coherent_xbar.cc (13856:c4a7f25aacb4) coherent_xbar.cc (14006:5258c91ede20)
1/*
1/*
2 * Copyright (c) 2011-2018 ARM Limited
2 * Copyright (c) 2011-2019 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Ali Saidi
41 * Andreas Hansson
42 * William Wang
43 * Nikos Nikoleris
44 */
45
46/**
47 * @file
48 * Definition of a crossbar object.
49 */
50
51#include "mem/coherent_xbar.hh"
52
53#include "base/logging.hh"
54#include "base/trace.hh"
55#include "debug/AddrRanges.hh"
56#include "debug/CoherentXBar.hh"
57#include "sim/system.hh"
58
59CoherentXBar::CoherentXBar(const CoherentXBarParams *p)
60 : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter),
61 snoopResponseLatency(p->snoop_response_latency),
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Ali Saidi
41 * Andreas Hansson
42 * William Wang
43 * Nikos Nikoleris
44 */
45
46/**
47 * @file
48 * Definition of a crossbar object.
49 */
50
51#include "mem/coherent_xbar.hh"
52
53#include "base/logging.hh"
54#include "base/trace.hh"
55#include "debug/AddrRanges.hh"
56#include "debug/CoherentXBar.hh"
57#include "sim/system.hh"
58
59CoherentXBar::CoherentXBar(const CoherentXBarParams *p)
60 : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter),
61 snoopResponseLatency(p->snoop_response_latency),
62 maxOutstandingSnoopCheck(p->max_outstanding_snoops),
63 maxRoutingTableSizeCheck(p->max_routing_table_size),
62 pointOfCoherency(p->point_of_coherency),
63 pointOfUnification(p->point_of_unification)
64{
65 // create the ports based on the size of the master and slave
66 // vector ports, and the presence of the default port, the ports
67 // are enumerated starting from zero
68 for (int i = 0; i < p->port_master_connection_count; ++i) {
69 std::string portName = csprintf("%s.master[%d]", name(), i);
70 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i);
71 masterPorts.push_back(bp);
72 reqLayers.push_back(new ReqLayer(*bp, *this,
73 csprintf(".reqLayer%d", i)));
74 snoopLayers.push_back(
75 new SnoopRespLayer(*bp, *this, csprintf(".snoopLayer%d", i)));
76 }
77
78 // see if we have a default slave device connected and if so add
79 // our corresponding master port
80 if (p->port_default_connection_count) {
81 defaultPortID = masterPorts.size();
82 std::string portName = name() + ".default";
83 MasterPort* bp = new CoherentXBarMasterPort(portName, *this,
84 defaultPortID);
85 masterPorts.push_back(bp);
86 reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d",
87 defaultPortID)));
88 snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
89 csprintf(".snoopLayer%d",
90 defaultPortID)));
91 }
92
93 // create the slave ports, once again starting at zero
94 for (int i = 0; i < p->port_slave_connection_count; ++i) {
95 std::string portName = csprintf("%s.slave[%d]", name(), i);
96 QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i);
97 slavePorts.push_back(bp);
98 respLayers.push_back(new RespLayer(*bp, *this,
99 csprintf(".respLayer%d", i)));
100 snoopRespPorts.push_back(new SnoopRespPort(*bp, *this));
101 }
102}
103
104CoherentXBar::~CoherentXBar()
105{
106 for (auto l: reqLayers)
107 delete l;
108 for (auto l: respLayers)
109 delete l;
110 for (auto l: snoopLayers)
111 delete l;
112 for (auto p: snoopRespPorts)
113 delete p;
114}
115
116void
117CoherentXBar::init()
118{
119 BaseXBar::init();
120
121 // iterate over our slave ports and determine which of our
122 // neighbouring master ports are snooping and add them as snoopers
123 for (const auto& p: slavePorts) {
124 // check if the connected master port is snooping
125 if (p->isSnooping()) {
126 DPRINTF(AddrRanges, "Adding snooping master %s\n",
127 p->getMasterPort().name());
128 snoopPorts.push_back(p);
129 }
130 }
131
132 if (snoopPorts.empty())
133 warn("CoherentXBar %s has no snooping ports attached!\n", name());
134
135 // inform the snoop filter about the slave ports so it can create
136 // its own internal representation
137 if (snoopFilter)
138 snoopFilter->setSlavePorts(slavePorts);
139}
140
141bool
142CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id)
143{
144 // determine the source port based on the id
145 SlavePort *src_port = slavePorts[slave_port_id];
146
147 // remember if the packet is an express snoop
148 bool is_express_snoop = pkt->isExpressSnoop();
149 bool cache_responding = pkt->cacheResponding();
150 // for normal requests, going downstream, the express snoop flag
151 // and the cache responding flag should always be the same
152 assert(is_express_snoop == cache_responding);
153
154 // determine the destination based on the destination address range
155 PortID master_port_id = findPort(pkt->getAddrRange());
156
157 // test if the crossbar should be considered occupied for the current
158 // port, and exclude express snoops from the check
159 if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) {
160 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
161 src_port->name(), pkt->print());
162 return false;
163 }
164
165 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
166 src_port->name(), pkt->print());
167
168 // store size and command as they might be modified when
169 // forwarding the packet
170 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
171 unsigned int pkt_cmd = pkt->cmdToIndex();
172
173 // store the old header delay so we can restore it if needed
174 Tick old_header_delay = pkt->headerDelay;
175
176 // a request sees the frontend and forward latency
177 Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod();
178
179 // set the packet header and payload delay
180 calcPacketTiming(pkt, xbar_delay);
181
182 // determine how long to be crossbar layer is busy
183 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
184
185 // is this the destination point for this packet? (e.g. true if
186 // this xbar is the PoC for a cache maintenance operation to the
187 // PoC) otherwise the destination is any cache that can satisfy
188 // the request
189 const bool is_destination = isDestination(pkt);
190
191 const bool snoop_caches = !system->bypassCaches() &&
192 pkt->cmd != MemCmd::WriteClean;
193 if (snoop_caches) {
194 assert(pkt->snoopDelay == 0);
195
196 if (pkt->isClean() && !is_destination) {
197 // before snooping we need to make sure that the memory
198 // below is not busy and the cache clean request can be
199 // forwarded to it
200 if (!masterPorts[master_port_id]->tryTiming(pkt)) {
201 DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__,
202 src_port->name(), pkt->print());
203
204 // update the layer state and schedule an idle event
205 reqLayers[master_port_id]->failedTiming(src_port,
206 clockEdge(Cycles(1)));
207 return false;
208 }
209 }
210
211
212 // the packet is a memory-mapped request and should be
213 // broadcasted to our snoopers but the source
214 if (snoopFilter) {
215 // check with the snoop filter where to forward this packet
216 auto sf_res = snoopFilter->lookupRequest(pkt, *src_port);
217 // the time required by a packet to be delivered through
218 // the xbar has to be charged also with to lookup latency
219 // of the snoop filter
220 pkt->headerDelay += sf_res.second * clockPeriod();
221 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
222 __func__, src_port->name(), pkt->print(),
223 sf_res.first.size(), sf_res.second);
224
225 if (pkt->isEviction()) {
226 // for block-evicting packets, i.e. writebacks and
227 // clean evictions, there is no need to snoop up, as
228 // all we do is determine if the block is cached or
229 // not, instead just set it here based on the snoop
230 // filter result
231 if (!sf_res.first.empty())
232 pkt->setBlockCached();
233 } else {
234 forwardTiming(pkt, slave_port_id, sf_res.first);
235 }
236 } else {
237 forwardTiming(pkt, slave_port_id);
238 }
239
240 // add the snoop delay to our header delay, and then reset it
241 pkt->headerDelay += pkt->snoopDelay;
242 pkt->snoopDelay = 0;
243 }
244
245 // set up a sensible starting point
246 bool success = true;
247
248 // remember if the packet will generate a snoop response by
249 // checking if a cache set the cacheResponding flag during the
250 // snooping above
251 const bool expect_snoop_resp = !cache_responding && pkt->cacheResponding();
252 bool expect_response = pkt->needsResponse() && !pkt->cacheResponding();
253
254 const bool sink_packet = sinkPacket(pkt);
255
256 // in certain cases the crossbar is responsible for responding
257 bool respond_directly = false;
258 // store the original address as an address mapper could possibly
259 // modify the address upon a sendTimingRequest
260 const Addr addr(pkt->getAddr());
261 if (sink_packet) {
262 DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__,
263 pkt->print());
264 } else {
265 // determine if we are forwarding the packet, or responding to
266 // it
267 if (forwardPacket(pkt)) {
268 // if we are passing on, rather than sinking, a packet to
269 // which an upstream cache has committed to responding,
270 // the line was needs writable, and the responding only
271 // had an Owned copy, so we need to immidiately let the
272 // downstream caches know, bypass any flow control
273 if (pkt->cacheResponding()) {
274 pkt->setExpressSnoop();
275 }
276
277 // make sure that the write request (e.g., WriteClean)
278 // will stop at the memory below if this crossbar is its
279 // destination
280 if (pkt->isWrite() && is_destination) {
281 pkt->clearWriteThrough();
282 }
283
284 // since it is a normal request, attempt to send the packet
285 success = masterPorts[master_port_id]->sendTimingReq(pkt);
286 } else {
287 // no need to forward, turn this packet around and respond
288 // directly
289 assert(pkt->needsResponse());
290
291 respond_directly = true;
292 assert(!expect_snoop_resp);
293 expect_response = false;
294 }
295 }
296
297 if (snoopFilter && snoop_caches) {
298 // Let the snoop filter know about the success of the send operation
299 snoopFilter->finishRequest(!success, addr, pkt->isSecure());
300 }
301
302 // check if we were successful in sending the packet onwards
303 if (!success) {
304 // express snoops should never be forced to retry
305 assert(!is_express_snoop);
306
307 // restore the header delay
308 pkt->headerDelay = old_header_delay;
309
310 DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__,
311 src_port->name(), pkt->print());
312
313 // update the layer state and schedule an idle event
314 reqLayers[master_port_id]->failedTiming(src_port,
315 clockEdge(Cycles(1)));
316 } else {
317 // express snoops currently bypass the crossbar state entirely
318 if (!is_express_snoop) {
319 // if this particular request will generate a snoop
320 // response
321 if (expect_snoop_resp) {
322 // we should never have an exsiting request outstanding
323 assert(outstandingSnoop.find(pkt->req) ==
324 outstandingSnoop.end());
325 outstandingSnoop.insert(pkt->req);
326
327 // basic sanity check on the outstanding snoops
64 pointOfCoherency(p->point_of_coherency),
65 pointOfUnification(p->point_of_unification)
66{
67 // create the ports based on the size of the master and slave
68 // vector ports, and the presence of the default port, the ports
69 // are enumerated starting from zero
70 for (int i = 0; i < p->port_master_connection_count; ++i) {
71 std::string portName = csprintf("%s.master[%d]", name(), i);
72 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i);
73 masterPorts.push_back(bp);
74 reqLayers.push_back(new ReqLayer(*bp, *this,
75 csprintf(".reqLayer%d", i)));
76 snoopLayers.push_back(
77 new SnoopRespLayer(*bp, *this, csprintf(".snoopLayer%d", i)));
78 }
79
80 // see if we have a default slave device connected and if so add
81 // our corresponding master port
82 if (p->port_default_connection_count) {
83 defaultPortID = masterPorts.size();
84 std::string portName = name() + ".default";
85 MasterPort* bp = new CoherentXBarMasterPort(portName, *this,
86 defaultPortID);
87 masterPorts.push_back(bp);
88 reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d",
89 defaultPortID)));
90 snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
91 csprintf(".snoopLayer%d",
92 defaultPortID)));
93 }
94
95 // create the slave ports, once again starting at zero
96 for (int i = 0; i < p->port_slave_connection_count; ++i) {
97 std::string portName = csprintf("%s.slave[%d]", name(), i);
98 QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i);
99 slavePorts.push_back(bp);
100 respLayers.push_back(new RespLayer(*bp, *this,
101 csprintf(".respLayer%d", i)));
102 snoopRespPorts.push_back(new SnoopRespPort(*bp, *this));
103 }
104}
105
106CoherentXBar::~CoherentXBar()
107{
108 for (auto l: reqLayers)
109 delete l;
110 for (auto l: respLayers)
111 delete l;
112 for (auto l: snoopLayers)
113 delete l;
114 for (auto p: snoopRespPorts)
115 delete p;
116}
117
118void
119CoherentXBar::init()
120{
121 BaseXBar::init();
122
123 // iterate over our slave ports and determine which of our
124 // neighbouring master ports are snooping and add them as snoopers
125 for (const auto& p: slavePorts) {
126 // check if the connected master port is snooping
127 if (p->isSnooping()) {
128 DPRINTF(AddrRanges, "Adding snooping master %s\n",
129 p->getMasterPort().name());
130 snoopPorts.push_back(p);
131 }
132 }
133
134 if (snoopPorts.empty())
135 warn("CoherentXBar %s has no snooping ports attached!\n", name());
136
137 // inform the snoop filter about the slave ports so it can create
138 // its own internal representation
139 if (snoopFilter)
140 snoopFilter->setSlavePorts(slavePorts);
141}
142
143bool
144CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id)
145{
146 // determine the source port based on the id
147 SlavePort *src_port = slavePorts[slave_port_id];
148
149 // remember if the packet is an express snoop
150 bool is_express_snoop = pkt->isExpressSnoop();
151 bool cache_responding = pkt->cacheResponding();
152 // for normal requests, going downstream, the express snoop flag
153 // and the cache responding flag should always be the same
154 assert(is_express_snoop == cache_responding);
155
156 // determine the destination based on the destination address range
157 PortID master_port_id = findPort(pkt->getAddrRange());
158
159 // test if the crossbar should be considered occupied for the current
160 // port, and exclude express snoops from the check
161 if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) {
162 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
163 src_port->name(), pkt->print());
164 return false;
165 }
166
167 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
168 src_port->name(), pkt->print());
169
170 // store size and command as they might be modified when
171 // forwarding the packet
172 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
173 unsigned int pkt_cmd = pkt->cmdToIndex();
174
175 // store the old header delay so we can restore it if needed
176 Tick old_header_delay = pkt->headerDelay;
177
178 // a request sees the frontend and forward latency
179 Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod();
180
181 // set the packet header and payload delay
182 calcPacketTiming(pkt, xbar_delay);
183
184 // determine how long to be crossbar layer is busy
185 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
186
187 // is this the destination point for this packet? (e.g. true if
188 // this xbar is the PoC for a cache maintenance operation to the
189 // PoC) otherwise the destination is any cache that can satisfy
190 // the request
191 const bool is_destination = isDestination(pkt);
192
193 const bool snoop_caches = !system->bypassCaches() &&
194 pkt->cmd != MemCmd::WriteClean;
195 if (snoop_caches) {
196 assert(pkt->snoopDelay == 0);
197
198 if (pkt->isClean() && !is_destination) {
199 // before snooping we need to make sure that the memory
200 // below is not busy and the cache clean request can be
201 // forwarded to it
202 if (!masterPorts[master_port_id]->tryTiming(pkt)) {
203 DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__,
204 src_port->name(), pkt->print());
205
206 // update the layer state and schedule an idle event
207 reqLayers[master_port_id]->failedTiming(src_port,
208 clockEdge(Cycles(1)));
209 return false;
210 }
211 }
212
213
214 // the packet is a memory-mapped request and should be
215 // broadcasted to our snoopers but the source
216 if (snoopFilter) {
217 // check with the snoop filter where to forward this packet
218 auto sf_res = snoopFilter->lookupRequest(pkt, *src_port);
219 // the time required by a packet to be delivered through
220 // the xbar has to be charged also with to lookup latency
221 // of the snoop filter
222 pkt->headerDelay += sf_res.second * clockPeriod();
223 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
224 __func__, src_port->name(), pkt->print(),
225 sf_res.first.size(), sf_res.second);
226
227 if (pkt->isEviction()) {
228 // for block-evicting packets, i.e. writebacks and
229 // clean evictions, there is no need to snoop up, as
230 // all we do is determine if the block is cached or
231 // not, instead just set it here based on the snoop
232 // filter result
233 if (!sf_res.first.empty())
234 pkt->setBlockCached();
235 } else {
236 forwardTiming(pkt, slave_port_id, sf_res.first);
237 }
238 } else {
239 forwardTiming(pkt, slave_port_id);
240 }
241
242 // add the snoop delay to our header delay, and then reset it
243 pkt->headerDelay += pkt->snoopDelay;
244 pkt->snoopDelay = 0;
245 }
246
247 // set up a sensible starting point
248 bool success = true;
249
250 // remember if the packet will generate a snoop response by
251 // checking if a cache set the cacheResponding flag during the
252 // snooping above
253 const bool expect_snoop_resp = !cache_responding && pkt->cacheResponding();
254 bool expect_response = pkt->needsResponse() && !pkt->cacheResponding();
255
256 const bool sink_packet = sinkPacket(pkt);
257
258 // in certain cases the crossbar is responsible for responding
259 bool respond_directly = false;
260 // store the original address as an address mapper could possibly
261 // modify the address upon a sendTimingRequest
262 const Addr addr(pkt->getAddr());
263 if (sink_packet) {
264 DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__,
265 pkt->print());
266 } else {
267 // determine if we are forwarding the packet, or responding to
268 // it
269 if (forwardPacket(pkt)) {
270 // if we are passing on, rather than sinking, a packet to
271 // which an upstream cache has committed to responding,
272 // the line was needs writable, and the responding only
273 // had an Owned copy, so we need to immidiately let the
274 // downstream caches know, bypass any flow control
275 if (pkt->cacheResponding()) {
276 pkt->setExpressSnoop();
277 }
278
279 // make sure that the write request (e.g., WriteClean)
280 // will stop at the memory below if this crossbar is its
281 // destination
282 if (pkt->isWrite() && is_destination) {
283 pkt->clearWriteThrough();
284 }
285
286 // since it is a normal request, attempt to send the packet
287 success = masterPorts[master_port_id]->sendTimingReq(pkt);
288 } else {
289 // no need to forward, turn this packet around and respond
290 // directly
291 assert(pkt->needsResponse());
292
293 respond_directly = true;
294 assert(!expect_snoop_resp);
295 expect_response = false;
296 }
297 }
298
299 if (snoopFilter && snoop_caches) {
300 // Let the snoop filter know about the success of the send operation
301 snoopFilter->finishRequest(!success, addr, pkt->isSecure());
302 }
303
304 // check if we were successful in sending the packet onwards
305 if (!success) {
306 // express snoops should never be forced to retry
307 assert(!is_express_snoop);
308
309 // restore the header delay
310 pkt->headerDelay = old_header_delay;
311
312 DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__,
313 src_port->name(), pkt->print());
314
315 // update the layer state and schedule an idle event
316 reqLayers[master_port_id]->failedTiming(src_port,
317 clockEdge(Cycles(1)));
318 } else {
319 // express snoops currently bypass the crossbar state entirely
320 if (!is_express_snoop) {
321 // if this particular request will generate a snoop
322 // response
323 if (expect_snoop_resp) {
324 // we should never have an exsiting request outstanding
325 assert(outstandingSnoop.find(pkt->req) ==
326 outstandingSnoop.end());
327 outstandingSnoop.insert(pkt->req);
328
329 // basic sanity check on the outstanding snoops
328 panic_if(outstandingSnoop.size() > 512,
329 "Outstanding snoop requests exceeded 512\n");
330 panic_if(outstandingSnoop.size() > maxOutstandingSnoopCheck,
331 "%s: Outstanding snoop requests exceeded %d\n",
332 name(), maxOutstandingSnoopCheck);
330 }
331
332 // remember where to route the normal response to
333 if (expect_response || expect_snoop_resp) {
334 assert(routeTo.find(pkt->req) == routeTo.end());
335 routeTo[pkt->req] = slave_port_id;
336
333 }
334
335 // remember where to route the normal response to
336 if (expect_response || expect_snoop_resp) {
337 assert(routeTo.find(pkt->req) == routeTo.end());
338 routeTo[pkt->req] = slave_port_id;
339
337 panic_if(routeTo.size() > 512,
338 "Routing table exceeds 512 packets\n");
340 panic_if(routeTo.size() > maxRoutingTableSizeCheck,
341 "%s: Routing table exceeds %d packets\n",
342 name(), maxRoutingTableSizeCheck);
339 }
340
341 // update the layer state and schedule an idle event
342 reqLayers[master_port_id]->succeededTiming(packetFinishTime);
343 }
344
345 // stats updates only consider packets that were successfully sent
346 pktCount[slave_port_id][master_port_id]++;
347 pktSize[slave_port_id][master_port_id] += pkt_size;
348 transDist[pkt_cmd]++;
349
350 if (is_express_snoop) {
351 snoops++;
352 snoopTraffic += pkt_size;
353 }
354 }
355
356 if (sink_packet)
357 // queue the packet for deletion
358 pendingDelete.reset(pkt);
359
360 // normally we respond to the packet we just received if we need to
361 PacketPtr rsp_pkt = pkt;
362 PortID rsp_port_id = slave_port_id;
363
364 // If this is the destination of the cache clean operation the
365 // crossbar is responsible for responding. This crossbar will
366 // respond when the cache clean is complete. A cache clean
367 // is complete either:
368 // * direcly, if no cache above had a dirty copy of the block
369 // as indicated by the satisfied flag of the packet, or
370 // * when the crossbar has seen both the cache clean request
371 // (CleanSharedReq, CleanInvalidReq) and the corresponding
372 // write (WriteClean) which updates the block in the memory
373 // below.
374 if (success &&
375 ((pkt->isClean() && pkt->satisfied()) ||
376 pkt->cmd == MemCmd::WriteClean) &&
377 is_destination) {
378 PacketPtr deferred_rsp = pkt->isWrite() ? nullptr : pkt;
379 auto cmo_lookup = outstandingCMO.find(pkt->id);
380 if (cmo_lookup != outstandingCMO.end()) {
381 // the cache clean request has already reached this xbar
382 respond_directly = true;
383 if (pkt->isWrite()) {
384 rsp_pkt = cmo_lookup->second;
385 assert(rsp_pkt);
386
387 // determine the destination
388 const auto route_lookup = routeTo.find(rsp_pkt->req);
389 assert(route_lookup != routeTo.end());
390 rsp_port_id = route_lookup->second;
391 assert(rsp_port_id != InvalidPortID);
392 assert(rsp_port_id < respLayers.size());
393 // remove the request from the routing table
394 routeTo.erase(route_lookup);
395 }
396 outstandingCMO.erase(cmo_lookup);
397 } else {
398 respond_directly = false;
399 outstandingCMO.emplace(pkt->id, deferred_rsp);
400 if (!pkt->isWrite()) {
401 assert(routeTo.find(pkt->req) == routeTo.end());
402 routeTo[pkt->req] = slave_port_id;
403
343 }
344
345 // update the layer state and schedule an idle event
346 reqLayers[master_port_id]->succeededTiming(packetFinishTime);
347 }
348
349 // stats updates only consider packets that were successfully sent
350 pktCount[slave_port_id][master_port_id]++;
351 pktSize[slave_port_id][master_port_id] += pkt_size;
352 transDist[pkt_cmd]++;
353
354 if (is_express_snoop) {
355 snoops++;
356 snoopTraffic += pkt_size;
357 }
358 }
359
360 if (sink_packet)
361 // queue the packet for deletion
362 pendingDelete.reset(pkt);
363
364 // normally we respond to the packet we just received if we need to
365 PacketPtr rsp_pkt = pkt;
366 PortID rsp_port_id = slave_port_id;
367
368 // If this is the destination of the cache clean operation the
369 // crossbar is responsible for responding. This crossbar will
370 // respond when the cache clean is complete. A cache clean
371 // is complete either:
372 // * direcly, if no cache above had a dirty copy of the block
373 // as indicated by the satisfied flag of the packet, or
374 // * when the crossbar has seen both the cache clean request
375 // (CleanSharedReq, CleanInvalidReq) and the corresponding
376 // write (WriteClean) which updates the block in the memory
377 // below.
378 if (success &&
379 ((pkt->isClean() && pkt->satisfied()) ||
380 pkt->cmd == MemCmd::WriteClean) &&
381 is_destination) {
382 PacketPtr deferred_rsp = pkt->isWrite() ? nullptr : pkt;
383 auto cmo_lookup = outstandingCMO.find(pkt->id);
384 if (cmo_lookup != outstandingCMO.end()) {
385 // the cache clean request has already reached this xbar
386 respond_directly = true;
387 if (pkt->isWrite()) {
388 rsp_pkt = cmo_lookup->second;
389 assert(rsp_pkt);
390
391 // determine the destination
392 const auto route_lookup = routeTo.find(rsp_pkt->req);
393 assert(route_lookup != routeTo.end());
394 rsp_port_id = route_lookup->second;
395 assert(rsp_port_id != InvalidPortID);
396 assert(rsp_port_id < respLayers.size());
397 // remove the request from the routing table
398 routeTo.erase(route_lookup);
399 }
400 outstandingCMO.erase(cmo_lookup);
401 } else {
402 respond_directly = false;
403 outstandingCMO.emplace(pkt->id, deferred_rsp);
404 if (!pkt->isWrite()) {
405 assert(routeTo.find(pkt->req) == routeTo.end());
406 routeTo[pkt->req] = slave_port_id;
407
404 panic_if(routeTo.size() > 512,
405 "Routing table exceeds 512 packets\n");
408 panic_if(routeTo.size() > maxRoutingTableSizeCheck,
409 "%s: Routing table exceeds %d packets\n",
410 name(), maxRoutingTableSizeCheck);
406 }
407 }
408 }
409
410
411 if (respond_directly) {
412 assert(rsp_pkt->needsResponse());
413 assert(success);
414
415 rsp_pkt->makeResponse();
416
417 if (snoopFilter && !system->bypassCaches()) {
418 // let the snoop filter inspect the response and update its state
419 snoopFilter->updateResponse(rsp_pkt, *slavePorts[rsp_port_id]);
420 }
421
422 // we send the response after the current packet, even if the
423 // response is not for this packet (e.g. cache clean operation
424 // where both the request and the write packet have to cross
425 // the destination xbar before the response is sent.)
426 Tick response_time = clockEdge() + pkt->headerDelay;
427 rsp_pkt->headerDelay = 0;
428
429 slavePorts[rsp_port_id]->schedTimingResp(rsp_pkt, response_time);
430 }
431
432 return success;
433}
434
435bool
436CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id)
437{
438 // determine the source port based on the id
439 MasterPort *src_port = masterPorts[master_port_id];
440
441 // determine the destination
442 const auto route_lookup = routeTo.find(pkt->req);
443 assert(route_lookup != routeTo.end());
444 const PortID slave_port_id = route_lookup->second;
445 assert(slave_port_id != InvalidPortID);
446 assert(slave_port_id < respLayers.size());
447
448 // test if the crossbar should be considered occupied for the
449 // current port
450 if (!respLayers[slave_port_id]->tryTiming(src_port)) {
451 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
452 src_port->name(), pkt->print());
453 return false;
454 }
455
456 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
457 src_port->name(), pkt->print());
458
459 // store size and command as they might be modified when
460 // forwarding the packet
461 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
462 unsigned int pkt_cmd = pkt->cmdToIndex();
463
464 // a response sees the response latency
465 Tick xbar_delay = responseLatency * clockPeriod();
466
467 // set the packet header and payload delay
468 calcPacketTiming(pkt, xbar_delay);
469
470 // determine how long to be crossbar layer is busy
471 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
472
473 if (snoopFilter && !system->bypassCaches()) {
474 // let the snoop filter inspect the response and update its state
475 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
476 }
477
478 // send the packet through the destination slave port and pay for
479 // any outstanding header delay
480 Tick latency = pkt->headerDelay;
481 pkt->headerDelay = 0;
482 slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency);
483
484 // remove the request from the routing table
485 routeTo.erase(route_lookup);
486
487 respLayers[slave_port_id]->succeededTiming(packetFinishTime);
488
489 // stats updates
490 pktCount[slave_port_id][master_port_id]++;
491 pktSize[slave_port_id][master_port_id] += pkt_size;
492 transDist[pkt_cmd]++;
493
494 return true;
495}
496
497void
498CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id)
499{
500 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
501 masterPorts[master_port_id]->name(), pkt->print());
502
503 // update stats here as we know the forwarding will succeed
504 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
505 transDist[pkt->cmdToIndex()]++;
506 snoops++;
507 snoopTraffic += pkt_size;
508
509 // we should only see express snoops from caches
510 assert(pkt->isExpressSnoop());
511
512 // set the packet header and payload delay, for now use forward latency
513 // @todo Assess the choice of latency further
514 calcPacketTiming(pkt, forwardLatency * clockPeriod());
515
516 // remember if a cache has already committed to responding so we
517 // can see if it changes during the snooping
518 const bool cache_responding = pkt->cacheResponding();
519
520 assert(pkt->snoopDelay == 0);
521
522 if (snoopFilter) {
523 // let the Snoop Filter work its magic and guide probing
524 auto sf_res = snoopFilter->lookupSnoop(pkt);
525 // the time required by a packet to be delivered through
526 // the xbar has to be charged also with to lookup latency
527 // of the snoop filter
528 pkt->headerDelay += sf_res.second * clockPeriod();
529 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
530 __func__, masterPorts[master_port_id]->name(), pkt->print(),
531 sf_res.first.size(), sf_res.second);
532
533 // forward to all snoopers
534 forwardTiming(pkt, InvalidPortID, sf_res.first);
535 } else {
536 forwardTiming(pkt, InvalidPortID);
537 }
538
539 // add the snoop delay to our header delay, and then reset it
540 pkt->headerDelay += pkt->snoopDelay;
541 pkt->snoopDelay = 0;
542
543 // if we can expect a response, remember how to route it
544 if (!cache_responding && pkt->cacheResponding()) {
545 assert(routeTo.find(pkt->req) == routeTo.end());
546 routeTo[pkt->req] = master_port_id;
547 }
548
549 // a snoop request came from a connected slave device (one of
550 // our master ports), and if it is not coming from the slave
551 // device responsible for the address range something is
552 // wrong, hence there is nothing further to do as the packet
553 // would be going back to where it came from
554 assert(findPort(pkt->getAddrRange()) == master_port_id);
555}
556
557bool
558CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id)
559{
560 // determine the source port based on the id
561 SlavePort* src_port = slavePorts[slave_port_id];
562
563 // get the destination
564 const auto route_lookup = routeTo.find(pkt->req);
565 assert(route_lookup != routeTo.end());
566 const PortID dest_port_id = route_lookup->second;
567 assert(dest_port_id != InvalidPortID);
568
569 // determine if the response is from a snoop request we
570 // created as the result of a normal request (in which case it
571 // should be in the outstandingSnoop), or if we merely forwarded
572 // someone else's snoop request
573 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
574 outstandingSnoop.end();
575
576 // test if the crossbar should be considered occupied for the
577 // current port, note that the check is bypassed if the response
578 // is being passed on as a normal response since this is occupying
579 // the response layer rather than the snoop response layer
580 if (forwardAsSnoop) {
581 assert(dest_port_id < snoopLayers.size());
582 if (!snoopLayers[dest_port_id]->tryTiming(src_port)) {
583 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
584 src_port->name(), pkt->print());
585 return false;
586 }
587 } else {
588 // get the master port that mirrors this slave port internally
589 MasterPort* snoop_port = snoopRespPorts[slave_port_id];
590 assert(dest_port_id < respLayers.size());
591 if (!respLayers[dest_port_id]->tryTiming(snoop_port)) {
592 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
593 snoop_port->name(), pkt->print());
594 return false;
595 }
596 }
597
598 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
599 src_port->name(), pkt->print());
600
601 // store size and command as they might be modified when
602 // forwarding the packet
603 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
604 unsigned int pkt_cmd = pkt->cmdToIndex();
605
606 // responses are never express snoops
607 assert(!pkt->isExpressSnoop());
608
609 // a snoop response sees the snoop response latency, and if it is
610 // forwarded as a normal response, the response latency
611 Tick xbar_delay =
612 (forwardAsSnoop ? snoopResponseLatency : responseLatency) *
613 clockPeriod();
614
615 // set the packet header and payload delay
616 calcPacketTiming(pkt, xbar_delay);
617
618 // determine how long to be crossbar layer is busy
619 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
620
621 // forward it either as a snoop response or a normal response
622 if (forwardAsSnoop) {
623 // this is a snoop response to a snoop request we forwarded,
624 // e.g. coming from the L1 and going to the L2, and it should
625 // be forwarded as a snoop response
626
627 if (snoopFilter) {
628 // update the probe filter so that it can properly track the line
629 snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id],
630 *masterPorts[dest_port_id]);
631 }
632
633 bool success M5_VAR_USED =
634 masterPorts[dest_port_id]->sendTimingSnoopResp(pkt);
635 pktCount[slave_port_id][dest_port_id]++;
636 pktSize[slave_port_id][dest_port_id] += pkt_size;
637 assert(success);
638
639 snoopLayers[dest_port_id]->succeededTiming(packetFinishTime);
640 } else {
641 // we got a snoop response on one of our slave ports,
642 // i.e. from a coherent master connected to the crossbar, and
643 // since we created the snoop request as part of recvTiming,
644 // this should now be a normal response again
645 outstandingSnoop.erase(pkt->req);
646
647 // this is a snoop response from a coherent master, hence it
648 // should never go back to where the snoop response came from,
649 // but instead to where the original request came from
650 assert(slave_port_id != dest_port_id);
651
652 if (snoopFilter) {
653 // update the probe filter so that it can properly track the line
654 snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id],
655 *slavePorts[dest_port_id]);
656 }
657
658 DPRINTF(CoherentXBar, "%s: src %s packet %s FWD RESP\n", __func__,
659 src_port->name(), pkt->print());
660
661 // as a normal response, it should go back to a master through
662 // one of our slave ports, we also pay for any outstanding
663 // header latency
664 Tick latency = pkt->headerDelay;
665 pkt->headerDelay = 0;
666 slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency);
667
668 respLayers[dest_port_id]->succeededTiming(packetFinishTime);
669 }
670
671 // remove the request from the routing table
672 routeTo.erase(route_lookup);
673
674 // stats updates
675 transDist[pkt_cmd]++;
676 snoops++;
677 snoopTraffic += pkt_size;
678
679 return true;
680}
681
682
683void
684CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id,
685 const std::vector<QueuedSlavePort*>& dests)
686{
687 DPRINTF(CoherentXBar, "%s for %s\n", __func__, pkt->print());
688
689 // snoops should only happen if the system isn't bypassing caches
690 assert(!system->bypassCaches());
691
692 unsigned fanout = 0;
693
694 for (const auto& p: dests) {
695 // we could have gotten this request from a snooping master
696 // (corresponding to our own slave port that is also in
697 // snoopPorts) and should not send it back to where it came
698 // from
699 if (exclude_slave_port_id == InvalidPortID ||
700 p->getId() != exclude_slave_port_id) {
701 // cache is not allowed to refuse snoop
702 p->sendTimingSnoopReq(pkt);
703 fanout++;
704 }
705 }
706
707 // Stats for fanout of this forward operation
708 snoopFanout.sample(fanout);
709}
710
711void
712CoherentXBar::recvReqRetry(PortID master_port_id)
713{
714 // responses and snoop responses never block on forwarding them,
715 // so the retry will always be coming from a port to which we
716 // tried to forward a request
717 reqLayers[master_port_id]->recvRetry();
718}
719
720Tick
721CoherentXBar::recvAtomicBackdoor(PacketPtr pkt, PortID slave_port_id,
722 MemBackdoorPtr *backdoor)
723{
724 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
725 slavePorts[slave_port_id]->name(), pkt->print());
726
727 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
728 unsigned int pkt_cmd = pkt->cmdToIndex();
729
730 MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
731 Tick snoop_response_latency = 0;
732
733 // is this the destination point for this packet? (e.g. true if
734 // this xbar is the PoC for a cache maintenance operation to the
735 // PoC) otherwise the destination is any cache that can satisfy
736 // the request
737 const bool is_destination = isDestination(pkt);
738
739 const bool snoop_caches = !system->bypassCaches() &&
740 pkt->cmd != MemCmd::WriteClean;
741 if (snoop_caches) {
742 // forward to all snoopers but the source
743 std::pair<MemCmd, Tick> snoop_result;
744 if (snoopFilter) {
745 // check with the snoop filter where to forward this packet
746 auto sf_res =
747 snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]);
748 snoop_response_latency += sf_res.second * clockPeriod();
749 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
750 __func__, slavePorts[slave_port_id]->name(), pkt->print(),
751 sf_res.first.size(), sf_res.second);
752
753 // let the snoop filter know about the success of the send
754 // operation, and do it even before sending it onwards to
755 // avoid situations where atomic upward snoops sneak in
756 // between and change the filter state
757 snoopFilter->finishRequest(false, pkt->getAddr(), pkt->isSecure());
758
759 if (pkt->isEviction()) {
760 // for block-evicting packets, i.e. writebacks and
761 // clean evictions, there is no need to snoop up, as
762 // all we do is determine if the block is cached or
763 // not, instead just set it here based on the snoop
764 // filter result
765 if (!sf_res.first.empty())
766 pkt->setBlockCached();
767 } else {
768 snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID,
769 sf_res.first);
770 }
771 } else {
772 snoop_result = forwardAtomic(pkt, slave_port_id);
773 }
774 snoop_response_cmd = snoop_result.first;
775 snoop_response_latency += snoop_result.second;
776 }
777
778 // set up a sensible default value
779 Tick response_latency = 0;
780
781 const bool sink_packet = sinkPacket(pkt);
782
783 // even if we had a snoop response, we must continue and also
784 // perform the actual request at the destination
785 PortID master_port_id = findPort(pkt->getAddrRange());
786
787 if (sink_packet) {
788 DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__,
789 pkt->print());
790 } else {
791 if (forwardPacket(pkt)) {
792 // make sure that the write request (e.g., WriteClean)
793 // will stop at the memory below if this crossbar is its
794 // destination
795 if (pkt->isWrite() && is_destination) {
796 pkt->clearWriteThrough();
797 }
798
799 // forward the request to the appropriate destination
800 auto master = masterPorts[master_port_id];
801 response_latency = backdoor ?
802 master->sendAtomicBackdoor(pkt, *backdoor) :
803 master->sendAtomic(pkt);
804 } else {
805 // if it does not need a response we sink the packet above
806 assert(pkt->needsResponse());
807
808 pkt->makeResponse();
809 }
810 }
811
812 // stats updates for the request
813 pktCount[slave_port_id][master_port_id]++;
814 pktSize[slave_port_id][master_port_id] += pkt_size;
815 transDist[pkt_cmd]++;
816
817
818 // if lower levels have replied, tell the snoop filter
819 if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) {
820 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
821 }
822
823 // if we got a response from a snooper, restore it here
824 if (snoop_response_cmd != MemCmd::InvalidCmd) {
825 // no one else should have responded
826 assert(!pkt->isResponse());
827 pkt->cmd = snoop_response_cmd;
828 response_latency = snoop_response_latency;
829 }
830
831 // If this is the destination of the cache clean operation the
832 // crossbar is responsible for responding. This crossbar will
833 // respond when the cache clean is complete. An atomic cache clean
834 // is complete when the crossbars receives the cache clean
835 // request (CleanSharedReq, CleanInvalidReq), as either:
836 // * no cache above had a dirty copy of the block as indicated by
837 // the satisfied flag of the packet, or
838 // * the crossbar has already seen the corresponding write
839 // (WriteClean) which updates the block in the memory below.
840 if (pkt->isClean() && isDestination(pkt) && pkt->satisfied()) {
841 auto it = outstandingCMO.find(pkt->id);
842 assert(it != outstandingCMO.end());
843 // we are responding right away
844 outstandingCMO.erase(it);
845 } else if (pkt->cmd == MemCmd::WriteClean && isDestination(pkt)) {
846 // if this is the destination of the operation, the xbar
847 // sends the responce to the cache clean operation only
848 // after having encountered the cache clean request
849 auto M5_VAR_USED ret = outstandingCMO.emplace(pkt->id, nullptr);
850 // in atomic mode we know that the WriteClean packet should
851 // precede the clean request
852 assert(ret.second);
853 }
854
855 // add the response data
856 if (pkt->isResponse()) {
857 pkt_size = pkt->hasData() ? pkt->getSize() : 0;
858 pkt_cmd = pkt->cmdToIndex();
859
860 // stats updates
861 pktCount[slave_port_id][master_port_id]++;
862 pktSize[slave_port_id][master_port_id] += pkt_size;
863 transDist[pkt_cmd]++;
864 }
865
866 // @todo: Not setting header time
867 pkt->payloadDelay = response_latency;
868 return response_latency;
869}
870
871Tick
872CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id)
873{
874 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
875 masterPorts[master_port_id]->name(), pkt->print());
876
877 // add the request snoop data
878 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
879 snoops++;
880 snoopTraffic += pkt_size;
881
882 // forward to all snoopers
883 std::pair<MemCmd, Tick> snoop_result;
884 Tick snoop_response_latency = 0;
885 if (snoopFilter) {
886 auto sf_res = snoopFilter->lookupSnoop(pkt);
887 snoop_response_latency += sf_res.second * clockPeriod();
888 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
889 __func__, masterPorts[master_port_id]->name(), pkt->print(),
890 sf_res.first.size(), sf_res.second);
891 snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id,
892 sf_res.first);
893 } else {
894 snoop_result = forwardAtomic(pkt, InvalidPortID);
895 }
896 MemCmd snoop_response_cmd = snoop_result.first;
897 snoop_response_latency += snoop_result.second;
898
899 if (snoop_response_cmd != MemCmd::InvalidCmd)
900 pkt->cmd = snoop_response_cmd;
901
902 // add the response snoop data
903 if (pkt->isResponse()) {
904 snoops++;
905 }
906
907 // @todo: Not setting header time
908 pkt->payloadDelay = snoop_response_latency;
909 return snoop_response_latency;
910}
911
912std::pair<MemCmd, Tick>
913CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id,
914 PortID source_master_port_id,
915 const std::vector<QueuedSlavePort*>& dests)
916{
917 // the packet may be changed on snoops, record the original
918 // command to enable us to restore it between snoops so that
919 // additional snoops can take place properly
920 MemCmd orig_cmd = pkt->cmd;
921 MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
922 Tick snoop_response_latency = 0;
923
924 // snoops should only happen if the system isn't bypassing caches
925 assert(!system->bypassCaches());
926
927 unsigned fanout = 0;
928
929 for (const auto& p: dests) {
930 // we could have gotten this request from a snooping master
931 // (corresponding to our own slave port that is also in
932 // snoopPorts) and should not send it back to where it came
933 // from
934 if (exclude_slave_port_id != InvalidPortID &&
935 p->getId() == exclude_slave_port_id)
936 continue;
937
938 Tick latency = p->sendAtomicSnoop(pkt);
939 fanout++;
940
941 // in contrast to a functional access, we have to keep on
942 // going as all snoopers must be updated even if we get a
943 // response
944 if (!pkt->isResponse())
945 continue;
946
947 // response from snoop agent
948 assert(pkt->cmd != orig_cmd);
949 assert(pkt->cacheResponding());
950 // should only happen once
951 assert(snoop_response_cmd == MemCmd::InvalidCmd);
952 // save response state
953 snoop_response_cmd = pkt->cmd;
954 snoop_response_latency = latency;
955
956 if (snoopFilter) {
957 // Handle responses by the snoopers and differentiate between
958 // responses to requests from above and snoops from below
959 if (source_master_port_id != InvalidPortID) {
960 // Getting a response for a snoop from below
961 assert(exclude_slave_port_id == InvalidPortID);
962 snoopFilter->updateSnoopForward(pkt, *p,
963 *masterPorts[source_master_port_id]);
964 } else {
965 // Getting a response for a request from above
966 assert(source_master_port_id == InvalidPortID);
967 snoopFilter->updateSnoopResponse(pkt, *p,
968 *slavePorts[exclude_slave_port_id]);
969 }
970 }
971 // restore original packet state for remaining snoopers
972 pkt->cmd = orig_cmd;
973 }
974
975 // Stats for fanout
976 snoopFanout.sample(fanout);
977
978 // the packet is restored as part of the loop and any potential
979 // snoop response is part of the returned pair
980 return std::make_pair(snoop_response_cmd, snoop_response_latency);
981}
982
983void
984CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id)
985{
986 if (!pkt->isPrint()) {
987 // don't do DPRINTFs on PrintReq as it clutters up the output
988 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
989 slavePorts[slave_port_id]->name(), pkt->print());
990 }
991
992 if (!system->bypassCaches()) {
993 // forward to all snoopers but the source
994 forwardFunctional(pkt, slave_port_id);
995 }
996
997 // there is no need to continue if the snooping has found what we
998 // were looking for and the packet is already a response
999 if (!pkt->isResponse()) {
1000 // since our slave ports are queued ports we need to check them as well
1001 for (const auto& p : slavePorts) {
1002 // if we find a response that has the data, then the
1003 // downstream caches/memories may be out of date, so simply stop
1004 // here
1005 if (p->trySatisfyFunctional(pkt)) {
1006 if (pkt->needsResponse())
1007 pkt->makeResponse();
1008 return;
1009 }
1010 }
1011
1012 PortID dest_id = findPort(pkt->getAddrRange());
1013
1014 masterPorts[dest_id]->sendFunctional(pkt);
1015 }
1016}
1017
1018void
1019CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id)
1020{
1021 if (!pkt->isPrint()) {
1022 // don't do DPRINTFs on PrintReq as it clutters up the output
1023 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
1024 masterPorts[master_port_id]->name(), pkt->print());
1025 }
1026
1027 for (const auto& p : slavePorts) {
1028 if (p->trySatisfyFunctional(pkt)) {
1029 if (pkt->needsResponse())
1030 pkt->makeResponse();
1031 return;
1032 }
1033 }
1034
1035 // forward to all snoopers
1036 forwardFunctional(pkt, InvalidPortID);
1037}
1038
1039void
1040CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id)
1041{
1042 // snoops should only happen if the system isn't bypassing caches
1043 assert(!system->bypassCaches());
1044
1045 for (const auto& p: snoopPorts) {
1046 // we could have gotten this request from a snooping master
1047 // (corresponding to our own slave port that is also in
1048 // snoopPorts) and should not send it back to where it came
1049 // from
1050 if (exclude_slave_port_id == InvalidPortID ||
1051 p->getId() != exclude_slave_port_id)
1052 p->sendFunctionalSnoop(pkt);
1053
1054 // if we get a response we are done
1055 if (pkt->isResponse()) {
1056 break;
1057 }
1058 }
1059}
1060
1061bool
1062CoherentXBar::sinkPacket(const PacketPtr pkt) const
1063{
1064 // we can sink the packet if:
1065 // 1) the crossbar is the point of coherency, and a cache is
1066 // responding after being snooped
1067 // 2) the crossbar is the point of coherency, and the packet is a
1068 // coherency packet (not a read or a write) that does not
1069 // require a response
1070 // 3) this is a clean evict or clean writeback, but the packet is
1071 // found in a cache above this crossbar
1072 // 4) a cache is responding after being snooped, and the packet
1073 // either does not need the block to be writable, or the cache
1074 // that has promised to respond (setting the cache responding
1075 // flag) is providing writable and thus had a Modified block,
1076 // and no further action is needed
1077 return (pointOfCoherency && pkt->cacheResponding()) ||
1078 (pointOfCoherency && !(pkt->isRead() || pkt->isWrite()) &&
1079 !pkt->needsResponse()) ||
1080 (pkt->isCleanEviction() && pkt->isBlockCached()) ||
1081 (pkt->cacheResponding() &&
1082 (!pkt->needsWritable() || pkt->responderHadWritable()));
1083}
1084
1085bool
1086CoherentXBar::forwardPacket(const PacketPtr pkt)
1087{
1088 // we are forwarding the packet if:
1089 // 1) this is a cache clean request to the PoU/PoC and this
1090 // crossbar is above the PoU/PoC
1091 // 2) this is a read or a write
1092 // 3) this crossbar is above the point of coherency
1093 if (pkt->isClean()) {
1094 return !isDestination(pkt);
1095 }
1096 return pkt->isRead() || pkt->isWrite() || !pointOfCoherency;
1097}
1098
1099
1100void
1101CoherentXBar::regStats()
1102{
1103 // register the stats of the base class and our layers
1104 BaseXBar::regStats();
1105 for (auto l: reqLayers)
1106 l->regStats();
1107 for (auto l: respLayers)
1108 l->regStats();
1109 for (auto l: snoopLayers)
1110 l->regStats();
1111
1112 snoops
1113 .name(name() + ".snoops")
1114 .desc("Total snoops (count)")
1115 ;
1116
1117 snoopTraffic
1118 .name(name() + ".snoopTraffic")
1119 .desc("Total snoop traffic (bytes)")
1120 ;
1121
1122 snoopFanout
1123 .init(0, snoopPorts.size(), 1)
1124 .name(name() + ".snoop_fanout")
1125 .desc("Request fanout histogram")
1126 ;
1127}
1128
1129CoherentXBar *
1130CoherentXBarParams::create()
1131{
1132 return new CoherentXBar(this);
1133}
411 }
412 }
413 }
414
415
416 if (respond_directly) {
417 assert(rsp_pkt->needsResponse());
418 assert(success);
419
420 rsp_pkt->makeResponse();
421
422 if (snoopFilter && !system->bypassCaches()) {
423 // let the snoop filter inspect the response and update its state
424 snoopFilter->updateResponse(rsp_pkt, *slavePorts[rsp_port_id]);
425 }
426
427 // we send the response after the current packet, even if the
428 // response is not for this packet (e.g. cache clean operation
429 // where both the request and the write packet have to cross
430 // the destination xbar before the response is sent.)
431 Tick response_time = clockEdge() + pkt->headerDelay;
432 rsp_pkt->headerDelay = 0;
433
434 slavePorts[rsp_port_id]->schedTimingResp(rsp_pkt, response_time);
435 }
436
437 return success;
438}
439
440bool
441CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id)
442{
443 // determine the source port based on the id
444 MasterPort *src_port = masterPorts[master_port_id];
445
446 // determine the destination
447 const auto route_lookup = routeTo.find(pkt->req);
448 assert(route_lookup != routeTo.end());
449 const PortID slave_port_id = route_lookup->second;
450 assert(slave_port_id != InvalidPortID);
451 assert(slave_port_id < respLayers.size());
452
453 // test if the crossbar should be considered occupied for the
454 // current port
455 if (!respLayers[slave_port_id]->tryTiming(src_port)) {
456 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
457 src_port->name(), pkt->print());
458 return false;
459 }
460
461 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
462 src_port->name(), pkt->print());
463
464 // store size and command as they might be modified when
465 // forwarding the packet
466 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
467 unsigned int pkt_cmd = pkt->cmdToIndex();
468
469 // a response sees the response latency
470 Tick xbar_delay = responseLatency * clockPeriod();
471
472 // set the packet header and payload delay
473 calcPacketTiming(pkt, xbar_delay);
474
475 // determine how long to be crossbar layer is busy
476 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
477
478 if (snoopFilter && !system->bypassCaches()) {
479 // let the snoop filter inspect the response and update its state
480 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
481 }
482
483 // send the packet through the destination slave port and pay for
484 // any outstanding header delay
485 Tick latency = pkt->headerDelay;
486 pkt->headerDelay = 0;
487 slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency);
488
489 // remove the request from the routing table
490 routeTo.erase(route_lookup);
491
492 respLayers[slave_port_id]->succeededTiming(packetFinishTime);
493
494 // stats updates
495 pktCount[slave_port_id][master_port_id]++;
496 pktSize[slave_port_id][master_port_id] += pkt_size;
497 transDist[pkt_cmd]++;
498
499 return true;
500}
501
502void
503CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id)
504{
505 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
506 masterPorts[master_port_id]->name(), pkt->print());
507
508 // update stats here as we know the forwarding will succeed
509 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
510 transDist[pkt->cmdToIndex()]++;
511 snoops++;
512 snoopTraffic += pkt_size;
513
514 // we should only see express snoops from caches
515 assert(pkt->isExpressSnoop());
516
517 // set the packet header and payload delay, for now use forward latency
518 // @todo Assess the choice of latency further
519 calcPacketTiming(pkt, forwardLatency * clockPeriod());
520
521 // remember if a cache has already committed to responding so we
522 // can see if it changes during the snooping
523 const bool cache_responding = pkt->cacheResponding();
524
525 assert(pkt->snoopDelay == 0);
526
527 if (snoopFilter) {
528 // let the Snoop Filter work its magic and guide probing
529 auto sf_res = snoopFilter->lookupSnoop(pkt);
530 // the time required by a packet to be delivered through
531 // the xbar has to be charged also with to lookup latency
532 // of the snoop filter
533 pkt->headerDelay += sf_res.second * clockPeriod();
534 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
535 __func__, masterPorts[master_port_id]->name(), pkt->print(),
536 sf_res.first.size(), sf_res.second);
537
538 // forward to all snoopers
539 forwardTiming(pkt, InvalidPortID, sf_res.first);
540 } else {
541 forwardTiming(pkt, InvalidPortID);
542 }
543
544 // add the snoop delay to our header delay, and then reset it
545 pkt->headerDelay += pkt->snoopDelay;
546 pkt->snoopDelay = 0;
547
548 // if we can expect a response, remember how to route it
549 if (!cache_responding && pkt->cacheResponding()) {
550 assert(routeTo.find(pkt->req) == routeTo.end());
551 routeTo[pkt->req] = master_port_id;
552 }
553
554 // a snoop request came from a connected slave device (one of
555 // our master ports), and if it is not coming from the slave
556 // device responsible for the address range something is
557 // wrong, hence there is nothing further to do as the packet
558 // would be going back to where it came from
559 assert(findPort(pkt->getAddrRange()) == master_port_id);
560}
561
562bool
563CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id)
564{
565 // determine the source port based on the id
566 SlavePort* src_port = slavePorts[slave_port_id];
567
568 // get the destination
569 const auto route_lookup = routeTo.find(pkt->req);
570 assert(route_lookup != routeTo.end());
571 const PortID dest_port_id = route_lookup->second;
572 assert(dest_port_id != InvalidPortID);
573
574 // determine if the response is from a snoop request we
575 // created as the result of a normal request (in which case it
576 // should be in the outstandingSnoop), or if we merely forwarded
577 // someone else's snoop request
578 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
579 outstandingSnoop.end();
580
581 // test if the crossbar should be considered occupied for the
582 // current port, note that the check is bypassed if the response
583 // is being passed on as a normal response since this is occupying
584 // the response layer rather than the snoop response layer
585 if (forwardAsSnoop) {
586 assert(dest_port_id < snoopLayers.size());
587 if (!snoopLayers[dest_port_id]->tryTiming(src_port)) {
588 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
589 src_port->name(), pkt->print());
590 return false;
591 }
592 } else {
593 // get the master port that mirrors this slave port internally
594 MasterPort* snoop_port = snoopRespPorts[slave_port_id];
595 assert(dest_port_id < respLayers.size());
596 if (!respLayers[dest_port_id]->tryTiming(snoop_port)) {
597 DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
598 snoop_port->name(), pkt->print());
599 return false;
600 }
601 }
602
603 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
604 src_port->name(), pkt->print());
605
606 // store size and command as they might be modified when
607 // forwarding the packet
608 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
609 unsigned int pkt_cmd = pkt->cmdToIndex();
610
611 // responses are never express snoops
612 assert(!pkt->isExpressSnoop());
613
614 // a snoop response sees the snoop response latency, and if it is
615 // forwarded as a normal response, the response latency
616 Tick xbar_delay =
617 (forwardAsSnoop ? snoopResponseLatency : responseLatency) *
618 clockPeriod();
619
620 // set the packet header and payload delay
621 calcPacketTiming(pkt, xbar_delay);
622
623 // determine how long to be crossbar layer is busy
624 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
625
626 // forward it either as a snoop response or a normal response
627 if (forwardAsSnoop) {
628 // this is a snoop response to a snoop request we forwarded,
629 // e.g. coming from the L1 and going to the L2, and it should
630 // be forwarded as a snoop response
631
632 if (snoopFilter) {
633 // update the probe filter so that it can properly track the line
634 snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id],
635 *masterPorts[dest_port_id]);
636 }
637
638 bool success M5_VAR_USED =
639 masterPorts[dest_port_id]->sendTimingSnoopResp(pkt);
640 pktCount[slave_port_id][dest_port_id]++;
641 pktSize[slave_port_id][dest_port_id] += pkt_size;
642 assert(success);
643
644 snoopLayers[dest_port_id]->succeededTiming(packetFinishTime);
645 } else {
646 // we got a snoop response on one of our slave ports,
647 // i.e. from a coherent master connected to the crossbar, and
648 // since we created the snoop request as part of recvTiming,
649 // this should now be a normal response again
650 outstandingSnoop.erase(pkt->req);
651
652 // this is a snoop response from a coherent master, hence it
653 // should never go back to where the snoop response came from,
654 // but instead to where the original request came from
655 assert(slave_port_id != dest_port_id);
656
657 if (snoopFilter) {
658 // update the probe filter so that it can properly track the line
659 snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id],
660 *slavePorts[dest_port_id]);
661 }
662
663 DPRINTF(CoherentXBar, "%s: src %s packet %s FWD RESP\n", __func__,
664 src_port->name(), pkt->print());
665
666 // as a normal response, it should go back to a master through
667 // one of our slave ports, we also pay for any outstanding
668 // header latency
669 Tick latency = pkt->headerDelay;
670 pkt->headerDelay = 0;
671 slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency);
672
673 respLayers[dest_port_id]->succeededTiming(packetFinishTime);
674 }
675
676 // remove the request from the routing table
677 routeTo.erase(route_lookup);
678
679 // stats updates
680 transDist[pkt_cmd]++;
681 snoops++;
682 snoopTraffic += pkt_size;
683
684 return true;
685}
686
687
688void
689CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id,
690 const std::vector<QueuedSlavePort*>& dests)
691{
692 DPRINTF(CoherentXBar, "%s for %s\n", __func__, pkt->print());
693
694 // snoops should only happen if the system isn't bypassing caches
695 assert(!system->bypassCaches());
696
697 unsigned fanout = 0;
698
699 for (const auto& p: dests) {
700 // we could have gotten this request from a snooping master
701 // (corresponding to our own slave port that is also in
702 // snoopPorts) and should not send it back to where it came
703 // from
704 if (exclude_slave_port_id == InvalidPortID ||
705 p->getId() != exclude_slave_port_id) {
706 // cache is not allowed to refuse snoop
707 p->sendTimingSnoopReq(pkt);
708 fanout++;
709 }
710 }
711
712 // Stats for fanout of this forward operation
713 snoopFanout.sample(fanout);
714}
715
716void
717CoherentXBar::recvReqRetry(PortID master_port_id)
718{
719 // responses and snoop responses never block on forwarding them,
720 // so the retry will always be coming from a port to which we
721 // tried to forward a request
722 reqLayers[master_port_id]->recvRetry();
723}
724
725Tick
726CoherentXBar::recvAtomicBackdoor(PacketPtr pkt, PortID slave_port_id,
727 MemBackdoorPtr *backdoor)
728{
729 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
730 slavePorts[slave_port_id]->name(), pkt->print());
731
732 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
733 unsigned int pkt_cmd = pkt->cmdToIndex();
734
735 MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
736 Tick snoop_response_latency = 0;
737
738 // is this the destination point for this packet? (e.g. true if
739 // this xbar is the PoC for a cache maintenance operation to the
740 // PoC) otherwise the destination is any cache that can satisfy
741 // the request
742 const bool is_destination = isDestination(pkt);
743
744 const bool snoop_caches = !system->bypassCaches() &&
745 pkt->cmd != MemCmd::WriteClean;
746 if (snoop_caches) {
747 // forward to all snoopers but the source
748 std::pair<MemCmd, Tick> snoop_result;
749 if (snoopFilter) {
750 // check with the snoop filter where to forward this packet
751 auto sf_res =
752 snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]);
753 snoop_response_latency += sf_res.second * clockPeriod();
754 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
755 __func__, slavePorts[slave_port_id]->name(), pkt->print(),
756 sf_res.first.size(), sf_res.second);
757
758 // let the snoop filter know about the success of the send
759 // operation, and do it even before sending it onwards to
760 // avoid situations where atomic upward snoops sneak in
761 // between and change the filter state
762 snoopFilter->finishRequest(false, pkt->getAddr(), pkt->isSecure());
763
764 if (pkt->isEviction()) {
765 // for block-evicting packets, i.e. writebacks and
766 // clean evictions, there is no need to snoop up, as
767 // all we do is determine if the block is cached or
768 // not, instead just set it here based on the snoop
769 // filter result
770 if (!sf_res.first.empty())
771 pkt->setBlockCached();
772 } else {
773 snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID,
774 sf_res.first);
775 }
776 } else {
777 snoop_result = forwardAtomic(pkt, slave_port_id);
778 }
779 snoop_response_cmd = snoop_result.first;
780 snoop_response_latency += snoop_result.second;
781 }
782
783 // set up a sensible default value
784 Tick response_latency = 0;
785
786 const bool sink_packet = sinkPacket(pkt);
787
788 // even if we had a snoop response, we must continue and also
789 // perform the actual request at the destination
790 PortID master_port_id = findPort(pkt->getAddrRange());
791
792 if (sink_packet) {
793 DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__,
794 pkt->print());
795 } else {
796 if (forwardPacket(pkt)) {
797 // make sure that the write request (e.g., WriteClean)
798 // will stop at the memory below if this crossbar is its
799 // destination
800 if (pkt->isWrite() && is_destination) {
801 pkt->clearWriteThrough();
802 }
803
804 // forward the request to the appropriate destination
805 auto master = masterPorts[master_port_id];
806 response_latency = backdoor ?
807 master->sendAtomicBackdoor(pkt, *backdoor) :
808 master->sendAtomic(pkt);
809 } else {
810 // if it does not need a response we sink the packet above
811 assert(pkt->needsResponse());
812
813 pkt->makeResponse();
814 }
815 }
816
817 // stats updates for the request
818 pktCount[slave_port_id][master_port_id]++;
819 pktSize[slave_port_id][master_port_id] += pkt_size;
820 transDist[pkt_cmd]++;
821
822
823 // if lower levels have replied, tell the snoop filter
824 if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) {
825 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
826 }
827
828 // if we got a response from a snooper, restore it here
829 if (snoop_response_cmd != MemCmd::InvalidCmd) {
830 // no one else should have responded
831 assert(!pkt->isResponse());
832 pkt->cmd = snoop_response_cmd;
833 response_latency = snoop_response_latency;
834 }
835
836 // If this is the destination of the cache clean operation the
837 // crossbar is responsible for responding. This crossbar will
838 // respond when the cache clean is complete. An atomic cache clean
839 // is complete when the crossbars receives the cache clean
840 // request (CleanSharedReq, CleanInvalidReq), as either:
841 // * no cache above had a dirty copy of the block as indicated by
842 // the satisfied flag of the packet, or
843 // * the crossbar has already seen the corresponding write
844 // (WriteClean) which updates the block in the memory below.
845 if (pkt->isClean() && isDestination(pkt) && pkt->satisfied()) {
846 auto it = outstandingCMO.find(pkt->id);
847 assert(it != outstandingCMO.end());
848 // we are responding right away
849 outstandingCMO.erase(it);
850 } else if (pkt->cmd == MemCmd::WriteClean && isDestination(pkt)) {
851 // if this is the destination of the operation, the xbar
852 // sends the responce to the cache clean operation only
853 // after having encountered the cache clean request
854 auto M5_VAR_USED ret = outstandingCMO.emplace(pkt->id, nullptr);
855 // in atomic mode we know that the WriteClean packet should
856 // precede the clean request
857 assert(ret.second);
858 }
859
860 // add the response data
861 if (pkt->isResponse()) {
862 pkt_size = pkt->hasData() ? pkt->getSize() : 0;
863 pkt_cmd = pkt->cmdToIndex();
864
865 // stats updates
866 pktCount[slave_port_id][master_port_id]++;
867 pktSize[slave_port_id][master_port_id] += pkt_size;
868 transDist[pkt_cmd]++;
869 }
870
871 // @todo: Not setting header time
872 pkt->payloadDelay = response_latency;
873 return response_latency;
874}
875
876Tick
877CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id)
878{
879 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
880 masterPorts[master_port_id]->name(), pkt->print());
881
882 // add the request snoop data
883 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
884 snoops++;
885 snoopTraffic += pkt_size;
886
887 // forward to all snoopers
888 std::pair<MemCmd, Tick> snoop_result;
889 Tick snoop_response_latency = 0;
890 if (snoopFilter) {
891 auto sf_res = snoopFilter->lookupSnoop(pkt);
892 snoop_response_latency += sf_res.second * clockPeriod();
893 DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
894 __func__, masterPorts[master_port_id]->name(), pkt->print(),
895 sf_res.first.size(), sf_res.second);
896 snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id,
897 sf_res.first);
898 } else {
899 snoop_result = forwardAtomic(pkt, InvalidPortID);
900 }
901 MemCmd snoop_response_cmd = snoop_result.first;
902 snoop_response_latency += snoop_result.second;
903
904 if (snoop_response_cmd != MemCmd::InvalidCmd)
905 pkt->cmd = snoop_response_cmd;
906
907 // add the response snoop data
908 if (pkt->isResponse()) {
909 snoops++;
910 }
911
912 // @todo: Not setting header time
913 pkt->payloadDelay = snoop_response_latency;
914 return snoop_response_latency;
915}
916
917std::pair<MemCmd, Tick>
918CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id,
919 PortID source_master_port_id,
920 const std::vector<QueuedSlavePort*>& dests)
921{
922 // the packet may be changed on snoops, record the original
923 // command to enable us to restore it between snoops so that
924 // additional snoops can take place properly
925 MemCmd orig_cmd = pkt->cmd;
926 MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
927 Tick snoop_response_latency = 0;
928
929 // snoops should only happen if the system isn't bypassing caches
930 assert(!system->bypassCaches());
931
932 unsigned fanout = 0;
933
934 for (const auto& p: dests) {
935 // we could have gotten this request from a snooping master
936 // (corresponding to our own slave port that is also in
937 // snoopPorts) and should not send it back to where it came
938 // from
939 if (exclude_slave_port_id != InvalidPortID &&
940 p->getId() == exclude_slave_port_id)
941 continue;
942
943 Tick latency = p->sendAtomicSnoop(pkt);
944 fanout++;
945
946 // in contrast to a functional access, we have to keep on
947 // going as all snoopers must be updated even if we get a
948 // response
949 if (!pkt->isResponse())
950 continue;
951
952 // response from snoop agent
953 assert(pkt->cmd != orig_cmd);
954 assert(pkt->cacheResponding());
955 // should only happen once
956 assert(snoop_response_cmd == MemCmd::InvalidCmd);
957 // save response state
958 snoop_response_cmd = pkt->cmd;
959 snoop_response_latency = latency;
960
961 if (snoopFilter) {
962 // Handle responses by the snoopers and differentiate between
963 // responses to requests from above and snoops from below
964 if (source_master_port_id != InvalidPortID) {
965 // Getting a response for a snoop from below
966 assert(exclude_slave_port_id == InvalidPortID);
967 snoopFilter->updateSnoopForward(pkt, *p,
968 *masterPorts[source_master_port_id]);
969 } else {
970 // Getting a response for a request from above
971 assert(source_master_port_id == InvalidPortID);
972 snoopFilter->updateSnoopResponse(pkt, *p,
973 *slavePorts[exclude_slave_port_id]);
974 }
975 }
976 // restore original packet state for remaining snoopers
977 pkt->cmd = orig_cmd;
978 }
979
980 // Stats for fanout
981 snoopFanout.sample(fanout);
982
983 // the packet is restored as part of the loop and any potential
984 // snoop response is part of the returned pair
985 return std::make_pair(snoop_response_cmd, snoop_response_latency);
986}
987
988void
989CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id)
990{
991 if (!pkt->isPrint()) {
992 // don't do DPRINTFs on PrintReq as it clutters up the output
993 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
994 slavePorts[slave_port_id]->name(), pkt->print());
995 }
996
997 if (!system->bypassCaches()) {
998 // forward to all snoopers but the source
999 forwardFunctional(pkt, slave_port_id);
1000 }
1001
1002 // there is no need to continue if the snooping has found what we
1003 // were looking for and the packet is already a response
1004 if (!pkt->isResponse()) {
1005 // since our slave ports are queued ports we need to check them as well
1006 for (const auto& p : slavePorts) {
1007 // if we find a response that has the data, then the
1008 // downstream caches/memories may be out of date, so simply stop
1009 // here
1010 if (p->trySatisfyFunctional(pkt)) {
1011 if (pkt->needsResponse())
1012 pkt->makeResponse();
1013 return;
1014 }
1015 }
1016
1017 PortID dest_id = findPort(pkt->getAddrRange());
1018
1019 masterPorts[dest_id]->sendFunctional(pkt);
1020 }
1021}
1022
1023void
1024CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id)
1025{
1026 if (!pkt->isPrint()) {
1027 // don't do DPRINTFs on PrintReq as it clutters up the output
1028 DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
1029 masterPorts[master_port_id]->name(), pkt->print());
1030 }
1031
1032 for (const auto& p : slavePorts) {
1033 if (p->trySatisfyFunctional(pkt)) {
1034 if (pkt->needsResponse())
1035 pkt->makeResponse();
1036 return;
1037 }
1038 }
1039
1040 // forward to all snoopers
1041 forwardFunctional(pkt, InvalidPortID);
1042}
1043
1044void
1045CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id)
1046{
1047 // snoops should only happen if the system isn't bypassing caches
1048 assert(!system->bypassCaches());
1049
1050 for (const auto& p: snoopPorts) {
1051 // we could have gotten this request from a snooping master
1052 // (corresponding to our own slave port that is also in
1053 // snoopPorts) and should not send it back to where it came
1054 // from
1055 if (exclude_slave_port_id == InvalidPortID ||
1056 p->getId() != exclude_slave_port_id)
1057 p->sendFunctionalSnoop(pkt);
1058
1059 // if we get a response we are done
1060 if (pkt->isResponse()) {
1061 break;
1062 }
1063 }
1064}
1065
1066bool
1067CoherentXBar::sinkPacket(const PacketPtr pkt) const
1068{
1069 // we can sink the packet if:
1070 // 1) the crossbar is the point of coherency, and a cache is
1071 // responding after being snooped
1072 // 2) the crossbar is the point of coherency, and the packet is a
1073 // coherency packet (not a read or a write) that does not
1074 // require a response
1075 // 3) this is a clean evict or clean writeback, but the packet is
1076 // found in a cache above this crossbar
1077 // 4) a cache is responding after being snooped, and the packet
1078 // either does not need the block to be writable, or the cache
1079 // that has promised to respond (setting the cache responding
1080 // flag) is providing writable and thus had a Modified block,
1081 // and no further action is needed
1082 return (pointOfCoherency && pkt->cacheResponding()) ||
1083 (pointOfCoherency && !(pkt->isRead() || pkt->isWrite()) &&
1084 !pkt->needsResponse()) ||
1085 (pkt->isCleanEviction() && pkt->isBlockCached()) ||
1086 (pkt->cacheResponding() &&
1087 (!pkt->needsWritable() || pkt->responderHadWritable()));
1088}
1089
1090bool
1091CoherentXBar::forwardPacket(const PacketPtr pkt)
1092{
1093 // we are forwarding the packet if:
1094 // 1) this is a cache clean request to the PoU/PoC and this
1095 // crossbar is above the PoU/PoC
1096 // 2) this is a read or a write
1097 // 3) this crossbar is above the point of coherency
1098 if (pkt->isClean()) {
1099 return !isDestination(pkt);
1100 }
1101 return pkt->isRead() || pkt->isWrite() || !pointOfCoherency;
1102}
1103
1104
1105void
1106CoherentXBar::regStats()
1107{
1108 // register the stats of the base class and our layers
1109 BaseXBar::regStats();
1110 for (auto l: reqLayers)
1111 l->regStats();
1112 for (auto l: respLayers)
1113 l->regStats();
1114 for (auto l: snoopLayers)
1115 l->regStats();
1116
1117 snoops
1118 .name(name() + ".snoops")
1119 .desc("Total snoops (count)")
1120 ;
1121
1122 snoopTraffic
1123 .name(name() + ".snoopTraffic")
1124 .desc("Total snoop traffic (bytes)")
1125 ;
1126
1127 snoopFanout
1128 .init(0, snoopPorts.size(), 1)
1129 .name(name() + ".snoop_fanout")
1130 .desc("Request fanout histogram")
1131 ;
1132}
1133
1134CoherentXBar *
1135CoherentXBarParams::create()
1136{
1137 return new CoherentXBar(this);
1138}