drained automatically over time
2209 // is the write queue, thus kick things into action if needed
2210 if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2211 schedule(nextReqEvent, curTick());
2212 }
2213 }
2214
2215 if (count)
2216 setDrainState(Drainable::Draining);
2217 else
2218 setDrainState(Drainable::Drained);
2219 return count;
2220}
2221
2222void
2223DRAMCtrl::drainResume()
2224{
2225 if (!isTimingMode && system()->isTimingMode()) {
2226 // if we switched to timing mode, kick things into action,
2227 // and behave as if we restored from a checkpoint
2228 startup();
2229 } else if (isTimingMode && !system()->isTimingMode()) {
2230 // if we switch from timing mode, stop the refresh events to
2231 // not cause issues with KVM
2232 for (auto r : ranks) {
2233 r->suspend();
2234 }
2235 }
2236
2237 // update the mode
2238 isTimingMode = system()->isTimingMode();
2239}
2240
2241DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2242 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2243 memory(_memory)
2244{ }
2245
2246AddrRangeList
2247DRAMCtrl::MemoryPort::getAddrRanges() const
2248{
2249 AddrRangeList ranges;
2250 ranges.push_back(memory.getAddrRange());
2251 return ranges;
2252}
2253
2254void
2255DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2256{
2257 pkt->pushLabel(memory.name());
2258
2259 if (!queue.checkFunctional(pkt)) {
2260 // Default implementation of SimpleTimingPort::recvFunctional()
2261 // calls recvAtomic() and throws away the latency; we can save a
2262 // little here by just not calculating the latency.
2263 memory.recvFunctional(pkt);
2264 }
2265
2266 pkt->popLabel();
2267}
2268
2269Tick
2270DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2271{
2272 return memory.recvAtomic(pkt);
2273}
2274
2275bool
2276DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2277{
2278 // pass it to the memory controller
2279 return memory.recvTimingReq(pkt);
2280}
2281
2282DRAMCtrl*
2283DRAMCtrlParams::create()
2284{
2285 return new DRAMCtrl(this);
2286}
1183 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1184 (dram_pkt->bank == (*p)->bank);
1185 bool same_row = dram_pkt->row == (*p)->row;
1186 got_more_hits |= same_rank_bank && same_row;
1187 got_bank_conflict |= same_rank_bank && !same_row;
1188 ++p;
1189 }
1190
1191 // auto pre-charge when either
1192 // 1) open_adaptive policy, we have not got any more hits, and
1193 // have a bank conflict
1194 // 2) close_adaptive policy and we have not got any more hits
1195 auto_precharge = !got_more_hits &&
1196 (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1197 }
1198
1199 // DRAMPower trace command to be written
1200 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1201
1202 // MemCommand required for DRAMPower library
1203 MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1204 MemCommand::WR;
1205
1206 // if this access should use auto-precharge, then we are
1207 // closing the row
1208 if (auto_precharge) {
1209 // if auto-precharge push a PRE command at the correct tick to the
1210 // list used by DRAMPower library to calculate power
1211 prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt));
1212
1213 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1214 }
1215
1216 // Update bus state
1217 busBusyUntil = dram_pkt->readyTime;
1218
1219 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1220 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1221
1222 dram_pkt->rankRef.power.powerlib.doCommand(command, dram_pkt->bank,
1223 divCeil(cmd_at, tCK) -
1224 timeStampOffset);
1225
1226 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1227 timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1228
1229 // Update the minimum timing between the requests, this is a
1230 // conservative estimate of when we have to schedule the next
1231 // request to not introduce any unecessary bubbles. In most cases
1232 // we will wake up sooner than we have to.
1233 nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1234
1235 // Update the stats and schedule the next request
1236 if (dram_pkt->isRead) {
1237 ++readsThisTime;
1238 if (row_hit)
1239 readRowHits++;
1240 bytesReadDRAM += burstSize;
1241 perBankRdBursts[dram_pkt->bankId]++;
1242
1243 // Update latency stats
1244 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1245 totBusLat += tBURST;
1246 totQLat += cmd_at - dram_pkt->entryTime;
1247 } else {
1248 ++writesThisTime;
1249 if (row_hit)
1250 writeRowHits++;
1251 bytesWritten += burstSize;
1252 perBankWrBursts[dram_pkt->bankId]++;
1253 }
1254}
1255
1256void
1257DRAMCtrl::processNextReqEvent()
1258{
1259 int busyRanks = 0;
1260 for (auto r : ranks) {
1261 if (!r->isAvailable()) {
1262 // rank is busy refreshing
1263 busyRanks++;
1264
1265 // let the rank know that if it was waiting to drain, it
1266 // is now done and ready to proceed
1267 r->checkDrainDone();
1268 }
1269 }
1270
1271 if (busyRanks == ranksPerChannel) {
1272 // if all ranks are refreshing wait for them to finish
1273 // and stall this state machine without taking any further
1274 // action, and do not schedule a new nextReqEvent
1275 return;
1276 }
1277
1278 // pre-emptively set to false. Overwrite if in READ_TO_WRITE
1279 // or WRITE_TO_READ state
1280 bool switched_cmd_type = false;
1281 if (busState == READ_TO_WRITE) {
1282 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1283 "waiting\n", readsThisTime, readQueue.size());
1284
1285 // sample and reset the read-related stats as we are now
1286 // transitioning to writes, and all reads are done
1287 rdPerTurnAround.sample(readsThisTime);
1288 readsThisTime = 0;
1289
1290 // now proceed to do the actual writes
1291 busState = WRITE;
1292 switched_cmd_type = true;
1293 } else if (busState == WRITE_TO_READ) {
1294 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1295 "waiting\n", writesThisTime, writeQueue.size());
1296
1297 wrPerTurnAround.sample(writesThisTime);
1298 writesThisTime = 0;
1299
1300 busState = READ;
1301 switched_cmd_type = true;
1302 }
1303
1304 // when we get here it is either a read or a write
1305 if (busState == READ) {
1306
1307 // track if we should switch or not
1308 bool switch_to_writes = false;
1309
1310 if (readQueue.empty()) {
1311 // In the case there is no read request to go next,
1312 // trigger writes if we have passed the low threshold (or
1313 // if we are draining)
1314 if (!writeQueue.empty() &&
1315 (drainManager || writeQueue.size() > writeLowThreshold)) {
1316
1317 switch_to_writes = true;
1318 } else {
1319 // check if we are drained
1320 if (respQueue.empty () && drainManager) {
1321 DPRINTF(Drain, "DRAM controller done draining\n");
1322 drainManager->signalDrainDone();
1323 drainManager = NULL;
1324 }
1325
1326 // nothing to do, not even any point in scheduling an
1327 // event for the next request
1328 return;
1329 }
1330 } else {
1331 // bool to check if there is a read to a free rank
1332 bool found_read = false;
1333
1334 // Figure out which read request goes next, and move it to the
1335 // front of the read queue
1336 found_read = chooseNext(readQueue, switched_cmd_type);
1337
1338 // if no read to an available rank is found then return
1339 // at this point. There could be writes to the available ranks
1340 // which are above the required threshold. However, to
1341 // avoid adding more complexity to the code, return and wait
1342 // for a refresh event to kick things into action again.
1343 if (!found_read)
1344 return;
1345
1346 DRAMPacket* dram_pkt = readQueue.front();
1347 assert(dram_pkt->rankRef.isAvailable());
1348 // here we get a bit creative and shift the bus busy time not
1349 // just the tWTR, but also a CAS latency to capture the fact
1350 // that we are allowed to prepare a new bank, but not issue a
1351 // read command until after tWTR, in essence we capture a
1352 // bubble on the data bus that is tWTR + tCL
1353 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1354 busBusyUntil += tWTR + tCL;
1355 }
1356
1357 doDRAMAccess(dram_pkt);
1358
1359 // At this point we're done dealing with the request
1360 readQueue.pop_front();
1361
1362 // sanity check
1363 assert(dram_pkt->size <= burstSize);
1364 assert(dram_pkt->readyTime >= curTick());
1365
1366 // Insert into response queue. It will be sent back to the
1367 // requestor at its readyTime
1368 if (respQueue.empty()) {
1369 assert(!respondEvent.scheduled());
1370 schedule(respondEvent, dram_pkt->readyTime);
1371 } else {
1372 assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1373 assert(respondEvent.scheduled());
1374 }
1375
1376 respQueue.push_back(dram_pkt);
1377
1378 // we have so many writes that we have to transition
1379 if (writeQueue.size() > writeHighThreshold) {
1380 switch_to_writes = true;
1381 }
1382 }
1383
1384 // switching to writes, either because the read queue is empty
1385 // and the writes have passed the low threshold (or we are
1386 // draining), or because the writes hit the hight threshold
1387 if (switch_to_writes) {
1388 // transition to writing
1389 busState = READ_TO_WRITE;
1390 }
1391 } else {
1392 // bool to check if write to free rank is found
1393 bool found_write = false;
1394
1395 found_write = chooseNext(writeQueue, switched_cmd_type);
1396
1397 // if no writes to an available rank are found then return.
1398 // There could be reads to the available ranks. However, to avoid
1399 // adding more complexity to the code, return at this point and wait
1400 // for a refresh event to kick things into action again.
1401 if (!found_write)
1402 return;
1403
1404 DRAMPacket* dram_pkt = writeQueue.front();
1405 assert(dram_pkt->rankRef.isAvailable());
1406 // sanity check
1407 assert(dram_pkt->size <= burstSize);
1408
1409 // add a bubble to the data bus, as defined by the
1410 // tRTW when access is to the same rank as previous burst
1411 // Different rank timing is handled with tCS, which is
1412 // applied to colAllowedAt
1413 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1414 busBusyUntil += tRTW;
1415 }
1416
1417 doDRAMAccess(dram_pkt);
1418
1419 writeQueue.pop_front();
1420 delete dram_pkt;
1421
1422 // If we emptied the write queue, or got sufficiently below the
1423 // threshold (using the minWritesPerSwitch as the hysteresis) and
1424 // are not draining, or we have reads waiting and have done enough
1425 // writes, then switch to reads.
1426 if (writeQueue.empty() ||
1427 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1428 !drainManager) ||
1429 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1430 // turn the bus back around for reads again
1431 busState = WRITE_TO_READ;
1432
1433 // note that the we switch back to reads also in the idle
1434 // case, which eventually will check for any draining and
1435 // also pause any further scheduling if there is really
1436 // nothing to do
1437 }
1438 }
1439 // It is possible that a refresh to another rank kicks things back into
1440 // action before reaching this point.
1441 if (!nextReqEvent.scheduled())
1442 schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1443
1444 // If there is space available and we have writes waiting then let
1445 // them retry. This is done here to ensure that the retry does not
1446 // cause a nextReqEvent to be scheduled before we do so as part of
1447 // the next request processing
1448 if (retryWrReq && writeQueue.size() < writeBufferSize) {
1449 retryWrReq = false;
1450 port.sendRetryReq();
1451 }
1452}
1453
1454uint64_t
1455DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1456 bool switched_cmd_type) const
1457{
1458 uint64_t bank_mask = 0;
1459 Tick min_act_at = MaxTick;
1460
1461 uint64_t bank_mask_same_rank = 0;
1462 Tick min_act_at_same_rank = MaxTick;
1463
1464 // Give precedence to commands that access same rank as previous command
1465 bool same_rank_match = false;
1466
1467 // determine if we have queued transactions targetting the
1468 // bank in question
1469 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1470 for (const auto& p : queue) {
1471 if(p->rankRef.isAvailable())
1472 got_waiting[p->bankId] = true;
1473 }
1474
1475 for (int i = 0; i < ranksPerChannel; i++) {
1476 for (int j = 0; j < banksPerRank; j++) {
1477 uint16_t bank_id = i * banksPerRank + j;
1478
1479 // if we have waiting requests for the bank, and it is
1480 // amongst the first available, update the mask
1481 if (got_waiting[bank_id]) {
1482 // make sure this rank is not currently refreshing.
1483 assert(ranks[i]->isAvailable());
1484 // simplistic approximation of when the bank can issue
1485 // an activate, ignoring any rank-to-rank switching
1486 // cost in this calculation
1487 Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ?
1488 ranks[i]->banks[j].actAllowedAt :
1489 std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP;
1490
1491 // prioritize commands that access the
1492 // same rank as previous burst
1493 // Calculate bank mask separately for the case and
1494 // evaluate after loop iterations complete
1495 if (i == activeRank && ranksPerChannel > 1) {
1496 if (act_at <= min_act_at_same_rank) {
1497 // reset same rank bank mask if new minimum is found
1498 // and previous minimum could not immediately send ACT
1499 if (act_at < min_act_at_same_rank &&
1500 min_act_at_same_rank > curTick())
1501 bank_mask_same_rank = 0;
1502
1503 // Set flag indicating that a same rank
1504 // opportunity was found
1505 same_rank_match = true;
1506
1507 // set the bit corresponding to the available bank
1508 replaceBits(bank_mask_same_rank, bank_id, bank_id, 1);
1509 min_act_at_same_rank = act_at;
1510 }
1511 } else {
1512 if (act_at <= min_act_at) {
1513 // reset bank mask if new minimum is found
1514 // and either previous minimum could not immediately send ACT
1515 if (act_at < min_act_at && min_act_at > curTick())
1516 bank_mask = 0;
1517 // set the bit corresponding to the available bank
1518 replaceBits(bank_mask, bank_id, bank_id, 1);
1519 min_act_at = act_at;
1520 }
1521 }
1522 }
1523 }
1524 }
1525
1526 // Determine the earliest time when the next burst can issue based
1527 // on the current busBusyUntil delay.
1528 // Offset by tRCD to correlate with ACT timing variables
1529 Tick min_cmd_at = busBusyUntil - tCL - tRCD;
1530
1531 // if we have multiple ranks and all
1532 // waiting packets are accessing a rank which was previously active
1533 // then bank_mask_same_rank will be set to a value while bank_mask will
1534 // remain 0. In this case, the function should return the value of
1535 // bank_mask_same_rank.
1536 // else if waiting packets access a rank which was previously active and
1537 // other ranks, prioritize same rank accesses that can issue B2B
1538 // Only optimize for same ranks when the command type
1539 // does not change; do not want to unnecessarily incur tWTR
1540 //
1541 // Resulting FCFS prioritization Order is:
1542 // 1) Commands that access the same rank as previous burst
1543 // and can prep the bank seamlessly.
1544 // 2) Commands (any rank) with earliest bank prep
1545 if ((bank_mask == 0) || (!switched_cmd_type && same_rank_match &&
1546 min_act_at_same_rank <= min_cmd_at)) {
1547 bank_mask = bank_mask_same_rank;
1548 }
1549
1550 return bank_mask;
1551}
1552
1553DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p)
1554 : EventManager(&_memory), memory(_memory),
1555 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), pwrStateTick(0),
1556 refreshState(REF_IDLE), refreshDueAt(0),
1557 power(_p, false), numBanksActive(0),
1558 activateEvent(*this), prechargeEvent(*this),
1559 refreshEvent(*this), powerEvent(*this)
1560{ }
1561
1562void
1563DRAMCtrl::Rank::startup(Tick ref_tick)
1564{
1565 assert(ref_tick > curTick());
1566
1567 pwrStateTick = curTick();
1568
1569 // kick off the refresh, and give ourselves enough time to
1570 // precharge
1571 schedule(refreshEvent, ref_tick);
1572}
1573
1574void
1575DRAMCtrl::Rank::suspend()
1576{
1577 deschedule(refreshEvent);
1578}
1579
1580void
1581DRAMCtrl::Rank::checkDrainDone()
1582{
1583 // if this rank was waiting to drain it is now able to proceed to
1584 // precharge
1585 if (refreshState == REF_DRAIN) {
1586 DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1587
1588 refreshState = REF_PRE;
1589
1590 // hand control back to the refresh event loop
1591 schedule(refreshEvent, curTick());
1592 }
1593}
1594
1595void
1596DRAMCtrl::Rank::processActivateEvent()
1597{
1598 // we should transition to the active state as soon as any bank is active
1599 if (pwrState != PWR_ACT)
1600 // note that at this point numBanksActive could be back at
1601 // zero again due to a precharge scheduled in the future
1602 schedulePowerEvent(PWR_ACT, curTick());
1603}
1604
1605void
1606DRAMCtrl::Rank::processPrechargeEvent()
1607{
1608 // if we reached zero, then special conditions apply as we track
1609 // if all banks are precharged for the power models
1610 if (numBanksActive == 0) {
1611 // we should transition to the idle state when the last bank
1612 // is precharged
1613 schedulePowerEvent(PWR_IDLE, curTick());
1614 }
1615}
1616
1617void
1618DRAMCtrl::Rank::processRefreshEvent()
1619{
1620 // when first preparing the refresh, remember when it was due
1621 if (refreshState == REF_IDLE) {
1622 // remember when the refresh is due
1623 refreshDueAt = curTick();
1624
1625 // proceed to drain
1626 refreshState = REF_DRAIN;
1627
1628 DPRINTF(DRAM, "Refresh due\n");
1629 }
1630
1631 // let any scheduled read or write to the same rank go ahead,
1632 // after which it will
1633 // hand control back to this event loop
1634 if (refreshState == REF_DRAIN) {
1635 // if a request is at the moment being handled and this request is
1636 // accessing the current rank then wait for it to finish
1637 if ((rank == memory.activeRank)
1638 && (memory.nextReqEvent.scheduled())) {
1639 // hand control over to the request loop until it is
1640 // evaluated next
1641 DPRINTF(DRAM, "Refresh awaiting draining\n");
1642
1643 return;
1644 } else {
1645 refreshState = REF_PRE;
1646 }
1647 }
1648
1649 // at this point, ensure that all banks are precharged
1650 if (refreshState == REF_PRE) {
1651 // precharge any active bank if we are not already in the idle
1652 // state
1653 if (pwrState != PWR_IDLE) {
1654 // at the moment, we use a precharge all even if there is
1655 // only a single bank open
1656 DPRINTF(DRAM, "Precharging all\n");
1657
1658 // first determine when we can precharge
1659 Tick pre_at = curTick();
1660
1661 for (auto &b : banks) {
1662 // respect both causality and any existing bank
1663 // constraints, some banks could already have a
1664 // (auto) precharge scheduled
1665 pre_at = std::max(b.preAllowedAt, pre_at);
1666 }
1667
1668 // make sure all banks per rank are precharged, and for those that
1669 // already are, update their availability
1670 Tick act_allowed_at = pre_at + memory.tRP;
1671
1672 for (auto &b : banks) {
1673 if (b.openRow != Bank::NO_ROW) {
1674 memory.prechargeBank(*this, b, pre_at, false);
1675 } else {
1676 b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at);
1677 b.preAllowedAt = std::max(b.preAllowedAt, pre_at);
1678 }
1679 }
1680
1681 // precharge all banks in rank
1682 power.powerlib.doCommand(MemCommand::PREA, 0,
1683 divCeil(pre_at, memory.tCK) -
1684 memory.timeStampOffset);
1685
1686 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
1687 divCeil(pre_at, memory.tCK) -
1688 memory.timeStampOffset, rank);
1689 } else {
1690 DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1691
1692 // go ahead and kick the power state machine into gear if
1693 // we are already idle
1694 schedulePowerEvent(PWR_REF, curTick());
1695 }
1696
1697 refreshState = REF_RUN;
1698 assert(numBanksActive == 0);
1699
1700 // wait for all banks to be precharged, at which point the
1701 // power state machine will transition to the idle state, and
1702 // automatically move to a refresh, at that point it will also
1703 // call this method to get the refresh event loop going again
1704 return;
1705 }
1706
1707 // last but not least we perform the actual refresh
1708 if (refreshState == REF_RUN) {
1709 // should never get here with any banks active
1710 assert(numBanksActive == 0);
1711 assert(pwrState == PWR_REF);
1712
1713 Tick ref_done_at = curTick() + memory.tRFC;
1714
1715 for (auto &b : banks) {
1716 b.actAllowedAt = ref_done_at;
1717 }
1718
1719 // at the moment this affects all ranks
1720 power.powerlib.doCommand(MemCommand::REF, 0,
1721 divCeil(curTick(), memory.tCK) -
1722 memory.timeStampOffset);
1723
1724 // at the moment sort the list of commands and update the counters
1725 // for DRAMPower libray when doing a refresh
1726 sort(power.powerlib.cmdList.begin(),
1727 power.powerlib.cmdList.end(), DRAMCtrl::sortTime);
1728
1729 // update the counters for DRAMPower, passing false to
1730 // indicate that this is not the last command in the
1731 // list. DRAMPower requires this information for the
1732 // correct calculation of the background energy at the end
1733 // of the simulation. Ideally we would want to call this
1734 // function with true once at the end of the
1735 // simulation. However, the discarded energy is extremly
1736 // small and does not effect the final results.
1737 power.powerlib.updateCounters(false);
1738
1739 // call the energy function
1740 power.powerlib.calcEnergy();
1741
1742 // Update the stats
1743 updatePowerStats();
1744
1745 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
1746 memory.timeStampOffset, rank);
1747
1748 // make sure we did not wait so long that we cannot make up
1749 // for it
1750 if (refreshDueAt + memory.tREFI < ref_done_at) {
1751 fatal("Refresh was delayed so long we cannot catch up\n");
1752 }
1753
1754 // compensate for the delay in actually performing the refresh
1755 // when scheduling the next one
1756 schedule(refreshEvent, refreshDueAt + memory.tREFI - memory.tRP);
1757
1758 assert(!powerEvent.scheduled());
1759
1760 // move to the idle power state once the refresh is done, this
1761 // will also move the refresh state machine to the refresh
1762 // idle state
1763 schedulePowerEvent(PWR_IDLE, ref_done_at);
1764
1765 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1766 ref_done_at, refreshDueAt + memory.tREFI);
1767 }
1768}
1769
1770void
1771DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick)
1772{
1773 // respect causality
1774 assert(tick >= curTick());
1775
1776 if (!powerEvent.scheduled()) {
1777 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1778 tick, pwr_state);
1779
1780 // insert the new transition
1781 pwrStateTrans = pwr_state;
1782
1783 schedule(powerEvent, tick);
1784 } else {
1785 panic("Scheduled power event at %llu to state %d, "
1786 "with scheduled event at %llu to %d\n", tick, pwr_state,
1787 powerEvent.when(), pwrStateTrans);
1788 }
1789}
1790
1791void
1792DRAMCtrl::Rank::processPowerEvent()
1793{
1794 // remember where we were, and for how long
1795 Tick duration = curTick() - pwrStateTick;
1796 PowerState prev_state = pwrState;
1797
1798 // update the accounting
1799 pwrStateTime[prev_state] += duration;
1800
1801 pwrState = pwrStateTrans;
1802 pwrStateTick = curTick();
1803
1804 if (pwrState == PWR_IDLE) {
1805 DPRINTF(DRAMState, "All banks precharged\n");
1806
1807 // if we were refreshing, make sure we start scheduling requests again
1808 if (prev_state == PWR_REF) {
1809 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1810 assert(pwrState == PWR_IDLE);
1811
1812 // kick things into action again
1813 refreshState = REF_IDLE;
1814 // a request event could be already scheduled by the state
1815 // machine of the other rank
1816 if (!memory.nextReqEvent.scheduled())
1817 schedule(memory.nextReqEvent, curTick());
1818 } else {
1819 assert(prev_state == PWR_ACT);
1820
1821 // if we have a pending refresh, and are now moving to
1822 // the idle state, direclty transition to a refresh
1823 if (refreshState == REF_RUN) {
1824 // there should be nothing waiting at this point
1825 assert(!powerEvent.scheduled());
1826
1827 // update the state in zero time and proceed below
1828 pwrState = PWR_REF;
1829 }
1830 }
1831 }
1832
1833 // we transition to the refresh state, let the refresh state
1834 // machine know of this state update and let it deal with the
1835 // scheduling of the next power state transition as well as the
1836 // following refresh
1837 if (pwrState == PWR_REF) {
1838 DPRINTF(DRAMState, "Refreshing\n");
1839 // kick the refresh event loop into action again, and that
1840 // in turn will schedule a transition to the idle power
1841 // state once the refresh is done
1842 assert(refreshState == REF_RUN);
1843 processRefreshEvent();
1844 }
1845}
1846
1847void
1848DRAMCtrl::Rank::updatePowerStats()
1849{
1850 // Get the energy and power from DRAMPower
1851 Data::MemoryPowerModel::Energy energy =
1852 power.powerlib.getEnergy();
1853 Data::MemoryPowerModel::Power rank_power =
1854 power.powerlib.getPower();
1855
1856 actEnergy = energy.act_energy * memory.devicesPerRank;
1857 preEnergy = energy.pre_energy * memory.devicesPerRank;
1858 readEnergy = energy.read_energy * memory.devicesPerRank;
1859 writeEnergy = energy.write_energy * memory.devicesPerRank;
1860 refreshEnergy = energy.ref_energy * memory.devicesPerRank;
1861 actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank;
1862 preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank;
1863 totalEnergy = energy.total_energy * memory.devicesPerRank;
1864 averagePower = rank_power.average_power * memory.devicesPerRank;
1865}
1866
1867void
1868DRAMCtrl::Rank::regStats()
1869{
1870 using namespace Stats;
1871
1872 pwrStateTime
1873 .init(5)
1874 .name(name() + ".memoryStateTime")
1875 .desc("Time in different power states");
1876 pwrStateTime.subname(0, "IDLE");
1877 pwrStateTime.subname(1, "REF");
1878 pwrStateTime.subname(2, "PRE_PDN");
1879 pwrStateTime.subname(3, "ACT");
1880 pwrStateTime.subname(4, "ACT_PDN");
1881
1882 actEnergy
1883 .name(name() + ".actEnergy")
1884 .desc("Energy for activate commands per rank (pJ)");
1885
1886 preEnergy
1887 .name(name() + ".preEnergy")
1888 .desc("Energy for precharge commands per rank (pJ)");
1889
1890 readEnergy
1891 .name(name() + ".readEnergy")
1892 .desc("Energy for read commands per rank (pJ)");
1893
1894 writeEnergy
1895 .name(name() + ".writeEnergy")
1896 .desc("Energy for write commands per rank (pJ)");
1897
1898 refreshEnergy
1899 .name(name() + ".refreshEnergy")
1900 .desc("Energy for refresh commands per rank (pJ)");
1901
1902 actBackEnergy
1903 .name(name() + ".actBackEnergy")
1904 .desc("Energy for active background per rank (pJ)");
1905
1906 preBackEnergy
1907 .name(name() + ".preBackEnergy")
1908 .desc("Energy for precharge background per rank (pJ)");
1909
1910 totalEnergy
1911 .name(name() + ".totalEnergy")
1912 .desc("Total energy per rank (pJ)");
1913
1914 averagePower
1915 .name(name() + ".averagePower")
1916 .desc("Core power per rank (mW)");
1917}
1918void
1919DRAMCtrl::regStats()
1920{
1921 using namespace Stats;
1922
1923 AbstractMemory::regStats();
1924
1925 for (auto r : ranks) {
1926 r->regStats();
1927 }
1928
1929 readReqs
1930 .name(name() + ".readReqs")
1931 .desc("Number of read requests accepted");
1932
1933 writeReqs
1934 .name(name() + ".writeReqs")
1935 .desc("Number of write requests accepted");
1936
1937 readBursts
1938 .name(name() + ".readBursts")
1939 .desc("Number of DRAM read bursts, "
1940 "including those serviced by the write queue");
1941
1942 writeBursts
1943 .name(name() + ".writeBursts")
1944 .desc("Number of DRAM write bursts, "
1945 "including those merged in the write queue");
1946
1947 servicedByWrQ
1948 .name(name() + ".servicedByWrQ")
1949 .desc("Number of DRAM read bursts serviced by the write queue");
1950
1951 mergedWrBursts
1952 .name(name() + ".mergedWrBursts")
1953 .desc("Number of DRAM write bursts merged with an existing one");
1954
1955 neitherReadNorWrite
1956 .name(name() + ".neitherReadNorWriteReqs")
1957 .desc("Number of requests that are neither read nor write");
1958
1959 perBankRdBursts
1960 .init(banksPerRank * ranksPerChannel)
1961 .name(name() + ".perBankRdBursts")
1962 .desc("Per bank write bursts");
1963
1964 perBankWrBursts
1965 .init(banksPerRank * ranksPerChannel)
1966 .name(name() + ".perBankWrBursts")
1967 .desc("Per bank write bursts");
1968
1969 avgRdQLen
1970 .name(name() + ".avgRdQLen")
1971 .desc("Average read queue length when enqueuing")
1972 .precision(2);
1973
1974 avgWrQLen
1975 .name(name() + ".avgWrQLen")
1976 .desc("Average write queue length when enqueuing")
1977 .precision(2);
1978
1979 totQLat
1980 .name(name() + ".totQLat")
1981 .desc("Total ticks spent queuing");
1982
1983 totBusLat
1984 .name(name() + ".totBusLat")
1985 .desc("Total ticks spent in databus transfers");
1986
1987 totMemAccLat
1988 .name(name() + ".totMemAccLat")
1989 .desc("Total ticks spent from burst creation until serviced "
1990 "by the DRAM");
1991
1992 avgQLat
1993 .name(name() + ".avgQLat")
1994 .desc("Average queueing delay per DRAM burst")
1995 .precision(2);
1996
1997 avgQLat = totQLat / (readBursts - servicedByWrQ);
1998
1999 avgBusLat
2000 .name(name() + ".avgBusLat")
2001 .desc("Average bus latency per DRAM burst")
2002 .precision(2);
2003
2004 avgBusLat = totBusLat / (readBursts - servicedByWrQ);
2005
2006 avgMemAccLat
2007 .name(name() + ".avgMemAccLat")
2008 .desc("Average memory access latency per DRAM burst")
2009 .precision(2);
2010
2011 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
2012
2013 numRdRetry
2014 .name(name() + ".numRdRetry")
2015 .desc("Number of times read queue was full causing retry");
2016
2017 numWrRetry
2018 .name(name() + ".numWrRetry")
2019 .desc("Number of times write queue was full causing retry");
2020
2021 readRowHits
2022 .name(name() + ".readRowHits")
2023 .desc("Number of row buffer hits during reads");
2024
2025 writeRowHits
2026 .name(name() + ".writeRowHits")
2027 .desc("Number of row buffer hits during writes");
2028
2029 readRowHitRate
2030 .name(name() + ".readRowHitRate")
2031 .desc("Row buffer hit rate for reads")
2032 .precision(2);
2033
2034 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
2035
2036 writeRowHitRate
2037 .name(name() + ".writeRowHitRate")
2038 .desc("Row buffer hit rate for writes")
2039 .precision(2);
2040
2041 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
2042
2043 readPktSize
2044 .init(ceilLog2(burstSize) + 1)
2045 .name(name() + ".readPktSize")
2046 .desc("Read request sizes (log2)");
2047
2048 writePktSize
2049 .init(ceilLog2(burstSize) + 1)
2050 .name(name() + ".writePktSize")
2051 .desc("Write request sizes (log2)");
2052
2053 rdQLenPdf
2054 .init(readBufferSize)
2055 .name(name() + ".rdQLenPdf")
2056 .desc("What read queue length does an incoming req see");
2057
2058 wrQLenPdf
2059 .init(writeBufferSize)
2060 .name(name() + ".wrQLenPdf")
2061 .desc("What write queue length does an incoming req see");
2062
2063 bytesPerActivate
2064 .init(maxAccessesPerRow)
2065 .name(name() + ".bytesPerActivate")
2066 .desc("Bytes accessed per row activation")
2067 .flags(nozero);
2068
2069 rdPerTurnAround
2070 .init(readBufferSize)
2071 .name(name() + ".rdPerTurnAround")
2072 .desc("Reads before turning the bus around for writes")
2073 .flags(nozero);
2074
2075 wrPerTurnAround
2076 .init(writeBufferSize)
2077 .name(name() + ".wrPerTurnAround")
2078 .desc("Writes before turning the bus around for reads")
2079 .flags(nozero);
2080
2081 bytesReadDRAM
2082 .name(name() + ".bytesReadDRAM")
2083 .desc("Total number of bytes read from DRAM");
2084
2085 bytesReadWrQ
2086 .name(name() + ".bytesReadWrQ")
2087 .desc("Total number of bytes read from write queue");
2088
2089 bytesWritten
2090 .name(name() + ".bytesWritten")
2091 .desc("Total number of bytes written to DRAM");
2092
2093 bytesReadSys
2094 .name(name() + ".bytesReadSys")
2095 .desc("Total read bytes from the system interface side");
2096
2097 bytesWrittenSys
2098 .name(name() + ".bytesWrittenSys")
2099 .desc("Total written bytes from the system interface side");
2100
2101 avgRdBW
2102 .name(name() + ".avgRdBW")
2103 .desc("Average DRAM read bandwidth in MiByte/s")
2104 .precision(2);
2105
2106 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
2107
2108 avgWrBW
2109 .name(name() + ".avgWrBW")
2110 .desc("Average achieved write bandwidth in MiByte/s")
2111 .precision(2);
2112
2113 avgWrBW = (bytesWritten / 1000000) / simSeconds;
2114
2115 avgRdBWSys
2116 .name(name() + ".avgRdBWSys")
2117 .desc("Average system read bandwidth in MiByte/s")
2118 .precision(2);
2119
2120 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
2121
2122 avgWrBWSys
2123 .name(name() + ".avgWrBWSys")
2124 .desc("Average system write bandwidth in MiByte/s")
2125 .precision(2);
2126
2127 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
2128
2129 peakBW
2130 .name(name() + ".peakBW")
2131 .desc("Theoretical peak bandwidth in MiByte/s")
2132 .precision(2);
2133
2134 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
2135
2136 busUtil
2137 .name(name() + ".busUtil")
2138 .desc("Data bus utilization in percentage")
2139 .precision(2);
2140 busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
2141
2142 totGap
2143 .name(name() + ".totGap")
2144 .desc("Total gap between requests");
2145
2146 avgGap
2147 .name(name() + ".avgGap")
2148 .desc("Average gap between requests")
2149 .precision(2);
2150
2151 avgGap = totGap / (readReqs + writeReqs);
2152
2153 // Stats for DRAM Power calculation based on Micron datasheet
2154 busUtilRead
2155 .name(name() + ".busUtilRead")
2156 .desc("Data bus utilization in percentage for reads")
2157 .precision(2);
2158
2159 busUtilRead = avgRdBW / peakBW * 100;
2160
2161 busUtilWrite
2162 .name(name() + ".busUtilWrite")
2163 .desc("Data bus utilization in percentage for writes")
2164 .precision(2);
2165
2166 busUtilWrite = avgWrBW / peakBW * 100;
2167
2168 pageHitRate
2169 .name(name() + ".pageHitRate")
2170 .desc("Row buffer hit rate, read and write combined")
2171 .precision(2);
2172
2173 pageHitRate = (writeRowHits + readRowHits) /
2174 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
2175}
2176
2177void
2178DRAMCtrl::recvFunctional(PacketPtr pkt)
2179{
2180 // rely on the abstract memory
2181 functionalAccess(pkt);
2182}
2183
2184BaseSlavePort&
2185DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2186{
2187 if (if_name != "port") {
2188 return MemObject::getSlavePort(if_name, idx);
2189 } else {
2190 return port;
2191 }
2192}
2193
2194unsigned int
2195DRAMCtrl::drain(DrainManager *dm)
2196{
2197 unsigned int count = port.drain(dm);
2198
2199 // if there is anything in any of our internal queues, keep track
2200 // of that as well
2201 if (!(writeQueue.empty() && readQueue.empty() &&
2202 respQueue.empty())) {
2203 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2204 " resp: %d\n", writeQueue.size(), readQueue.size(),
2205 respQueue.size());
2206 ++count;
2207 drainManager = dm;
2208
2209 // the only part that is not drained automatically over time
2210 // is the write queue, thus kick things into action if needed
2211 if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2212 schedule(nextReqEvent, curTick());
2213 }
2214 }
2215
2216 if (count)
2217 setDrainState(Drainable::Draining);
2218 else
2219 setDrainState(Drainable::Drained);
2220 return count;
2221}
2222
2223void
2224DRAMCtrl::drainResume()
2225{
2226 if (!isTimingMode && system()->isTimingMode()) {
2227 // if we switched to timing mode, kick things into action,
2228 // and behave as if we restored from a checkpoint
2229 startup();
2230 } else if (isTimingMode && !system()->isTimingMode()) {
2231 // if we switch from timing mode, stop the refresh events to
2232 // not cause issues with KVM
2233 for (auto r : ranks) {
2234 r->suspend();
2235 }
2236 }
2237
2238 // update the mode
2239 isTimingMode = system()->isTimingMode();
2240}
2241
2242DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2243 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2244 memory(_memory)
2245{ }
2246
2247AddrRangeList
2248DRAMCtrl::MemoryPort::getAddrRanges() const
2249{
2250 AddrRangeList ranges;
2251 ranges.push_back(memory.getAddrRange());
2252 return ranges;
2253}
2254
2255void
2256DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2257{
2258 pkt->pushLabel(memory.name());
2259
2260 if (!queue.checkFunctional(pkt)) {
2261 // Default implementation of SimpleTimingPort::recvFunctional()
2262 // calls recvAtomic() and throws away the latency; we can save a
2263 // little here by just not calculating the latency.
2264 memory.recvFunctional(pkt);
2265 }
2266
2267 pkt->popLabel();
2268}
2269
2270Tick
2271DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2272{
2273 return memory.recvAtomic(pkt);
2274}
2275
2276bool
2277DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2278{
2279 // pass it to the memory controller
2280 return memory.recvTimingReq(pkt);
2281}
2282
2283DRAMCtrl*
2284DRAMCtrlParams::create()
2285{
2286 return new DRAMCtrl(this);
2287}