dram_ctrl.cc (10646:17d8d0a624a0) dram_ctrl.cc (10694:1a6785e37d81)
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 * Ani Udipi
42 * Neha Agarwal
43 * Omar Naji
44 */
45
46#include "base/bitfield.hh"
47#include "base/trace.hh"
48#include "debug/DRAM.hh"
49#include "debug/DRAMPower.hh"
50#include "debug/DRAMState.hh"
51#include "debug/Drain.hh"
52#include "mem/dram_ctrl.hh"
53#include "sim/system.hh"
54
55using namespace std;
56using namespace Data;
57
58DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
59 AbstractMemory(p),
60 port(name() + ".port", *this), isTimingMode(false),
61 retryRdReq(false), retryWrReq(false),
62 busState(READ),
63 nextReqEvent(this), respondEvent(this),
64 drainManager(NULL),
65 deviceSize(p->device_size),
66 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
67 deviceRowBufferSize(p->device_rowbuffer_size),
68 devicesPerRank(p->devices_per_rank),
69 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
70 rowBufferSize(devicesPerRank * deviceRowBufferSize),
71 columnsPerRowBuffer(rowBufferSize / burstSize),
72 columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1),
73 ranksPerChannel(p->ranks_per_channel),
74 bankGroupsPerRank(p->bank_groups_per_rank),
75 bankGroupArch(p->bank_groups_per_rank > 0),
76 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
77 readBufferSize(p->read_buffer_size),
78 writeBufferSize(p->write_buffer_size),
79 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
80 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
81 minWritesPerSwitch(p->min_writes_per_switch),
82 writesThisTime(0), readsThisTime(0),
83 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
84 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
85 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
86 tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit),
87 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
88 pageMgmt(p->page_policy),
89 maxAccessesPerRow(p->max_accesses_per_row),
90 frontendLatency(p->static_frontend_latency),
91 backendLatency(p->static_backend_latency),
92 busBusyUntil(0), prevArrival(0),
93 nextReqTime(0), activeRank(0), timeStampOffset(0)
94{
95 // sanity check the ranks since we rely on bit slicing for the
96 // address decoding
97 fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not "
98 "allowed, must be a power of two\n", ranksPerChannel);
99
100 for (int i = 0; i < ranksPerChannel; i++) {
101 Rank* rank = new Rank(*this, p);
102 ranks.push_back(rank);
103
104 rank->actTicks.resize(activationLimit, 0);
105 rank->banks.resize(banksPerRank);
106 rank->rank = i;
107
108 for (int b = 0; b < banksPerRank; b++) {
109 rank->banks[b].bank = b;
110 // GDDR addressing of banks to BG is linear.
111 // Here we assume that all DRAM generations address bank groups as
112 // follows:
113 if (bankGroupArch) {
114 // Simply assign lower bits to bank group in order to
115 // rotate across bank groups as banks are incremented
116 // e.g. with 4 banks per bank group and 16 banks total:
117 // banks 0,4,8,12 are in bank group 0
118 // banks 1,5,9,13 are in bank group 1
119 // banks 2,6,10,14 are in bank group 2
120 // banks 3,7,11,15 are in bank group 3
121 rank->banks[b].bankgr = b % bankGroupsPerRank;
122 } else {
123 // No bank groups; simply assign to bank number
124 rank->banks[b].bankgr = b;
125 }
126 }
127 }
128
129 // perform a basic check of the write thresholds
130 if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
131 fatal("Write buffer low threshold %d must be smaller than the "
132 "high threshold %d\n", p->write_low_thresh_perc,
133 p->write_high_thresh_perc);
134
135 // determine the rows per bank by looking at the total capacity
136 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
137
138 // determine the dram actual capacity from the DRAM config in Mbytes
139 uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
140 ranksPerChannel;
141
142 // if actual DRAM size does not match memory capacity in system warn!
143 if (deviceCapacity != capacity / (1024 * 1024))
144 warn("DRAM device capacity (%d Mbytes) does not match the "
145 "address range assigned (%d Mbytes)\n", deviceCapacity,
146 capacity / (1024 * 1024));
147
148 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
149 AbstractMemory::size());
150
151 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
152 rowBufferSize, columnsPerRowBuffer);
153
154 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
155
156 // some basic sanity checks
157 if (tREFI <= tRP || tREFI <= tRFC) {
158 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
159 tREFI, tRP, tRFC);
160 }
161
162 // basic bank group architecture checks ->
163 if (bankGroupArch) {
164 // must have at least one bank per bank group
165 if (bankGroupsPerRank > banksPerRank) {
166 fatal("banks per rank (%d) must be equal to or larger than "
167 "banks groups per rank (%d)\n",
168 banksPerRank, bankGroupsPerRank);
169 }
170 // must have same number of banks in each bank group
171 if ((banksPerRank % bankGroupsPerRank) != 0) {
172 fatal("Banks per rank (%d) must be evenly divisible by bank groups "
173 "per rank (%d) for equal banks per bank group\n",
174 banksPerRank, bankGroupsPerRank);
175 }
176 // tCCD_L should be greater than minimal, back-to-back burst delay
177 if (tCCD_L <= tBURST) {
178 fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
179 "bank groups per rank (%d) is greater than 1\n",
180 tCCD_L, tBURST, bankGroupsPerRank);
181 }
182 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
183 // some datasheets might specify it equal to tRRD
184 if (tRRD_L < tRRD) {
185 fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
186 "bank groups per rank (%d) is greater than 1\n",
187 tRRD_L, tRRD, bankGroupsPerRank);
188 }
189 }
190
191}
192
193void
194DRAMCtrl::init()
195{
196 AbstractMemory::init();
197
198 if (!port.isConnected()) {
199 fatal("DRAMCtrl %s is unconnected!\n", name());
200 } else {
201 port.sendRangeChange();
202 }
203
204 // a bit of sanity checks on the interleaving, save it for here to
205 // ensure that the system pointer is initialised
206 if (range.interleaved()) {
207 if (channels != range.stripes())
208 fatal("%s has %d interleaved address stripes but %d channel(s)\n",
209 name(), range.stripes(), channels);
210
211 if (addrMapping == Enums::RoRaBaChCo) {
212 if (rowBufferSize != range.granularity()) {
213 fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
214 "address map\n", name());
215 }
216 } else if (addrMapping == Enums::RoRaBaCoCh ||
217 addrMapping == Enums::RoCoRaBaCh) {
218 // for the interleavings with channel bits in the bottom,
219 // if the system uses a channel striping granularity that
220 // is larger than the DRAM burst size, then map the
221 // sequential accesses within a stripe to a number of
222 // columns in the DRAM, effectively placing some of the
223 // lower-order column bits as the least-significant bits
224 // of the address (above the ones denoting the burst size)
225 assert(columnsPerStripe >= 1);
226
227 // channel striping has to be done at a granularity that
228 // is equal or larger to a cache line
229 if (system()->cacheLineSize() > range.granularity()) {
230 fatal("Channel interleaving of %s must be at least as large "
231 "as the cache line size\n", name());
232 }
233
234 // ...and equal or smaller than the row-buffer size
235 if (rowBufferSize < range.granularity()) {
236 fatal("Channel interleaving of %s must be at most as large "
237 "as the row-buffer size\n", name());
238 }
239 // this is essentially the check above, so just to be sure
240 assert(columnsPerStripe <= columnsPerRowBuffer);
241 }
242 }
243}
244
245void
246DRAMCtrl::startup()
247{
248 // remember the memory system mode of operation
249 isTimingMode = system()->isTimingMode();
250
251 if (isTimingMode) {
252 // timestamp offset should be in clock cycles for DRAMPower
253 timeStampOffset = divCeil(curTick(), tCK);
254
255 // update the start tick for the precharge accounting to the
256 // current tick
257 for (auto r : ranks) {
258 r->startup(curTick() + tREFI - tRP);
259 }
260
261 // shift the bus busy time sufficiently far ahead that we never
262 // have to worry about negative values when computing the time for
263 // the next request, this will add an insignificant bubble at the
264 // start of simulation
265 busBusyUntil = curTick() + tRP + tRCD + tCL;
266 }
267}
268
269Tick
270DRAMCtrl::recvAtomic(PacketPtr pkt)
271{
272 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
273
274 // do the actual memory access and turn the packet into a response
275 access(pkt);
276
277 Tick latency = 0;
278 if (!pkt->memInhibitAsserted() && pkt->hasData()) {
279 // this value is not supposed to be accurate, just enough to
280 // keep things going, mimic a closed page
281 latency = tRP + tRCD + tCL;
282 }
283 return latency;
284}
285
286bool
287DRAMCtrl::readQueueFull(unsigned int neededEntries) const
288{
289 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
290 readBufferSize, readQueue.size() + respQueue.size(),
291 neededEntries);
292
293 return
294 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
295}
296
297bool
298DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
299{
300 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
301 writeBufferSize, writeQueue.size(), neededEntries);
302 return (writeQueue.size() + neededEntries) > writeBufferSize;
303}
304
305DRAMCtrl::DRAMPacket*
306DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
307 bool isRead)
308{
309 // decode the address based on the address mapping scheme, with
310 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
311 // channel, respectively
312 uint8_t rank;
313 uint8_t bank;
314 // use a 64-bit unsigned during the computations as the row is
315 // always the top bits, and check before creating the DRAMPacket
316 uint64_t row;
317
318 // truncate the address to a DRAM burst, which makes it unique to
319 // a specific column, row, bank, rank and channel
320 Addr addr = dramPktAddr / burstSize;
321
322 // we have removed the lowest order address bits that denote the
323 // position within the column
324 if (addrMapping == Enums::RoRaBaChCo) {
325 // the lowest order bits denote the column to ensure that
326 // sequential cache lines occupy the same row
327 addr = addr / columnsPerRowBuffer;
328
329 // take out the channel part of the address
330 addr = addr / channels;
331
332 // after the channel bits, get the bank bits to interleave
333 // over the banks
334 bank = addr % banksPerRank;
335 addr = addr / banksPerRank;
336
337 // after the bank, we get the rank bits which thus interleaves
338 // over the ranks
339 rank = addr % ranksPerChannel;
340 addr = addr / ranksPerChannel;
341
342 // lastly, get the row bits
343 row = addr % rowsPerBank;
344 addr = addr / rowsPerBank;
345 } else if (addrMapping == Enums::RoRaBaCoCh) {
346 // take out the lower-order column bits
347 addr = addr / columnsPerStripe;
348
349 // take out the channel part of the address
350 addr = addr / channels;
351
352 // next, the higher-order column bites
353 addr = addr / (columnsPerRowBuffer / columnsPerStripe);
354
355 // after the column bits, we get the bank bits to interleave
356 // over the banks
357 bank = addr % banksPerRank;
358 addr = addr / banksPerRank;
359
360 // after the bank, we get the rank bits which thus interleaves
361 // over the ranks
362 rank = addr % ranksPerChannel;
363 addr = addr / ranksPerChannel;
364
365 // lastly, get the row bits
366 row = addr % rowsPerBank;
367 addr = addr / rowsPerBank;
368 } else if (addrMapping == Enums::RoCoRaBaCh) {
369 // optimise for closed page mode and utilise maximum
370 // parallelism of the DRAM (at the cost of power)
371
372 // take out the lower-order column bits
373 addr = addr / columnsPerStripe;
374
375 // take out the channel part of the address, not that this has
376 // to match with how accesses are interleaved between the
377 // controllers in the address mapping
378 addr = addr / channels;
379
380 // start with the bank bits, as this provides the maximum
381 // opportunity for parallelism between requests
382 bank = addr % banksPerRank;
383 addr = addr / banksPerRank;
384
385 // next get the rank bits
386 rank = addr % ranksPerChannel;
387 addr = addr / ranksPerChannel;
388
389 // next, the higher-order column bites
390 addr = addr / (columnsPerRowBuffer / columnsPerStripe);
391
392 // lastly, get the row bits
393 row = addr % rowsPerBank;
394 addr = addr / rowsPerBank;
395 } else
396 panic("Unknown address mapping policy chosen!");
397
398 assert(rank < ranksPerChannel);
399 assert(bank < banksPerRank);
400 assert(row < rowsPerBank);
401 assert(row < Bank::NO_ROW);
402
403 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
404 dramPktAddr, rank, bank, row);
405
406 // create the corresponding DRAM packet with the entry time and
407 // ready time set to the current tick, the latter will be updated
408 // later
409 uint16_t bank_id = banksPerRank * rank + bank;
410 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
411 size, ranks[rank]->banks[bank], *ranks[rank]);
412}
413
414void
415DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
416{
417 // only add to the read queue here. whenever the request is
418 // eventually done, set the readyTime, and call schedule()
419 assert(!pkt->isWrite());
420
421 assert(pktCount != 0);
422
423 // if the request size is larger than burst size, the pkt is split into
424 // multiple DRAM packets
425 // Note if the pkt starting address is not aligened to burst size, the
426 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
427 // are aligned to burst size boundaries. This is to ensure we accurately
428 // check read packets against packets in write queue.
429 Addr addr = pkt->getAddr();
430 unsigned pktsServicedByWrQ = 0;
431 BurstHelper* burst_helper = NULL;
432 for (int cnt = 0; cnt < pktCount; ++cnt) {
433 unsigned size = std::min((addr | (burstSize - 1)) + 1,
434 pkt->getAddr() + pkt->getSize()) - addr;
435 readPktSize[ceilLog2(size)]++;
436 readBursts++;
437
438 // First check write buffer to see if the data is already at
439 // the controller
440 bool foundInWrQ = false;
441 for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
442 // check if the read is subsumed in the write entry we are
443 // looking at
444 if ((*i)->addr <= addr &&
445 (addr + size) <= ((*i)->addr + (*i)->size)) {
446 foundInWrQ = true;
447 servicedByWrQ++;
448 pktsServicedByWrQ++;
449 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
450 "write queue\n", addr, size);
451 bytesReadWrQ += burstSize;
452 break;
453 }
454 }
455
456 // If not found in the write q, make a DRAM packet and
457 // push it onto the read queue
458 if (!foundInWrQ) {
459
460 // Make the burst helper for split packets
461 if (pktCount > 1 && burst_helper == NULL) {
462 DPRINTF(DRAM, "Read to addr %lld translates to %d "
463 "dram requests\n", pkt->getAddr(), pktCount);
464 burst_helper = new BurstHelper(pktCount);
465 }
466
467 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
468 dram_pkt->burstHelper = burst_helper;
469
470 assert(!readQueueFull(1));
471 rdQLenPdf[readQueue.size() + respQueue.size()]++;
472
473 DPRINTF(DRAM, "Adding to read queue\n");
474
475 readQueue.push_back(dram_pkt);
476
477 // Update stats
478 avgRdQLen = readQueue.size() + respQueue.size();
479 }
480
481 // Starting address of next dram pkt (aligend to burstSize boundary)
482 addr = (addr | (burstSize - 1)) + 1;
483 }
484
485 // If all packets are serviced by write queue, we send the repsonse back
486 if (pktsServicedByWrQ == pktCount) {
487 accessAndRespond(pkt, frontendLatency);
488 return;
489 }
490
491 // Update how many split packets are serviced by write queue
492 if (burst_helper != NULL)
493 burst_helper->burstsServiced = pktsServicedByWrQ;
494
495 // If we are not already scheduled to get a request out of the
496 // queue, do so now
497 if (!nextReqEvent.scheduled()) {
498 DPRINTF(DRAM, "Request scheduled immediately\n");
499 schedule(nextReqEvent, curTick());
500 }
501}
502
503void
504DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
505{
506 // only add to the write queue here. whenever the request is
507 // eventually done, set the readyTime, and call schedule()
508 assert(pkt->isWrite());
509
510 // if the request size is larger than burst size, the pkt is split into
511 // multiple DRAM packets
512 Addr addr = pkt->getAddr();
513 for (int cnt = 0; cnt < pktCount; ++cnt) {
514 unsigned size = std::min((addr | (burstSize - 1)) + 1,
515 pkt->getAddr() + pkt->getSize()) - addr;
516 writePktSize[ceilLog2(size)]++;
517 writeBursts++;
518
519 // see if we can merge with an existing item in the write
520 // queue and keep track of whether we have merged or not so we
521 // can stop at that point and also avoid enqueueing a new
522 // request
523 bool merged = false;
524 auto w = writeQueue.begin();
525
526 while(!merged && w != writeQueue.end()) {
527 // either of the two could be first, if they are the same
528 // it does not matter which way we go
529 if ((*w)->addr >= addr) {
530 // the existing one starts after the new one, figure
531 // out where the new one ends with respect to the
532 // existing one
533 if ((addr + size) >= ((*w)->addr + (*w)->size)) {
534 // check if the existing one is completely
535 // subsumed in the new one
536 DPRINTF(DRAM, "Merging write covering existing burst\n");
537 merged = true;
538 // update both the address and the size
539 (*w)->addr = addr;
540 (*w)->size = size;
541 } else if ((addr + size) >= (*w)->addr &&
542 ((*w)->addr + (*w)->size - addr) <= burstSize) {
543 // the new one is just before or partially
544 // overlapping with the existing one, and together
545 // they fit within a burst
546 DPRINTF(DRAM, "Merging write before existing burst\n");
547 merged = true;
548 // the existing queue item needs to be adjusted with
549 // respect to both address and size
550 (*w)->size = (*w)->addr + (*w)->size - addr;
551 (*w)->addr = addr;
552 }
553 } else {
554 // the new one starts after the current one, figure
555 // out where the existing one ends with respect to the
556 // new one
557 if (((*w)->addr + (*w)->size) >= (addr + size)) {
558 // check if the new one is completely subsumed in the
559 // existing one
560 DPRINTF(DRAM, "Merging write into existing burst\n");
561 merged = true;
562 // no adjustments necessary
563 } else if (((*w)->addr + (*w)->size) >= addr &&
564 (addr + size - (*w)->addr) <= burstSize) {
565 // the existing one is just before or partially
566 // overlapping with the new one, and together
567 // they fit within a burst
568 DPRINTF(DRAM, "Merging write after existing burst\n");
569 merged = true;
570 // the address is right, and only the size has
571 // to be adjusted
572 (*w)->size = addr + size - (*w)->addr;
573 }
574 }
575 ++w;
576 }
577
578 // if the item was not merged we need to create a new write
579 // and enqueue it
580 if (!merged) {
581 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
582
583 assert(writeQueue.size() < writeBufferSize);
584 wrQLenPdf[writeQueue.size()]++;
585
586 DPRINTF(DRAM, "Adding to write queue\n");
587
588 writeQueue.push_back(dram_pkt);
589
590 // Update stats
591 avgWrQLen = writeQueue.size();
592 } else {
593 // keep track of the fact that this burst effectively
594 // disappeared as it was merged with an existing one
595 mergedWrBursts++;
596 }
597
598 // Starting address of next dram pkt (aligend to burstSize boundary)
599 addr = (addr | (burstSize - 1)) + 1;
600 }
601
602 // we do not wait for the writes to be send to the actual memory,
603 // but instead take responsibility for the consistency here and
604 // snoop the write queue for any upcoming reads
605 // @todo, if a pkt size is larger than burst size, we might need a
606 // different front end latency
607 accessAndRespond(pkt, frontendLatency);
608
609 // If we are not already scheduled to get a request out of the
610 // queue, do so now
611 if (!nextReqEvent.scheduled()) {
612 DPRINTF(DRAM, "Request scheduled immediately\n");
613 schedule(nextReqEvent, curTick());
614 }
615}
616
617void
618DRAMCtrl::printQs() const {
619 DPRINTF(DRAM, "===READ QUEUE===\n\n");
620 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) {
621 DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
622 }
623 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
624 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) {
625 DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
626 }
627 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
628 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) {
629 DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
630 }
631}
632
633bool
634DRAMCtrl::recvTimingReq(PacketPtr pkt)
635{
636 /// @todo temporary hack to deal with memory corruption issues until
637 /// 4-phase transactions are complete
638 for (int x = 0; x < pendingDelete.size(); x++)
639 delete pendingDelete[x];
640 pendingDelete.clear();
641
642 // This is where we enter from the outside world
643 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
644 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
645
646 // simply drop inhibited packets for now
647 if (pkt->memInhibitAsserted()) {
648 DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
649 pendingDelete.push_back(pkt);
650 return true;
651 }
652
653 // Calc avg gap between requests
654 if (prevArrival != 0) {
655 totGap += curTick() - prevArrival;
656 }
657 prevArrival = curTick();
658
659
660 // Find out how many dram packets a pkt translates to
661 // If the burst size is equal or larger than the pkt size, then a pkt
662 // translates to only one dram packet. Otherwise, a pkt translates to
663 // multiple dram packets
664 unsigned size = pkt->getSize();
665 unsigned offset = pkt->getAddr() & (burstSize - 1);
666 unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
667
668 // check local buffers and do not accept if full
669 if (pkt->isRead()) {
670 assert(size != 0);
671 if (readQueueFull(dram_pkt_count)) {
672 DPRINTF(DRAM, "Read queue full, not accepting\n");
673 // remember that we have to retry this port
674 retryRdReq = true;
675 numRdRetry++;
676 return false;
677 } else {
678 addToReadQueue(pkt, dram_pkt_count);
679 readReqs++;
680 bytesReadSys += size;
681 }
682 } else if (pkt->isWrite()) {
683 assert(size != 0);
684 if (writeQueueFull(dram_pkt_count)) {
685 DPRINTF(DRAM, "Write queue full, not accepting\n");
686 // remember that we have to retry this port
687 retryWrReq = true;
688 numWrRetry++;
689 return false;
690 } else {
691 addToWriteQueue(pkt, dram_pkt_count);
692 writeReqs++;
693 bytesWrittenSys += size;
694 }
695 } else {
696 DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
697 neitherReadNorWrite++;
698 accessAndRespond(pkt, 1);
699 }
700
701 return true;
702}
703
704void
705DRAMCtrl::processRespondEvent()
706{
707 DPRINTF(DRAM,
708 "processRespondEvent(): Some req has reached its readyTime\n");
709
710 DRAMPacket* dram_pkt = respQueue.front();
711
712 if (dram_pkt->burstHelper) {
713 // it is a split packet
714 dram_pkt->burstHelper->burstsServiced++;
715 if (dram_pkt->burstHelper->burstsServiced ==
716 dram_pkt->burstHelper->burstCount) {
717 // we have now serviced all children packets of a system packet
718 // so we can now respond to the requester
719 // @todo we probably want to have a different front end and back
720 // end latency for split packets
721 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
722 delete dram_pkt->burstHelper;
723 dram_pkt->burstHelper = NULL;
724 }
725 } else {
726 // it is not a split packet
727 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
728 }
729
730 delete respQueue.front();
731 respQueue.pop_front();
732
733 if (!respQueue.empty()) {
734 assert(respQueue.front()->readyTime >= curTick());
735 assert(!respondEvent.scheduled());
736 schedule(respondEvent, respQueue.front()->readyTime);
737 } else {
738 // if there is nothing left in any queue, signal a drain
739 if (writeQueue.empty() && readQueue.empty() &&
740 drainManager) {
741 DPRINTF(Drain, "DRAM controller done draining\n");
742 drainManager->signalDrainDone();
743 drainManager = NULL;
744 }
745 }
746
747 // We have made a location in the queue available at this point,
748 // so if there is a read that was forced to wait, retry now
749 if (retryRdReq) {
750 retryRdReq = false;
751 port.sendRetry();
752 }
753}
754
755bool
756DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
757{
758 // This method does the arbitration between requests. The chosen
759 // packet is simply moved to the head of the queue. The other
760 // methods know that this is the place to look. For example, with
761 // FCFS, this method does nothing
762 assert(!queue.empty());
763
764 // bool to indicate if a packet to an available rank is found
765 bool found_packet = false;
766 if (queue.size() == 1) {
767 DRAMPacket* dram_pkt = queue.front();
768 // available rank corresponds to state refresh idle
769 if (ranks[dram_pkt->rank]->isAvailable()) {
770 found_packet = true;
771 DPRINTF(DRAM, "Single request, going to a free rank\n");
772 } else {
773 DPRINTF(DRAM, "Single request, going to a busy rank\n");
774 }
775 return found_packet;
776 }
777
778 if (memSchedPolicy == Enums::fcfs) {
779 // check if there is a packet going to a free rank
780 for(auto i = queue.begin(); i != queue.end() ; ++i) {
781 DRAMPacket* dram_pkt = *i;
782 if (ranks[dram_pkt->rank]->isAvailable()) {
783 queue.erase(i);
784 queue.push_front(dram_pkt);
785 found_packet = true;
786 break;
787 }
788 }
789 } else if (memSchedPolicy == Enums::frfcfs) {
790 found_packet = reorderQueue(queue, switched_cmd_type);
791 } else
792 panic("No scheduling policy chosen\n");
793 return found_packet;
794}
795
796bool
797DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
798{
799 // Only determine this when needed
800 uint64_t earliest_banks = 0;
801
802 // Search for row hits first, if no row hit is found then schedule the
803 // packet to one of the earliest banks available
804 bool found_packet = false;
805 bool found_earliest_pkt = false;
806 bool found_prepped_diff_rank_pkt = false;
807 auto selected_pkt_it = queue.end();
808
809 for (auto i = queue.begin(); i != queue.end() ; ++i) {
810 DRAMPacket* dram_pkt = *i;
811 const Bank& bank = dram_pkt->bankRef;
812 // check if rank is busy. If this is the case jump to the next packet
813 // Check if it is a row hit
814 if (dram_pkt->rankRef.isAvailable()) {
815 if (bank.openRow == dram_pkt->row) {
816 if (dram_pkt->rank == activeRank || switched_cmd_type) {
817 // FCFS within the hits, giving priority to commands
818 // that access the same rank as the previous burst
819 // to minimize bus turnaround delays
820 // Only give rank prioity when command type is
821 // not changing
822 DPRINTF(DRAM, "Row buffer hit\n");
823 selected_pkt_it = i;
824 break;
825 } else if (!found_prepped_diff_rank_pkt) {
826 // found row hit for command on different rank
827 // than prev burst
828 selected_pkt_it = i;
829 found_prepped_diff_rank_pkt = true;
830 }
831 } else if (!found_earliest_pkt & !found_prepped_diff_rank_pkt) {
832 // packet going to a rank which is currently not waiting for a
833 // refresh, No row hit and
834 // haven't found an entry with a row hit to a new rank
835 if (earliest_banks == 0)
836 // Determine entries with earliest bank prep delay
837 // Function will give priority to commands that access the
838 // same rank as previous burst and can prep
839 // the bank seamlessly
840 earliest_banks = minBankPrep(queue, switched_cmd_type);
841
842 // FCFS - Bank is first available bank
843 if (bits(earliest_banks, dram_pkt->bankId,
844 dram_pkt->bankId)) {
845 // Remember the packet to be scheduled to one of
846 // the earliest banks available, FCFS amongst the
847 // earliest banks
848 selected_pkt_it = i;
849 //if the packet found is going to a rank that is currently
850 //not busy then update the found_packet to true
851 found_earliest_pkt = true;
852 }
853 }
854 }
855 }
856
857 if (selected_pkt_it != queue.end()) {
858 DRAMPacket* selected_pkt = *selected_pkt_it;
859 queue.erase(selected_pkt_it);
860 queue.push_front(selected_pkt);
861 found_packet = true;
862 }
863 return found_packet;
864}
865
866void
867DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
868{
869 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
870
871 bool needsResponse = pkt->needsResponse();
872 // do the actual memory access which also turns the packet into a
873 // response
874 access(pkt);
875
876 // turn packet around to go back to requester if response expected
877 if (needsResponse) {
878 // access already turned the packet into a response
879 assert(pkt->isResponse());
880
881 // @todo someone should pay for this
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 * Ani Udipi
42 * Neha Agarwal
43 * Omar Naji
44 */
45
46#include "base/bitfield.hh"
47#include "base/trace.hh"
48#include "debug/DRAM.hh"
49#include "debug/DRAMPower.hh"
50#include "debug/DRAMState.hh"
51#include "debug/Drain.hh"
52#include "mem/dram_ctrl.hh"
53#include "sim/system.hh"
54
55using namespace std;
56using namespace Data;
57
58DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
59 AbstractMemory(p),
60 port(name() + ".port", *this), isTimingMode(false),
61 retryRdReq(false), retryWrReq(false),
62 busState(READ),
63 nextReqEvent(this), respondEvent(this),
64 drainManager(NULL),
65 deviceSize(p->device_size),
66 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
67 deviceRowBufferSize(p->device_rowbuffer_size),
68 devicesPerRank(p->devices_per_rank),
69 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
70 rowBufferSize(devicesPerRank * deviceRowBufferSize),
71 columnsPerRowBuffer(rowBufferSize / burstSize),
72 columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1),
73 ranksPerChannel(p->ranks_per_channel),
74 bankGroupsPerRank(p->bank_groups_per_rank),
75 bankGroupArch(p->bank_groups_per_rank > 0),
76 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
77 readBufferSize(p->read_buffer_size),
78 writeBufferSize(p->write_buffer_size),
79 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
80 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
81 minWritesPerSwitch(p->min_writes_per_switch),
82 writesThisTime(0), readsThisTime(0),
83 tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
84 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
85 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
86 tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit),
87 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
88 pageMgmt(p->page_policy),
89 maxAccessesPerRow(p->max_accesses_per_row),
90 frontendLatency(p->static_frontend_latency),
91 backendLatency(p->static_backend_latency),
92 busBusyUntil(0), prevArrival(0),
93 nextReqTime(0), activeRank(0), timeStampOffset(0)
94{
95 // sanity check the ranks since we rely on bit slicing for the
96 // address decoding
97 fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not "
98 "allowed, must be a power of two\n", ranksPerChannel);
99
100 for (int i = 0; i < ranksPerChannel; i++) {
101 Rank* rank = new Rank(*this, p);
102 ranks.push_back(rank);
103
104 rank->actTicks.resize(activationLimit, 0);
105 rank->banks.resize(banksPerRank);
106 rank->rank = i;
107
108 for (int b = 0; b < banksPerRank; b++) {
109 rank->banks[b].bank = b;
110 // GDDR addressing of banks to BG is linear.
111 // Here we assume that all DRAM generations address bank groups as
112 // follows:
113 if (bankGroupArch) {
114 // Simply assign lower bits to bank group in order to
115 // rotate across bank groups as banks are incremented
116 // e.g. with 4 banks per bank group and 16 banks total:
117 // banks 0,4,8,12 are in bank group 0
118 // banks 1,5,9,13 are in bank group 1
119 // banks 2,6,10,14 are in bank group 2
120 // banks 3,7,11,15 are in bank group 3
121 rank->banks[b].bankgr = b % bankGroupsPerRank;
122 } else {
123 // No bank groups; simply assign to bank number
124 rank->banks[b].bankgr = b;
125 }
126 }
127 }
128
129 // perform a basic check of the write thresholds
130 if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
131 fatal("Write buffer low threshold %d must be smaller than the "
132 "high threshold %d\n", p->write_low_thresh_perc,
133 p->write_high_thresh_perc);
134
135 // determine the rows per bank by looking at the total capacity
136 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
137
138 // determine the dram actual capacity from the DRAM config in Mbytes
139 uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
140 ranksPerChannel;
141
142 // if actual DRAM size does not match memory capacity in system warn!
143 if (deviceCapacity != capacity / (1024 * 1024))
144 warn("DRAM device capacity (%d Mbytes) does not match the "
145 "address range assigned (%d Mbytes)\n", deviceCapacity,
146 capacity / (1024 * 1024));
147
148 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
149 AbstractMemory::size());
150
151 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
152 rowBufferSize, columnsPerRowBuffer);
153
154 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
155
156 // some basic sanity checks
157 if (tREFI <= tRP || tREFI <= tRFC) {
158 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
159 tREFI, tRP, tRFC);
160 }
161
162 // basic bank group architecture checks ->
163 if (bankGroupArch) {
164 // must have at least one bank per bank group
165 if (bankGroupsPerRank > banksPerRank) {
166 fatal("banks per rank (%d) must be equal to or larger than "
167 "banks groups per rank (%d)\n",
168 banksPerRank, bankGroupsPerRank);
169 }
170 // must have same number of banks in each bank group
171 if ((banksPerRank % bankGroupsPerRank) != 0) {
172 fatal("Banks per rank (%d) must be evenly divisible by bank groups "
173 "per rank (%d) for equal banks per bank group\n",
174 banksPerRank, bankGroupsPerRank);
175 }
176 // tCCD_L should be greater than minimal, back-to-back burst delay
177 if (tCCD_L <= tBURST) {
178 fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
179 "bank groups per rank (%d) is greater than 1\n",
180 tCCD_L, tBURST, bankGroupsPerRank);
181 }
182 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
183 // some datasheets might specify it equal to tRRD
184 if (tRRD_L < tRRD) {
185 fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
186 "bank groups per rank (%d) is greater than 1\n",
187 tRRD_L, tRRD, bankGroupsPerRank);
188 }
189 }
190
191}
192
193void
194DRAMCtrl::init()
195{
196 AbstractMemory::init();
197
198 if (!port.isConnected()) {
199 fatal("DRAMCtrl %s is unconnected!\n", name());
200 } else {
201 port.sendRangeChange();
202 }
203
204 // a bit of sanity checks on the interleaving, save it for here to
205 // ensure that the system pointer is initialised
206 if (range.interleaved()) {
207 if (channels != range.stripes())
208 fatal("%s has %d interleaved address stripes but %d channel(s)\n",
209 name(), range.stripes(), channels);
210
211 if (addrMapping == Enums::RoRaBaChCo) {
212 if (rowBufferSize != range.granularity()) {
213 fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
214 "address map\n", name());
215 }
216 } else if (addrMapping == Enums::RoRaBaCoCh ||
217 addrMapping == Enums::RoCoRaBaCh) {
218 // for the interleavings with channel bits in the bottom,
219 // if the system uses a channel striping granularity that
220 // is larger than the DRAM burst size, then map the
221 // sequential accesses within a stripe to a number of
222 // columns in the DRAM, effectively placing some of the
223 // lower-order column bits as the least-significant bits
224 // of the address (above the ones denoting the burst size)
225 assert(columnsPerStripe >= 1);
226
227 // channel striping has to be done at a granularity that
228 // is equal or larger to a cache line
229 if (system()->cacheLineSize() > range.granularity()) {
230 fatal("Channel interleaving of %s must be at least as large "
231 "as the cache line size\n", name());
232 }
233
234 // ...and equal or smaller than the row-buffer size
235 if (rowBufferSize < range.granularity()) {
236 fatal("Channel interleaving of %s must be at most as large "
237 "as the row-buffer size\n", name());
238 }
239 // this is essentially the check above, so just to be sure
240 assert(columnsPerStripe <= columnsPerRowBuffer);
241 }
242 }
243}
244
245void
246DRAMCtrl::startup()
247{
248 // remember the memory system mode of operation
249 isTimingMode = system()->isTimingMode();
250
251 if (isTimingMode) {
252 // timestamp offset should be in clock cycles for DRAMPower
253 timeStampOffset = divCeil(curTick(), tCK);
254
255 // update the start tick for the precharge accounting to the
256 // current tick
257 for (auto r : ranks) {
258 r->startup(curTick() + tREFI - tRP);
259 }
260
261 // shift the bus busy time sufficiently far ahead that we never
262 // have to worry about negative values when computing the time for
263 // the next request, this will add an insignificant bubble at the
264 // start of simulation
265 busBusyUntil = curTick() + tRP + tRCD + tCL;
266 }
267}
268
269Tick
270DRAMCtrl::recvAtomic(PacketPtr pkt)
271{
272 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
273
274 // do the actual memory access and turn the packet into a response
275 access(pkt);
276
277 Tick latency = 0;
278 if (!pkt->memInhibitAsserted() && pkt->hasData()) {
279 // this value is not supposed to be accurate, just enough to
280 // keep things going, mimic a closed page
281 latency = tRP + tRCD + tCL;
282 }
283 return latency;
284}
285
286bool
287DRAMCtrl::readQueueFull(unsigned int neededEntries) const
288{
289 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
290 readBufferSize, readQueue.size() + respQueue.size(),
291 neededEntries);
292
293 return
294 (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
295}
296
297bool
298DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
299{
300 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
301 writeBufferSize, writeQueue.size(), neededEntries);
302 return (writeQueue.size() + neededEntries) > writeBufferSize;
303}
304
305DRAMCtrl::DRAMPacket*
306DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
307 bool isRead)
308{
309 // decode the address based on the address mapping scheme, with
310 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
311 // channel, respectively
312 uint8_t rank;
313 uint8_t bank;
314 // use a 64-bit unsigned during the computations as the row is
315 // always the top bits, and check before creating the DRAMPacket
316 uint64_t row;
317
318 // truncate the address to a DRAM burst, which makes it unique to
319 // a specific column, row, bank, rank and channel
320 Addr addr = dramPktAddr / burstSize;
321
322 // we have removed the lowest order address bits that denote the
323 // position within the column
324 if (addrMapping == Enums::RoRaBaChCo) {
325 // the lowest order bits denote the column to ensure that
326 // sequential cache lines occupy the same row
327 addr = addr / columnsPerRowBuffer;
328
329 // take out the channel part of the address
330 addr = addr / channels;
331
332 // after the channel bits, get the bank bits to interleave
333 // over the banks
334 bank = addr % banksPerRank;
335 addr = addr / banksPerRank;
336
337 // after the bank, we get the rank bits which thus interleaves
338 // over the ranks
339 rank = addr % ranksPerChannel;
340 addr = addr / ranksPerChannel;
341
342 // lastly, get the row bits
343 row = addr % rowsPerBank;
344 addr = addr / rowsPerBank;
345 } else if (addrMapping == Enums::RoRaBaCoCh) {
346 // take out the lower-order column bits
347 addr = addr / columnsPerStripe;
348
349 // take out the channel part of the address
350 addr = addr / channels;
351
352 // next, the higher-order column bites
353 addr = addr / (columnsPerRowBuffer / columnsPerStripe);
354
355 // after the column bits, we get the bank bits to interleave
356 // over the banks
357 bank = addr % banksPerRank;
358 addr = addr / banksPerRank;
359
360 // after the bank, we get the rank bits which thus interleaves
361 // over the ranks
362 rank = addr % ranksPerChannel;
363 addr = addr / ranksPerChannel;
364
365 // lastly, get the row bits
366 row = addr % rowsPerBank;
367 addr = addr / rowsPerBank;
368 } else if (addrMapping == Enums::RoCoRaBaCh) {
369 // optimise for closed page mode and utilise maximum
370 // parallelism of the DRAM (at the cost of power)
371
372 // take out the lower-order column bits
373 addr = addr / columnsPerStripe;
374
375 // take out the channel part of the address, not that this has
376 // to match with how accesses are interleaved between the
377 // controllers in the address mapping
378 addr = addr / channels;
379
380 // start with the bank bits, as this provides the maximum
381 // opportunity for parallelism between requests
382 bank = addr % banksPerRank;
383 addr = addr / banksPerRank;
384
385 // next get the rank bits
386 rank = addr % ranksPerChannel;
387 addr = addr / ranksPerChannel;
388
389 // next, the higher-order column bites
390 addr = addr / (columnsPerRowBuffer / columnsPerStripe);
391
392 // lastly, get the row bits
393 row = addr % rowsPerBank;
394 addr = addr / rowsPerBank;
395 } else
396 panic("Unknown address mapping policy chosen!");
397
398 assert(rank < ranksPerChannel);
399 assert(bank < banksPerRank);
400 assert(row < rowsPerBank);
401 assert(row < Bank::NO_ROW);
402
403 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
404 dramPktAddr, rank, bank, row);
405
406 // create the corresponding DRAM packet with the entry time and
407 // ready time set to the current tick, the latter will be updated
408 // later
409 uint16_t bank_id = banksPerRank * rank + bank;
410 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
411 size, ranks[rank]->banks[bank], *ranks[rank]);
412}
413
414void
415DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
416{
417 // only add to the read queue here. whenever the request is
418 // eventually done, set the readyTime, and call schedule()
419 assert(!pkt->isWrite());
420
421 assert(pktCount != 0);
422
423 // if the request size is larger than burst size, the pkt is split into
424 // multiple DRAM packets
425 // Note if the pkt starting address is not aligened to burst size, the
426 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
427 // are aligned to burst size boundaries. This is to ensure we accurately
428 // check read packets against packets in write queue.
429 Addr addr = pkt->getAddr();
430 unsigned pktsServicedByWrQ = 0;
431 BurstHelper* burst_helper = NULL;
432 for (int cnt = 0; cnt < pktCount; ++cnt) {
433 unsigned size = std::min((addr | (burstSize - 1)) + 1,
434 pkt->getAddr() + pkt->getSize()) - addr;
435 readPktSize[ceilLog2(size)]++;
436 readBursts++;
437
438 // First check write buffer to see if the data is already at
439 // the controller
440 bool foundInWrQ = false;
441 for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
442 // check if the read is subsumed in the write entry we are
443 // looking at
444 if ((*i)->addr <= addr &&
445 (addr + size) <= ((*i)->addr + (*i)->size)) {
446 foundInWrQ = true;
447 servicedByWrQ++;
448 pktsServicedByWrQ++;
449 DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
450 "write queue\n", addr, size);
451 bytesReadWrQ += burstSize;
452 break;
453 }
454 }
455
456 // If not found in the write q, make a DRAM packet and
457 // push it onto the read queue
458 if (!foundInWrQ) {
459
460 // Make the burst helper for split packets
461 if (pktCount > 1 && burst_helper == NULL) {
462 DPRINTF(DRAM, "Read to addr %lld translates to %d "
463 "dram requests\n", pkt->getAddr(), pktCount);
464 burst_helper = new BurstHelper(pktCount);
465 }
466
467 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
468 dram_pkt->burstHelper = burst_helper;
469
470 assert(!readQueueFull(1));
471 rdQLenPdf[readQueue.size() + respQueue.size()]++;
472
473 DPRINTF(DRAM, "Adding to read queue\n");
474
475 readQueue.push_back(dram_pkt);
476
477 // Update stats
478 avgRdQLen = readQueue.size() + respQueue.size();
479 }
480
481 // Starting address of next dram pkt (aligend to burstSize boundary)
482 addr = (addr | (burstSize - 1)) + 1;
483 }
484
485 // If all packets are serviced by write queue, we send the repsonse back
486 if (pktsServicedByWrQ == pktCount) {
487 accessAndRespond(pkt, frontendLatency);
488 return;
489 }
490
491 // Update how many split packets are serviced by write queue
492 if (burst_helper != NULL)
493 burst_helper->burstsServiced = pktsServicedByWrQ;
494
495 // If we are not already scheduled to get a request out of the
496 // queue, do so now
497 if (!nextReqEvent.scheduled()) {
498 DPRINTF(DRAM, "Request scheduled immediately\n");
499 schedule(nextReqEvent, curTick());
500 }
501}
502
503void
504DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
505{
506 // only add to the write queue here. whenever the request is
507 // eventually done, set the readyTime, and call schedule()
508 assert(pkt->isWrite());
509
510 // if the request size is larger than burst size, the pkt is split into
511 // multiple DRAM packets
512 Addr addr = pkt->getAddr();
513 for (int cnt = 0; cnt < pktCount; ++cnt) {
514 unsigned size = std::min((addr | (burstSize - 1)) + 1,
515 pkt->getAddr() + pkt->getSize()) - addr;
516 writePktSize[ceilLog2(size)]++;
517 writeBursts++;
518
519 // see if we can merge with an existing item in the write
520 // queue and keep track of whether we have merged or not so we
521 // can stop at that point and also avoid enqueueing a new
522 // request
523 bool merged = false;
524 auto w = writeQueue.begin();
525
526 while(!merged && w != writeQueue.end()) {
527 // either of the two could be first, if they are the same
528 // it does not matter which way we go
529 if ((*w)->addr >= addr) {
530 // the existing one starts after the new one, figure
531 // out where the new one ends with respect to the
532 // existing one
533 if ((addr + size) >= ((*w)->addr + (*w)->size)) {
534 // check if the existing one is completely
535 // subsumed in the new one
536 DPRINTF(DRAM, "Merging write covering existing burst\n");
537 merged = true;
538 // update both the address and the size
539 (*w)->addr = addr;
540 (*w)->size = size;
541 } else if ((addr + size) >= (*w)->addr &&
542 ((*w)->addr + (*w)->size - addr) <= burstSize) {
543 // the new one is just before or partially
544 // overlapping with the existing one, and together
545 // they fit within a burst
546 DPRINTF(DRAM, "Merging write before existing burst\n");
547 merged = true;
548 // the existing queue item needs to be adjusted with
549 // respect to both address and size
550 (*w)->size = (*w)->addr + (*w)->size - addr;
551 (*w)->addr = addr;
552 }
553 } else {
554 // the new one starts after the current one, figure
555 // out where the existing one ends with respect to the
556 // new one
557 if (((*w)->addr + (*w)->size) >= (addr + size)) {
558 // check if the new one is completely subsumed in the
559 // existing one
560 DPRINTF(DRAM, "Merging write into existing burst\n");
561 merged = true;
562 // no adjustments necessary
563 } else if (((*w)->addr + (*w)->size) >= addr &&
564 (addr + size - (*w)->addr) <= burstSize) {
565 // the existing one is just before or partially
566 // overlapping with the new one, and together
567 // they fit within a burst
568 DPRINTF(DRAM, "Merging write after existing burst\n");
569 merged = true;
570 // the address is right, and only the size has
571 // to be adjusted
572 (*w)->size = addr + size - (*w)->addr;
573 }
574 }
575 ++w;
576 }
577
578 // if the item was not merged we need to create a new write
579 // and enqueue it
580 if (!merged) {
581 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
582
583 assert(writeQueue.size() < writeBufferSize);
584 wrQLenPdf[writeQueue.size()]++;
585
586 DPRINTF(DRAM, "Adding to write queue\n");
587
588 writeQueue.push_back(dram_pkt);
589
590 // Update stats
591 avgWrQLen = writeQueue.size();
592 } else {
593 // keep track of the fact that this burst effectively
594 // disappeared as it was merged with an existing one
595 mergedWrBursts++;
596 }
597
598 // Starting address of next dram pkt (aligend to burstSize boundary)
599 addr = (addr | (burstSize - 1)) + 1;
600 }
601
602 // we do not wait for the writes to be send to the actual memory,
603 // but instead take responsibility for the consistency here and
604 // snoop the write queue for any upcoming reads
605 // @todo, if a pkt size is larger than burst size, we might need a
606 // different front end latency
607 accessAndRespond(pkt, frontendLatency);
608
609 // If we are not already scheduled to get a request out of the
610 // queue, do so now
611 if (!nextReqEvent.scheduled()) {
612 DPRINTF(DRAM, "Request scheduled immediately\n");
613 schedule(nextReqEvent, curTick());
614 }
615}
616
617void
618DRAMCtrl::printQs() const {
619 DPRINTF(DRAM, "===READ QUEUE===\n\n");
620 for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) {
621 DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
622 }
623 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
624 for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) {
625 DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
626 }
627 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
628 for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) {
629 DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
630 }
631}
632
633bool
634DRAMCtrl::recvTimingReq(PacketPtr pkt)
635{
636 /// @todo temporary hack to deal with memory corruption issues until
637 /// 4-phase transactions are complete
638 for (int x = 0; x < pendingDelete.size(); x++)
639 delete pendingDelete[x];
640 pendingDelete.clear();
641
642 // This is where we enter from the outside world
643 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
644 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
645
646 // simply drop inhibited packets for now
647 if (pkt->memInhibitAsserted()) {
648 DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
649 pendingDelete.push_back(pkt);
650 return true;
651 }
652
653 // Calc avg gap between requests
654 if (prevArrival != 0) {
655 totGap += curTick() - prevArrival;
656 }
657 prevArrival = curTick();
658
659
660 // Find out how many dram packets a pkt translates to
661 // If the burst size is equal or larger than the pkt size, then a pkt
662 // translates to only one dram packet. Otherwise, a pkt translates to
663 // multiple dram packets
664 unsigned size = pkt->getSize();
665 unsigned offset = pkt->getAddr() & (burstSize - 1);
666 unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
667
668 // check local buffers and do not accept if full
669 if (pkt->isRead()) {
670 assert(size != 0);
671 if (readQueueFull(dram_pkt_count)) {
672 DPRINTF(DRAM, "Read queue full, not accepting\n");
673 // remember that we have to retry this port
674 retryRdReq = true;
675 numRdRetry++;
676 return false;
677 } else {
678 addToReadQueue(pkt, dram_pkt_count);
679 readReqs++;
680 bytesReadSys += size;
681 }
682 } else if (pkt->isWrite()) {
683 assert(size != 0);
684 if (writeQueueFull(dram_pkt_count)) {
685 DPRINTF(DRAM, "Write queue full, not accepting\n");
686 // remember that we have to retry this port
687 retryWrReq = true;
688 numWrRetry++;
689 return false;
690 } else {
691 addToWriteQueue(pkt, dram_pkt_count);
692 writeReqs++;
693 bytesWrittenSys += size;
694 }
695 } else {
696 DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
697 neitherReadNorWrite++;
698 accessAndRespond(pkt, 1);
699 }
700
701 return true;
702}
703
704void
705DRAMCtrl::processRespondEvent()
706{
707 DPRINTF(DRAM,
708 "processRespondEvent(): Some req has reached its readyTime\n");
709
710 DRAMPacket* dram_pkt = respQueue.front();
711
712 if (dram_pkt->burstHelper) {
713 // it is a split packet
714 dram_pkt->burstHelper->burstsServiced++;
715 if (dram_pkt->burstHelper->burstsServiced ==
716 dram_pkt->burstHelper->burstCount) {
717 // we have now serviced all children packets of a system packet
718 // so we can now respond to the requester
719 // @todo we probably want to have a different front end and back
720 // end latency for split packets
721 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
722 delete dram_pkt->burstHelper;
723 dram_pkt->burstHelper = NULL;
724 }
725 } else {
726 // it is not a split packet
727 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
728 }
729
730 delete respQueue.front();
731 respQueue.pop_front();
732
733 if (!respQueue.empty()) {
734 assert(respQueue.front()->readyTime >= curTick());
735 assert(!respondEvent.scheduled());
736 schedule(respondEvent, respQueue.front()->readyTime);
737 } else {
738 // if there is nothing left in any queue, signal a drain
739 if (writeQueue.empty() && readQueue.empty() &&
740 drainManager) {
741 DPRINTF(Drain, "DRAM controller done draining\n");
742 drainManager->signalDrainDone();
743 drainManager = NULL;
744 }
745 }
746
747 // We have made a location in the queue available at this point,
748 // so if there is a read that was forced to wait, retry now
749 if (retryRdReq) {
750 retryRdReq = false;
751 port.sendRetry();
752 }
753}
754
755bool
756DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
757{
758 // This method does the arbitration between requests. The chosen
759 // packet is simply moved to the head of the queue. The other
760 // methods know that this is the place to look. For example, with
761 // FCFS, this method does nothing
762 assert(!queue.empty());
763
764 // bool to indicate if a packet to an available rank is found
765 bool found_packet = false;
766 if (queue.size() == 1) {
767 DRAMPacket* dram_pkt = queue.front();
768 // available rank corresponds to state refresh idle
769 if (ranks[dram_pkt->rank]->isAvailable()) {
770 found_packet = true;
771 DPRINTF(DRAM, "Single request, going to a free rank\n");
772 } else {
773 DPRINTF(DRAM, "Single request, going to a busy rank\n");
774 }
775 return found_packet;
776 }
777
778 if (memSchedPolicy == Enums::fcfs) {
779 // check if there is a packet going to a free rank
780 for(auto i = queue.begin(); i != queue.end() ; ++i) {
781 DRAMPacket* dram_pkt = *i;
782 if (ranks[dram_pkt->rank]->isAvailable()) {
783 queue.erase(i);
784 queue.push_front(dram_pkt);
785 found_packet = true;
786 break;
787 }
788 }
789 } else if (memSchedPolicy == Enums::frfcfs) {
790 found_packet = reorderQueue(queue, switched_cmd_type);
791 } else
792 panic("No scheduling policy chosen\n");
793 return found_packet;
794}
795
796bool
797DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
798{
799 // Only determine this when needed
800 uint64_t earliest_banks = 0;
801
802 // Search for row hits first, if no row hit is found then schedule the
803 // packet to one of the earliest banks available
804 bool found_packet = false;
805 bool found_earliest_pkt = false;
806 bool found_prepped_diff_rank_pkt = false;
807 auto selected_pkt_it = queue.end();
808
809 for (auto i = queue.begin(); i != queue.end() ; ++i) {
810 DRAMPacket* dram_pkt = *i;
811 const Bank& bank = dram_pkt->bankRef;
812 // check if rank is busy. If this is the case jump to the next packet
813 // Check if it is a row hit
814 if (dram_pkt->rankRef.isAvailable()) {
815 if (bank.openRow == dram_pkt->row) {
816 if (dram_pkt->rank == activeRank || switched_cmd_type) {
817 // FCFS within the hits, giving priority to commands
818 // that access the same rank as the previous burst
819 // to minimize bus turnaround delays
820 // Only give rank prioity when command type is
821 // not changing
822 DPRINTF(DRAM, "Row buffer hit\n");
823 selected_pkt_it = i;
824 break;
825 } else if (!found_prepped_diff_rank_pkt) {
826 // found row hit for command on different rank
827 // than prev burst
828 selected_pkt_it = i;
829 found_prepped_diff_rank_pkt = true;
830 }
831 } else if (!found_earliest_pkt & !found_prepped_diff_rank_pkt) {
832 // packet going to a rank which is currently not waiting for a
833 // refresh, No row hit and
834 // haven't found an entry with a row hit to a new rank
835 if (earliest_banks == 0)
836 // Determine entries with earliest bank prep delay
837 // Function will give priority to commands that access the
838 // same rank as previous burst and can prep
839 // the bank seamlessly
840 earliest_banks = minBankPrep(queue, switched_cmd_type);
841
842 // FCFS - Bank is first available bank
843 if (bits(earliest_banks, dram_pkt->bankId,
844 dram_pkt->bankId)) {
845 // Remember the packet to be scheduled to one of
846 // the earliest banks available, FCFS amongst the
847 // earliest banks
848 selected_pkt_it = i;
849 //if the packet found is going to a rank that is currently
850 //not busy then update the found_packet to true
851 found_earliest_pkt = true;
852 }
853 }
854 }
855 }
856
857 if (selected_pkt_it != queue.end()) {
858 DRAMPacket* selected_pkt = *selected_pkt_it;
859 queue.erase(selected_pkt_it);
860 queue.push_front(selected_pkt);
861 found_packet = true;
862 }
863 return found_packet;
864}
865
866void
867DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
868{
869 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
870
871 bool needsResponse = pkt->needsResponse();
872 // do the actual memory access which also turns the packet into a
873 // response
874 access(pkt);
875
876 // turn packet around to go back to requester if response expected
877 if (needsResponse) {
878 // access already turned the packet into a response
879 assert(pkt->isResponse());
880
881 // @todo someone should pay for this
882 pkt->firstWordDelay = pkt->lastWordDelay = 0;
882 pkt->headerDelay = pkt->payloadDelay = 0;
883
884 // queue the packet in the response queue to be sent out after
885 // the static latency has passed
886 port.schedTimingResp(pkt, curTick() + static_latency);
887 } else {
888 // @todo the packet is going to be deleted, and the DRAMPacket
889 // is still having a pointer to it
890 pendingDelete.push_back(pkt);
891 }
892
893 DPRINTF(DRAM, "Done\n");
894
895 return;
896}
897
898void
899DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref,
900 Tick act_tick, uint32_t row)
901{
902 assert(rank_ref.actTicks.size() == activationLimit);
903
904 DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
905
906 // update the open row
907 assert(bank_ref.openRow == Bank::NO_ROW);
908 bank_ref.openRow = row;
909
910 // start counting anew, this covers both the case when we
911 // auto-precharged, and when this access is forced to
912 // precharge
913 bank_ref.bytesAccessed = 0;
914 bank_ref.rowAccesses = 0;
915
916 ++rank_ref.numBanksActive;
917 assert(rank_ref.numBanksActive <= banksPerRank);
918
919 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
920 bank_ref.bank, rank_ref.rank, act_tick,
921 ranks[rank_ref.rank]->numBanksActive);
922
923 rank_ref.power.powerlib.doCommand(MemCommand::ACT, bank_ref.bank,
924 divCeil(act_tick, tCK) -
925 timeStampOffset);
926
927 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
928 timeStampOffset, bank_ref.bank, rank_ref.rank);
929
930 // The next access has to respect tRAS for this bank
931 bank_ref.preAllowedAt = act_tick + tRAS;
932
933 // Respect the row-to-column command delay
934 bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt);
935
936 // start by enforcing tRRD
937 for(int i = 0; i < banksPerRank; i++) {
938 // next activate to any bank in this rank must not happen
939 // before tRRD
940 if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) {
941 // bank group architecture requires longer delays between
942 // ACT commands within the same bank group. Use tRRD_L
943 // in this case
944 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L,
945 rank_ref.banks[i].actAllowedAt);
946 } else {
947 // use shorter tRRD value when either
948 // 1) bank group architecture is not supportted
949 // 2) bank is in a different bank group
950 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD,
951 rank_ref.banks[i].actAllowedAt);
952 }
953 }
954
955 // next, we deal with tXAW, if the activation limit is disabled
956 // then we directly schedule an activate power event
957 if (!rank_ref.actTicks.empty()) {
958 // sanity check
959 if (rank_ref.actTicks.back() &&
960 (act_tick - rank_ref.actTicks.back()) < tXAW) {
961 panic("Got %d activates in window %d (%llu - %llu) which "
962 "is smaller than %llu\n", activationLimit, act_tick -
963 rank_ref.actTicks.back(), act_tick,
964 rank_ref.actTicks.back(), tXAW);
965 }
966
967 // shift the times used for the book keeping, the last element
968 // (highest index) is the oldest one and hence the lowest value
969 rank_ref.actTicks.pop_back();
970
971 // record an new activation (in the future)
972 rank_ref.actTicks.push_front(act_tick);
973
974 // cannot activate more than X times in time window tXAW, push the
975 // next one (the X + 1'st activate) to be tXAW away from the
976 // oldest in our window of X
977 if (rank_ref.actTicks.back() &&
978 (act_tick - rank_ref.actTicks.back()) < tXAW) {
979 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
980 "no earlier than %llu\n", activationLimit,
981 rank_ref.actTicks.back() + tXAW);
982 for(int j = 0; j < banksPerRank; j++)
983 // next activate must not happen before end of window
984 rank_ref.banks[j].actAllowedAt =
985 std::max(rank_ref.actTicks.back() + tXAW,
986 rank_ref.banks[j].actAllowedAt);
987 }
988 }
989
990 // at the point when this activate takes place, make sure we
991 // transition to the active power state
992 if (!rank_ref.activateEvent.scheduled())
993 schedule(rank_ref.activateEvent, act_tick);
994 else if (rank_ref.activateEvent.when() > act_tick)
995 // move it sooner in time
996 reschedule(rank_ref.activateEvent, act_tick);
997}
998
999void
1000DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace)
1001{
1002 // make sure the bank has an open row
1003 assert(bank.openRow != Bank::NO_ROW);
1004
1005 // sample the bytes per activate here since we are closing
1006 // the page
1007 bytesPerActivate.sample(bank.bytesAccessed);
1008
1009 bank.openRow = Bank::NO_ROW;
1010
1011 // no precharge allowed before this one
1012 bank.preAllowedAt = pre_at;
1013
1014 Tick pre_done_at = pre_at + tRP;
1015
1016 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
1017
1018 assert(rank_ref.numBanksActive != 0);
1019 --rank_ref.numBanksActive;
1020
1021 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
1022 "%d active\n", bank.bank, rank_ref.rank, pre_at,
1023 rank_ref.numBanksActive);
1024
1025 if (trace) {
1026
1027 rank_ref.power.powerlib.doCommand(MemCommand::PRE, bank.bank,
1028 divCeil(pre_at, tCK) -
1029 timeStampOffset);
1030 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
1031 timeStampOffset, bank.bank, rank_ref.rank);
1032 }
1033 // if we look at the current number of active banks we might be
1034 // tempted to think the DRAM is now idle, however this can be
1035 // undone by an activate that is scheduled to happen before we
1036 // would have reached the idle state, so schedule an event and
1037 // rather check once we actually make it to the point in time when
1038 // the (last) precharge takes place
1039 if (!rank_ref.prechargeEvent.scheduled())
1040 schedule(rank_ref.prechargeEvent, pre_done_at);
1041 else if (rank_ref.prechargeEvent.when() < pre_done_at)
1042 reschedule(rank_ref.prechargeEvent, pre_done_at);
1043}
1044
1045void
1046DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1047{
1048 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1049 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1050
1051 // get the rank
1052 Rank& rank = dram_pkt->rankRef;
1053
1054 // get the bank
1055 Bank& bank = dram_pkt->bankRef;
1056
1057 // for the state we need to track if it is a row hit or not
1058 bool row_hit = true;
1059
1060 // respect any constraints on the command (e.g. tRCD or tCCD)
1061 Tick cmd_at = std::max(bank.colAllowedAt, curTick());
1062
1063 // Determine the access latency and update the bank state
1064 if (bank.openRow == dram_pkt->row) {
1065 // nothing to do
1066 } else {
1067 row_hit = false;
1068
1069 // If there is a page open, precharge it.
1070 if (bank.openRow != Bank::NO_ROW) {
1071 prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick()));
1072 }
1073
1074 // next we need to account for the delay in activating the
1075 // page
1076 Tick act_tick = std::max(bank.actAllowedAt, curTick());
1077
1078 // Record the activation and deal with all the global timing
1079 // constraints caused be a new activation (tRRD and tXAW)
1080 activateBank(rank, bank, act_tick, dram_pkt->row);
1081
1082 // issue the command as early as possible
1083 cmd_at = bank.colAllowedAt;
1084 }
1085
1086 // we need to wait until the bus is available before we can issue
1087 // the command
1088 cmd_at = std::max(cmd_at, busBusyUntil - tCL);
1089
1090 // update the packet ready time
1091 dram_pkt->readyTime = cmd_at + tCL + tBURST;
1092
1093 // only one burst can use the bus at any one point in time
1094 assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1095
1096 // update the time for the next read/write burst for each
1097 // bank (add a max with tCCD/tCCD_L here)
1098 Tick cmd_dly;
1099 for(int j = 0; j < ranksPerChannel; j++) {
1100 for(int i = 0; i < banksPerRank; i++) {
1101 // next burst to same bank group in this rank must not happen
1102 // before tCCD_L. Different bank group timing requirement is
1103 // tBURST; Add tCS for different ranks
1104 if (dram_pkt->rank == j) {
1105 if (bankGroupArch &&
1106 (bank.bankgr == ranks[j]->banks[i].bankgr)) {
1107 // bank group architecture requires longer delays between
1108 // RD/WR burst commands to the same bank group.
1109 // Use tCCD_L in this case
1110 cmd_dly = tCCD_L;
1111 } else {
1112 // use tBURST (equivalent to tCCD_S), the shorter
1113 // cas-to-cas delay value, when either:
1114 // 1) bank group architecture is not supportted
1115 // 2) bank is in a different bank group
1116 cmd_dly = tBURST;
1117 }
1118 } else {
1119 // different rank is by default in a different bank group
1120 // use tBURST (equivalent to tCCD_S), which is the shorter
1121 // cas-to-cas delay in this case
1122 // Add tCS to account for rank-to-rank bus delay requirements
1123 cmd_dly = tBURST + tCS;
1124 }
1125 ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly,
1126 ranks[j]->banks[i].colAllowedAt);
1127 }
1128 }
1129
1130 // Save rank of current access
1131 activeRank = dram_pkt->rank;
1132
1133 // If this is a write, we also need to respect the write recovery
1134 // time before a precharge, in the case of a read, respect the
1135 // read to precharge constraint
1136 bank.preAllowedAt = std::max(bank.preAllowedAt,
1137 dram_pkt->isRead ? cmd_at + tRTP :
1138 dram_pkt->readyTime + tWR);
1139
1140 // increment the bytes accessed and the accesses per row
1141 bank.bytesAccessed += burstSize;
1142 ++bank.rowAccesses;
1143
1144 // if we reached the max, then issue with an auto-precharge
1145 bool auto_precharge = pageMgmt == Enums::close ||
1146 bank.rowAccesses == maxAccessesPerRow;
1147
1148 // if we did not hit the limit, we might still want to
1149 // auto-precharge
1150 if (!auto_precharge &&
1151 (pageMgmt == Enums::open_adaptive ||
1152 pageMgmt == Enums::close_adaptive)) {
1153 // a twist on the open and close page policies:
1154 // 1) open_adaptive page policy does not blindly keep the
1155 // page open, but close it if there are no row hits, and there
1156 // are bank conflicts in the queue
1157 // 2) close_adaptive page policy does not blindly close the
1158 // page, but closes it only if there are no row hits in the queue.
1159 // In this case, only force an auto precharge when there
1160 // are no same page hits in the queue
1161 bool got_more_hits = false;
1162 bool got_bank_conflict = false;
1163
1164 // either look at the read queue or write queue
1165 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1166 writeQueue;
1167 auto p = queue.begin();
1168 // make sure we are not considering the packet that we are
1169 // currently dealing with (which is the head of the queue)
1170 ++p;
1171
1172 // keep on looking until we have found required condition or
1173 // reached the end
1174 while (!(got_more_hits &&
1175 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
1176 p != queue.end()) {
1177 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1178 (dram_pkt->bank == (*p)->bank);
1179 bool same_row = dram_pkt->row == (*p)->row;
1180 got_more_hits |= same_rank_bank && same_row;
1181 got_bank_conflict |= same_rank_bank && !same_row;
1182 ++p;
1183 }
1184
1185 // auto pre-charge when either
1186 // 1) open_adaptive policy, we have not got any more hits, and
1187 // have a bank conflict
1188 // 2) close_adaptive policy and we have not got any more hits
1189 auto_precharge = !got_more_hits &&
1190 (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1191 }
1192
1193 // DRAMPower trace command to be written
1194 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1195
1196 // MemCommand required for DRAMPower library
1197 MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1198 MemCommand::WR;
1199
1200 // if this access should use auto-precharge, then we are
1201 // closing the row
1202 if (auto_precharge) {
1203 // if auto-precharge push a PRE command at the correct tick to the
1204 // list used by DRAMPower library to calculate power
1205 prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt));
1206
1207 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1208 }
1209
1210 // Update bus state
1211 busBusyUntil = dram_pkt->readyTime;
1212
1213 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1214 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1215
1216 dram_pkt->rankRef.power.powerlib.doCommand(command, dram_pkt->bank,
1217 divCeil(cmd_at, tCK) -
1218 timeStampOffset);
1219
1220 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1221 timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1222
1223 // Update the minimum timing between the requests, this is a
1224 // conservative estimate of when we have to schedule the next
1225 // request to not introduce any unecessary bubbles. In most cases
1226 // we will wake up sooner than we have to.
1227 nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1228
1229 // Update the stats and schedule the next request
1230 if (dram_pkt->isRead) {
1231 ++readsThisTime;
1232 if (row_hit)
1233 readRowHits++;
1234 bytesReadDRAM += burstSize;
1235 perBankRdBursts[dram_pkt->bankId]++;
1236
1237 // Update latency stats
1238 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1239 totBusLat += tBURST;
1240 totQLat += cmd_at - dram_pkt->entryTime;
1241 } else {
1242 ++writesThisTime;
1243 if (row_hit)
1244 writeRowHits++;
1245 bytesWritten += burstSize;
1246 perBankWrBursts[dram_pkt->bankId]++;
1247 }
1248}
1249
1250void
1251DRAMCtrl::processNextReqEvent()
1252{
1253 int busyRanks = 0;
1254 for (auto r : ranks) {
1255 if (!r->isAvailable()) {
1256 // rank is busy refreshing
1257 busyRanks++;
1258
1259 // let the rank know that if it was waiting to drain, it
1260 // is now done and ready to proceed
1261 r->checkDrainDone();
1262 }
1263 }
1264
1265 if (busyRanks == ranksPerChannel) {
1266 // if all ranks are refreshing wait for them to finish
1267 // and stall this state machine without taking any further
1268 // action, and do not schedule a new nextReqEvent
1269 return;
1270 }
1271
1272 // pre-emptively set to false. Overwrite if in READ_TO_WRITE
1273 // or WRITE_TO_READ state
1274 bool switched_cmd_type = false;
1275 if (busState == READ_TO_WRITE) {
1276 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1277 "waiting\n", readsThisTime, readQueue.size());
1278
1279 // sample and reset the read-related stats as we are now
1280 // transitioning to writes, and all reads are done
1281 rdPerTurnAround.sample(readsThisTime);
1282 readsThisTime = 0;
1283
1284 // now proceed to do the actual writes
1285 busState = WRITE;
1286 switched_cmd_type = true;
1287 } else if (busState == WRITE_TO_READ) {
1288 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1289 "waiting\n", writesThisTime, writeQueue.size());
1290
1291 wrPerTurnAround.sample(writesThisTime);
1292 writesThisTime = 0;
1293
1294 busState = READ;
1295 switched_cmd_type = true;
1296 }
1297
1298 // when we get here it is either a read or a write
1299 if (busState == READ) {
1300
1301 // track if we should switch or not
1302 bool switch_to_writes = false;
1303
1304 if (readQueue.empty()) {
1305 // In the case there is no read request to go next,
1306 // trigger writes if we have passed the low threshold (or
1307 // if we are draining)
1308 if (!writeQueue.empty() &&
1309 (drainManager || writeQueue.size() > writeLowThreshold)) {
1310
1311 switch_to_writes = true;
1312 } else {
1313 // check if we are drained
1314 if (respQueue.empty () && drainManager) {
1315 DPRINTF(Drain, "DRAM controller done draining\n");
1316 drainManager->signalDrainDone();
1317 drainManager = NULL;
1318 }
1319
1320 // nothing to do, not even any point in scheduling an
1321 // event for the next request
1322 return;
1323 }
1324 } else {
1325 // bool to check if there is a read to a free rank
1326 bool found_read = false;
1327
1328 // Figure out which read request goes next, and move it to the
1329 // front of the read queue
1330 found_read = chooseNext(readQueue, switched_cmd_type);
1331
1332 // if no read to an available rank is found then return
1333 // at this point. There could be writes to the available ranks
1334 // which are above the required threshold. However, to
1335 // avoid adding more complexity to the code, return and wait
1336 // for a refresh event to kick things into action again.
1337 if (!found_read)
1338 return;
1339
1340 DRAMPacket* dram_pkt = readQueue.front();
1341 assert(dram_pkt->rankRef.isAvailable());
1342 // here we get a bit creative and shift the bus busy time not
1343 // just the tWTR, but also a CAS latency to capture the fact
1344 // that we are allowed to prepare a new bank, but not issue a
1345 // read command until after tWTR, in essence we capture a
1346 // bubble on the data bus that is tWTR + tCL
1347 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1348 busBusyUntil += tWTR + tCL;
1349 }
1350
1351 doDRAMAccess(dram_pkt);
1352
1353 // At this point we're done dealing with the request
1354 readQueue.pop_front();
1355
1356 // sanity check
1357 assert(dram_pkt->size <= burstSize);
1358 assert(dram_pkt->readyTime >= curTick());
1359
1360 // Insert into response queue. It will be sent back to the
1361 // requestor at its readyTime
1362 if (respQueue.empty()) {
1363 assert(!respondEvent.scheduled());
1364 schedule(respondEvent, dram_pkt->readyTime);
1365 } else {
1366 assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1367 assert(respondEvent.scheduled());
1368 }
1369
1370 respQueue.push_back(dram_pkt);
1371
1372 // we have so many writes that we have to transition
1373 if (writeQueue.size() > writeHighThreshold) {
1374 switch_to_writes = true;
1375 }
1376 }
1377
1378 // switching to writes, either because the read queue is empty
1379 // and the writes have passed the low threshold (or we are
1380 // draining), or because the writes hit the hight threshold
1381 if (switch_to_writes) {
1382 // transition to writing
1383 busState = READ_TO_WRITE;
1384 }
1385 } else {
1386 // bool to check if write to free rank is found
1387 bool found_write = false;
1388
1389 found_write = chooseNext(writeQueue, switched_cmd_type);
1390
1391 // if no writes to an available rank are found then return.
1392 // There could be reads to the available ranks. However, to avoid
1393 // adding more complexity to the code, return at this point and wait
1394 // for a refresh event to kick things into action again.
1395 if (!found_write)
1396 return;
1397
1398 DRAMPacket* dram_pkt = writeQueue.front();
1399 assert(dram_pkt->rankRef.isAvailable());
1400 // sanity check
1401 assert(dram_pkt->size <= burstSize);
1402
1403 // add a bubble to the data bus, as defined by the
1404 // tRTW when access is to the same rank as previous burst
1405 // Different rank timing is handled with tCS, which is
1406 // applied to colAllowedAt
1407 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1408 busBusyUntil += tRTW;
1409 }
1410
1411 doDRAMAccess(dram_pkt);
1412
1413 writeQueue.pop_front();
1414 delete dram_pkt;
1415
1416 // If we emptied the write queue, or got sufficiently below the
1417 // threshold (using the minWritesPerSwitch as the hysteresis) and
1418 // are not draining, or we have reads waiting and have done enough
1419 // writes, then switch to reads.
1420 if (writeQueue.empty() ||
1421 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1422 !drainManager) ||
1423 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1424 // turn the bus back around for reads again
1425 busState = WRITE_TO_READ;
1426
1427 // note that the we switch back to reads also in the idle
1428 // case, which eventually will check for any draining and
1429 // also pause any further scheduling if there is really
1430 // nothing to do
1431 }
1432 }
1433 // It is possible that a refresh to another rank kicks things back into
1434 // action before reaching this point.
1435 if (!nextReqEvent.scheduled())
1436 schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1437
1438 // If there is space available and we have writes waiting then let
1439 // them retry. This is done here to ensure that the retry does not
1440 // cause a nextReqEvent to be scheduled before we do so as part of
1441 // the next request processing
1442 if (retryWrReq && writeQueue.size() < writeBufferSize) {
1443 retryWrReq = false;
1444 port.sendRetry();
1445 }
1446}
1447
1448uint64_t
1449DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1450 bool switched_cmd_type) const
1451{
1452 uint64_t bank_mask = 0;
1453 Tick min_act_at = MaxTick;
1454
1455 uint64_t bank_mask_same_rank = 0;
1456 Tick min_act_at_same_rank = MaxTick;
1457
1458 // Give precedence to commands that access same rank as previous command
1459 bool same_rank_match = false;
1460
1461 // determine if we have queued transactions targetting the
1462 // bank in question
1463 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1464 for (const auto& p : queue) {
1465 if(p->rankRef.isAvailable())
1466 got_waiting[p->bankId] = true;
1467 }
1468
1469 for (int i = 0; i < ranksPerChannel; i++) {
1470 for (int j = 0; j < banksPerRank; j++) {
1471 uint16_t bank_id = i * banksPerRank + j;
1472
1473 // if we have waiting requests for the bank, and it is
1474 // amongst the first available, update the mask
1475 if (got_waiting[bank_id]) {
1476 // make sure this rank is not currently refreshing.
1477 assert(ranks[i]->isAvailable());
1478 // simplistic approximation of when the bank can issue
1479 // an activate, ignoring any rank-to-rank switching
1480 // cost in this calculation
1481 Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ?
1482 ranks[i]->banks[j].actAllowedAt :
1483 std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP;
1484
1485 // prioritize commands that access the
1486 // same rank as previous burst
1487 // Calculate bank mask separately for the case and
1488 // evaluate after loop iterations complete
1489 if (i == activeRank && ranksPerChannel > 1) {
1490 if (act_at <= min_act_at_same_rank) {
1491 // reset same rank bank mask if new minimum is found
1492 // and previous minimum could not immediately send ACT
1493 if (act_at < min_act_at_same_rank &&
1494 min_act_at_same_rank > curTick())
1495 bank_mask_same_rank = 0;
1496
1497 // Set flag indicating that a same rank
1498 // opportunity was found
1499 same_rank_match = true;
1500
1501 // set the bit corresponding to the available bank
1502 replaceBits(bank_mask_same_rank, bank_id, bank_id, 1);
1503 min_act_at_same_rank = act_at;
1504 }
1505 } else {
1506 if (act_at <= min_act_at) {
1507 // reset bank mask if new minimum is found
1508 // and either previous minimum could not immediately send ACT
1509 if (act_at < min_act_at && min_act_at > curTick())
1510 bank_mask = 0;
1511 // set the bit corresponding to the available bank
1512 replaceBits(bank_mask, bank_id, bank_id, 1);
1513 min_act_at = act_at;
1514 }
1515 }
1516 }
1517 }
1518 }
1519
1520 // Determine the earliest time when the next burst can issue based
1521 // on the current busBusyUntil delay.
1522 // Offset by tRCD to correlate with ACT timing variables
1523 Tick min_cmd_at = busBusyUntil - tCL - tRCD;
1524
1525 // if we have multiple ranks and all
1526 // waiting packets are accessing a rank which was previously active
1527 // then bank_mask_same_rank will be set to a value while bank_mask will
1528 // remain 0. In this case, the function should return the value of
1529 // bank_mask_same_rank.
1530 // else if waiting packets access a rank which was previously active and
1531 // other ranks, prioritize same rank accesses that can issue B2B
1532 // Only optimize for same ranks when the command type
1533 // does not change; do not want to unnecessarily incur tWTR
1534 //
1535 // Resulting FCFS prioritization Order is:
1536 // 1) Commands that access the same rank as previous burst
1537 // and can prep the bank seamlessly.
1538 // 2) Commands (any rank) with earliest bank prep
1539 if ((bank_mask == 0) || (!switched_cmd_type && same_rank_match &&
1540 min_act_at_same_rank <= min_cmd_at)) {
1541 bank_mask = bank_mask_same_rank;
1542 }
1543
1544 return bank_mask;
1545}
1546
1547DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p)
1548 : EventManager(&_memory), memory(_memory),
1549 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), pwrStateTick(0),
1550 refreshState(REF_IDLE), refreshDueAt(0),
1551 power(_p, false), numBanksActive(0),
1552 activateEvent(*this), prechargeEvent(*this),
1553 refreshEvent(*this), powerEvent(*this)
1554{ }
1555
1556void
1557DRAMCtrl::Rank::startup(Tick ref_tick)
1558{
1559 assert(ref_tick > curTick());
1560
1561 pwrStateTick = curTick();
1562
1563 // kick off the refresh, and give ourselves enough time to
1564 // precharge
1565 schedule(refreshEvent, ref_tick);
1566}
1567
1568void
1569DRAMCtrl::Rank::suspend()
1570{
1571 deschedule(refreshEvent);
1572}
1573
1574void
1575DRAMCtrl::Rank::checkDrainDone()
1576{
1577 // if this rank was waiting to drain it is now able to proceed to
1578 // precharge
1579 if (refreshState == REF_DRAIN) {
1580 DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1581
1582 refreshState = REF_PRE;
1583
1584 // hand control back to the refresh event loop
1585 schedule(refreshEvent, curTick());
1586 }
1587}
1588
1589void
1590DRAMCtrl::Rank::processActivateEvent()
1591{
1592 // we should transition to the active state as soon as any bank is active
1593 if (pwrState != PWR_ACT)
1594 // note that at this point numBanksActive could be back at
1595 // zero again due to a precharge scheduled in the future
1596 schedulePowerEvent(PWR_ACT, curTick());
1597}
1598
1599void
1600DRAMCtrl::Rank::processPrechargeEvent()
1601{
1602 // if we reached zero, then special conditions apply as we track
1603 // if all banks are precharged for the power models
1604 if (numBanksActive == 0) {
1605 // we should transition to the idle state when the last bank
1606 // is precharged
1607 schedulePowerEvent(PWR_IDLE, curTick());
1608 }
1609}
1610
1611void
1612DRAMCtrl::Rank::processRefreshEvent()
1613{
1614 // when first preparing the refresh, remember when it was due
1615 if (refreshState == REF_IDLE) {
1616 // remember when the refresh is due
1617 refreshDueAt = curTick();
1618
1619 // proceed to drain
1620 refreshState = REF_DRAIN;
1621
1622 DPRINTF(DRAM, "Refresh due\n");
1623 }
1624
1625 // let any scheduled read or write to the same rank go ahead,
1626 // after which it will
1627 // hand control back to this event loop
1628 if (refreshState == REF_DRAIN) {
1629 // if a request is at the moment being handled and this request is
1630 // accessing the current rank then wait for it to finish
1631 if ((rank == memory.activeRank)
1632 && (memory.nextReqEvent.scheduled())) {
1633 // hand control over to the request loop until it is
1634 // evaluated next
1635 DPRINTF(DRAM, "Refresh awaiting draining\n");
1636
1637 return;
1638 } else {
1639 refreshState = REF_PRE;
1640 }
1641 }
1642
1643 // at this point, ensure that all banks are precharged
1644 if (refreshState == REF_PRE) {
1645 // precharge any active bank if we are not already in the idle
1646 // state
1647 if (pwrState != PWR_IDLE) {
1648 // at the moment, we use a precharge all even if there is
1649 // only a single bank open
1650 DPRINTF(DRAM, "Precharging all\n");
1651
1652 // first determine when we can precharge
1653 Tick pre_at = curTick();
1654
1655 for (auto &b : banks) {
1656 // respect both causality and any existing bank
1657 // constraints, some banks could already have a
1658 // (auto) precharge scheduled
1659 pre_at = std::max(b.preAllowedAt, pre_at);
1660 }
1661
1662 // make sure all banks per rank are precharged, and for those that
1663 // already are, update their availability
1664 Tick act_allowed_at = pre_at + memory.tRP;
1665
1666 for (auto &b : banks) {
1667 if (b.openRow != Bank::NO_ROW) {
1668 memory.prechargeBank(*this, b, pre_at, false);
1669 } else {
1670 b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at);
1671 b.preAllowedAt = std::max(b.preAllowedAt, pre_at);
1672 }
1673 }
1674
1675 // precharge all banks in rank
1676 power.powerlib.doCommand(MemCommand::PREA, 0,
1677 divCeil(pre_at, memory.tCK) -
1678 memory.timeStampOffset);
1679
1680 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
1681 divCeil(pre_at, memory.tCK) -
1682 memory.timeStampOffset, rank);
1683 } else {
1684 DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1685
1686 // go ahead and kick the power state machine into gear if
1687 // we are already idle
1688 schedulePowerEvent(PWR_REF, curTick());
1689 }
1690
1691 refreshState = REF_RUN;
1692 assert(numBanksActive == 0);
1693
1694 // wait for all banks to be precharged, at which point the
1695 // power state machine will transition to the idle state, and
1696 // automatically move to a refresh, at that point it will also
1697 // call this method to get the refresh event loop going again
1698 return;
1699 }
1700
1701 // last but not least we perform the actual refresh
1702 if (refreshState == REF_RUN) {
1703 // should never get here with any banks active
1704 assert(numBanksActive == 0);
1705 assert(pwrState == PWR_REF);
1706
1707 Tick ref_done_at = curTick() + memory.tRFC;
1708
1709 for (auto &b : banks) {
1710 b.actAllowedAt = ref_done_at;
1711 }
1712
1713 // at the moment this affects all ranks
1714 power.powerlib.doCommand(MemCommand::REF, 0,
1715 divCeil(curTick(), memory.tCK) -
1716 memory.timeStampOffset);
1717
1718 // at the moment sort the list of commands and update the counters
1719 // for DRAMPower libray when doing a refresh
1720 sort(power.powerlib.cmdList.begin(),
1721 power.powerlib.cmdList.end(), DRAMCtrl::sortTime);
1722
1723 // update the counters for DRAMPower, passing false to
1724 // indicate that this is not the last command in the
1725 // list. DRAMPower requires this information for the
1726 // correct calculation of the background energy at the end
1727 // of the simulation. Ideally we would want to call this
1728 // function with true once at the end of the
1729 // simulation. However, the discarded energy is extremly
1730 // small and does not effect the final results.
1731 power.powerlib.updateCounters(false);
1732
1733 // call the energy function
1734 power.powerlib.calcEnergy();
1735
1736 // Update the stats
1737 updatePowerStats();
1738
1739 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
1740 memory.timeStampOffset, rank);
1741
1742 // make sure we did not wait so long that we cannot make up
1743 // for it
1744 if (refreshDueAt + memory.tREFI < ref_done_at) {
1745 fatal("Refresh was delayed so long we cannot catch up\n");
1746 }
1747
1748 // compensate for the delay in actually performing the refresh
1749 // when scheduling the next one
1750 schedule(refreshEvent, refreshDueAt + memory.tREFI - memory.tRP);
1751
1752 assert(!powerEvent.scheduled());
1753
1754 // move to the idle power state once the refresh is done, this
1755 // will also move the refresh state machine to the refresh
1756 // idle state
1757 schedulePowerEvent(PWR_IDLE, ref_done_at);
1758
1759 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1760 ref_done_at, refreshDueAt + memory.tREFI);
1761 }
1762}
1763
1764void
1765DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick)
1766{
1767 // respect causality
1768 assert(tick >= curTick());
1769
1770 if (!powerEvent.scheduled()) {
1771 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1772 tick, pwr_state);
1773
1774 // insert the new transition
1775 pwrStateTrans = pwr_state;
1776
1777 schedule(powerEvent, tick);
1778 } else {
1779 panic("Scheduled power event at %llu to state %d, "
1780 "with scheduled event at %llu to %d\n", tick, pwr_state,
1781 powerEvent.when(), pwrStateTrans);
1782 }
1783}
1784
1785void
1786DRAMCtrl::Rank::processPowerEvent()
1787{
1788 // remember where we were, and for how long
1789 Tick duration = curTick() - pwrStateTick;
1790 PowerState prev_state = pwrState;
1791
1792 // update the accounting
1793 pwrStateTime[prev_state] += duration;
1794
1795 pwrState = pwrStateTrans;
1796 pwrStateTick = curTick();
1797
1798 if (pwrState == PWR_IDLE) {
1799 DPRINTF(DRAMState, "All banks precharged\n");
1800
1801 // if we were refreshing, make sure we start scheduling requests again
1802 if (prev_state == PWR_REF) {
1803 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1804 assert(pwrState == PWR_IDLE);
1805
1806 // kick things into action again
1807 refreshState = REF_IDLE;
1808 // a request event could be already scheduled by the state
1809 // machine of the other rank
1810 if (!memory.nextReqEvent.scheduled())
1811 schedule(memory.nextReqEvent, curTick());
1812 } else {
1813 assert(prev_state == PWR_ACT);
1814
1815 // if we have a pending refresh, and are now moving to
1816 // the idle state, direclty transition to a refresh
1817 if (refreshState == REF_RUN) {
1818 // there should be nothing waiting at this point
1819 assert(!powerEvent.scheduled());
1820
1821 // update the state in zero time and proceed below
1822 pwrState = PWR_REF;
1823 }
1824 }
1825 }
1826
1827 // we transition to the refresh state, let the refresh state
1828 // machine know of this state update and let it deal with the
1829 // scheduling of the next power state transition as well as the
1830 // following refresh
1831 if (pwrState == PWR_REF) {
1832 DPRINTF(DRAMState, "Refreshing\n");
1833 // kick the refresh event loop into action again, and that
1834 // in turn will schedule a transition to the idle power
1835 // state once the refresh is done
1836 assert(refreshState == REF_RUN);
1837 processRefreshEvent();
1838 }
1839}
1840
1841void
1842DRAMCtrl::Rank::updatePowerStats()
1843{
1844 // Get the energy and power from DRAMPower
1845 Data::MemoryPowerModel::Energy energy =
1846 power.powerlib.getEnergy();
1847 Data::MemoryPowerModel::Power rank_power =
1848 power.powerlib.getPower();
1849
1850 actEnergy = energy.act_energy * memory.devicesPerRank;
1851 preEnergy = energy.pre_energy * memory.devicesPerRank;
1852 readEnergy = energy.read_energy * memory.devicesPerRank;
1853 writeEnergy = energy.write_energy * memory.devicesPerRank;
1854 refreshEnergy = energy.ref_energy * memory.devicesPerRank;
1855 actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank;
1856 preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank;
1857 totalEnergy = energy.total_energy * memory.devicesPerRank;
1858 averagePower = rank_power.average_power * memory.devicesPerRank;
1859}
1860
1861void
1862DRAMCtrl::Rank::regStats()
1863{
1864 using namespace Stats;
1865
1866 pwrStateTime
1867 .init(5)
1868 .name(name() + ".memoryStateTime")
1869 .desc("Time in different power states");
1870 pwrStateTime.subname(0, "IDLE");
1871 pwrStateTime.subname(1, "REF");
1872 pwrStateTime.subname(2, "PRE_PDN");
1873 pwrStateTime.subname(3, "ACT");
1874 pwrStateTime.subname(4, "ACT_PDN");
1875
1876 actEnergy
1877 .name(name() + ".actEnergy")
1878 .desc("Energy for activate commands per rank (pJ)");
1879
1880 preEnergy
1881 .name(name() + ".preEnergy")
1882 .desc("Energy for precharge commands per rank (pJ)");
1883
1884 readEnergy
1885 .name(name() + ".readEnergy")
1886 .desc("Energy for read commands per rank (pJ)");
1887
1888 writeEnergy
1889 .name(name() + ".writeEnergy")
1890 .desc("Energy for write commands per rank (pJ)");
1891
1892 refreshEnergy
1893 .name(name() + ".refreshEnergy")
1894 .desc("Energy for refresh commands per rank (pJ)");
1895
1896 actBackEnergy
1897 .name(name() + ".actBackEnergy")
1898 .desc("Energy for active background per rank (pJ)");
1899
1900 preBackEnergy
1901 .name(name() + ".preBackEnergy")
1902 .desc("Energy for precharge background per rank (pJ)");
1903
1904 totalEnergy
1905 .name(name() + ".totalEnergy")
1906 .desc("Total energy per rank (pJ)");
1907
1908 averagePower
1909 .name(name() + ".averagePower")
1910 .desc("Core power per rank (mW)");
1911}
1912void
1913DRAMCtrl::regStats()
1914{
1915 using namespace Stats;
1916
1917 AbstractMemory::regStats();
1918
1919 for (auto r : ranks) {
1920 r->regStats();
1921 }
1922
1923 readReqs
1924 .name(name() + ".readReqs")
1925 .desc("Number of read requests accepted");
1926
1927 writeReqs
1928 .name(name() + ".writeReqs")
1929 .desc("Number of write requests accepted");
1930
1931 readBursts
1932 .name(name() + ".readBursts")
1933 .desc("Number of DRAM read bursts, "
1934 "including those serviced by the write queue");
1935
1936 writeBursts
1937 .name(name() + ".writeBursts")
1938 .desc("Number of DRAM write bursts, "
1939 "including those merged in the write queue");
1940
1941 servicedByWrQ
1942 .name(name() + ".servicedByWrQ")
1943 .desc("Number of DRAM read bursts serviced by the write queue");
1944
1945 mergedWrBursts
1946 .name(name() + ".mergedWrBursts")
1947 .desc("Number of DRAM write bursts merged with an existing one");
1948
1949 neitherReadNorWrite
1950 .name(name() + ".neitherReadNorWriteReqs")
1951 .desc("Number of requests that are neither read nor write");
1952
1953 perBankRdBursts
1954 .init(banksPerRank * ranksPerChannel)
1955 .name(name() + ".perBankRdBursts")
1956 .desc("Per bank write bursts");
1957
1958 perBankWrBursts
1959 .init(banksPerRank * ranksPerChannel)
1960 .name(name() + ".perBankWrBursts")
1961 .desc("Per bank write bursts");
1962
1963 avgRdQLen
1964 .name(name() + ".avgRdQLen")
1965 .desc("Average read queue length when enqueuing")
1966 .precision(2);
1967
1968 avgWrQLen
1969 .name(name() + ".avgWrQLen")
1970 .desc("Average write queue length when enqueuing")
1971 .precision(2);
1972
1973 totQLat
1974 .name(name() + ".totQLat")
1975 .desc("Total ticks spent queuing");
1976
1977 totBusLat
1978 .name(name() + ".totBusLat")
1979 .desc("Total ticks spent in databus transfers");
1980
1981 totMemAccLat
1982 .name(name() + ".totMemAccLat")
1983 .desc("Total ticks spent from burst creation until serviced "
1984 "by the DRAM");
1985
1986 avgQLat
1987 .name(name() + ".avgQLat")
1988 .desc("Average queueing delay per DRAM burst")
1989 .precision(2);
1990
1991 avgQLat = totQLat / (readBursts - servicedByWrQ);
1992
1993 avgBusLat
1994 .name(name() + ".avgBusLat")
1995 .desc("Average bus latency per DRAM burst")
1996 .precision(2);
1997
1998 avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1999
2000 avgMemAccLat
2001 .name(name() + ".avgMemAccLat")
2002 .desc("Average memory access latency per DRAM burst")
2003 .precision(2);
2004
2005 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
2006
2007 numRdRetry
2008 .name(name() + ".numRdRetry")
2009 .desc("Number of times read queue was full causing retry");
2010
2011 numWrRetry
2012 .name(name() + ".numWrRetry")
2013 .desc("Number of times write queue was full causing retry");
2014
2015 readRowHits
2016 .name(name() + ".readRowHits")
2017 .desc("Number of row buffer hits during reads");
2018
2019 writeRowHits
2020 .name(name() + ".writeRowHits")
2021 .desc("Number of row buffer hits during writes");
2022
2023 readRowHitRate
2024 .name(name() + ".readRowHitRate")
2025 .desc("Row buffer hit rate for reads")
2026 .precision(2);
2027
2028 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
2029
2030 writeRowHitRate
2031 .name(name() + ".writeRowHitRate")
2032 .desc("Row buffer hit rate for writes")
2033 .precision(2);
2034
2035 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
2036
2037 readPktSize
2038 .init(ceilLog2(burstSize) + 1)
2039 .name(name() + ".readPktSize")
2040 .desc("Read request sizes (log2)");
2041
2042 writePktSize
2043 .init(ceilLog2(burstSize) + 1)
2044 .name(name() + ".writePktSize")
2045 .desc("Write request sizes (log2)");
2046
2047 rdQLenPdf
2048 .init(readBufferSize)
2049 .name(name() + ".rdQLenPdf")
2050 .desc("What read queue length does an incoming req see");
2051
2052 wrQLenPdf
2053 .init(writeBufferSize)
2054 .name(name() + ".wrQLenPdf")
2055 .desc("What write queue length does an incoming req see");
2056
2057 bytesPerActivate
2058 .init(maxAccessesPerRow)
2059 .name(name() + ".bytesPerActivate")
2060 .desc("Bytes accessed per row activation")
2061 .flags(nozero);
2062
2063 rdPerTurnAround
2064 .init(readBufferSize)
2065 .name(name() + ".rdPerTurnAround")
2066 .desc("Reads before turning the bus around for writes")
2067 .flags(nozero);
2068
2069 wrPerTurnAround
2070 .init(writeBufferSize)
2071 .name(name() + ".wrPerTurnAround")
2072 .desc("Writes before turning the bus around for reads")
2073 .flags(nozero);
2074
2075 bytesReadDRAM
2076 .name(name() + ".bytesReadDRAM")
2077 .desc("Total number of bytes read from DRAM");
2078
2079 bytesReadWrQ
2080 .name(name() + ".bytesReadWrQ")
2081 .desc("Total number of bytes read from write queue");
2082
2083 bytesWritten
2084 .name(name() + ".bytesWritten")
2085 .desc("Total number of bytes written to DRAM");
2086
2087 bytesReadSys
2088 .name(name() + ".bytesReadSys")
2089 .desc("Total read bytes from the system interface side");
2090
2091 bytesWrittenSys
2092 .name(name() + ".bytesWrittenSys")
2093 .desc("Total written bytes from the system interface side");
2094
2095 avgRdBW
2096 .name(name() + ".avgRdBW")
2097 .desc("Average DRAM read bandwidth in MiByte/s")
2098 .precision(2);
2099
2100 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
2101
2102 avgWrBW
2103 .name(name() + ".avgWrBW")
2104 .desc("Average achieved write bandwidth in MiByte/s")
2105 .precision(2);
2106
2107 avgWrBW = (bytesWritten / 1000000) / simSeconds;
2108
2109 avgRdBWSys
2110 .name(name() + ".avgRdBWSys")
2111 .desc("Average system read bandwidth in MiByte/s")
2112 .precision(2);
2113
2114 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
2115
2116 avgWrBWSys
2117 .name(name() + ".avgWrBWSys")
2118 .desc("Average system write bandwidth in MiByte/s")
2119 .precision(2);
2120
2121 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
2122
2123 peakBW
2124 .name(name() + ".peakBW")
2125 .desc("Theoretical peak bandwidth in MiByte/s")
2126 .precision(2);
2127
2128 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
2129
2130 busUtil
2131 .name(name() + ".busUtil")
2132 .desc("Data bus utilization in percentage")
2133 .precision(2);
2134 busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
2135
2136 totGap
2137 .name(name() + ".totGap")
2138 .desc("Total gap between requests");
2139
2140 avgGap
2141 .name(name() + ".avgGap")
2142 .desc("Average gap between requests")
2143 .precision(2);
2144
2145 avgGap = totGap / (readReqs + writeReqs);
2146
2147 // Stats for DRAM Power calculation based on Micron datasheet
2148 busUtilRead
2149 .name(name() + ".busUtilRead")
2150 .desc("Data bus utilization in percentage for reads")
2151 .precision(2);
2152
2153 busUtilRead = avgRdBW / peakBW * 100;
2154
2155 busUtilWrite
2156 .name(name() + ".busUtilWrite")
2157 .desc("Data bus utilization in percentage for writes")
2158 .precision(2);
2159
2160 busUtilWrite = avgWrBW / peakBW * 100;
2161
2162 pageHitRate
2163 .name(name() + ".pageHitRate")
2164 .desc("Row buffer hit rate, read and write combined")
2165 .precision(2);
2166
2167 pageHitRate = (writeRowHits + readRowHits) /
2168 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
2169}
2170
2171void
2172DRAMCtrl::recvFunctional(PacketPtr pkt)
2173{
2174 // rely on the abstract memory
2175 functionalAccess(pkt);
2176}
2177
2178BaseSlavePort&
2179DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2180{
2181 if (if_name != "port") {
2182 return MemObject::getSlavePort(if_name, idx);
2183 } else {
2184 return port;
2185 }
2186}
2187
2188unsigned int
2189DRAMCtrl::drain(DrainManager *dm)
2190{
2191 unsigned int count = port.drain(dm);
2192
2193 // if there is anything in any of our internal queues, keep track
2194 // of that as well
2195 if (!(writeQueue.empty() && readQueue.empty() &&
2196 respQueue.empty())) {
2197 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2198 " resp: %d\n", writeQueue.size(), readQueue.size(),
2199 respQueue.size());
2200 ++count;
2201 drainManager = dm;
2202
2203 // the only part that is not drained automatically over time
2204 // is the write queue, thus kick things into action if needed
2205 if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2206 schedule(nextReqEvent, curTick());
2207 }
2208 }
2209
2210 if (count)
2211 setDrainState(Drainable::Draining);
2212 else
2213 setDrainState(Drainable::Drained);
2214 return count;
2215}
2216
2217void
2218DRAMCtrl::drainResume()
2219{
2220 if (!isTimingMode && system()->isTimingMode()) {
2221 // if we switched to timing mode, kick things into action,
2222 // and behave as if we restored from a checkpoint
2223 startup();
2224 } else if (isTimingMode && !system()->isTimingMode()) {
2225 // if we switch from timing mode, stop the refresh events to
2226 // not cause issues with KVM
2227 for (auto r : ranks) {
2228 r->suspend();
2229 }
2230 }
2231
2232 // update the mode
2233 isTimingMode = system()->isTimingMode();
2234}
2235
2236DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2237 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2238 memory(_memory)
2239{ }
2240
2241AddrRangeList
2242DRAMCtrl::MemoryPort::getAddrRanges() const
2243{
2244 AddrRangeList ranges;
2245 ranges.push_back(memory.getAddrRange());
2246 return ranges;
2247}
2248
2249void
2250DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2251{
2252 pkt->pushLabel(memory.name());
2253
2254 if (!queue.checkFunctional(pkt)) {
2255 // Default implementation of SimpleTimingPort::recvFunctional()
2256 // calls recvAtomic() and throws away the latency; we can save a
2257 // little here by just not calculating the latency.
2258 memory.recvFunctional(pkt);
2259 }
2260
2261 pkt->popLabel();
2262}
2263
2264Tick
2265DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2266{
2267 return memory.recvAtomic(pkt);
2268}
2269
2270bool
2271DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2272{
2273 // pass it to the memory controller
2274 return memory.recvTimingReq(pkt);
2275}
2276
2277DRAMCtrl*
2278DRAMCtrlParams::create()
2279{
2280 return new DRAMCtrl(this);
2281}
883
884 // queue the packet in the response queue to be sent out after
885 // the static latency has passed
886 port.schedTimingResp(pkt, curTick() + static_latency);
887 } else {
888 // @todo the packet is going to be deleted, and the DRAMPacket
889 // is still having a pointer to it
890 pendingDelete.push_back(pkt);
891 }
892
893 DPRINTF(DRAM, "Done\n");
894
895 return;
896}
897
898void
899DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref,
900 Tick act_tick, uint32_t row)
901{
902 assert(rank_ref.actTicks.size() == activationLimit);
903
904 DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
905
906 // update the open row
907 assert(bank_ref.openRow == Bank::NO_ROW);
908 bank_ref.openRow = row;
909
910 // start counting anew, this covers both the case when we
911 // auto-precharged, and when this access is forced to
912 // precharge
913 bank_ref.bytesAccessed = 0;
914 bank_ref.rowAccesses = 0;
915
916 ++rank_ref.numBanksActive;
917 assert(rank_ref.numBanksActive <= banksPerRank);
918
919 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
920 bank_ref.bank, rank_ref.rank, act_tick,
921 ranks[rank_ref.rank]->numBanksActive);
922
923 rank_ref.power.powerlib.doCommand(MemCommand::ACT, bank_ref.bank,
924 divCeil(act_tick, tCK) -
925 timeStampOffset);
926
927 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
928 timeStampOffset, bank_ref.bank, rank_ref.rank);
929
930 // The next access has to respect tRAS for this bank
931 bank_ref.preAllowedAt = act_tick + tRAS;
932
933 // Respect the row-to-column command delay
934 bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt);
935
936 // start by enforcing tRRD
937 for(int i = 0; i < banksPerRank; i++) {
938 // next activate to any bank in this rank must not happen
939 // before tRRD
940 if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) {
941 // bank group architecture requires longer delays between
942 // ACT commands within the same bank group. Use tRRD_L
943 // in this case
944 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L,
945 rank_ref.banks[i].actAllowedAt);
946 } else {
947 // use shorter tRRD value when either
948 // 1) bank group architecture is not supportted
949 // 2) bank is in a different bank group
950 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD,
951 rank_ref.banks[i].actAllowedAt);
952 }
953 }
954
955 // next, we deal with tXAW, if the activation limit is disabled
956 // then we directly schedule an activate power event
957 if (!rank_ref.actTicks.empty()) {
958 // sanity check
959 if (rank_ref.actTicks.back() &&
960 (act_tick - rank_ref.actTicks.back()) < tXAW) {
961 panic("Got %d activates in window %d (%llu - %llu) which "
962 "is smaller than %llu\n", activationLimit, act_tick -
963 rank_ref.actTicks.back(), act_tick,
964 rank_ref.actTicks.back(), tXAW);
965 }
966
967 // shift the times used for the book keeping, the last element
968 // (highest index) is the oldest one and hence the lowest value
969 rank_ref.actTicks.pop_back();
970
971 // record an new activation (in the future)
972 rank_ref.actTicks.push_front(act_tick);
973
974 // cannot activate more than X times in time window tXAW, push the
975 // next one (the X + 1'st activate) to be tXAW away from the
976 // oldest in our window of X
977 if (rank_ref.actTicks.back() &&
978 (act_tick - rank_ref.actTicks.back()) < tXAW) {
979 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
980 "no earlier than %llu\n", activationLimit,
981 rank_ref.actTicks.back() + tXAW);
982 for(int j = 0; j < banksPerRank; j++)
983 // next activate must not happen before end of window
984 rank_ref.banks[j].actAllowedAt =
985 std::max(rank_ref.actTicks.back() + tXAW,
986 rank_ref.banks[j].actAllowedAt);
987 }
988 }
989
990 // at the point when this activate takes place, make sure we
991 // transition to the active power state
992 if (!rank_ref.activateEvent.scheduled())
993 schedule(rank_ref.activateEvent, act_tick);
994 else if (rank_ref.activateEvent.when() > act_tick)
995 // move it sooner in time
996 reschedule(rank_ref.activateEvent, act_tick);
997}
998
999void
1000DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace)
1001{
1002 // make sure the bank has an open row
1003 assert(bank.openRow != Bank::NO_ROW);
1004
1005 // sample the bytes per activate here since we are closing
1006 // the page
1007 bytesPerActivate.sample(bank.bytesAccessed);
1008
1009 bank.openRow = Bank::NO_ROW;
1010
1011 // no precharge allowed before this one
1012 bank.preAllowedAt = pre_at;
1013
1014 Tick pre_done_at = pre_at + tRP;
1015
1016 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
1017
1018 assert(rank_ref.numBanksActive != 0);
1019 --rank_ref.numBanksActive;
1020
1021 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
1022 "%d active\n", bank.bank, rank_ref.rank, pre_at,
1023 rank_ref.numBanksActive);
1024
1025 if (trace) {
1026
1027 rank_ref.power.powerlib.doCommand(MemCommand::PRE, bank.bank,
1028 divCeil(pre_at, tCK) -
1029 timeStampOffset);
1030 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
1031 timeStampOffset, bank.bank, rank_ref.rank);
1032 }
1033 // if we look at the current number of active banks we might be
1034 // tempted to think the DRAM is now idle, however this can be
1035 // undone by an activate that is scheduled to happen before we
1036 // would have reached the idle state, so schedule an event and
1037 // rather check once we actually make it to the point in time when
1038 // the (last) precharge takes place
1039 if (!rank_ref.prechargeEvent.scheduled())
1040 schedule(rank_ref.prechargeEvent, pre_done_at);
1041 else if (rank_ref.prechargeEvent.when() < pre_done_at)
1042 reschedule(rank_ref.prechargeEvent, pre_done_at);
1043}
1044
1045void
1046DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1047{
1048 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1049 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1050
1051 // get the rank
1052 Rank& rank = dram_pkt->rankRef;
1053
1054 // get the bank
1055 Bank& bank = dram_pkt->bankRef;
1056
1057 // for the state we need to track if it is a row hit or not
1058 bool row_hit = true;
1059
1060 // respect any constraints on the command (e.g. tRCD or tCCD)
1061 Tick cmd_at = std::max(bank.colAllowedAt, curTick());
1062
1063 // Determine the access latency and update the bank state
1064 if (bank.openRow == dram_pkt->row) {
1065 // nothing to do
1066 } else {
1067 row_hit = false;
1068
1069 // If there is a page open, precharge it.
1070 if (bank.openRow != Bank::NO_ROW) {
1071 prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick()));
1072 }
1073
1074 // next we need to account for the delay in activating the
1075 // page
1076 Tick act_tick = std::max(bank.actAllowedAt, curTick());
1077
1078 // Record the activation and deal with all the global timing
1079 // constraints caused be a new activation (tRRD and tXAW)
1080 activateBank(rank, bank, act_tick, dram_pkt->row);
1081
1082 // issue the command as early as possible
1083 cmd_at = bank.colAllowedAt;
1084 }
1085
1086 // we need to wait until the bus is available before we can issue
1087 // the command
1088 cmd_at = std::max(cmd_at, busBusyUntil - tCL);
1089
1090 // update the packet ready time
1091 dram_pkt->readyTime = cmd_at + tCL + tBURST;
1092
1093 // only one burst can use the bus at any one point in time
1094 assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1095
1096 // update the time for the next read/write burst for each
1097 // bank (add a max with tCCD/tCCD_L here)
1098 Tick cmd_dly;
1099 for(int j = 0; j < ranksPerChannel; j++) {
1100 for(int i = 0; i < banksPerRank; i++) {
1101 // next burst to same bank group in this rank must not happen
1102 // before tCCD_L. Different bank group timing requirement is
1103 // tBURST; Add tCS for different ranks
1104 if (dram_pkt->rank == j) {
1105 if (bankGroupArch &&
1106 (bank.bankgr == ranks[j]->banks[i].bankgr)) {
1107 // bank group architecture requires longer delays between
1108 // RD/WR burst commands to the same bank group.
1109 // Use tCCD_L in this case
1110 cmd_dly = tCCD_L;
1111 } else {
1112 // use tBURST (equivalent to tCCD_S), the shorter
1113 // cas-to-cas delay value, when either:
1114 // 1) bank group architecture is not supportted
1115 // 2) bank is in a different bank group
1116 cmd_dly = tBURST;
1117 }
1118 } else {
1119 // different rank is by default in a different bank group
1120 // use tBURST (equivalent to tCCD_S), which is the shorter
1121 // cas-to-cas delay in this case
1122 // Add tCS to account for rank-to-rank bus delay requirements
1123 cmd_dly = tBURST + tCS;
1124 }
1125 ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly,
1126 ranks[j]->banks[i].colAllowedAt);
1127 }
1128 }
1129
1130 // Save rank of current access
1131 activeRank = dram_pkt->rank;
1132
1133 // If this is a write, we also need to respect the write recovery
1134 // time before a precharge, in the case of a read, respect the
1135 // read to precharge constraint
1136 bank.preAllowedAt = std::max(bank.preAllowedAt,
1137 dram_pkt->isRead ? cmd_at + tRTP :
1138 dram_pkt->readyTime + tWR);
1139
1140 // increment the bytes accessed and the accesses per row
1141 bank.bytesAccessed += burstSize;
1142 ++bank.rowAccesses;
1143
1144 // if we reached the max, then issue with an auto-precharge
1145 bool auto_precharge = pageMgmt == Enums::close ||
1146 bank.rowAccesses == maxAccessesPerRow;
1147
1148 // if we did not hit the limit, we might still want to
1149 // auto-precharge
1150 if (!auto_precharge &&
1151 (pageMgmt == Enums::open_adaptive ||
1152 pageMgmt == Enums::close_adaptive)) {
1153 // a twist on the open and close page policies:
1154 // 1) open_adaptive page policy does not blindly keep the
1155 // page open, but close it if there are no row hits, and there
1156 // are bank conflicts in the queue
1157 // 2) close_adaptive page policy does not blindly close the
1158 // page, but closes it only if there are no row hits in the queue.
1159 // In this case, only force an auto precharge when there
1160 // are no same page hits in the queue
1161 bool got_more_hits = false;
1162 bool got_bank_conflict = false;
1163
1164 // either look at the read queue or write queue
1165 const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1166 writeQueue;
1167 auto p = queue.begin();
1168 // make sure we are not considering the packet that we are
1169 // currently dealing with (which is the head of the queue)
1170 ++p;
1171
1172 // keep on looking until we have found required condition or
1173 // reached the end
1174 while (!(got_more_hits &&
1175 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
1176 p != queue.end()) {
1177 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1178 (dram_pkt->bank == (*p)->bank);
1179 bool same_row = dram_pkt->row == (*p)->row;
1180 got_more_hits |= same_rank_bank && same_row;
1181 got_bank_conflict |= same_rank_bank && !same_row;
1182 ++p;
1183 }
1184
1185 // auto pre-charge when either
1186 // 1) open_adaptive policy, we have not got any more hits, and
1187 // have a bank conflict
1188 // 2) close_adaptive policy and we have not got any more hits
1189 auto_precharge = !got_more_hits &&
1190 (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1191 }
1192
1193 // DRAMPower trace command to be written
1194 std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1195
1196 // MemCommand required for DRAMPower library
1197 MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1198 MemCommand::WR;
1199
1200 // if this access should use auto-precharge, then we are
1201 // closing the row
1202 if (auto_precharge) {
1203 // if auto-precharge push a PRE command at the correct tick to the
1204 // list used by DRAMPower library to calculate power
1205 prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt));
1206
1207 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1208 }
1209
1210 // Update bus state
1211 busBusyUntil = dram_pkt->readyTime;
1212
1213 DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1214 dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1215
1216 dram_pkt->rankRef.power.powerlib.doCommand(command, dram_pkt->bank,
1217 divCeil(cmd_at, tCK) -
1218 timeStampOffset);
1219
1220 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1221 timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1222
1223 // Update the minimum timing between the requests, this is a
1224 // conservative estimate of when we have to schedule the next
1225 // request to not introduce any unecessary bubbles. In most cases
1226 // we will wake up sooner than we have to.
1227 nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1228
1229 // Update the stats and schedule the next request
1230 if (dram_pkt->isRead) {
1231 ++readsThisTime;
1232 if (row_hit)
1233 readRowHits++;
1234 bytesReadDRAM += burstSize;
1235 perBankRdBursts[dram_pkt->bankId]++;
1236
1237 // Update latency stats
1238 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1239 totBusLat += tBURST;
1240 totQLat += cmd_at - dram_pkt->entryTime;
1241 } else {
1242 ++writesThisTime;
1243 if (row_hit)
1244 writeRowHits++;
1245 bytesWritten += burstSize;
1246 perBankWrBursts[dram_pkt->bankId]++;
1247 }
1248}
1249
1250void
1251DRAMCtrl::processNextReqEvent()
1252{
1253 int busyRanks = 0;
1254 for (auto r : ranks) {
1255 if (!r->isAvailable()) {
1256 // rank is busy refreshing
1257 busyRanks++;
1258
1259 // let the rank know that if it was waiting to drain, it
1260 // is now done and ready to proceed
1261 r->checkDrainDone();
1262 }
1263 }
1264
1265 if (busyRanks == ranksPerChannel) {
1266 // if all ranks are refreshing wait for them to finish
1267 // and stall this state machine without taking any further
1268 // action, and do not schedule a new nextReqEvent
1269 return;
1270 }
1271
1272 // pre-emptively set to false. Overwrite if in READ_TO_WRITE
1273 // or WRITE_TO_READ state
1274 bool switched_cmd_type = false;
1275 if (busState == READ_TO_WRITE) {
1276 DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1277 "waiting\n", readsThisTime, readQueue.size());
1278
1279 // sample and reset the read-related stats as we are now
1280 // transitioning to writes, and all reads are done
1281 rdPerTurnAround.sample(readsThisTime);
1282 readsThisTime = 0;
1283
1284 // now proceed to do the actual writes
1285 busState = WRITE;
1286 switched_cmd_type = true;
1287 } else if (busState == WRITE_TO_READ) {
1288 DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1289 "waiting\n", writesThisTime, writeQueue.size());
1290
1291 wrPerTurnAround.sample(writesThisTime);
1292 writesThisTime = 0;
1293
1294 busState = READ;
1295 switched_cmd_type = true;
1296 }
1297
1298 // when we get here it is either a read or a write
1299 if (busState == READ) {
1300
1301 // track if we should switch or not
1302 bool switch_to_writes = false;
1303
1304 if (readQueue.empty()) {
1305 // In the case there is no read request to go next,
1306 // trigger writes if we have passed the low threshold (or
1307 // if we are draining)
1308 if (!writeQueue.empty() &&
1309 (drainManager || writeQueue.size() > writeLowThreshold)) {
1310
1311 switch_to_writes = true;
1312 } else {
1313 // check if we are drained
1314 if (respQueue.empty () && drainManager) {
1315 DPRINTF(Drain, "DRAM controller done draining\n");
1316 drainManager->signalDrainDone();
1317 drainManager = NULL;
1318 }
1319
1320 // nothing to do, not even any point in scheduling an
1321 // event for the next request
1322 return;
1323 }
1324 } else {
1325 // bool to check if there is a read to a free rank
1326 bool found_read = false;
1327
1328 // Figure out which read request goes next, and move it to the
1329 // front of the read queue
1330 found_read = chooseNext(readQueue, switched_cmd_type);
1331
1332 // if no read to an available rank is found then return
1333 // at this point. There could be writes to the available ranks
1334 // which are above the required threshold. However, to
1335 // avoid adding more complexity to the code, return and wait
1336 // for a refresh event to kick things into action again.
1337 if (!found_read)
1338 return;
1339
1340 DRAMPacket* dram_pkt = readQueue.front();
1341 assert(dram_pkt->rankRef.isAvailable());
1342 // here we get a bit creative and shift the bus busy time not
1343 // just the tWTR, but also a CAS latency to capture the fact
1344 // that we are allowed to prepare a new bank, but not issue a
1345 // read command until after tWTR, in essence we capture a
1346 // bubble on the data bus that is tWTR + tCL
1347 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1348 busBusyUntil += tWTR + tCL;
1349 }
1350
1351 doDRAMAccess(dram_pkt);
1352
1353 // At this point we're done dealing with the request
1354 readQueue.pop_front();
1355
1356 // sanity check
1357 assert(dram_pkt->size <= burstSize);
1358 assert(dram_pkt->readyTime >= curTick());
1359
1360 // Insert into response queue. It will be sent back to the
1361 // requestor at its readyTime
1362 if (respQueue.empty()) {
1363 assert(!respondEvent.scheduled());
1364 schedule(respondEvent, dram_pkt->readyTime);
1365 } else {
1366 assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1367 assert(respondEvent.scheduled());
1368 }
1369
1370 respQueue.push_back(dram_pkt);
1371
1372 // we have so many writes that we have to transition
1373 if (writeQueue.size() > writeHighThreshold) {
1374 switch_to_writes = true;
1375 }
1376 }
1377
1378 // switching to writes, either because the read queue is empty
1379 // and the writes have passed the low threshold (or we are
1380 // draining), or because the writes hit the hight threshold
1381 if (switch_to_writes) {
1382 // transition to writing
1383 busState = READ_TO_WRITE;
1384 }
1385 } else {
1386 // bool to check if write to free rank is found
1387 bool found_write = false;
1388
1389 found_write = chooseNext(writeQueue, switched_cmd_type);
1390
1391 // if no writes to an available rank are found then return.
1392 // There could be reads to the available ranks. However, to avoid
1393 // adding more complexity to the code, return at this point and wait
1394 // for a refresh event to kick things into action again.
1395 if (!found_write)
1396 return;
1397
1398 DRAMPacket* dram_pkt = writeQueue.front();
1399 assert(dram_pkt->rankRef.isAvailable());
1400 // sanity check
1401 assert(dram_pkt->size <= burstSize);
1402
1403 // add a bubble to the data bus, as defined by the
1404 // tRTW when access is to the same rank as previous burst
1405 // Different rank timing is handled with tCS, which is
1406 // applied to colAllowedAt
1407 if (switched_cmd_type && dram_pkt->rank == activeRank) {
1408 busBusyUntil += tRTW;
1409 }
1410
1411 doDRAMAccess(dram_pkt);
1412
1413 writeQueue.pop_front();
1414 delete dram_pkt;
1415
1416 // If we emptied the write queue, or got sufficiently below the
1417 // threshold (using the minWritesPerSwitch as the hysteresis) and
1418 // are not draining, or we have reads waiting and have done enough
1419 // writes, then switch to reads.
1420 if (writeQueue.empty() ||
1421 (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1422 !drainManager) ||
1423 (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1424 // turn the bus back around for reads again
1425 busState = WRITE_TO_READ;
1426
1427 // note that the we switch back to reads also in the idle
1428 // case, which eventually will check for any draining and
1429 // also pause any further scheduling if there is really
1430 // nothing to do
1431 }
1432 }
1433 // It is possible that a refresh to another rank kicks things back into
1434 // action before reaching this point.
1435 if (!nextReqEvent.scheduled())
1436 schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1437
1438 // If there is space available and we have writes waiting then let
1439 // them retry. This is done here to ensure that the retry does not
1440 // cause a nextReqEvent to be scheduled before we do so as part of
1441 // the next request processing
1442 if (retryWrReq && writeQueue.size() < writeBufferSize) {
1443 retryWrReq = false;
1444 port.sendRetry();
1445 }
1446}
1447
1448uint64_t
1449DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1450 bool switched_cmd_type) const
1451{
1452 uint64_t bank_mask = 0;
1453 Tick min_act_at = MaxTick;
1454
1455 uint64_t bank_mask_same_rank = 0;
1456 Tick min_act_at_same_rank = MaxTick;
1457
1458 // Give precedence to commands that access same rank as previous command
1459 bool same_rank_match = false;
1460
1461 // determine if we have queued transactions targetting the
1462 // bank in question
1463 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1464 for (const auto& p : queue) {
1465 if(p->rankRef.isAvailable())
1466 got_waiting[p->bankId] = true;
1467 }
1468
1469 for (int i = 0; i < ranksPerChannel; i++) {
1470 for (int j = 0; j < banksPerRank; j++) {
1471 uint16_t bank_id = i * banksPerRank + j;
1472
1473 // if we have waiting requests for the bank, and it is
1474 // amongst the first available, update the mask
1475 if (got_waiting[bank_id]) {
1476 // make sure this rank is not currently refreshing.
1477 assert(ranks[i]->isAvailable());
1478 // simplistic approximation of when the bank can issue
1479 // an activate, ignoring any rank-to-rank switching
1480 // cost in this calculation
1481 Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ?
1482 ranks[i]->banks[j].actAllowedAt :
1483 std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP;
1484
1485 // prioritize commands that access the
1486 // same rank as previous burst
1487 // Calculate bank mask separately for the case and
1488 // evaluate after loop iterations complete
1489 if (i == activeRank && ranksPerChannel > 1) {
1490 if (act_at <= min_act_at_same_rank) {
1491 // reset same rank bank mask if new minimum is found
1492 // and previous minimum could not immediately send ACT
1493 if (act_at < min_act_at_same_rank &&
1494 min_act_at_same_rank > curTick())
1495 bank_mask_same_rank = 0;
1496
1497 // Set flag indicating that a same rank
1498 // opportunity was found
1499 same_rank_match = true;
1500
1501 // set the bit corresponding to the available bank
1502 replaceBits(bank_mask_same_rank, bank_id, bank_id, 1);
1503 min_act_at_same_rank = act_at;
1504 }
1505 } else {
1506 if (act_at <= min_act_at) {
1507 // reset bank mask if new minimum is found
1508 // and either previous minimum could not immediately send ACT
1509 if (act_at < min_act_at && min_act_at > curTick())
1510 bank_mask = 0;
1511 // set the bit corresponding to the available bank
1512 replaceBits(bank_mask, bank_id, bank_id, 1);
1513 min_act_at = act_at;
1514 }
1515 }
1516 }
1517 }
1518 }
1519
1520 // Determine the earliest time when the next burst can issue based
1521 // on the current busBusyUntil delay.
1522 // Offset by tRCD to correlate with ACT timing variables
1523 Tick min_cmd_at = busBusyUntil - tCL - tRCD;
1524
1525 // if we have multiple ranks and all
1526 // waiting packets are accessing a rank which was previously active
1527 // then bank_mask_same_rank will be set to a value while bank_mask will
1528 // remain 0. In this case, the function should return the value of
1529 // bank_mask_same_rank.
1530 // else if waiting packets access a rank which was previously active and
1531 // other ranks, prioritize same rank accesses that can issue B2B
1532 // Only optimize for same ranks when the command type
1533 // does not change; do not want to unnecessarily incur tWTR
1534 //
1535 // Resulting FCFS prioritization Order is:
1536 // 1) Commands that access the same rank as previous burst
1537 // and can prep the bank seamlessly.
1538 // 2) Commands (any rank) with earliest bank prep
1539 if ((bank_mask == 0) || (!switched_cmd_type && same_rank_match &&
1540 min_act_at_same_rank <= min_cmd_at)) {
1541 bank_mask = bank_mask_same_rank;
1542 }
1543
1544 return bank_mask;
1545}
1546
1547DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p)
1548 : EventManager(&_memory), memory(_memory),
1549 pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), pwrStateTick(0),
1550 refreshState(REF_IDLE), refreshDueAt(0),
1551 power(_p, false), numBanksActive(0),
1552 activateEvent(*this), prechargeEvent(*this),
1553 refreshEvent(*this), powerEvent(*this)
1554{ }
1555
1556void
1557DRAMCtrl::Rank::startup(Tick ref_tick)
1558{
1559 assert(ref_tick > curTick());
1560
1561 pwrStateTick = curTick();
1562
1563 // kick off the refresh, and give ourselves enough time to
1564 // precharge
1565 schedule(refreshEvent, ref_tick);
1566}
1567
1568void
1569DRAMCtrl::Rank::suspend()
1570{
1571 deschedule(refreshEvent);
1572}
1573
1574void
1575DRAMCtrl::Rank::checkDrainDone()
1576{
1577 // if this rank was waiting to drain it is now able to proceed to
1578 // precharge
1579 if (refreshState == REF_DRAIN) {
1580 DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1581
1582 refreshState = REF_PRE;
1583
1584 // hand control back to the refresh event loop
1585 schedule(refreshEvent, curTick());
1586 }
1587}
1588
1589void
1590DRAMCtrl::Rank::processActivateEvent()
1591{
1592 // we should transition to the active state as soon as any bank is active
1593 if (pwrState != PWR_ACT)
1594 // note that at this point numBanksActive could be back at
1595 // zero again due to a precharge scheduled in the future
1596 schedulePowerEvent(PWR_ACT, curTick());
1597}
1598
1599void
1600DRAMCtrl::Rank::processPrechargeEvent()
1601{
1602 // if we reached zero, then special conditions apply as we track
1603 // if all banks are precharged for the power models
1604 if (numBanksActive == 0) {
1605 // we should transition to the idle state when the last bank
1606 // is precharged
1607 schedulePowerEvent(PWR_IDLE, curTick());
1608 }
1609}
1610
1611void
1612DRAMCtrl::Rank::processRefreshEvent()
1613{
1614 // when first preparing the refresh, remember when it was due
1615 if (refreshState == REF_IDLE) {
1616 // remember when the refresh is due
1617 refreshDueAt = curTick();
1618
1619 // proceed to drain
1620 refreshState = REF_DRAIN;
1621
1622 DPRINTF(DRAM, "Refresh due\n");
1623 }
1624
1625 // let any scheduled read or write to the same rank go ahead,
1626 // after which it will
1627 // hand control back to this event loop
1628 if (refreshState == REF_DRAIN) {
1629 // if a request is at the moment being handled and this request is
1630 // accessing the current rank then wait for it to finish
1631 if ((rank == memory.activeRank)
1632 && (memory.nextReqEvent.scheduled())) {
1633 // hand control over to the request loop until it is
1634 // evaluated next
1635 DPRINTF(DRAM, "Refresh awaiting draining\n");
1636
1637 return;
1638 } else {
1639 refreshState = REF_PRE;
1640 }
1641 }
1642
1643 // at this point, ensure that all banks are precharged
1644 if (refreshState == REF_PRE) {
1645 // precharge any active bank if we are not already in the idle
1646 // state
1647 if (pwrState != PWR_IDLE) {
1648 // at the moment, we use a precharge all even if there is
1649 // only a single bank open
1650 DPRINTF(DRAM, "Precharging all\n");
1651
1652 // first determine when we can precharge
1653 Tick pre_at = curTick();
1654
1655 for (auto &b : banks) {
1656 // respect both causality and any existing bank
1657 // constraints, some banks could already have a
1658 // (auto) precharge scheduled
1659 pre_at = std::max(b.preAllowedAt, pre_at);
1660 }
1661
1662 // make sure all banks per rank are precharged, and for those that
1663 // already are, update their availability
1664 Tick act_allowed_at = pre_at + memory.tRP;
1665
1666 for (auto &b : banks) {
1667 if (b.openRow != Bank::NO_ROW) {
1668 memory.prechargeBank(*this, b, pre_at, false);
1669 } else {
1670 b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at);
1671 b.preAllowedAt = std::max(b.preAllowedAt, pre_at);
1672 }
1673 }
1674
1675 // precharge all banks in rank
1676 power.powerlib.doCommand(MemCommand::PREA, 0,
1677 divCeil(pre_at, memory.tCK) -
1678 memory.timeStampOffset);
1679
1680 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
1681 divCeil(pre_at, memory.tCK) -
1682 memory.timeStampOffset, rank);
1683 } else {
1684 DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1685
1686 // go ahead and kick the power state machine into gear if
1687 // we are already idle
1688 schedulePowerEvent(PWR_REF, curTick());
1689 }
1690
1691 refreshState = REF_RUN;
1692 assert(numBanksActive == 0);
1693
1694 // wait for all banks to be precharged, at which point the
1695 // power state machine will transition to the idle state, and
1696 // automatically move to a refresh, at that point it will also
1697 // call this method to get the refresh event loop going again
1698 return;
1699 }
1700
1701 // last but not least we perform the actual refresh
1702 if (refreshState == REF_RUN) {
1703 // should never get here with any banks active
1704 assert(numBanksActive == 0);
1705 assert(pwrState == PWR_REF);
1706
1707 Tick ref_done_at = curTick() + memory.tRFC;
1708
1709 for (auto &b : banks) {
1710 b.actAllowedAt = ref_done_at;
1711 }
1712
1713 // at the moment this affects all ranks
1714 power.powerlib.doCommand(MemCommand::REF, 0,
1715 divCeil(curTick(), memory.tCK) -
1716 memory.timeStampOffset);
1717
1718 // at the moment sort the list of commands and update the counters
1719 // for DRAMPower libray when doing a refresh
1720 sort(power.powerlib.cmdList.begin(),
1721 power.powerlib.cmdList.end(), DRAMCtrl::sortTime);
1722
1723 // update the counters for DRAMPower, passing false to
1724 // indicate that this is not the last command in the
1725 // list. DRAMPower requires this information for the
1726 // correct calculation of the background energy at the end
1727 // of the simulation. Ideally we would want to call this
1728 // function with true once at the end of the
1729 // simulation. However, the discarded energy is extremly
1730 // small and does not effect the final results.
1731 power.powerlib.updateCounters(false);
1732
1733 // call the energy function
1734 power.powerlib.calcEnergy();
1735
1736 // Update the stats
1737 updatePowerStats();
1738
1739 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
1740 memory.timeStampOffset, rank);
1741
1742 // make sure we did not wait so long that we cannot make up
1743 // for it
1744 if (refreshDueAt + memory.tREFI < ref_done_at) {
1745 fatal("Refresh was delayed so long we cannot catch up\n");
1746 }
1747
1748 // compensate for the delay in actually performing the refresh
1749 // when scheduling the next one
1750 schedule(refreshEvent, refreshDueAt + memory.tREFI - memory.tRP);
1751
1752 assert(!powerEvent.scheduled());
1753
1754 // move to the idle power state once the refresh is done, this
1755 // will also move the refresh state machine to the refresh
1756 // idle state
1757 schedulePowerEvent(PWR_IDLE, ref_done_at);
1758
1759 DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1760 ref_done_at, refreshDueAt + memory.tREFI);
1761 }
1762}
1763
1764void
1765DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick)
1766{
1767 // respect causality
1768 assert(tick >= curTick());
1769
1770 if (!powerEvent.scheduled()) {
1771 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1772 tick, pwr_state);
1773
1774 // insert the new transition
1775 pwrStateTrans = pwr_state;
1776
1777 schedule(powerEvent, tick);
1778 } else {
1779 panic("Scheduled power event at %llu to state %d, "
1780 "with scheduled event at %llu to %d\n", tick, pwr_state,
1781 powerEvent.when(), pwrStateTrans);
1782 }
1783}
1784
1785void
1786DRAMCtrl::Rank::processPowerEvent()
1787{
1788 // remember where we were, and for how long
1789 Tick duration = curTick() - pwrStateTick;
1790 PowerState prev_state = pwrState;
1791
1792 // update the accounting
1793 pwrStateTime[prev_state] += duration;
1794
1795 pwrState = pwrStateTrans;
1796 pwrStateTick = curTick();
1797
1798 if (pwrState == PWR_IDLE) {
1799 DPRINTF(DRAMState, "All banks precharged\n");
1800
1801 // if we were refreshing, make sure we start scheduling requests again
1802 if (prev_state == PWR_REF) {
1803 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1804 assert(pwrState == PWR_IDLE);
1805
1806 // kick things into action again
1807 refreshState = REF_IDLE;
1808 // a request event could be already scheduled by the state
1809 // machine of the other rank
1810 if (!memory.nextReqEvent.scheduled())
1811 schedule(memory.nextReqEvent, curTick());
1812 } else {
1813 assert(prev_state == PWR_ACT);
1814
1815 // if we have a pending refresh, and are now moving to
1816 // the idle state, direclty transition to a refresh
1817 if (refreshState == REF_RUN) {
1818 // there should be nothing waiting at this point
1819 assert(!powerEvent.scheduled());
1820
1821 // update the state in zero time and proceed below
1822 pwrState = PWR_REF;
1823 }
1824 }
1825 }
1826
1827 // we transition to the refresh state, let the refresh state
1828 // machine know of this state update and let it deal with the
1829 // scheduling of the next power state transition as well as the
1830 // following refresh
1831 if (pwrState == PWR_REF) {
1832 DPRINTF(DRAMState, "Refreshing\n");
1833 // kick the refresh event loop into action again, and that
1834 // in turn will schedule a transition to the idle power
1835 // state once the refresh is done
1836 assert(refreshState == REF_RUN);
1837 processRefreshEvent();
1838 }
1839}
1840
1841void
1842DRAMCtrl::Rank::updatePowerStats()
1843{
1844 // Get the energy and power from DRAMPower
1845 Data::MemoryPowerModel::Energy energy =
1846 power.powerlib.getEnergy();
1847 Data::MemoryPowerModel::Power rank_power =
1848 power.powerlib.getPower();
1849
1850 actEnergy = energy.act_energy * memory.devicesPerRank;
1851 preEnergy = energy.pre_energy * memory.devicesPerRank;
1852 readEnergy = energy.read_energy * memory.devicesPerRank;
1853 writeEnergy = energy.write_energy * memory.devicesPerRank;
1854 refreshEnergy = energy.ref_energy * memory.devicesPerRank;
1855 actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank;
1856 preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank;
1857 totalEnergy = energy.total_energy * memory.devicesPerRank;
1858 averagePower = rank_power.average_power * memory.devicesPerRank;
1859}
1860
1861void
1862DRAMCtrl::Rank::regStats()
1863{
1864 using namespace Stats;
1865
1866 pwrStateTime
1867 .init(5)
1868 .name(name() + ".memoryStateTime")
1869 .desc("Time in different power states");
1870 pwrStateTime.subname(0, "IDLE");
1871 pwrStateTime.subname(1, "REF");
1872 pwrStateTime.subname(2, "PRE_PDN");
1873 pwrStateTime.subname(3, "ACT");
1874 pwrStateTime.subname(4, "ACT_PDN");
1875
1876 actEnergy
1877 .name(name() + ".actEnergy")
1878 .desc("Energy for activate commands per rank (pJ)");
1879
1880 preEnergy
1881 .name(name() + ".preEnergy")
1882 .desc("Energy for precharge commands per rank (pJ)");
1883
1884 readEnergy
1885 .name(name() + ".readEnergy")
1886 .desc("Energy for read commands per rank (pJ)");
1887
1888 writeEnergy
1889 .name(name() + ".writeEnergy")
1890 .desc("Energy for write commands per rank (pJ)");
1891
1892 refreshEnergy
1893 .name(name() + ".refreshEnergy")
1894 .desc("Energy for refresh commands per rank (pJ)");
1895
1896 actBackEnergy
1897 .name(name() + ".actBackEnergy")
1898 .desc("Energy for active background per rank (pJ)");
1899
1900 preBackEnergy
1901 .name(name() + ".preBackEnergy")
1902 .desc("Energy for precharge background per rank (pJ)");
1903
1904 totalEnergy
1905 .name(name() + ".totalEnergy")
1906 .desc("Total energy per rank (pJ)");
1907
1908 averagePower
1909 .name(name() + ".averagePower")
1910 .desc("Core power per rank (mW)");
1911}
1912void
1913DRAMCtrl::regStats()
1914{
1915 using namespace Stats;
1916
1917 AbstractMemory::regStats();
1918
1919 for (auto r : ranks) {
1920 r->regStats();
1921 }
1922
1923 readReqs
1924 .name(name() + ".readReqs")
1925 .desc("Number of read requests accepted");
1926
1927 writeReqs
1928 .name(name() + ".writeReqs")
1929 .desc("Number of write requests accepted");
1930
1931 readBursts
1932 .name(name() + ".readBursts")
1933 .desc("Number of DRAM read bursts, "
1934 "including those serviced by the write queue");
1935
1936 writeBursts
1937 .name(name() + ".writeBursts")
1938 .desc("Number of DRAM write bursts, "
1939 "including those merged in the write queue");
1940
1941 servicedByWrQ
1942 .name(name() + ".servicedByWrQ")
1943 .desc("Number of DRAM read bursts serviced by the write queue");
1944
1945 mergedWrBursts
1946 .name(name() + ".mergedWrBursts")
1947 .desc("Number of DRAM write bursts merged with an existing one");
1948
1949 neitherReadNorWrite
1950 .name(name() + ".neitherReadNorWriteReqs")
1951 .desc("Number of requests that are neither read nor write");
1952
1953 perBankRdBursts
1954 .init(banksPerRank * ranksPerChannel)
1955 .name(name() + ".perBankRdBursts")
1956 .desc("Per bank write bursts");
1957
1958 perBankWrBursts
1959 .init(banksPerRank * ranksPerChannel)
1960 .name(name() + ".perBankWrBursts")
1961 .desc("Per bank write bursts");
1962
1963 avgRdQLen
1964 .name(name() + ".avgRdQLen")
1965 .desc("Average read queue length when enqueuing")
1966 .precision(2);
1967
1968 avgWrQLen
1969 .name(name() + ".avgWrQLen")
1970 .desc("Average write queue length when enqueuing")
1971 .precision(2);
1972
1973 totQLat
1974 .name(name() + ".totQLat")
1975 .desc("Total ticks spent queuing");
1976
1977 totBusLat
1978 .name(name() + ".totBusLat")
1979 .desc("Total ticks spent in databus transfers");
1980
1981 totMemAccLat
1982 .name(name() + ".totMemAccLat")
1983 .desc("Total ticks spent from burst creation until serviced "
1984 "by the DRAM");
1985
1986 avgQLat
1987 .name(name() + ".avgQLat")
1988 .desc("Average queueing delay per DRAM burst")
1989 .precision(2);
1990
1991 avgQLat = totQLat / (readBursts - servicedByWrQ);
1992
1993 avgBusLat
1994 .name(name() + ".avgBusLat")
1995 .desc("Average bus latency per DRAM burst")
1996 .precision(2);
1997
1998 avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1999
2000 avgMemAccLat
2001 .name(name() + ".avgMemAccLat")
2002 .desc("Average memory access latency per DRAM burst")
2003 .precision(2);
2004
2005 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
2006
2007 numRdRetry
2008 .name(name() + ".numRdRetry")
2009 .desc("Number of times read queue was full causing retry");
2010
2011 numWrRetry
2012 .name(name() + ".numWrRetry")
2013 .desc("Number of times write queue was full causing retry");
2014
2015 readRowHits
2016 .name(name() + ".readRowHits")
2017 .desc("Number of row buffer hits during reads");
2018
2019 writeRowHits
2020 .name(name() + ".writeRowHits")
2021 .desc("Number of row buffer hits during writes");
2022
2023 readRowHitRate
2024 .name(name() + ".readRowHitRate")
2025 .desc("Row buffer hit rate for reads")
2026 .precision(2);
2027
2028 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
2029
2030 writeRowHitRate
2031 .name(name() + ".writeRowHitRate")
2032 .desc("Row buffer hit rate for writes")
2033 .precision(2);
2034
2035 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
2036
2037 readPktSize
2038 .init(ceilLog2(burstSize) + 1)
2039 .name(name() + ".readPktSize")
2040 .desc("Read request sizes (log2)");
2041
2042 writePktSize
2043 .init(ceilLog2(burstSize) + 1)
2044 .name(name() + ".writePktSize")
2045 .desc("Write request sizes (log2)");
2046
2047 rdQLenPdf
2048 .init(readBufferSize)
2049 .name(name() + ".rdQLenPdf")
2050 .desc("What read queue length does an incoming req see");
2051
2052 wrQLenPdf
2053 .init(writeBufferSize)
2054 .name(name() + ".wrQLenPdf")
2055 .desc("What write queue length does an incoming req see");
2056
2057 bytesPerActivate
2058 .init(maxAccessesPerRow)
2059 .name(name() + ".bytesPerActivate")
2060 .desc("Bytes accessed per row activation")
2061 .flags(nozero);
2062
2063 rdPerTurnAround
2064 .init(readBufferSize)
2065 .name(name() + ".rdPerTurnAround")
2066 .desc("Reads before turning the bus around for writes")
2067 .flags(nozero);
2068
2069 wrPerTurnAround
2070 .init(writeBufferSize)
2071 .name(name() + ".wrPerTurnAround")
2072 .desc("Writes before turning the bus around for reads")
2073 .flags(nozero);
2074
2075 bytesReadDRAM
2076 .name(name() + ".bytesReadDRAM")
2077 .desc("Total number of bytes read from DRAM");
2078
2079 bytesReadWrQ
2080 .name(name() + ".bytesReadWrQ")
2081 .desc("Total number of bytes read from write queue");
2082
2083 bytesWritten
2084 .name(name() + ".bytesWritten")
2085 .desc("Total number of bytes written to DRAM");
2086
2087 bytesReadSys
2088 .name(name() + ".bytesReadSys")
2089 .desc("Total read bytes from the system interface side");
2090
2091 bytesWrittenSys
2092 .name(name() + ".bytesWrittenSys")
2093 .desc("Total written bytes from the system interface side");
2094
2095 avgRdBW
2096 .name(name() + ".avgRdBW")
2097 .desc("Average DRAM read bandwidth in MiByte/s")
2098 .precision(2);
2099
2100 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
2101
2102 avgWrBW
2103 .name(name() + ".avgWrBW")
2104 .desc("Average achieved write bandwidth in MiByte/s")
2105 .precision(2);
2106
2107 avgWrBW = (bytesWritten / 1000000) / simSeconds;
2108
2109 avgRdBWSys
2110 .name(name() + ".avgRdBWSys")
2111 .desc("Average system read bandwidth in MiByte/s")
2112 .precision(2);
2113
2114 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
2115
2116 avgWrBWSys
2117 .name(name() + ".avgWrBWSys")
2118 .desc("Average system write bandwidth in MiByte/s")
2119 .precision(2);
2120
2121 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
2122
2123 peakBW
2124 .name(name() + ".peakBW")
2125 .desc("Theoretical peak bandwidth in MiByte/s")
2126 .precision(2);
2127
2128 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
2129
2130 busUtil
2131 .name(name() + ".busUtil")
2132 .desc("Data bus utilization in percentage")
2133 .precision(2);
2134 busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
2135
2136 totGap
2137 .name(name() + ".totGap")
2138 .desc("Total gap between requests");
2139
2140 avgGap
2141 .name(name() + ".avgGap")
2142 .desc("Average gap between requests")
2143 .precision(2);
2144
2145 avgGap = totGap / (readReqs + writeReqs);
2146
2147 // Stats for DRAM Power calculation based on Micron datasheet
2148 busUtilRead
2149 .name(name() + ".busUtilRead")
2150 .desc("Data bus utilization in percentage for reads")
2151 .precision(2);
2152
2153 busUtilRead = avgRdBW / peakBW * 100;
2154
2155 busUtilWrite
2156 .name(name() + ".busUtilWrite")
2157 .desc("Data bus utilization in percentage for writes")
2158 .precision(2);
2159
2160 busUtilWrite = avgWrBW / peakBW * 100;
2161
2162 pageHitRate
2163 .name(name() + ".pageHitRate")
2164 .desc("Row buffer hit rate, read and write combined")
2165 .precision(2);
2166
2167 pageHitRate = (writeRowHits + readRowHits) /
2168 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
2169}
2170
2171void
2172DRAMCtrl::recvFunctional(PacketPtr pkt)
2173{
2174 // rely on the abstract memory
2175 functionalAccess(pkt);
2176}
2177
2178BaseSlavePort&
2179DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2180{
2181 if (if_name != "port") {
2182 return MemObject::getSlavePort(if_name, idx);
2183 } else {
2184 return port;
2185 }
2186}
2187
2188unsigned int
2189DRAMCtrl::drain(DrainManager *dm)
2190{
2191 unsigned int count = port.drain(dm);
2192
2193 // if there is anything in any of our internal queues, keep track
2194 // of that as well
2195 if (!(writeQueue.empty() && readQueue.empty() &&
2196 respQueue.empty())) {
2197 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2198 " resp: %d\n", writeQueue.size(), readQueue.size(),
2199 respQueue.size());
2200 ++count;
2201 drainManager = dm;
2202
2203 // the only part that is not drained automatically over time
2204 // is the write queue, thus kick things into action if needed
2205 if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2206 schedule(nextReqEvent, curTick());
2207 }
2208 }
2209
2210 if (count)
2211 setDrainState(Drainable::Draining);
2212 else
2213 setDrainState(Drainable::Drained);
2214 return count;
2215}
2216
2217void
2218DRAMCtrl::drainResume()
2219{
2220 if (!isTimingMode && system()->isTimingMode()) {
2221 // if we switched to timing mode, kick things into action,
2222 // and behave as if we restored from a checkpoint
2223 startup();
2224 } else if (isTimingMode && !system()->isTimingMode()) {
2225 // if we switch from timing mode, stop the refresh events to
2226 // not cause issues with KVM
2227 for (auto r : ranks) {
2228 r->suspend();
2229 }
2230 }
2231
2232 // update the mode
2233 isTimingMode = system()->isTimingMode();
2234}
2235
2236DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2237 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2238 memory(_memory)
2239{ }
2240
2241AddrRangeList
2242DRAMCtrl::MemoryPort::getAddrRanges() const
2243{
2244 AddrRangeList ranges;
2245 ranges.push_back(memory.getAddrRange());
2246 return ranges;
2247}
2248
2249void
2250DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2251{
2252 pkt->pushLabel(memory.name());
2253
2254 if (!queue.checkFunctional(pkt)) {
2255 // Default implementation of SimpleTimingPort::recvFunctional()
2256 // calls recvAtomic() and throws away the latency; we can save a
2257 // little here by just not calculating the latency.
2258 memory.recvFunctional(pkt);
2259 }
2260
2261 pkt->popLabel();
2262}
2263
2264Tick
2265DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2266{
2267 return memory.recvAtomic(pkt);
2268}
2269
2270bool
2271DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2272{
2273 // pass it to the memory controller
2274 return memory.recvTimingReq(pkt);
2275}
2276
2277DRAMCtrl*
2278DRAMCtrlParams::create()
2279{
2280 return new DRAMCtrl(this);
2281}