Deleted Added
sdiff udiff text old ( 10206:823f7fd1a82f ) new ( 10207:3112b31596f0 )
full compact
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software

--- 42 unchanged lines hidden (view full) ---

51
52using namespace std;
53
54DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
55 AbstractMemory(p),
56 port(name() + ".port", *this),
57 retryRdReq(false), retryWrReq(false),
58 rowHitFlag(false), busState(READ),
59 respondEvent(this), refreshEvent(this),
60 nextReqEvent(this), drainManager(NULL),
61 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
62 deviceRowBufferSize(p->device_rowbuffer_size),
63 devicesPerRank(p->devices_per_rank),
64 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
65 rowBufferSize(devicesPerRank * deviceRowBufferSize),
66 columnsPerRowBuffer(rowBufferSize / burstSize),
67 ranksPerChannel(p->ranks_per_channel),
68 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),

--- 7 unchanged lines hidden (view full) ---

76 tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
77 tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
78 tXAW(p->tXAW), activationLimit(p->activation_limit),
79 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
80 pageMgmt(p->page_policy),
81 maxAccessesPerRow(p->max_accesses_per_row),
82 frontendLatency(p->static_frontend_latency),
83 backendLatency(p->static_backend_latency),
84 busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE), prevArrival(0),
85 nextReqTime(0), idleStartTick(0), numBanksActive(0)
86{
87 // create the bank states based on the dimensions of the ranks and
88 // banks
89 banks.resize(ranksPerChannel);
90 actTicks.resize(ranksPerChannel);
91 for (size_t c = 0; c < ranksPerChannel; ++c) {
92 banks[c].resize(banksPerRank);
93 actTicks[c].resize(activationLimit, 0);

--- 32 unchanged lines hidden (view full) ---

126 "address map\n", name());
127 }
128 } else if (addrMapping == Enums::RoCoRaBaCh) {
129 if (system()->cacheLineSize() != range.granularity())
130 fatal("Interleaving of %s doesn't match RoCoRaBaCh "
131 "address map\n", name());
132 }
133 }
134
135 // some basic sanity checks
136 if (tREFI <= tRP || tREFI <= tRFC) {
137 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
138 tREFI, tRP, tRFC);
139 }
140}
141
142void
143DRAMCtrl::init()
144{
145 if (!port.isConnected()) {
146 fatal("DRAMCtrl %s is unconnected!\n", name());
147 } else {
148 port.sendRangeChange();
149 }
150}
151
152void
153DRAMCtrl::startup()
154{
155 // update the start tick for the precharge accounting to the
156 // current tick
157 idleStartTick = curTick();
158
159 // shift the bus busy time sufficiently far ahead that we never
160 // have to worry about negative values when computing the time for
161 // the next request, this will add an insignificant bubble at the
162 // start of simulation
163 busBusyUntil = curTick() + tRP + tRCD + tCL;
164
165 // print the configuration of the controller
166 printParams();
167
168 // kick off the refresh, and give ourselves enough time to
169 // precharge
170 schedule(refreshEvent, curTick() + tREFI - tRP);
171}
172
173Tick
174DRAMCtrl::recvAtomic(PacketPtr pkt)
175{
176 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
177
178 // do the actual memory access and turn the packet into a response

--- 658 unchanged lines hidden (view full) ---

837 // then add cas latency.
838 Tick freeTime = std::max(bank.tRASDoneAt, bank.freeAt);
839
840 if (freeTime > inTime)
841 accLat += freeTime - inTime;
842
843 // If the there is no open row (open adaptive), then there
844 // is no precharge delay, otherwise go with tRP
845 Tick precharge_delay = bank.openRow == Bank::NO_ROW ? 0 : tRP;
846
847 //The bank is free, and you may be able to activate
848 potentialActTick = inTime + accLat + precharge_delay;
849 if (potentialActTick < bank.actAllowedAt)
850 accLat += bank.actAllowedAt - potentialActTick;
851
852 accLat += precharge_delay + tRCD + tCL;
853 bankLat += precharge_delay + tRCD + tCL;

--- 18 unchanged lines hidden (view full) ---

872
873 DPRINTF(DRAM, "Returning < %lld, %lld > from estimateLatency()\n",
874 bankLat, accLat);
875
876 return make_pair(bankLat, accLat);
877}
878
879void
880DRAMCtrl::recordActivate(Tick act_tick, uint8_t rank, uint8_t bank,
881 uint16_t row)
882{
883 assert(0 <= rank && rank < ranksPerChannel);
884 assert(actTicks[rank].size() == activationLimit);
885
886 DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
887
888 // idleStartTick is the tick when all the banks were
889 // precharged. Thus, the difference between act_tick and
890 // idleStartTick gives the time for which the DRAM is in an idle
891 // state with all banks precharged. Note that we may end up
892 // "changing history" by scheduling an activation before an
893 // already scheduled precharge, effectively canceling it out.
894 if (numBanksActive == 0 && act_tick > idleStartTick) {
895 prechargeAllTime += act_tick - idleStartTick;
896 }
897
898 // update the open row
899 assert(banks[rank][bank].openRow == Bank::NO_ROW);
900 banks[rank][bank].openRow = row;
901
902 // start counting anew, this covers both the case when we
903 // auto-precharged, and when this access is forced to
904 // precharge
905 banks[rank][bank].bytesAccessed = 0;
906 banks[rank][bank].rowAccesses = 0;
907
908 ++numBanksActive;
909 assert(numBanksActive <= banksPerRank * ranksPerChannel);
910
911 DPRINTF(DRAM, "Activate bank at tick %lld, now got %d active\n",
912 act_tick, numBanksActive);
913
914 // start by enforcing tRRD
915 for(int i = 0; i < banksPerRank; i++) {
916 // next activate must not happen before tRRD
917 banks[rank][i].actAllowedAt = act_tick + tRRD;
918 }
919 // tRC should be added to activation tick of the bank currently accessed,
920 // where tRC = tRAS + tRP, this is just for a check as actAllowedAt for same
921 // bank is already captured by bank.freeAt and bank.tRASDoneAt

--- 27 unchanged lines hidden (view full) ---

949 "than %d\n", activationLimit, actTicks[rank].back() + tXAW);
950 for(int j = 0; j < banksPerRank; j++)
951 // next activate must not happen before end of window
952 banks[rank][j].actAllowedAt = actTicks[rank].back() + tXAW;
953 }
954}
955
956void
957DRAMCtrl::prechargeBank(Bank& bank, Tick free_at)
958{
959 // make sure the bank has an open row
960 assert(bank.openRow != Bank::NO_ROW);
961
962 // sample the bytes per activate here since we are closing
963 // the page
964 bytesPerActivate.sample(bank.bytesAccessed);
965
966 bank.openRow = Bank::NO_ROW;
967
968 bank.freeAt = free_at;
969
970 assert(numBanksActive != 0);
971 --numBanksActive;
972
973 DPRINTF(DRAM, "Precharged bank, done at tick %lld, now got %d active\n",
974 bank.freeAt, numBanksActive);
975
976 // if we reached zero, then special conditions apply as we track
977 // if all banks are precharged for the power models
978 if (numBanksActive == 0) {
979 idleStartTick = std::max(idleStartTick, bank.freeAt);
980 DPRINTF(DRAM, "All banks precharged at tick: %ld\n",
981 idleStartTick);
982 }
983}
984
985void
986DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
987{
988
989 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
990 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
991
992 // estimate the bank and access latency
993 pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick());

--- 9 unchanged lines hidden (view full) ---

1003 Tick addDelay = (curTick() + accessLat < busBusyUntil) ?
1004 busBusyUntil - (curTick() + accessLat) : 0;
1005
1006 Bank& bank = dram_pkt->bankRef;
1007
1008 // Update bank state
1009 if (pageMgmt == Enums::open || pageMgmt == Enums::open_adaptive ||
1010 pageMgmt == Enums::close_adaptive) {
1011
1012 if (rowHitFlag) {
1013 bank.freeAt = curTick() + addDelay + accessLat;
1014 } else {
1015 // If there is a page open, precharge it.
1016 if (bank.openRow != Bank::NO_ROW) {
1017 prechargeBank(bank, std::max(std::max(bank.freeAt,
1018 bank.tRASDoneAt),
1019 curTick()) + tRP);
1020 }
1021
1022 // Any precharge is already part of the latency
1023 // estimation, so update the bank free time
1024 bank.freeAt = curTick() + addDelay + accessLat;
1025
1026 // any waiting for banks account for in freeAt
1027 actTick = bank.freeAt - tCL - tRCD;
1028
1029 // If you activated a new row do to this access, the next access
1030 // will have to respect tRAS for this bank
1031 bank.tRASDoneAt = actTick + tRAS;
1032
1033 recordActivate(actTick, dram_pkt->rank, dram_pkt->bank,
1034 dram_pkt->row);
1035 }
1036
1037 // increment the bytes accessed and the accesses per row
1038 bank.bytesAccessed += burstSize;
1039 ++bank.rowAccesses;
1040
1041 // if we reached the max, then issue with an auto-precharge
1042 bool auto_precharge = bank.rowAccesses == maxAccessesPerRow;

--- 41 unchanged lines hidden (view full) ---

1084 // 2) close_adaptive policy and we have not got any more hits
1085 auto_precharge = !got_more_hits &&
1086 (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1087 }
1088
1089 // if this access should use auto-precharge, then we are
1090 // closing the row
1091 if (auto_precharge) {
1092 prechargeBank(bank, std::max(bank.freeAt, bank.tRASDoneAt) + tRP);
1093
1094 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1095 }
1096
1097 DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt);
1098 } else if (pageMgmt == Enums::close) {
1099 actTick = curTick() + addDelay + accessLat - tRCD - tCL;
1100 recordActivate(actTick, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1101
1102 bank.freeAt = actTick + tRCD + tCL;
1103 bank.tRASDoneAt = actTick + tRAS;
1104
1105 // sample the relevant values when precharging
1106 bank.bytesAccessed = burstSize;
1107 bank.rowAccesses = 1;
1108
1109 prechargeBank(bank, std::max(bank.freeAt, bank.tRASDoneAt) + tRP);
1110 DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt);
1111 } else
1112 panic("No page management policy chosen\n");
1113
1114 // Update request parameters
1115 dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST;
1116
1117
1118 DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \

--- 99 unchanged lines hidden (view full) ---

1218 "waiting\n", writesThisTime, writeQueue.size());
1219
1220 wrPerTurnAround.sample(writesThisTime);
1221 writesThisTime = 0;
1222
1223 busState = READ;
1224 }
1225
1226 if (refreshState != REF_IDLE) {
1227 // if a refresh waiting for this event loop to finish, then hand
1228 // over now, and do not schedule a new nextReqEvent
1229 if (refreshState == REF_DRAIN) {
1230 DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1231
1232 refreshState = REF_PRE;
1233
1234 // hand control back to the refresh event loop
1235 schedule(refreshEvent, curTick());
1236 }
1237
1238 // let the refresh finish before issuing any further requests
1239 return;
1240 }
1241
1242 // when we get here it is either a read or a write
1243 if (busState == READ) {
1244
1245 // track if we should switch or not
1246 bool switch_to_writes = false;
1247
1248 if (readQueue.empty()) {
1249 // In the case there is no read request to go next,

--- 95 unchanged lines hidden (view full) ---

1345 // cause a nextReqEvent to be scheduled before we do so as part of
1346 // the next request processing
1347 if (retryWrReq && writeQueue.size() < writeBufferSize) {
1348 retryWrReq = false;
1349 port.sendRetry();
1350 }
1351}
1352
1353uint64_t
1354DRAMCtrl::minBankFreeAt(const deque<DRAMPacket*>& queue) const
1355{
1356 uint64_t bank_mask = 0;
1357 Tick freeAt = MaxTick;
1358
1359 // detemrine if we have queued transactions targetting the
1360 // bank in question

--- 19 unchanged lines hidden (view full) ---

1380 }
1381 }
1382 return bank_mask;
1383}
1384
1385void
1386DRAMCtrl::processRefreshEvent()
1387{
1388 // when first preparing the refresh, remember when it was due
1389 if (refreshState == REF_IDLE) {
1390 // remember when the refresh is due
1391 refreshDueAt = curTick();
1392
1393 // proceed to drain
1394 refreshState = REF_DRAIN;
1395
1396 DPRINTF(DRAM, "Refresh due\n");
1397 }
1398
1399 // let any scheduled read or write go ahead, after which it will
1400 // hand control back to this event loop
1401 if (refreshState == REF_DRAIN) {
1402 if (nextReqEvent.scheduled()) {
1403 // hand control over to the request loop until it is
1404 // evaluated next
1405 DPRINTF(DRAM, "Refresh awaiting draining\n");
1406
1407 return;
1408 } else {
1409 refreshState = REF_PRE;
1410 }
1411 }
1412
1413 // at this point, ensure that all banks are precharged
1414 if (refreshState == REF_PRE) {
1415 DPRINTF(DRAM, "Precharging all\n");
1416
1417 // precharge any active bank
1418 for (int i = 0; i < ranksPerChannel; i++) {
1419 for (int j = 0; j < banksPerRank; j++) {
1420 if (banks[i][j].openRow != Bank::NO_ROW) {
1421 // respect both causality and any existing bank
1422 // constraints
1423 Tick free_at = std::max(std::max(banks[i][j].freeAt,
1424 banks[i][j].tRASDoneAt),
1425 curTick()) + tRP;
1426
1427 prechargeBank(banks[i][j], free_at);
1428 }
1429 }
1430 }
1431
1432 if (numBanksActive != 0)
1433 panic("Refresh scheduled with %d active banks\n", numBanksActive);
1434
1435 // advance the state
1436 refreshState = REF_RUN;
1437
1438 // call ourselves in the future
1439 schedule(refreshEvent, std::max(curTick(), idleStartTick));
1440 return;
1441 }
1442
1443 // last but not least we perform the actual refresh
1444 if (refreshState == REF_RUN) {
1445 // should never get here with any banks active
1446 assert(numBanksActive == 0);
1447
1448 Tick banksFree = curTick() + tRFC;
1449
1450 for (int i = 0; i < ranksPerChannel; i++) {
1451 for (int j = 0; j < banksPerRank; j++) {
1452 banks[i][j].freeAt = banksFree;
1453 }
1454 }
1455
1456 // make sure we did not wait so long that we cannot make up
1457 // for it
1458 if (refreshDueAt + tREFI < banksFree) {
1459 fatal("Refresh was delayed so long we cannot catch up\n");
1460 }
1461
1462 // compensate for the delay in actually performing the refresh
1463 // when scheduling the next one
1464 schedule(refreshEvent, refreshDueAt + tREFI - tRP);
1465
1466 // back to business as usual
1467 refreshState = REF_IDLE;
1468
1469 // we are now refreshing until tRFC is done
1470 idleStartTick = banksFree;
1471
1472 // kick the normal request processing loop into action again
1473 // as early as possible, i.e. when the request is done, the
1474 // scheduling of this event also prevents any new requests
1475 // from going ahead before the scheduled point in time
1476 nextReqTime = banksFree;
1477 schedule(nextReqEvent, nextReqTime);
1478 }
1479}
1480
1481void
1482DRAMCtrl::regStats()
1483{
1484 using namespace Stats;
1485
1486 AbstractMemory::regStats();

--- 361 unchanged lines hidden ---