coherent_xbar.cc (11564:dac4b77b5a49) coherent_xbar.cc (11605:65ae342b627b)
1/*
1/*
2 * Copyright (c) 2011-2015 ARM Limited
2 * Copyright (c) 2011-2016 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Ali Saidi
41 * Andreas Hansson
42 * William Wang
43 */
44
45/**
46 * @file
47 * Definition of a crossbar object.
48 */
49
50#include "base/misc.hh"
51#include "base/trace.hh"
52#include "debug/AddrRanges.hh"
53#include "debug/CoherentXBar.hh"
54#include "mem/coherent_xbar.hh"
55#include "sim/system.hh"
56
57CoherentXBar::CoherentXBar(const CoherentXBarParams *p)
58 : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter),
59 snoopResponseLatency(p->snoop_response_latency),
60 pointOfCoherency(p->point_of_coherency)
61{
62 // create the ports based on the size of the master and slave
63 // vector ports, and the presence of the default port, the ports
64 // are enumerated starting from zero
65 for (int i = 0; i < p->port_master_connection_count; ++i) {
66 std::string portName = csprintf("%s.master[%d]", name(), i);
67 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i);
68 masterPorts.push_back(bp);
69 reqLayers.push_back(new ReqLayer(*bp, *this,
70 csprintf(".reqLayer%d", i)));
71 snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
72 csprintf(".snoopLayer%d", i)));
73 }
74
75 // see if we have a default slave device connected and if so add
76 // our corresponding master port
77 if (p->port_default_connection_count) {
78 defaultPortID = masterPorts.size();
79 std::string portName = name() + ".default";
80 MasterPort* bp = new CoherentXBarMasterPort(portName, *this,
81 defaultPortID);
82 masterPorts.push_back(bp);
83 reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d",
84 defaultPortID)));
85 snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
86 csprintf(".snoopLayer%d",
87 defaultPortID)));
88 }
89
90 // create the slave ports, once again starting at zero
91 for (int i = 0; i < p->port_slave_connection_count; ++i) {
92 std::string portName = csprintf("%s.slave[%d]", name(), i);
93 QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i);
94 slavePorts.push_back(bp);
95 respLayers.push_back(new RespLayer(*bp, *this,
96 csprintf(".respLayer%d", i)));
97 snoopRespPorts.push_back(new SnoopRespPort(*bp, *this));
98 }
99
100 clearPortCache();
101}
102
103CoherentXBar::~CoherentXBar()
104{
105 for (auto l: reqLayers)
106 delete l;
107 for (auto l: respLayers)
108 delete l;
109 for (auto l: snoopLayers)
110 delete l;
111 for (auto p: snoopRespPorts)
112 delete p;
113}
114
115void
116CoherentXBar::init()
117{
118 BaseXBar::init();
119
120 // iterate over our slave ports and determine which of our
121 // neighbouring master ports are snooping and add them as snoopers
122 for (const auto& p: slavePorts) {
123 // check if the connected master port is snooping
124 if (p->isSnooping()) {
125 DPRINTF(AddrRanges, "Adding snooping master %s\n",
126 p->getMasterPort().name());
127 snoopPorts.push_back(p);
128 }
129 }
130
131 if (snoopPorts.empty())
132 warn("CoherentXBar %s has no snooping ports attached!\n", name());
133
134 // inform the snoop filter about the slave ports so it can create
135 // its own internal representation
136 if (snoopFilter)
137 snoopFilter->setSlavePorts(slavePorts);
138}
139
140bool
141CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id)
142{
143 // determine the source port based on the id
144 SlavePort *src_port = slavePorts[slave_port_id];
145
146 // remember if the packet is an express snoop
147 bool is_express_snoop = pkt->isExpressSnoop();
148 bool cache_responding = pkt->cacheResponding();
149 // for normal requests, going downstream, the express snoop flag
150 // and the cache responding flag should always be the same
151 assert(is_express_snoop == cache_responding);
152
153 // determine the destination based on the address
154 PortID master_port_id = findPort(pkt->getAddr());
155
156 // test if the crossbar should be considered occupied for the current
157 // port, and exclude express snoops from the check
158 if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) {
159 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x BUSY\n",
160 src_port->name(), pkt->cmdString(), pkt->getAddr());
161 return false;
162 }
163
164 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s expr %d 0x%x\n",
165 src_port->name(), pkt->cmdString(), is_express_snoop,
166 pkt->getAddr());
167
168 // store size and command as they might be modified when
169 // forwarding the packet
170 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
171 unsigned int pkt_cmd = pkt->cmdToIndex();
172
173 // store the old header delay so we can restore it if needed
174 Tick old_header_delay = pkt->headerDelay;
175
176 // a request sees the frontend and forward latency
177 Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod();
178
179 // set the packet header and payload delay
180 calcPacketTiming(pkt, xbar_delay);
181
182 // determine how long to be crossbar layer is busy
183 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
184
185 if (!system->bypassCaches()) {
186 assert(pkt->snoopDelay == 0);
187
188 // the packet is a memory-mapped request and should be
189 // broadcasted to our snoopers but the source
190 if (snoopFilter) {
191 // check with the snoop filter where to forward this packet
192 auto sf_res = snoopFilter->lookupRequest(pkt, *src_port);
193 // the time required by a packet to be delivered through
194 // the xbar has to be charged also with to lookup latency
195 // of the snoop filter
196 pkt->headerDelay += sf_res.second * clockPeriod();
197 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x"\
198 " SF size: %i lat: %i\n", src_port->name(),
199 pkt->cmdString(), pkt->getAddr(), sf_res.first.size(),
200 sf_res.second);
201
202 if (pkt->isEviction()) {
203 // for block-evicting packets, i.e. writebacks and
204 // clean evictions, there is no need to snoop up, as
205 // all we do is determine if the block is cached or
206 // not, instead just set it here based on the snoop
207 // filter result
208 if (!sf_res.first.empty())
209 pkt->setBlockCached();
210 } else {
211 forwardTiming(pkt, slave_port_id, sf_res.first);
212 }
213 } else {
214 forwardTiming(pkt, slave_port_id);
215 }
216
217 // add the snoop delay to our header delay, and then reset it
218 pkt->headerDelay += pkt->snoopDelay;
219 pkt->snoopDelay = 0;
220 }
221
222 // set up a sensible starting point
223 bool success = true;
224
225 // remember if the packet will generate a snoop response by
226 // checking if a cache set the cacheResponding flag during the
227 // snooping above
228 const bool expect_snoop_resp = !cache_responding && pkt->cacheResponding();
229 bool expect_response = pkt->needsResponse() && !pkt->cacheResponding();
230
231 const bool sink_packet = sinkPacket(pkt);
232
233 // in certain cases the crossbar is responsible for responding
234 bool respond_directly = false;
235 // store the original address as an address mapper could possibly
236 // modify the address upon a sendTimingRequest
237 const Addr addr(pkt->getAddr());
238 if (sink_packet) {
239 DPRINTF(CoherentXBar, "Not forwarding %s to %#llx\n",
240 pkt->cmdString(), pkt->getAddr());
241 } else {
242 // determine if we are forwarding the packet, or responding to
243 // it
244 if (!pointOfCoherency || pkt->isRead() || pkt->isWrite()) {
245 // if we are passing on, rather than sinking, a packet to
246 // which an upstream cache has committed to responding,
247 // the line was needs writable, and the responding only
248 // had an Owned copy, so we need to immidiately let the
249 // downstream caches know, bypass any flow control
250 if (pkt->cacheResponding()) {
251 pkt->setExpressSnoop();
252 }
253
254 // since it is a normal request, attempt to send the packet
255 success = masterPorts[master_port_id]->sendTimingReq(pkt);
256 } else {
257 // no need to forward, turn this packet around and respond
258 // directly
259 assert(pkt->needsResponse());
260
261 respond_directly = true;
262 assert(!expect_snoop_resp);
263 expect_response = false;
264 }
265 }
266
267 if (snoopFilter && !system->bypassCaches()) {
268 // Let the snoop filter know about the success of the send operation
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Ali Saidi
41 * Andreas Hansson
42 * William Wang
43 */
44
45/**
46 * @file
47 * Definition of a crossbar object.
48 */
49
50#include "base/misc.hh"
51#include "base/trace.hh"
52#include "debug/AddrRanges.hh"
53#include "debug/CoherentXBar.hh"
54#include "mem/coherent_xbar.hh"
55#include "sim/system.hh"
56
57CoherentXBar::CoherentXBar(const CoherentXBarParams *p)
58 : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter),
59 snoopResponseLatency(p->snoop_response_latency),
60 pointOfCoherency(p->point_of_coherency)
61{
62 // create the ports based on the size of the master and slave
63 // vector ports, and the presence of the default port, the ports
64 // are enumerated starting from zero
65 for (int i = 0; i < p->port_master_connection_count; ++i) {
66 std::string portName = csprintf("%s.master[%d]", name(), i);
67 MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i);
68 masterPorts.push_back(bp);
69 reqLayers.push_back(new ReqLayer(*bp, *this,
70 csprintf(".reqLayer%d", i)));
71 snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
72 csprintf(".snoopLayer%d", i)));
73 }
74
75 // see if we have a default slave device connected and if so add
76 // our corresponding master port
77 if (p->port_default_connection_count) {
78 defaultPortID = masterPorts.size();
79 std::string portName = name() + ".default";
80 MasterPort* bp = new CoherentXBarMasterPort(portName, *this,
81 defaultPortID);
82 masterPorts.push_back(bp);
83 reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d",
84 defaultPortID)));
85 snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
86 csprintf(".snoopLayer%d",
87 defaultPortID)));
88 }
89
90 // create the slave ports, once again starting at zero
91 for (int i = 0; i < p->port_slave_connection_count; ++i) {
92 std::string portName = csprintf("%s.slave[%d]", name(), i);
93 QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i);
94 slavePorts.push_back(bp);
95 respLayers.push_back(new RespLayer(*bp, *this,
96 csprintf(".respLayer%d", i)));
97 snoopRespPorts.push_back(new SnoopRespPort(*bp, *this));
98 }
99
100 clearPortCache();
101}
102
103CoherentXBar::~CoherentXBar()
104{
105 for (auto l: reqLayers)
106 delete l;
107 for (auto l: respLayers)
108 delete l;
109 for (auto l: snoopLayers)
110 delete l;
111 for (auto p: snoopRespPorts)
112 delete p;
113}
114
115void
116CoherentXBar::init()
117{
118 BaseXBar::init();
119
120 // iterate over our slave ports and determine which of our
121 // neighbouring master ports are snooping and add them as snoopers
122 for (const auto& p: slavePorts) {
123 // check if the connected master port is snooping
124 if (p->isSnooping()) {
125 DPRINTF(AddrRanges, "Adding snooping master %s\n",
126 p->getMasterPort().name());
127 snoopPorts.push_back(p);
128 }
129 }
130
131 if (snoopPorts.empty())
132 warn("CoherentXBar %s has no snooping ports attached!\n", name());
133
134 // inform the snoop filter about the slave ports so it can create
135 // its own internal representation
136 if (snoopFilter)
137 snoopFilter->setSlavePorts(slavePorts);
138}
139
140bool
141CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id)
142{
143 // determine the source port based on the id
144 SlavePort *src_port = slavePorts[slave_port_id];
145
146 // remember if the packet is an express snoop
147 bool is_express_snoop = pkt->isExpressSnoop();
148 bool cache_responding = pkt->cacheResponding();
149 // for normal requests, going downstream, the express snoop flag
150 // and the cache responding flag should always be the same
151 assert(is_express_snoop == cache_responding);
152
153 // determine the destination based on the address
154 PortID master_port_id = findPort(pkt->getAddr());
155
156 // test if the crossbar should be considered occupied for the current
157 // port, and exclude express snoops from the check
158 if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) {
159 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x BUSY\n",
160 src_port->name(), pkt->cmdString(), pkt->getAddr());
161 return false;
162 }
163
164 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s expr %d 0x%x\n",
165 src_port->name(), pkt->cmdString(), is_express_snoop,
166 pkt->getAddr());
167
168 // store size and command as they might be modified when
169 // forwarding the packet
170 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
171 unsigned int pkt_cmd = pkt->cmdToIndex();
172
173 // store the old header delay so we can restore it if needed
174 Tick old_header_delay = pkt->headerDelay;
175
176 // a request sees the frontend and forward latency
177 Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod();
178
179 // set the packet header and payload delay
180 calcPacketTiming(pkt, xbar_delay);
181
182 // determine how long to be crossbar layer is busy
183 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
184
185 if (!system->bypassCaches()) {
186 assert(pkt->snoopDelay == 0);
187
188 // the packet is a memory-mapped request and should be
189 // broadcasted to our snoopers but the source
190 if (snoopFilter) {
191 // check with the snoop filter where to forward this packet
192 auto sf_res = snoopFilter->lookupRequest(pkt, *src_port);
193 // the time required by a packet to be delivered through
194 // the xbar has to be charged also with to lookup latency
195 // of the snoop filter
196 pkt->headerDelay += sf_res.second * clockPeriod();
197 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x"\
198 " SF size: %i lat: %i\n", src_port->name(),
199 pkt->cmdString(), pkt->getAddr(), sf_res.first.size(),
200 sf_res.second);
201
202 if (pkt->isEviction()) {
203 // for block-evicting packets, i.e. writebacks and
204 // clean evictions, there is no need to snoop up, as
205 // all we do is determine if the block is cached or
206 // not, instead just set it here based on the snoop
207 // filter result
208 if (!sf_res.first.empty())
209 pkt->setBlockCached();
210 } else {
211 forwardTiming(pkt, slave_port_id, sf_res.first);
212 }
213 } else {
214 forwardTiming(pkt, slave_port_id);
215 }
216
217 // add the snoop delay to our header delay, and then reset it
218 pkt->headerDelay += pkt->snoopDelay;
219 pkt->snoopDelay = 0;
220 }
221
222 // set up a sensible starting point
223 bool success = true;
224
225 // remember if the packet will generate a snoop response by
226 // checking if a cache set the cacheResponding flag during the
227 // snooping above
228 const bool expect_snoop_resp = !cache_responding && pkt->cacheResponding();
229 bool expect_response = pkt->needsResponse() && !pkt->cacheResponding();
230
231 const bool sink_packet = sinkPacket(pkt);
232
233 // in certain cases the crossbar is responsible for responding
234 bool respond_directly = false;
235 // store the original address as an address mapper could possibly
236 // modify the address upon a sendTimingRequest
237 const Addr addr(pkt->getAddr());
238 if (sink_packet) {
239 DPRINTF(CoherentXBar, "Not forwarding %s to %#llx\n",
240 pkt->cmdString(), pkt->getAddr());
241 } else {
242 // determine if we are forwarding the packet, or responding to
243 // it
244 if (!pointOfCoherency || pkt->isRead() || pkt->isWrite()) {
245 // if we are passing on, rather than sinking, a packet to
246 // which an upstream cache has committed to responding,
247 // the line was needs writable, and the responding only
248 // had an Owned copy, so we need to immidiately let the
249 // downstream caches know, bypass any flow control
250 if (pkt->cacheResponding()) {
251 pkt->setExpressSnoop();
252 }
253
254 // since it is a normal request, attempt to send the packet
255 success = masterPorts[master_port_id]->sendTimingReq(pkt);
256 } else {
257 // no need to forward, turn this packet around and respond
258 // directly
259 assert(pkt->needsResponse());
260
261 respond_directly = true;
262 assert(!expect_snoop_resp);
263 expect_response = false;
264 }
265 }
266
267 if (snoopFilter && !system->bypassCaches()) {
268 // Let the snoop filter know about the success of the send operation
269 snoopFilter->finishRequest(!success, addr);
269 snoopFilter->finishRequest(!success, addr, pkt->isSecure());
270 }
271
272 // check if we were successful in sending the packet onwards
273 if (!success) {
274 // express snoops should never be forced to retry
275 assert(!is_express_snoop);
276
277 // restore the header delay
278 pkt->headerDelay = old_header_delay;
279
280 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x RETRY\n",
281 src_port->name(), pkt->cmdString(), pkt->getAddr());
282
283 // update the layer state and schedule an idle event
284 reqLayers[master_port_id]->failedTiming(src_port,
285 clockEdge(Cycles(1)));
286 } else {
287 // express snoops currently bypass the crossbar state entirely
288 if (!is_express_snoop) {
289 // if this particular request will generate a snoop
290 // response
291 if (expect_snoop_resp) {
292 // we should never have an exsiting request outstanding
293 assert(outstandingSnoop.find(pkt->req) ==
294 outstandingSnoop.end());
295 outstandingSnoop.insert(pkt->req);
296
297 // basic sanity check on the outstanding snoops
298 panic_if(outstandingSnoop.size() > 512,
299 "Outstanding snoop requests exceeded 512\n");
300 }
301
302 // remember where to route the normal response to
303 if (expect_response || expect_snoop_resp) {
304 assert(routeTo.find(pkt->req) == routeTo.end());
305 routeTo[pkt->req] = slave_port_id;
306
307 panic_if(routeTo.size() > 512,
308 "Routing table exceeds 512 packets\n");
309 }
310
311 // update the layer state and schedule an idle event
312 reqLayers[master_port_id]->succeededTiming(packetFinishTime);
313 }
314
315 // stats updates only consider packets that were successfully sent
316 pktCount[slave_port_id][master_port_id]++;
317 pktSize[slave_port_id][master_port_id] += pkt_size;
318 transDist[pkt_cmd]++;
319
320 if (is_express_snoop) {
321 snoops++;
322 snoopTraffic += pkt_size;
323 }
324 }
325
326 if (sink_packet)
327 // queue the packet for deletion
328 pendingDelete.reset(pkt);
329
330 if (respond_directly) {
331 assert(pkt->needsResponse());
332 assert(success);
333
334 pkt->makeResponse();
335
336 if (snoopFilter && !system->bypassCaches()) {
337 // let the snoop filter inspect the response and update its state
338 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
339 }
340
341 Tick response_time = clockEdge() + pkt->headerDelay;
342 pkt->headerDelay = 0;
343
344 slavePorts[slave_port_id]->schedTimingResp(pkt, response_time);
345 }
346
347 return success;
348}
349
350bool
351CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id)
352{
353 // determine the source port based on the id
354 MasterPort *src_port = masterPorts[master_port_id];
355
356 // determine the destination
357 const auto route_lookup = routeTo.find(pkt->req);
358 assert(route_lookup != routeTo.end());
359 const PortID slave_port_id = route_lookup->second;
360 assert(slave_port_id != InvalidPortID);
361 assert(slave_port_id < respLayers.size());
362
363 // test if the crossbar should be considered occupied for the
364 // current port
365 if (!respLayers[slave_port_id]->tryTiming(src_port)) {
366 DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x BUSY\n",
367 src_port->name(), pkt->cmdString(), pkt->getAddr());
368 return false;
369 }
370
371 DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x\n",
372 src_port->name(), pkt->cmdString(), pkt->getAddr());
373
374 // store size and command as they might be modified when
375 // forwarding the packet
376 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
377 unsigned int pkt_cmd = pkt->cmdToIndex();
378
379 // a response sees the response latency
380 Tick xbar_delay = responseLatency * clockPeriod();
381
382 // set the packet header and payload delay
383 calcPacketTiming(pkt, xbar_delay);
384
385 // determine how long to be crossbar layer is busy
386 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
387
388 if (snoopFilter && !system->bypassCaches()) {
389 // let the snoop filter inspect the response and update its state
390 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
391 }
392
393 // send the packet through the destination slave port and pay for
394 // any outstanding header delay
395 Tick latency = pkt->headerDelay;
396 pkt->headerDelay = 0;
397 slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency);
398
399 // remove the request from the routing table
400 routeTo.erase(route_lookup);
401
402 respLayers[slave_port_id]->succeededTiming(packetFinishTime);
403
404 // stats updates
405 pktCount[slave_port_id][master_port_id]++;
406 pktSize[slave_port_id][master_port_id] += pkt_size;
407 transDist[pkt_cmd]++;
408
409 return true;
410}
411
412void
413CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id)
414{
415 DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x\n",
416 masterPorts[master_port_id]->name(), pkt->cmdString(),
417 pkt->getAddr());
418
419 // update stats here as we know the forwarding will succeed
420 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
421 transDist[pkt->cmdToIndex()]++;
422 snoops++;
423 snoopTraffic += pkt_size;
424
425 // we should only see express snoops from caches
426 assert(pkt->isExpressSnoop());
427
428 // set the packet header and payload delay, for now use forward latency
429 // @todo Assess the choice of latency further
430 calcPacketTiming(pkt, forwardLatency * clockPeriod());
431
432 // remember if a cache has already committed to responding so we
433 // can see if it changes during the snooping
434 const bool cache_responding = pkt->cacheResponding();
435
436 assert(pkt->snoopDelay == 0);
437
438 if (snoopFilter) {
439 // let the Snoop Filter work its magic and guide probing
440 auto sf_res = snoopFilter->lookupSnoop(pkt);
441 // the time required by a packet to be delivered through
442 // the xbar has to be charged also with to lookup latency
443 // of the snoop filter
444 pkt->headerDelay += sf_res.second * clockPeriod();
445 DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x"\
446 " SF size: %i lat: %i\n", masterPorts[master_port_id]->name(),
447 pkt->cmdString(), pkt->getAddr(), sf_res.first.size(),
448 sf_res.second);
449
450 // forward to all snoopers
451 forwardTiming(pkt, InvalidPortID, sf_res.first);
452 } else {
453 forwardTiming(pkt, InvalidPortID);
454 }
455
456 // add the snoop delay to our header delay, and then reset it
457 pkt->headerDelay += pkt->snoopDelay;
458 pkt->snoopDelay = 0;
459
460 // if we can expect a response, remember how to route it
461 if (!cache_responding && pkt->cacheResponding()) {
462 assert(routeTo.find(pkt->req) == routeTo.end());
463 routeTo[pkt->req] = master_port_id;
464 }
465
466 // a snoop request came from a connected slave device (one of
467 // our master ports), and if it is not coming from the slave
468 // device responsible for the address range something is
469 // wrong, hence there is nothing further to do as the packet
470 // would be going back to where it came from
471 assert(master_port_id == findPort(pkt->getAddr()));
472}
473
474bool
475CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id)
476{
477 // determine the source port based on the id
478 SlavePort* src_port = slavePorts[slave_port_id];
479
480 // get the destination
481 const auto route_lookup = routeTo.find(pkt->req);
482 assert(route_lookup != routeTo.end());
483 const PortID dest_port_id = route_lookup->second;
484 assert(dest_port_id != InvalidPortID);
485
486 // determine if the response is from a snoop request we
487 // created as the result of a normal request (in which case it
488 // should be in the outstandingSnoop), or if we merely forwarded
489 // someone else's snoop request
490 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
491 outstandingSnoop.end();
492
493 // test if the crossbar should be considered occupied for the
494 // current port, note that the check is bypassed if the response
495 // is being passed on as a normal response since this is occupying
496 // the response layer rather than the snoop response layer
497 if (forwardAsSnoop) {
498 assert(dest_port_id < snoopLayers.size());
499 if (!snoopLayers[dest_port_id]->tryTiming(src_port)) {
500 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
501 src_port->name(), pkt->cmdString(), pkt->getAddr());
502 return false;
503 }
504 } else {
505 // get the master port that mirrors this slave port internally
506 MasterPort* snoop_port = snoopRespPorts[slave_port_id];
507 assert(dest_port_id < respLayers.size());
508 if (!respLayers[dest_port_id]->tryTiming(snoop_port)) {
509 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
510 snoop_port->name(), pkt->cmdString(), pkt->getAddr());
511 return false;
512 }
513 }
514
515 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x\n",
516 src_port->name(), pkt->cmdString(), pkt->getAddr());
517
518 // store size and command as they might be modified when
519 // forwarding the packet
520 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
521 unsigned int pkt_cmd = pkt->cmdToIndex();
522
523 // responses are never express snoops
524 assert(!pkt->isExpressSnoop());
525
526 // a snoop response sees the snoop response latency, and if it is
527 // forwarded as a normal response, the response latency
528 Tick xbar_delay =
529 (forwardAsSnoop ? snoopResponseLatency : responseLatency) *
530 clockPeriod();
531
532 // set the packet header and payload delay
533 calcPacketTiming(pkt, xbar_delay);
534
535 // determine how long to be crossbar layer is busy
536 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
537
538 // forward it either as a snoop response or a normal response
539 if (forwardAsSnoop) {
540 // this is a snoop response to a snoop request we forwarded,
541 // e.g. coming from the L1 and going to the L2, and it should
542 // be forwarded as a snoop response
543
544 if (snoopFilter) {
545 // update the probe filter so that it can properly track the line
546 snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id],
547 *masterPorts[dest_port_id]);
548 }
549
550 bool success M5_VAR_USED =
551 masterPorts[dest_port_id]->sendTimingSnoopResp(pkt);
552 pktCount[slave_port_id][dest_port_id]++;
553 pktSize[slave_port_id][dest_port_id] += pkt_size;
554 assert(success);
555
556 snoopLayers[dest_port_id]->succeededTiming(packetFinishTime);
557 } else {
558 // we got a snoop response on one of our slave ports,
559 // i.e. from a coherent master connected to the crossbar, and
560 // since we created the snoop request as part of recvTiming,
561 // this should now be a normal response again
562 outstandingSnoop.erase(pkt->req);
563
564 // this is a snoop response from a coherent master, hence it
565 // should never go back to where the snoop response came from,
566 // but instead to where the original request came from
567 assert(slave_port_id != dest_port_id);
568
569 if (snoopFilter) {
570 // update the probe filter so that it can properly track the line
571 snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id],
572 *slavePorts[dest_port_id]);
573 }
574
575 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x"\
576 " FWD RESP\n", src_port->name(), pkt->cmdString(),
577 pkt->getAddr());
578
579 // as a normal response, it should go back to a master through
580 // one of our slave ports, we also pay for any outstanding
581 // header latency
582 Tick latency = pkt->headerDelay;
583 pkt->headerDelay = 0;
584 slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency);
585
586 respLayers[dest_port_id]->succeededTiming(packetFinishTime);
587 }
588
589 // remove the request from the routing table
590 routeTo.erase(route_lookup);
591
592 // stats updates
593 transDist[pkt_cmd]++;
594 snoops++;
595 snoopTraffic += pkt_size;
596
597 return true;
598}
599
600
601void
602CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id,
603 const std::vector<QueuedSlavePort*>& dests)
604{
605 DPRINTF(CoherentXBar, "%s for %s address %x size %d\n", __func__,
606 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
607
608 // snoops should only happen if the system isn't bypassing caches
609 assert(!system->bypassCaches());
610
611 unsigned fanout = 0;
612
613 for (const auto& p: dests) {
614 // we could have gotten this request from a snooping master
615 // (corresponding to our own slave port that is also in
616 // snoopPorts) and should not send it back to where it came
617 // from
618 if (exclude_slave_port_id == InvalidPortID ||
619 p->getId() != exclude_slave_port_id) {
620 // cache is not allowed to refuse snoop
621 p->sendTimingSnoopReq(pkt);
622 fanout++;
623 }
624 }
625
626 // Stats for fanout of this forward operation
627 snoopFanout.sample(fanout);
628}
629
630void
631CoherentXBar::recvReqRetry(PortID master_port_id)
632{
633 // responses and snoop responses never block on forwarding them,
634 // so the retry will always be coming from a port to which we
635 // tried to forward a request
636 reqLayers[master_port_id]->recvRetry();
637}
638
639Tick
640CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id)
641{
642 DPRINTF(CoherentXBar, "recvAtomic: packet src %s addr 0x%x cmd %s\n",
643 slavePorts[slave_port_id]->name(), pkt->getAddr(),
644 pkt->cmdString());
645
646 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
647 unsigned int pkt_cmd = pkt->cmdToIndex();
648
649 MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
650 Tick snoop_response_latency = 0;
651
652 if (!system->bypassCaches()) {
653 // forward to all snoopers but the source
654 std::pair<MemCmd, Tick> snoop_result;
655 if (snoopFilter) {
656 // check with the snoop filter where to forward this packet
657 auto sf_res =
658 snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]);
659 snoop_response_latency += sf_res.second * clockPeriod();
660 DPRINTF(CoherentXBar, "%s: src %s %s 0x%x"\
661 " SF size: %i lat: %i\n", __func__,
662 slavePorts[slave_port_id]->name(), pkt->cmdString(),
663 pkt->getAddr(), sf_res.first.size(), sf_res.second);
664
665 // let the snoop filter know about the success of the send
666 // operation, and do it even before sending it onwards to
667 // avoid situations where atomic upward snoops sneak in
668 // between and change the filter state
270 }
271
272 // check if we were successful in sending the packet onwards
273 if (!success) {
274 // express snoops should never be forced to retry
275 assert(!is_express_snoop);
276
277 // restore the header delay
278 pkt->headerDelay = old_header_delay;
279
280 DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x RETRY\n",
281 src_port->name(), pkt->cmdString(), pkt->getAddr());
282
283 // update the layer state and schedule an idle event
284 reqLayers[master_port_id]->failedTiming(src_port,
285 clockEdge(Cycles(1)));
286 } else {
287 // express snoops currently bypass the crossbar state entirely
288 if (!is_express_snoop) {
289 // if this particular request will generate a snoop
290 // response
291 if (expect_snoop_resp) {
292 // we should never have an exsiting request outstanding
293 assert(outstandingSnoop.find(pkt->req) ==
294 outstandingSnoop.end());
295 outstandingSnoop.insert(pkt->req);
296
297 // basic sanity check on the outstanding snoops
298 panic_if(outstandingSnoop.size() > 512,
299 "Outstanding snoop requests exceeded 512\n");
300 }
301
302 // remember where to route the normal response to
303 if (expect_response || expect_snoop_resp) {
304 assert(routeTo.find(pkt->req) == routeTo.end());
305 routeTo[pkt->req] = slave_port_id;
306
307 panic_if(routeTo.size() > 512,
308 "Routing table exceeds 512 packets\n");
309 }
310
311 // update the layer state and schedule an idle event
312 reqLayers[master_port_id]->succeededTiming(packetFinishTime);
313 }
314
315 // stats updates only consider packets that were successfully sent
316 pktCount[slave_port_id][master_port_id]++;
317 pktSize[slave_port_id][master_port_id] += pkt_size;
318 transDist[pkt_cmd]++;
319
320 if (is_express_snoop) {
321 snoops++;
322 snoopTraffic += pkt_size;
323 }
324 }
325
326 if (sink_packet)
327 // queue the packet for deletion
328 pendingDelete.reset(pkt);
329
330 if (respond_directly) {
331 assert(pkt->needsResponse());
332 assert(success);
333
334 pkt->makeResponse();
335
336 if (snoopFilter && !system->bypassCaches()) {
337 // let the snoop filter inspect the response and update its state
338 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
339 }
340
341 Tick response_time = clockEdge() + pkt->headerDelay;
342 pkt->headerDelay = 0;
343
344 slavePorts[slave_port_id]->schedTimingResp(pkt, response_time);
345 }
346
347 return success;
348}
349
350bool
351CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id)
352{
353 // determine the source port based on the id
354 MasterPort *src_port = masterPorts[master_port_id];
355
356 // determine the destination
357 const auto route_lookup = routeTo.find(pkt->req);
358 assert(route_lookup != routeTo.end());
359 const PortID slave_port_id = route_lookup->second;
360 assert(slave_port_id != InvalidPortID);
361 assert(slave_port_id < respLayers.size());
362
363 // test if the crossbar should be considered occupied for the
364 // current port
365 if (!respLayers[slave_port_id]->tryTiming(src_port)) {
366 DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x BUSY\n",
367 src_port->name(), pkt->cmdString(), pkt->getAddr());
368 return false;
369 }
370
371 DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x\n",
372 src_port->name(), pkt->cmdString(), pkt->getAddr());
373
374 // store size and command as they might be modified when
375 // forwarding the packet
376 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
377 unsigned int pkt_cmd = pkt->cmdToIndex();
378
379 // a response sees the response latency
380 Tick xbar_delay = responseLatency * clockPeriod();
381
382 // set the packet header and payload delay
383 calcPacketTiming(pkt, xbar_delay);
384
385 // determine how long to be crossbar layer is busy
386 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
387
388 if (snoopFilter && !system->bypassCaches()) {
389 // let the snoop filter inspect the response and update its state
390 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
391 }
392
393 // send the packet through the destination slave port and pay for
394 // any outstanding header delay
395 Tick latency = pkt->headerDelay;
396 pkt->headerDelay = 0;
397 slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency);
398
399 // remove the request from the routing table
400 routeTo.erase(route_lookup);
401
402 respLayers[slave_port_id]->succeededTiming(packetFinishTime);
403
404 // stats updates
405 pktCount[slave_port_id][master_port_id]++;
406 pktSize[slave_port_id][master_port_id] += pkt_size;
407 transDist[pkt_cmd]++;
408
409 return true;
410}
411
412void
413CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id)
414{
415 DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x\n",
416 masterPorts[master_port_id]->name(), pkt->cmdString(),
417 pkt->getAddr());
418
419 // update stats here as we know the forwarding will succeed
420 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
421 transDist[pkt->cmdToIndex()]++;
422 snoops++;
423 snoopTraffic += pkt_size;
424
425 // we should only see express snoops from caches
426 assert(pkt->isExpressSnoop());
427
428 // set the packet header and payload delay, for now use forward latency
429 // @todo Assess the choice of latency further
430 calcPacketTiming(pkt, forwardLatency * clockPeriod());
431
432 // remember if a cache has already committed to responding so we
433 // can see if it changes during the snooping
434 const bool cache_responding = pkt->cacheResponding();
435
436 assert(pkt->snoopDelay == 0);
437
438 if (snoopFilter) {
439 // let the Snoop Filter work its magic and guide probing
440 auto sf_res = snoopFilter->lookupSnoop(pkt);
441 // the time required by a packet to be delivered through
442 // the xbar has to be charged also with to lookup latency
443 // of the snoop filter
444 pkt->headerDelay += sf_res.second * clockPeriod();
445 DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x"\
446 " SF size: %i lat: %i\n", masterPorts[master_port_id]->name(),
447 pkt->cmdString(), pkt->getAddr(), sf_res.first.size(),
448 sf_res.second);
449
450 // forward to all snoopers
451 forwardTiming(pkt, InvalidPortID, sf_res.first);
452 } else {
453 forwardTiming(pkt, InvalidPortID);
454 }
455
456 // add the snoop delay to our header delay, and then reset it
457 pkt->headerDelay += pkt->snoopDelay;
458 pkt->snoopDelay = 0;
459
460 // if we can expect a response, remember how to route it
461 if (!cache_responding && pkt->cacheResponding()) {
462 assert(routeTo.find(pkt->req) == routeTo.end());
463 routeTo[pkt->req] = master_port_id;
464 }
465
466 // a snoop request came from a connected slave device (one of
467 // our master ports), and if it is not coming from the slave
468 // device responsible for the address range something is
469 // wrong, hence there is nothing further to do as the packet
470 // would be going back to where it came from
471 assert(master_port_id == findPort(pkt->getAddr()));
472}
473
474bool
475CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id)
476{
477 // determine the source port based on the id
478 SlavePort* src_port = slavePorts[slave_port_id];
479
480 // get the destination
481 const auto route_lookup = routeTo.find(pkt->req);
482 assert(route_lookup != routeTo.end());
483 const PortID dest_port_id = route_lookup->second;
484 assert(dest_port_id != InvalidPortID);
485
486 // determine if the response is from a snoop request we
487 // created as the result of a normal request (in which case it
488 // should be in the outstandingSnoop), or if we merely forwarded
489 // someone else's snoop request
490 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
491 outstandingSnoop.end();
492
493 // test if the crossbar should be considered occupied for the
494 // current port, note that the check is bypassed if the response
495 // is being passed on as a normal response since this is occupying
496 // the response layer rather than the snoop response layer
497 if (forwardAsSnoop) {
498 assert(dest_port_id < snoopLayers.size());
499 if (!snoopLayers[dest_port_id]->tryTiming(src_port)) {
500 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
501 src_port->name(), pkt->cmdString(), pkt->getAddr());
502 return false;
503 }
504 } else {
505 // get the master port that mirrors this slave port internally
506 MasterPort* snoop_port = snoopRespPorts[slave_port_id];
507 assert(dest_port_id < respLayers.size());
508 if (!respLayers[dest_port_id]->tryTiming(snoop_port)) {
509 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n",
510 snoop_port->name(), pkt->cmdString(), pkt->getAddr());
511 return false;
512 }
513 }
514
515 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x\n",
516 src_port->name(), pkt->cmdString(), pkt->getAddr());
517
518 // store size and command as they might be modified when
519 // forwarding the packet
520 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
521 unsigned int pkt_cmd = pkt->cmdToIndex();
522
523 // responses are never express snoops
524 assert(!pkt->isExpressSnoop());
525
526 // a snoop response sees the snoop response latency, and if it is
527 // forwarded as a normal response, the response latency
528 Tick xbar_delay =
529 (forwardAsSnoop ? snoopResponseLatency : responseLatency) *
530 clockPeriod();
531
532 // set the packet header and payload delay
533 calcPacketTiming(pkt, xbar_delay);
534
535 // determine how long to be crossbar layer is busy
536 Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
537
538 // forward it either as a snoop response or a normal response
539 if (forwardAsSnoop) {
540 // this is a snoop response to a snoop request we forwarded,
541 // e.g. coming from the L1 and going to the L2, and it should
542 // be forwarded as a snoop response
543
544 if (snoopFilter) {
545 // update the probe filter so that it can properly track the line
546 snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id],
547 *masterPorts[dest_port_id]);
548 }
549
550 bool success M5_VAR_USED =
551 masterPorts[dest_port_id]->sendTimingSnoopResp(pkt);
552 pktCount[slave_port_id][dest_port_id]++;
553 pktSize[slave_port_id][dest_port_id] += pkt_size;
554 assert(success);
555
556 snoopLayers[dest_port_id]->succeededTiming(packetFinishTime);
557 } else {
558 // we got a snoop response on one of our slave ports,
559 // i.e. from a coherent master connected to the crossbar, and
560 // since we created the snoop request as part of recvTiming,
561 // this should now be a normal response again
562 outstandingSnoop.erase(pkt->req);
563
564 // this is a snoop response from a coherent master, hence it
565 // should never go back to where the snoop response came from,
566 // but instead to where the original request came from
567 assert(slave_port_id != dest_port_id);
568
569 if (snoopFilter) {
570 // update the probe filter so that it can properly track the line
571 snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id],
572 *slavePorts[dest_port_id]);
573 }
574
575 DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x"\
576 " FWD RESP\n", src_port->name(), pkt->cmdString(),
577 pkt->getAddr());
578
579 // as a normal response, it should go back to a master through
580 // one of our slave ports, we also pay for any outstanding
581 // header latency
582 Tick latency = pkt->headerDelay;
583 pkt->headerDelay = 0;
584 slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency);
585
586 respLayers[dest_port_id]->succeededTiming(packetFinishTime);
587 }
588
589 // remove the request from the routing table
590 routeTo.erase(route_lookup);
591
592 // stats updates
593 transDist[pkt_cmd]++;
594 snoops++;
595 snoopTraffic += pkt_size;
596
597 return true;
598}
599
600
601void
602CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id,
603 const std::vector<QueuedSlavePort*>& dests)
604{
605 DPRINTF(CoherentXBar, "%s for %s address %x size %d\n", __func__,
606 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
607
608 // snoops should only happen if the system isn't bypassing caches
609 assert(!system->bypassCaches());
610
611 unsigned fanout = 0;
612
613 for (const auto& p: dests) {
614 // we could have gotten this request from a snooping master
615 // (corresponding to our own slave port that is also in
616 // snoopPorts) and should not send it back to where it came
617 // from
618 if (exclude_slave_port_id == InvalidPortID ||
619 p->getId() != exclude_slave_port_id) {
620 // cache is not allowed to refuse snoop
621 p->sendTimingSnoopReq(pkt);
622 fanout++;
623 }
624 }
625
626 // Stats for fanout of this forward operation
627 snoopFanout.sample(fanout);
628}
629
630void
631CoherentXBar::recvReqRetry(PortID master_port_id)
632{
633 // responses and snoop responses never block on forwarding them,
634 // so the retry will always be coming from a port to which we
635 // tried to forward a request
636 reqLayers[master_port_id]->recvRetry();
637}
638
639Tick
640CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id)
641{
642 DPRINTF(CoherentXBar, "recvAtomic: packet src %s addr 0x%x cmd %s\n",
643 slavePorts[slave_port_id]->name(), pkt->getAddr(),
644 pkt->cmdString());
645
646 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
647 unsigned int pkt_cmd = pkt->cmdToIndex();
648
649 MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
650 Tick snoop_response_latency = 0;
651
652 if (!system->bypassCaches()) {
653 // forward to all snoopers but the source
654 std::pair<MemCmd, Tick> snoop_result;
655 if (snoopFilter) {
656 // check with the snoop filter where to forward this packet
657 auto sf_res =
658 snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]);
659 snoop_response_latency += sf_res.second * clockPeriod();
660 DPRINTF(CoherentXBar, "%s: src %s %s 0x%x"\
661 " SF size: %i lat: %i\n", __func__,
662 slavePorts[slave_port_id]->name(), pkt->cmdString(),
663 pkt->getAddr(), sf_res.first.size(), sf_res.second);
664
665 // let the snoop filter know about the success of the send
666 // operation, and do it even before sending it onwards to
667 // avoid situations where atomic upward snoops sneak in
668 // between and change the filter state
669 snoopFilter->finishRequest(false, pkt->getAddr());
669 snoopFilter->finishRequest(false, pkt->getAddr(), pkt->isSecure());
670
671 snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID,
672 sf_res.first);
673 } else {
674 snoop_result = forwardAtomic(pkt, slave_port_id);
675 }
676 snoop_response_cmd = snoop_result.first;
677 snoop_response_latency += snoop_result.second;
678 }
679
680 // set up a sensible default value
681 Tick response_latency = 0;
682
683 const bool sink_packet = sinkPacket(pkt);
684
685 // even if we had a snoop response, we must continue and also
686 // perform the actual request at the destination
687 PortID master_port_id = findPort(pkt->getAddr());
688
689 if (sink_packet) {
690 DPRINTF(CoherentXBar, "Not forwarding %s to %#llx\n",
691 pkt->cmdString(), pkt->getAddr());
692 } else {
693 if (!pointOfCoherency || pkt->isRead() || pkt->isWrite()) {
694 // forward the request to the appropriate destination
695 response_latency = masterPorts[master_port_id]->sendAtomic(pkt);
696 } else {
697 // if it does not need a response we sink the packet above
698 assert(pkt->needsResponse());
699
700 pkt->makeResponse();
701 }
702 }
703
704 // stats updates for the request
705 pktCount[slave_port_id][master_port_id]++;
706 pktSize[slave_port_id][master_port_id] += pkt_size;
707 transDist[pkt_cmd]++;
708
709
710 // if lower levels have replied, tell the snoop filter
711 if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) {
712 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
713 }
714
715 // if we got a response from a snooper, restore it here
716 if (snoop_response_cmd != MemCmd::InvalidCmd) {
717 // no one else should have responded
718 assert(!pkt->isResponse());
719 pkt->cmd = snoop_response_cmd;
720 response_latency = snoop_response_latency;
721 }
722
723 // add the response data
724 if (pkt->isResponse()) {
725 pkt_size = pkt->hasData() ? pkt->getSize() : 0;
726 pkt_cmd = pkt->cmdToIndex();
727
728 // stats updates
729 pktCount[slave_port_id][master_port_id]++;
730 pktSize[slave_port_id][master_port_id] += pkt_size;
731 transDist[pkt_cmd]++;
732 }
733
734 // @todo: Not setting header time
735 pkt->payloadDelay = response_latency;
736 return response_latency;
737}
738
739Tick
740CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id)
741{
742 DPRINTF(CoherentXBar, "recvAtomicSnoop: packet src %s addr 0x%x cmd %s\n",
743 masterPorts[master_port_id]->name(), pkt->getAddr(),
744 pkt->cmdString());
745
746 // add the request snoop data
747 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
748 snoops++;
749 snoopTraffic += pkt_size;
750
751 // forward to all snoopers
752 std::pair<MemCmd, Tick> snoop_result;
753 Tick snoop_response_latency = 0;
754 if (snoopFilter) {
755 auto sf_res = snoopFilter->lookupSnoop(pkt);
756 snoop_response_latency += sf_res.second * clockPeriod();
757 DPRINTF(CoherentXBar, "%s: src %s %s 0x%x SF size: %i lat: %i\n",
758 __func__, masterPorts[master_port_id]->name(), pkt->cmdString(),
759 pkt->getAddr(), sf_res.first.size(), sf_res.second);
760 snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id,
761 sf_res.first);
762 } else {
763 snoop_result = forwardAtomic(pkt, InvalidPortID);
764 }
765 MemCmd snoop_response_cmd = snoop_result.first;
766 snoop_response_latency += snoop_result.second;
767
768 if (snoop_response_cmd != MemCmd::InvalidCmd)
769 pkt->cmd = snoop_response_cmd;
770
771 // add the response snoop data
772 if (pkt->isResponse()) {
773 snoops++;
774 }
775
776 // @todo: Not setting header time
777 pkt->payloadDelay = snoop_response_latency;
778 return snoop_response_latency;
779}
780
781std::pair<MemCmd, Tick>
782CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id,
783 PortID source_master_port_id,
784 const std::vector<QueuedSlavePort*>& dests)
785{
786 // the packet may be changed on snoops, record the original
787 // command to enable us to restore it between snoops so that
788 // additional snoops can take place properly
789 MemCmd orig_cmd = pkt->cmd;
790 MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
791 Tick snoop_response_latency = 0;
792
793 // snoops should only happen if the system isn't bypassing caches
794 assert(!system->bypassCaches());
795
796 unsigned fanout = 0;
797
798 for (const auto& p: dests) {
799 // we could have gotten this request from a snooping master
800 // (corresponding to our own slave port that is also in
801 // snoopPorts) and should not send it back to where it came
802 // from
803 if (exclude_slave_port_id != InvalidPortID &&
804 p->getId() == exclude_slave_port_id)
805 continue;
806
807 Tick latency = p->sendAtomicSnoop(pkt);
808 fanout++;
809
810 // in contrast to a functional access, we have to keep on
811 // going as all snoopers must be updated even if we get a
812 // response
813 if (!pkt->isResponse())
814 continue;
815
816 // response from snoop agent
817 assert(pkt->cmd != orig_cmd);
818 assert(pkt->cacheResponding());
819 // should only happen once
820 assert(snoop_response_cmd == MemCmd::InvalidCmd);
821 // save response state
822 snoop_response_cmd = pkt->cmd;
823 snoop_response_latency = latency;
824
825 if (snoopFilter) {
826 // Handle responses by the snoopers and differentiate between
827 // responses to requests from above and snoops from below
828 if (source_master_port_id != InvalidPortID) {
829 // Getting a response for a snoop from below
830 assert(exclude_slave_port_id == InvalidPortID);
831 snoopFilter->updateSnoopForward(pkt, *p,
832 *masterPorts[source_master_port_id]);
833 } else {
834 // Getting a response for a request from above
835 assert(source_master_port_id == InvalidPortID);
836 snoopFilter->updateSnoopResponse(pkt, *p,
837 *slavePorts[exclude_slave_port_id]);
838 }
839 }
840 // restore original packet state for remaining snoopers
841 pkt->cmd = orig_cmd;
842 }
843
844 // Stats for fanout
845 snoopFanout.sample(fanout);
846
847 // the packet is restored as part of the loop and any potential
848 // snoop response is part of the returned pair
849 return std::make_pair(snoop_response_cmd, snoop_response_latency);
850}
851
852void
853CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id)
854{
855 if (!pkt->isPrint()) {
856 // don't do DPRINTFs on PrintReq as it clutters up the output
857 DPRINTF(CoherentXBar,
858 "recvFunctional: packet src %s addr 0x%x cmd %s\n",
859 slavePorts[slave_port_id]->name(), pkt->getAddr(),
860 pkt->cmdString());
861 }
862
863 if (!system->bypassCaches()) {
864 // forward to all snoopers but the source
865 forwardFunctional(pkt, slave_port_id);
866 }
867
868 // there is no need to continue if the snooping has found what we
869 // were looking for and the packet is already a response
870 if (!pkt->isResponse()) {
871 // since our slave ports are queued ports we need to check them as well
872 for (const auto& p : slavePorts) {
873 // if we find a response that has the data, then the
874 // downstream caches/memories may be out of date, so simply stop
875 // here
876 if (p->checkFunctional(pkt)) {
877 if (pkt->needsResponse())
878 pkt->makeResponse();
879 return;
880 }
881 }
882
883 PortID dest_id = findPort(pkt->getAddr());
884
885 masterPorts[dest_id]->sendFunctional(pkt);
886 }
887}
888
889void
890CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id)
891{
892 if (!pkt->isPrint()) {
893 // don't do DPRINTFs on PrintReq as it clutters up the output
894 DPRINTF(CoherentXBar,
895 "recvFunctionalSnoop: packet src %s addr 0x%x cmd %s\n",
896 masterPorts[master_port_id]->name(), pkt->getAddr(),
897 pkt->cmdString());
898 }
899
900 for (const auto& p : slavePorts) {
901 if (p->checkFunctional(pkt)) {
902 if (pkt->needsResponse())
903 pkt->makeResponse();
904 return;
905 }
906 }
907
908 // forward to all snoopers
909 forwardFunctional(pkt, InvalidPortID);
910}
911
912void
913CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id)
914{
915 // snoops should only happen if the system isn't bypassing caches
916 assert(!system->bypassCaches());
917
918 for (const auto& p: snoopPorts) {
919 // we could have gotten this request from a snooping master
920 // (corresponding to our own slave port that is also in
921 // snoopPorts) and should not send it back to where it came
922 // from
923 if (exclude_slave_port_id == InvalidPortID ||
924 p->getId() != exclude_slave_port_id)
925 p->sendFunctionalSnoop(pkt);
926
927 // if we get a response we are done
928 if (pkt->isResponse()) {
929 break;
930 }
931 }
932}
933
934bool
935CoherentXBar::sinkPacket(const PacketPtr pkt) const
936{
937 // we can sink the packet if:
938 // 1) the crossbar is the point of coherency, and a cache is
939 // responding after being snooped
940 // 2) the crossbar is the point of coherency, and the packet is a
941 // coherency packet (not a read or a write) that does not
942 // require a response
943 // 3) this is a clean evict or clean writeback, but the packet is
944 // found in a cache above this crossbar
945 // 4) a cache is responding after being snooped, and the packet
946 // either does not need the block to be writable, or the cache
947 // that has promised to respond (setting the cache responding
948 // flag) is providing writable and thus had a Modified block,
949 // and no further action is needed
950 return (pointOfCoherency && pkt->cacheResponding()) ||
951 (pointOfCoherency && !(pkt->isRead() || pkt->isWrite()) &&
952 !pkt->needsResponse()) ||
953 (pkt->isCleanEviction() && pkt->isBlockCached()) ||
954 (pkt->cacheResponding() &&
955 (!pkt->needsWritable() || pkt->responderHadWritable()));
956}
957
958void
959CoherentXBar::regStats()
960{
961 // register the stats of the base class and our layers
962 BaseXBar::regStats();
963 for (auto l: reqLayers)
964 l->regStats();
965 for (auto l: respLayers)
966 l->regStats();
967 for (auto l: snoopLayers)
968 l->regStats();
969
970 snoops
971 .name(name() + ".snoops")
972 .desc("Total snoops (count)")
973 ;
974
975 snoopTraffic
976 .name(name() + ".snoopTraffic")
977 .desc("Total snoop traffic (bytes)")
978 ;
979
980 snoopFanout
981 .init(0, snoopPorts.size(), 1)
982 .name(name() + ".snoop_fanout")
983 .desc("Request fanout histogram")
984 ;
985}
986
987CoherentXBar *
988CoherentXBarParams::create()
989{
990 return new CoherentXBar(this);
991}
670
671 snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID,
672 sf_res.first);
673 } else {
674 snoop_result = forwardAtomic(pkt, slave_port_id);
675 }
676 snoop_response_cmd = snoop_result.first;
677 snoop_response_latency += snoop_result.second;
678 }
679
680 // set up a sensible default value
681 Tick response_latency = 0;
682
683 const bool sink_packet = sinkPacket(pkt);
684
685 // even if we had a snoop response, we must continue and also
686 // perform the actual request at the destination
687 PortID master_port_id = findPort(pkt->getAddr());
688
689 if (sink_packet) {
690 DPRINTF(CoherentXBar, "Not forwarding %s to %#llx\n",
691 pkt->cmdString(), pkt->getAddr());
692 } else {
693 if (!pointOfCoherency || pkt->isRead() || pkt->isWrite()) {
694 // forward the request to the appropriate destination
695 response_latency = masterPorts[master_port_id]->sendAtomic(pkt);
696 } else {
697 // if it does not need a response we sink the packet above
698 assert(pkt->needsResponse());
699
700 pkt->makeResponse();
701 }
702 }
703
704 // stats updates for the request
705 pktCount[slave_port_id][master_port_id]++;
706 pktSize[slave_port_id][master_port_id] += pkt_size;
707 transDist[pkt_cmd]++;
708
709
710 // if lower levels have replied, tell the snoop filter
711 if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) {
712 snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
713 }
714
715 // if we got a response from a snooper, restore it here
716 if (snoop_response_cmd != MemCmd::InvalidCmd) {
717 // no one else should have responded
718 assert(!pkt->isResponse());
719 pkt->cmd = snoop_response_cmd;
720 response_latency = snoop_response_latency;
721 }
722
723 // add the response data
724 if (pkt->isResponse()) {
725 pkt_size = pkt->hasData() ? pkt->getSize() : 0;
726 pkt_cmd = pkt->cmdToIndex();
727
728 // stats updates
729 pktCount[slave_port_id][master_port_id]++;
730 pktSize[slave_port_id][master_port_id] += pkt_size;
731 transDist[pkt_cmd]++;
732 }
733
734 // @todo: Not setting header time
735 pkt->payloadDelay = response_latency;
736 return response_latency;
737}
738
739Tick
740CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id)
741{
742 DPRINTF(CoherentXBar, "recvAtomicSnoop: packet src %s addr 0x%x cmd %s\n",
743 masterPorts[master_port_id]->name(), pkt->getAddr(),
744 pkt->cmdString());
745
746 // add the request snoop data
747 unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
748 snoops++;
749 snoopTraffic += pkt_size;
750
751 // forward to all snoopers
752 std::pair<MemCmd, Tick> snoop_result;
753 Tick snoop_response_latency = 0;
754 if (snoopFilter) {
755 auto sf_res = snoopFilter->lookupSnoop(pkt);
756 snoop_response_latency += sf_res.second * clockPeriod();
757 DPRINTF(CoherentXBar, "%s: src %s %s 0x%x SF size: %i lat: %i\n",
758 __func__, masterPorts[master_port_id]->name(), pkt->cmdString(),
759 pkt->getAddr(), sf_res.first.size(), sf_res.second);
760 snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id,
761 sf_res.first);
762 } else {
763 snoop_result = forwardAtomic(pkt, InvalidPortID);
764 }
765 MemCmd snoop_response_cmd = snoop_result.first;
766 snoop_response_latency += snoop_result.second;
767
768 if (snoop_response_cmd != MemCmd::InvalidCmd)
769 pkt->cmd = snoop_response_cmd;
770
771 // add the response snoop data
772 if (pkt->isResponse()) {
773 snoops++;
774 }
775
776 // @todo: Not setting header time
777 pkt->payloadDelay = snoop_response_latency;
778 return snoop_response_latency;
779}
780
781std::pair<MemCmd, Tick>
782CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id,
783 PortID source_master_port_id,
784 const std::vector<QueuedSlavePort*>& dests)
785{
786 // the packet may be changed on snoops, record the original
787 // command to enable us to restore it between snoops so that
788 // additional snoops can take place properly
789 MemCmd orig_cmd = pkt->cmd;
790 MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
791 Tick snoop_response_latency = 0;
792
793 // snoops should only happen if the system isn't bypassing caches
794 assert(!system->bypassCaches());
795
796 unsigned fanout = 0;
797
798 for (const auto& p: dests) {
799 // we could have gotten this request from a snooping master
800 // (corresponding to our own slave port that is also in
801 // snoopPorts) and should not send it back to where it came
802 // from
803 if (exclude_slave_port_id != InvalidPortID &&
804 p->getId() == exclude_slave_port_id)
805 continue;
806
807 Tick latency = p->sendAtomicSnoop(pkt);
808 fanout++;
809
810 // in contrast to a functional access, we have to keep on
811 // going as all snoopers must be updated even if we get a
812 // response
813 if (!pkt->isResponse())
814 continue;
815
816 // response from snoop agent
817 assert(pkt->cmd != orig_cmd);
818 assert(pkt->cacheResponding());
819 // should only happen once
820 assert(snoop_response_cmd == MemCmd::InvalidCmd);
821 // save response state
822 snoop_response_cmd = pkt->cmd;
823 snoop_response_latency = latency;
824
825 if (snoopFilter) {
826 // Handle responses by the snoopers and differentiate between
827 // responses to requests from above and snoops from below
828 if (source_master_port_id != InvalidPortID) {
829 // Getting a response for a snoop from below
830 assert(exclude_slave_port_id == InvalidPortID);
831 snoopFilter->updateSnoopForward(pkt, *p,
832 *masterPorts[source_master_port_id]);
833 } else {
834 // Getting a response for a request from above
835 assert(source_master_port_id == InvalidPortID);
836 snoopFilter->updateSnoopResponse(pkt, *p,
837 *slavePorts[exclude_slave_port_id]);
838 }
839 }
840 // restore original packet state for remaining snoopers
841 pkt->cmd = orig_cmd;
842 }
843
844 // Stats for fanout
845 snoopFanout.sample(fanout);
846
847 // the packet is restored as part of the loop and any potential
848 // snoop response is part of the returned pair
849 return std::make_pair(snoop_response_cmd, snoop_response_latency);
850}
851
852void
853CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id)
854{
855 if (!pkt->isPrint()) {
856 // don't do DPRINTFs on PrintReq as it clutters up the output
857 DPRINTF(CoherentXBar,
858 "recvFunctional: packet src %s addr 0x%x cmd %s\n",
859 slavePorts[slave_port_id]->name(), pkt->getAddr(),
860 pkt->cmdString());
861 }
862
863 if (!system->bypassCaches()) {
864 // forward to all snoopers but the source
865 forwardFunctional(pkt, slave_port_id);
866 }
867
868 // there is no need to continue if the snooping has found what we
869 // were looking for and the packet is already a response
870 if (!pkt->isResponse()) {
871 // since our slave ports are queued ports we need to check them as well
872 for (const auto& p : slavePorts) {
873 // if we find a response that has the data, then the
874 // downstream caches/memories may be out of date, so simply stop
875 // here
876 if (p->checkFunctional(pkt)) {
877 if (pkt->needsResponse())
878 pkt->makeResponse();
879 return;
880 }
881 }
882
883 PortID dest_id = findPort(pkt->getAddr());
884
885 masterPorts[dest_id]->sendFunctional(pkt);
886 }
887}
888
889void
890CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id)
891{
892 if (!pkt->isPrint()) {
893 // don't do DPRINTFs on PrintReq as it clutters up the output
894 DPRINTF(CoherentXBar,
895 "recvFunctionalSnoop: packet src %s addr 0x%x cmd %s\n",
896 masterPorts[master_port_id]->name(), pkt->getAddr(),
897 pkt->cmdString());
898 }
899
900 for (const auto& p : slavePorts) {
901 if (p->checkFunctional(pkt)) {
902 if (pkt->needsResponse())
903 pkt->makeResponse();
904 return;
905 }
906 }
907
908 // forward to all snoopers
909 forwardFunctional(pkt, InvalidPortID);
910}
911
912void
913CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id)
914{
915 // snoops should only happen if the system isn't bypassing caches
916 assert(!system->bypassCaches());
917
918 for (const auto& p: snoopPorts) {
919 // we could have gotten this request from a snooping master
920 // (corresponding to our own slave port that is also in
921 // snoopPorts) and should not send it back to where it came
922 // from
923 if (exclude_slave_port_id == InvalidPortID ||
924 p->getId() != exclude_slave_port_id)
925 p->sendFunctionalSnoop(pkt);
926
927 // if we get a response we are done
928 if (pkt->isResponse()) {
929 break;
930 }
931 }
932}
933
934bool
935CoherentXBar::sinkPacket(const PacketPtr pkt) const
936{
937 // we can sink the packet if:
938 // 1) the crossbar is the point of coherency, and a cache is
939 // responding after being snooped
940 // 2) the crossbar is the point of coherency, and the packet is a
941 // coherency packet (not a read or a write) that does not
942 // require a response
943 // 3) this is a clean evict or clean writeback, but the packet is
944 // found in a cache above this crossbar
945 // 4) a cache is responding after being snooped, and the packet
946 // either does not need the block to be writable, or the cache
947 // that has promised to respond (setting the cache responding
948 // flag) is providing writable and thus had a Modified block,
949 // and no further action is needed
950 return (pointOfCoherency && pkt->cacheResponding()) ||
951 (pointOfCoherency && !(pkt->isRead() || pkt->isWrite()) &&
952 !pkt->needsResponse()) ||
953 (pkt->isCleanEviction() && pkt->isBlockCached()) ||
954 (pkt->cacheResponding() &&
955 (!pkt->needsWritable() || pkt->responderHadWritable()));
956}
957
958void
959CoherentXBar::regStats()
960{
961 // register the stats of the base class and our layers
962 BaseXBar::regStats();
963 for (auto l: reqLayers)
964 l->regStats();
965 for (auto l: respLayers)
966 l->regStats();
967 for (auto l: snoopLayers)
968 l->regStats();
969
970 snoops
971 .name(name() + ".snoops")
972 .desc("Total snoops (count)")
973 ;
974
975 snoopTraffic
976 .name(name() + ".snoopTraffic")
977 .desc("Total snoop traffic (bytes)")
978 ;
979
980 snoopFanout
981 .init(0, snoopPorts.size(), 1)
982 .name(name() + ".snoop_fanout")
983 .desc("Request fanout histogram")
984 ;
985}
986
987CoherentXBar *
988CoherentXBarParams::create()
989{
990 return new CoherentXBar(this);
991}