1/*
2 * Copyright (c) 2010-2015 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 * Dave Greene
43 * Nathan Binkert
44 * Steve Reinhardt
45 * Ron Dreslinski
46 * Andreas Sandberg
47 */
48
49/**
50 * @file
51 * Cache definitions.
52 */
53
54#include "mem/cache/cache.hh"
55
56#include "base/misc.hh"
57#include "base/types.hh"
58#include "debug/Cache.hh"
59#include "debug/CachePort.hh"
60#include "debug/CacheTags.hh"
61#include "mem/cache/blk.hh"
62#include "mem/cache/mshr.hh"
63#include "mem/cache/prefetch/base.hh"
64#include "sim/sim_exit.hh"
65
66Cache::Cache(const CacheParams *p)
67 : BaseCache(p, p->system->cacheLineSize()),
68 tags(p->tags),
69 prefetcher(p->prefetcher),
70 doFastWrites(true),
71 prefetchOnAccess(p->prefetch_on_access)
72{
73 tempBlock = new CacheBlk();
74 tempBlock->data = new uint8_t[blkSize];
75
76 cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
77 "CpuSidePort");
78 memSidePort = new MemSidePort(p->name + ".mem_side", this,
79 "MemSidePort");
80
81 tags->setCache(this);
82 if (prefetcher)
83 prefetcher->setCache(this);
84}
85
86Cache::~Cache()
87{
88 delete [] tempBlock->data;
89 delete tempBlock;
90
91 delete cpuSidePort;
92 delete memSidePort;
93}
94
95void
96Cache::regStats()
97{
98 BaseCache::regStats();
99}
100
101void
102Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
103{
104 assert(pkt->isRequest());
105
106 uint64_t overwrite_val;
107 bool overwrite_mem;
108 uint64_t condition_val64;
109 uint32_t condition_val32;
110
111 int offset = tags->extractBlkOffset(pkt->getAddr());
112 uint8_t *blk_data = blk->data + offset;
113
114 assert(sizeof(uint64_t) >= pkt->getSize());
115
116 overwrite_mem = true;
117 // keep a copy of our possible write value, and copy what is at the
118 // memory address into the packet
119 pkt->writeData((uint8_t *)&overwrite_val);
120 pkt->setData(blk_data);
121
122 if (pkt->req->isCondSwap()) {
123 if (pkt->getSize() == sizeof(uint64_t)) {
124 condition_val64 = pkt->req->getExtraData();
125 overwrite_mem = !std::memcmp(&condition_val64, blk_data,
126 sizeof(uint64_t));
127 } else if (pkt->getSize() == sizeof(uint32_t)) {
128 condition_val32 = (uint32_t)pkt->req->getExtraData();
129 overwrite_mem = !std::memcmp(&condition_val32, blk_data,
130 sizeof(uint32_t));
131 } else
132 panic("Invalid size for conditional read/write\n");
133 }
134
135 if (overwrite_mem) {
136 std::memcpy(blk_data, &overwrite_val, pkt->getSize());
137 blk->status |= BlkDirty;
138 }
139}
140
141
142void
143Cache::satisfyCpuSideRequest(PacketPtr pkt, CacheBlk *blk,
144 bool deferred_response, bool pending_downgrade)
145{
146 assert(pkt->isRequest());
147
148 assert(blk && blk->isValid());
149 // Occasionally this is not true... if we are a lower-level cache
150 // satisfying a string of Read and ReadEx requests from
151 // upper-level caches, a Read will mark the block as shared but we
152 // can satisfy a following ReadEx anyway since we can rely on the
153 // Read requester(s) to have buffered the ReadEx snoop and to
154 // invalidate their blocks after receiving them.
155 // assert(!pkt->needsExclusive() || blk->isWritable());
156 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
157
158 // Check RMW operations first since both isRead() and
159 // isWrite() will be true for them
160 if (pkt->cmd == MemCmd::SwapReq) {
161 cmpAndSwap(blk, pkt);
162 } else if (pkt->isWrite()) {
163 assert(blk->isWritable());
164 // Write or WriteLine at the first cache with block in Exclusive
165 if (blk->checkWrite(pkt)) {
166 pkt->writeDataToBlock(blk->data, blkSize);
167 }
168 // Always mark the line as dirty even if we are a failed
169 // StoreCond so we supply data to any snoops that have
170 // appended themselves to this cache before knowing the store
171 // will fail.
172 blk->status |= BlkDirty;
173 DPRINTF(Cache, "%s for %s addr %#llx size %d (write)\n", __func__,
174 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
175 } else if (pkt->isRead()) {
176 if (pkt->isLLSC()) {
177 blk->trackLoadLocked(pkt);
178 }
179 pkt->setDataFromBlock(blk->data, blkSize);
180 // determine if this read is from a (coherent) cache, or not
181 // by looking at the command type; we could potentially add a
182 // packet attribute such as 'FromCache' to make this check a
183 // bit cleaner
184 if (pkt->cmd == MemCmd::ReadExReq ||
185 pkt->cmd == MemCmd::ReadSharedReq ||
186 pkt->cmd == MemCmd::ReadCleanReq ||
187 pkt->cmd == MemCmd::SCUpgradeFailReq) {
188 assert(pkt->getSize() == blkSize);
189 // special handling for coherent block requests from
190 // upper-level caches
191 if (pkt->needsExclusive()) {
192 // sanity check
193 assert(pkt->cmd == MemCmd::ReadExReq ||
194 pkt->cmd == MemCmd::SCUpgradeFailReq);
195
196 // if we have a dirty copy, make sure the recipient
197 // keeps it marked dirty
198 if (blk->isDirty()) {
199 pkt->assertMemInhibit();
200 }
201 // on ReadExReq we give up our copy unconditionally
202 if (blk != tempBlock)
203 tags->invalidate(blk);
204 blk->invalidate();
205 } else if (blk->isWritable() && !pending_downgrade &&
206 !pkt->sharedAsserted() &&
207 pkt->cmd != MemCmd::ReadCleanReq) {
208 // we can give the requester an exclusive copy (by not
209 // asserting shared line) on a read request if:
210 // - we have an exclusive copy at this level (& below)
211 // - we don't have a pending snoop from below
212 // signaling another read request
213 // - no other cache above has a copy (otherwise it
214 // would have asseretd shared line on request)
215 // - we are not satisfying an instruction fetch (this
216 // prevents dirty data in the i-cache)
217
218 if (blk->isDirty()) {
219 // special considerations if we're owner:
220 if (!deferred_response) {
221 // if we are responding immediately and can
222 // signal that we're transferring ownership
223 // along with exclusivity, do so
224 pkt->assertMemInhibit();
225 blk->status &= ~BlkDirty;
226 } else {
227 // if we're responding after our own miss,
228 // there's a window where the recipient didn't
229 // know it was getting ownership and may not
230 // have responded to snoops correctly, so we
231 // can't pass off ownership *or* exclusivity
232 pkt->assertShared();
233 }
234 }
235 } else {
236 // otherwise only respond with a shared copy
237 pkt->assertShared();
238 }
239 }
240 } else {
241 // Upgrade or Invalidate, since we have it Exclusively (E or
242 // M), we ack then invalidate.
243 assert(pkt->isUpgrade() || pkt->isInvalidate());
244 assert(blk != tempBlock);
245 tags->invalidate(blk);
246 blk->invalidate();
247 DPRINTF(Cache, "%s for %s addr %#llx size %d (invalidation)\n",
248 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
249 }
250}
251
252
253/////////////////////////////////////////////////////
254//
255// MSHR helper functions
256//
257/////////////////////////////////////////////////////
258
259
260void
261Cache::markInService(MSHR *mshr, bool pending_dirty_resp)
262{
263 markInServiceInternal(mshr, pending_dirty_resp);
264}
265
266/////////////////////////////////////////////////////
267//
268// Access path: requests coming in from the CPU side
269//
270/////////////////////////////////////////////////////
271
272bool
273Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
274 PacketList &writebacks)
275{
276 // sanity check
277 assert(pkt->isRequest());
278
279 chatty_assert(!(isReadOnly && pkt->isWrite()),
280 "Should never see a write in a read-only cache %s\n",
281 name());
282
283 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
284 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
285
286 if (pkt->req->isUncacheable()) {
287 DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(),
288 pkt->req->isInstFetch() ? " (ifetch)" : "",
289 pkt->getAddr());
290
291 // flush and invalidate any existing block
292 CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
293 if (old_blk && old_blk->isValid()) {
294 if (old_blk->isDirty())
295 writebacks.push_back(writebackBlk(old_blk));
296 else
297 writebacks.push_back(cleanEvictBlk(old_blk));
298 tags->invalidate(old_blk);
299 old_blk->invalidate();
300 }
301
302 blk = NULL;
303 // lookupLatency is the latency in case the request is uncacheable.
304 lat = lookupLatency;
305 return false;
306 }
307
308 ContextID id = pkt->req->hasContextId() ?
309 pkt->req->contextId() : InvalidContextID;
310 // Here lat is the value passed as parameter to accessBlock() function
311 // that can modify its value.
312 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id);
313
314 DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(),
315 pkt->req->isInstFetch() ? " (ifetch)" : "",
316 pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns",
317 blk ? "hit " + blk->print() : "miss");
318
319
320 if (pkt->evictingBlock()) {
321 // We check for presence of block in above caches before issuing
322 // Writeback or CleanEvict to write buffer. Therefore the only
323 // possible cases can be of a CleanEvict packet coming from above
324 // encountering a Writeback generated in this cache peer cache and
325 // waiting in the write buffer. Cases of upper level peer caches
326 // generating CleanEvict and Writeback or simply CleanEvict and
327 // CleanEvict almost simultaneously will be caught by snoops sent out
328 // by crossbar.
329 std::vector<MSHR *> outgoing;
330 if (writeBuffer.findMatches(pkt->getAddr(), pkt->isSecure(),
331 outgoing)) {
332 assert(outgoing.size() == 1);
333 PacketPtr wbPkt = outgoing[0]->getTarget()->pkt;
334 assert(pkt->cmd == MemCmd::CleanEvict &&
335 wbPkt->cmd == MemCmd::Writeback);
336 // As the CleanEvict is coming from above, it would have snooped
337 // into other peer caches of the same level while traversing the
338 // crossbar. If a copy of the block had been found, the CleanEvict
339 // would have been deleted in the crossbar. Now that the
340 // CleanEvict is here we can be sure none of the other upper level
341 // caches connected to this cache have the block, so we can clear
342 // the BLOCK_CACHED flag in the Writeback if set and discard the
343 // CleanEvict by returning true.
344 wbPkt->clearBlockCached();
345 return true;
346 }
347 }
348
349 // Writeback handling is special case. We can write the block into
350 // the cache without having a writeable copy (or any copy at all).
351 if (pkt->cmd == MemCmd::Writeback) {
352 assert(blkSize == pkt->getSize());
353 if (blk == NULL) {
354 // need to do a replacement
355 blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
356 if (blk == NULL) {
357 // no replaceable block available: give up, fwd to next level.
358 incMissCount(pkt);
359 return false;
360 }
361 tags->insertBlock(pkt, blk);
362
363 blk->status = (BlkValid | BlkReadable);
364 if (pkt->isSecure()) {
365 blk->status |= BlkSecure;
366 }
367 }
368 blk->status |= BlkDirty;
369 // if shared is not asserted we got the writeback in modified
370 // state, if it is asserted we are in the owned state
371 if (!pkt->sharedAsserted()) {
372 blk->status |= BlkWritable;
373 }
374 // nothing else to do; writeback doesn't expect response
375 assert(!pkt->needsResponse());
376 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
377 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
378 incHitCount(pkt);
379 return true;
380 } else if (pkt->cmd == MemCmd::CleanEvict) {
381 if (blk != NULL) {
382 // Found the block in the tags, need to stop CleanEvict from
383 // propagating further down the hierarchy. Returning true will
384 // treat the CleanEvict like a satisfied write request and delete
385 // it.
386 return true;
387 }
388 // We didn't find the block here, propagate the CleanEvict further
389 // down the memory hierarchy. Returning false will treat the CleanEvict
390 // like a Writeback which could not find a replaceable block so has to
391 // go to next level.
392 return false;
393 } else if ((blk != NULL) &&
394 (pkt->needsExclusive() ? blk->isWritable()
395 : blk->isReadable())) {
396 // OK to satisfy access
397 incHitCount(pkt);
398 satisfyCpuSideRequest(pkt, blk);
399 return true;
400 }
401
402 // Can't satisfy access normally... either no block (blk == NULL)
403 // or have block but need exclusive & only have shared.
404
405 incMissCount(pkt);
406
407 if (blk == NULL && pkt->isLLSC() && pkt->isWrite()) {
408 // complete miss on store conditional... just give up now
409 pkt->req->setExtraData(0);
410 return true;
411 }
412
413 return false;
414}
415
416
417class ForwardResponseRecord : public Packet::SenderState
418{
419 public:
420
421 ForwardResponseRecord() {}
422};
423
424void
425Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
426{
427 while (!writebacks.empty()) {
428 PacketPtr wbPkt = writebacks.front();
429 // We use forwardLatency here because we are copying writebacks to
430 // write buffer. Call isCachedAbove for both Writebacks and
431 // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag
432 // in Writebacks and discard CleanEvicts.
433 if (isCachedAbove(wbPkt)) {
434 if (wbPkt->cmd == MemCmd::CleanEvict) {
435 // Delete CleanEvict because cached copies exist above. The
436 // packet destructor will delete the request object because
437 // this is a non-snoop request packet which does not require a
438 // response.
439 delete wbPkt;
440 } else {
441 // Set BLOCK_CACHED flag in Writeback and send below, so that
442 // the Writeback does not reset the bit corresponding to this
443 // address in the snoop filter below.
444 wbPkt->setBlockCached();
445 allocateWriteBuffer(wbPkt, forward_time);
446 }
447 } else {
448 // If the block is not cached above, send packet below. Both
449 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
450 // reset the bit corresponding to this address in the snoop filter
451 // below.
452 allocateWriteBuffer(wbPkt, forward_time);
453 }
454 writebacks.pop_front();
455 }
456}
457
458void
459Cache::doWritebacksAtomic(PacketList& writebacks)
460{
461 while (!writebacks.empty()) {
462 PacketPtr wbPkt = writebacks.front();
463 // Call isCachedAbove for both Writebacks and CleanEvicts. If
464 // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
465 // and discard CleanEvicts.
466 if (isCachedAbove(wbPkt, false)) {
467 if (wbPkt->cmd == MemCmd::Writeback) {
468 // Set BLOCK_CACHED flag in Writeback and send below,
469 // so that the Writeback does not reset the bit
470 // corresponding to this address in the snoop filter
471 // below. We can discard CleanEvicts because cached
472 // copies exist above. Atomic mode isCachedAbove
473 // modifies packet to set BLOCK_CACHED flag
474 memSidePort->sendAtomic(wbPkt);
475 }
476 } else {
477 // If the block is not cached above, send packet below. Both
478 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
479 // reset the bit corresponding to this address in the snoop filter
480 // below.
481 memSidePort->sendAtomic(wbPkt);
482 }
483 writebacks.pop_front();
484 // In case of CleanEvicts, the packet destructor will delete the
485 // request object because this is a non-snoop request packet which
486 // does not require a response.
487 delete wbPkt;
488 }
489}
490
491
492void
493Cache::recvTimingSnoopResp(PacketPtr pkt)
494{
495 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
496 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
497
498 assert(pkt->isResponse());
499
500 // must be cache-to-cache response from upper to lower level
501 ForwardResponseRecord *rec =
502 dynamic_cast<ForwardResponseRecord *>(pkt->senderState);
503 assert(!system->bypassCaches());
504
505 if (rec == NULL) {
506 // @todo What guarantee do we have that this HardPFResp is
507 // actually for this cache, and not a cache closer to the
508 // memory?
509 assert(pkt->cmd == MemCmd::HardPFResp);
510 // Check if it's a prefetch response and handle it. We shouldn't
511 // get any other kinds of responses without FRRs.
512 DPRINTF(Cache, "Got prefetch response from above for addr %#llx (%s)\n",
513 pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
514 recvTimingResp(pkt);
515 return;
516 }
517
518 pkt->popSenderState();
519 delete rec;
520 // forwardLatency is set here because there is a response from an
521 // upper level cache.
522 // To pay the delay that occurs if the packet comes from the bus,
523 // we charge also headerDelay.
524 Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
525 // Reset the timing of the packet.
526 pkt->headerDelay = pkt->payloadDelay = 0;
527 memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
528}
529
530void
531Cache::promoteWholeLineWrites(PacketPtr pkt)
532{
533 // Cache line clearing instructions
534 if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
535 (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
536 pkt->cmd = MemCmd::WriteLineReq;
537 DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
538 }
539}
540
541bool
542Cache::recvTimingReq(PacketPtr pkt)
543{
544 DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print());
545//@todo Add back in MemDebug Calls
546// MemDebug::cacheAccess(pkt);
547
548
549 /// @todo temporary hack to deal with memory corruption issue until
550 /// 4-phase transactions are complete
551 for (int x = 0; x < pendingDelete.size(); x++)
552 delete pendingDelete[x];
553 pendingDelete.clear();
554
555 assert(pkt->isRequest());
556
557 // Just forward the packet if caches are disabled.
558 if (system->bypassCaches()) {
559 // @todo This should really enqueue the packet rather
560 bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
561 assert(success);
562 return true;
563 }
564
565 promoteWholeLineWrites(pkt);
566
567 if (pkt->memInhibitAsserted()) {
568 // a cache above us (but not where the packet came from) is
569 // responding to the request
570 DPRINTF(Cache, "mem inhibited on addr %#llx (%s): not responding\n",
571 pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
572
573 // if the packet needs exclusive, and the cache that has
574 // promised to respond (setting the inhibit flag) is not
575 // providing exclusive (it is in O vs M state), we know that
576 // there may be other shared copies in the system; go out and
577 // invalidate them all
578 if (pkt->needsExclusive() && !pkt->isSupplyExclusive()) {
579 // create a downstream express snoop with cleared packet
580 // flags, there is no need to allocate any data as the
581 // packet is merely used to co-ordinate state transitions
582 Packet *snoop_pkt = new Packet(pkt, true, false);
583
584 // also reset the bus time that the original packet has
585 // not yet paid for
586 snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
587
588 // make this an instantaneous express snoop, and let the
589 // other caches in the system know that the packet is
590 // inhibited, because we have found the authorative copy
591 // (O) that will supply the right data
592 snoop_pkt->setExpressSnoop();
593 snoop_pkt->assertMemInhibit();
594
595 // this express snoop travels towards the memory, and at
596 // every crossbar it is snooped upwards thus reaching
597 // every cache in the system
598 bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
599 // express snoops always succeed
600 assert(success);
601
602 // main memory will delete the packet
603 }
604
605 /// @todo nominally we should just delete the packet here,
606 /// however, until 4-phase stuff we can't because sending
607 /// cache is still relying on it.
608 pendingDelete.push_back(pkt);
609
610 // no need to take any action in this particular cache as the
611 // caches along the path to memory are allowed to keep lines
612 // in a shared state, and a cache above us already committed
613 // to responding
614 return true;
615 }
616
617 // anything that is merely forwarded pays for the forward latency and
618 // the delay provided by the crossbar
619 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
620
621 // We use lookupLatency here because it is used to specify the latency
622 // to access.
623 Cycles lat = lookupLatency;
624 CacheBlk *blk = NULL;
625 bool satisfied = false;
626 {
627 PacketList writebacks;
628 // Note that lat is passed by reference here. The function
629 // access() calls accessBlock() which can modify lat value.
630 satisfied = access(pkt, blk, lat, writebacks);
631
632 // copy writebacks to write buffer here to ensure they logically
633 // proceed anything happening below
634 doWritebacks(writebacks, forward_time);
635 }
636
637 // Here we charge the headerDelay that takes into account the latencies
638 // of the bus, if the packet comes from it.
639 // The latency charged it is just lat that is the value of lookupLatency
640 // modified by access() function, or if not just lookupLatency.
641 // In case of a hit we are neglecting response latency.
642 // In case of a miss we are neglecting forward latency.
643 Tick request_time = clockEdge(lat) + pkt->headerDelay;
644 // Here we reset the timing of the packet.
645 pkt->headerDelay = pkt->payloadDelay = 0;
646
647 // track time of availability of next prefetch, if any
648 Tick next_pf_time = MaxTick;
649
650 bool needsResponse = pkt->needsResponse();
651
652 if (satisfied) {
653 // should never be satisfying an uncacheable access as we
654 // flush and invalidate any existing block as part of the
655 // lookup
656 assert(!pkt->req->isUncacheable());
657
658 // hit (for all other request types)
659
660 if (prefetcher && (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
661 if (blk)
662 blk->status &= ~BlkHWPrefetched;
663
664 // Don't notify on SWPrefetch
665 if (!pkt->cmd.isSWPrefetch())
666 next_pf_time = prefetcher->notify(pkt);
667 }
668
669 if (needsResponse) {
670 pkt->makeTimingResponse();
671 // @todo: Make someone pay for this
672 pkt->headerDelay = pkt->payloadDelay = 0;
673
674 // In this case we are considering request_time that takes
675 // into account the delay of the xbar, if any, and just
676 // lat, neglecting responseLatency, modelling hit latency
677 // just as lookupLatency or or the value of lat overriden
678 // by access(), that calls accessBlock() function.
679 cpuSidePort->schedTimingResp(pkt, request_time);
680 } else {
681 /// @todo nominally we should just delete the packet here,
682 /// however, until 4-phase stuff we can't because sending cache is
683 /// still relying on it. If the block is found in access(),
684 /// CleanEvict and Writeback messages will be deleted here as
685 /// well.
686 pendingDelete.push_back(pkt);
687 }
688 } else {
689 // miss
690
691 Addr blk_addr = blockAlign(pkt->getAddr());
692
693 // ignore any existing MSHR if we are dealing with an
694 // uncacheable request
695 MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
696 mshrQueue.findMatch(blk_addr, pkt->isSecure());
697
698 // Software prefetch handling:
699 // To keep the core from waiting on data it won't look at
700 // anyway, send back a response with dummy data. Miss handling
701 // will continue asynchronously. Unfortunately, the core will
702 // insist upon freeing original Packet/Request, so we have to
703 // create a new pair with a different lifecycle. Note that this
704 // processing happens before any MSHR munging on the behalf of
705 // this request because this new Request will be the one stored
706 // into the MSHRs, not the original.
707 if (pkt->cmd.isSWPrefetch()) {
708 assert(needsResponse);
709 assert(pkt->req->hasPaddr());
710 assert(!pkt->req->isUncacheable());
711
712 // There's no reason to add a prefetch as an additional target
713 // to an existing MSHR. If an outstanding request is already
714 // in progress, there is nothing for the prefetch to do.
715 // If this is the case, we don't even create a request at all.
716 PacketPtr pf = nullptr;
717
718 if (!mshr) {
719 // copy the request and create a new SoftPFReq packet
720 RequestPtr req = new Request(pkt->req->getPaddr(),
721 pkt->req->getSize(),
722 pkt->req->getFlags(),
723 pkt->req->masterId());
724 pf = new Packet(req, pkt->cmd);
725 pf->allocate();
726 assert(pf->getAddr() == pkt->getAddr());
727 assert(pf->getSize() == pkt->getSize());
728 }
729
730 pkt->makeTimingResponse();
731 // for debugging, set all the bits in the response data
732 // (also keeps valgrind from complaining when debugging settings
733 // print out instruction results)
734 std::memset(pkt->getPtr<uint8_t>(), 0xFF, pkt->getSize());
735 // request_time is used here, taking into account lat and the delay
736 // charged if the packet comes from the xbar.
737 cpuSidePort->schedTimingResp(pkt, request_time);
738
739 // If an outstanding request is in progress (we found an
740 // MSHR) this is set to null
741 pkt = pf;
742 }
743
744 if (mshr) {
745 /// MSHR hit
746 /// @note writebacks will be checked in getNextMSHR()
747 /// for any conflicting requests to the same block
748
749 //@todo remove hw_pf here
750
751 // Coalesce unless it was a software prefetch (see above).
752 if (pkt) {
753 assert(pkt->cmd != MemCmd::Writeback);
754 // CleanEvicts corresponding to blocks which have outstanding
755 // requests in MSHRs can be deleted here.
756 if (pkt->cmd == MemCmd::CleanEvict) {
757 pendingDelete.push_back(pkt);
758 } else {
759 DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx size %d\n",
760 __func__, pkt->cmdString(), pkt->getAddr(),
761 pkt->getSize());
762
763 assert(pkt->req->masterId() < system->maxMasters());
764 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
765 if (mshr->threadNum != 0/*pkt->req->threadId()*/) {
766 mshr->threadNum = -1;
767 }
768 // We use forward_time here because it is the same
769 // considering new targets. We have multiple
770 // requests for the same address here. It
771 // specifies the latency to allocate an internal
772 // buffer and to schedule an event to the queued
773 // port and also takes into account the additional
774 // delay of the xbar.
775 mshr->allocateTarget(pkt, forward_time, order++);
776 if (mshr->getNumTargets() == numTarget) {
777 noTargetMSHR = mshr;
778 setBlocked(Blocked_NoTargets);
779 // need to be careful with this... if this mshr isn't
780 // ready yet (i.e. time > curTick()), we don't want to
781 // move it ahead of mshrs that are ready
782 // mshrQueue.moveToFront(mshr);
783 }
784 }
785 // We should call the prefetcher reguardless if the request is
786 // satisfied or not, reguardless if the request is in the MSHR or
787 // not. The request could be a ReadReq hit, but still not
788 // satisfied (potentially because of a prior write to the same
789 // cache line. So, even when not satisfied, tehre is an MSHR
790 // already allocated for this, we need to let the prefetcher know
791 // about the request
792 if (prefetcher) {
793 // Don't notify on SWPrefetch
794 if (!pkt->cmd.isSWPrefetch())
795 next_pf_time = prefetcher->notify(pkt);
796 }
797 }
798 } else {
799 // no MSHR
800 assert(pkt->req->masterId() < system->maxMasters());
801 if (pkt->req->isUncacheable()) {
802 mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
803 } else {
804 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
805 }
806
807 if (pkt->evictingBlock() ||
808 (pkt->req->isUncacheable() && pkt->isWrite())) {
809 // We use forward_time here because there is an
810 // uncached memory write, forwarded to WriteBuffer.
811 allocateWriteBuffer(pkt, forward_time);
812 } else {
813 if (blk && blk->isValid()) {
814 // should have flushed and have no valid block
815 assert(!pkt->req->isUncacheable());
816
817 // If we have a write miss to a valid block, we
818 // need to mark the block non-readable. Otherwise
819 // if we allow reads while there's an outstanding
820 // write miss, the read could return stale data
821 // out of the cache block... a more aggressive
822 // system could detect the overlap (if any) and
823 // forward data out of the MSHRs, but we don't do
824 // that yet. Note that we do need to leave the
825 // block valid so that it stays in the cache, in
826 // case we get an upgrade response (and hence no
827 // new data) when the write miss completes.
828 // As long as CPUs do proper store/load forwarding
829 // internally, and have a sufficiently weak memory
830 // model, this is probably unnecessary, but at some
831 // point it must have seemed like we needed it...
832 assert(pkt->needsExclusive());
833 assert(!blk->isWritable());
834 blk->status &= ~BlkReadable;
835 }
836 // Here we are using forward_time, modelling the latency of
837 // a miss (outbound) just as forwardLatency, neglecting the
838 // lookupLatency component.
839 allocateMissBuffer(pkt, forward_time);
840 }
841
842 if (prefetcher) {
843 // Don't notify on SWPrefetch
844 if (!pkt->cmd.isSWPrefetch())
845 next_pf_time = prefetcher->notify(pkt);
846 }
847 }
848 }
849
850 if (next_pf_time != MaxTick)
851 schedMemSideSendEvent(next_pf_time);
852
853 return true;
854}
855
856
857// See comment in cache.hh.
858PacketPtr
859Cache::getBusPacket(PacketPtr cpu_pkt, CacheBlk *blk,
860 bool needsExclusive) const
861{
862 bool blkValid = blk && blk->isValid();
863
864 if (cpu_pkt->req->isUncacheable()) {
865 // note that at the point we see the uncacheable request we
866 // flush any block, but there could be an outstanding MSHR,
867 // and the cache could have filled again before we actually
868 // send out the forwarded uncacheable request (blk could thus
869 // be non-null)
870 return NULL;
871 }
872
873 if (!blkValid &&
874 (cpu_pkt->isUpgrade() ||
875 cpu_pkt->evictingBlock())) {
876 // Writebacks that weren't allocated in access() and upgrades
877 // from upper-level caches that missed completely just go
878 // through.
879 return NULL;
880 }
881
882 assert(cpu_pkt->needsResponse());
883
884 MemCmd cmd;
885 // @TODO make useUpgrades a parameter.
886 // Note that ownership protocols require upgrade, otherwise a
887 // write miss on a shared owned block will generate a ReadExcl,
888 // which will clobber the owned copy.
889 const bool useUpgrades = true;
890 if (blkValid && useUpgrades) {
891 // only reason to be here is that blk is shared
892 // (read-only) and we need exclusive
893 assert(needsExclusive);
894 assert(!blk->isWritable());
895 cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
896 } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
897 cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
898 // Even though this SC will fail, we still need to send out the
899 // request and get the data to supply it to other snoopers in the case
900 // where the determination the StoreCond fails is delayed due to
901 // all caches not being on the same local bus.
902 cmd = MemCmd::SCUpgradeFailReq;
903 } else if (cpu_pkt->cmd == MemCmd::WriteLineReq) {
904 // forward as invalidate to all other caches, this gives us
905 // the line in exclusive state, and invalidates all other
906 // copies
907 cmd = MemCmd::InvalidateReq;
908 } else {
909 // block is invalid
910 cmd = needsExclusive ? MemCmd::ReadExReq :
911 (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
912 }
913 PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
914
915 // if there are sharers in the upper levels, pass that info downstream
916 if (cpu_pkt->sharedAsserted()) {
917 // note that cpu_pkt may have spent a considerable time in the
918 // MSHR queue and that the information could possibly be out
919 // of date, however, there is no harm in conservatively
920 // assuming the block is shared
921 pkt->assertShared();
922 DPRINTF(Cache, "%s passing shared from %s to %s addr %#llx size %d\n",
923 __func__, cpu_pkt->cmdString(), pkt->cmdString(),
924 pkt->getAddr(), pkt->getSize());
925 }
926
927 // the packet should be block aligned
928 assert(pkt->getAddr() == blockAlign(pkt->getAddr()));
929
930 pkt->allocate();
931 DPRINTF(Cache, "%s created %s from %s for addr %#llx size %d\n",
932 __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(),
933 pkt->getSize());
934 return pkt;
935}
936
937
938Tick
939Cache::recvAtomic(PacketPtr pkt)
940{
941 // We are in atomic mode so we pay just for lookupLatency here.
942 Cycles lat = lookupLatency;
943 // @TODO: make this a parameter
944 bool last_level_cache = false;
945
946 // Forward the request if the system is in cache bypass mode.
947 if (system->bypassCaches())
948 return ticksToCycles(memSidePort->sendAtomic(pkt));
949
950 promoteWholeLineWrites(pkt);
951
952 if (pkt->memInhibitAsserted()) {
953 // have to invalidate ourselves and any lower caches even if
954 // upper cache will be responding
955 if (pkt->isInvalidate()) {
956 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
957 if (blk && blk->isValid()) {
958 tags->invalidate(blk);
959 blk->invalidate();
960 DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx (%s):"
961 " invalidating\n",
962 pkt->cmdString(), pkt->getAddr(),
963 pkt->isSecure() ? "s" : "ns");
964 }
965 if (!last_level_cache) {
966 DPRINTF(Cache, "forwarding mem-inhibited %s on %#llx (%s)\n",
967 pkt->cmdString(), pkt->getAddr(),
968 pkt->isSecure() ? "s" : "ns");
969 lat += ticksToCycles(memSidePort->sendAtomic(pkt));
970 }
971 } else {
972 DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx: not responding\n",
973 pkt->cmdString(), pkt->getAddr());
974 }
975
976 return lat * clockPeriod();
977 }
978
979 // should assert here that there are no outstanding MSHRs or
980 // writebacks... that would mean that someone used an atomic
981 // access in timing mode
982
983 CacheBlk *blk = NULL;
984 PacketList writebacks;
985 bool satisfied = access(pkt, blk, lat, writebacks);
986
987 // handle writebacks resulting from the access here to ensure they
988 // logically proceed anything happening below
956 while (!writebacks.empty()){
957 PacketPtr wbPkt = writebacks.front();
958 memSidePort->sendAtomic(wbPkt);
959 writebacks.pop_front();
960 delete wbPkt;
961 }
989 doWritebacksAtomic(writebacks);
990
991 if (!satisfied) {
992 // MISS
993
994 PacketPtr bus_pkt = getBusPacket(pkt, blk, pkt->needsExclusive());
995
996 bool is_forward = (bus_pkt == NULL);
997
998 if (is_forward) {
999 // just forwarding the same request to the next level
1000 // no local cache operation involved
1001 bus_pkt = pkt;
1002 }
1003
1004 DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n",
1005 bus_pkt->cmdString(), bus_pkt->getAddr(),
1006 bus_pkt->isSecure() ? "s" : "ns");
1007
1008#if TRACING_ON
1009 CacheBlk::State old_state = blk ? blk->status : 0;
1010#endif
1011
1012 lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1013
1014 // We are now dealing with the response handling
1015 DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in state %i\n",
1016 bus_pkt->cmdString(), bus_pkt->getAddr(),
1017 bus_pkt->isSecure() ? "s" : "ns",
1018 old_state);
1019
1020 // If packet was a forward, the response (if any) is already
1021 // in place in the bus_pkt == pkt structure, so we don't need
1022 // to do anything. Otherwise, use the separate bus_pkt to
1023 // generate response to pkt and then delete it.
1024 if (!is_forward) {
1025 if (pkt->needsResponse()) {
1026 assert(bus_pkt->isResponse());
1027 if (bus_pkt->isError()) {
1028 pkt->makeAtomicResponse();
1029 pkt->copyError(bus_pkt);
1030 } else if (pkt->cmd == MemCmd::InvalidateReq) {
1031 if (blk) {
1032 // invalidate response to a cache that received
1033 // an invalidate request
1034 satisfyCpuSideRequest(pkt, blk);
1035 }
1036 } else if (pkt->cmd == MemCmd::WriteLineReq) {
1037 // note the use of pkt, not bus_pkt here.
1038
1039 // write-line request to the cache that promoted
1040 // the write to a whole line
1041 blk = handleFill(pkt, blk, writebacks);
1042 satisfyCpuSideRequest(pkt, blk);
1043 } else if (bus_pkt->isRead() ||
1044 bus_pkt->cmd == MemCmd::UpgradeResp) {
1045 // we're updating cache state to allow us to
1046 // satisfy the upstream request from the cache
1047 blk = handleFill(bus_pkt, blk, writebacks);
1048 satisfyCpuSideRequest(pkt, blk);
1049 } else {
1050 // we're satisfying the upstream request without
1051 // modifying cache state, e.g., a write-through
1052 pkt->makeAtomicResponse();
1053 }
1054 }
1055 delete bus_pkt;
1056 }
1057 }
1058
1059 // Note that we don't invoke the prefetcher at all in atomic mode.
1060 // It's not clear how to do it properly, particularly for
1061 // prefetchers that aggressively generate prefetch candidates and
1062 // rely on bandwidth contention to throttle them; these will tend
1063 // to pollute the cache in atomic mode since there is no bandwidth
1064 // contention. If we ever do want to enable prefetching in atomic
1065 // mode, though, this is the place to do it... see timingAccess()
1066 // for an example (though we'd want to issue the prefetch(es)
1067 // immediately rather than calling requestMemSideBus() as we do
1068 // there).
1069
1070 // Handle writebacks (from the response handling) if needed
1043 while (!writebacks.empty()){
1044 PacketPtr wbPkt = writebacks.front();
1045 memSidePort->sendAtomic(wbPkt);
1046 writebacks.pop_front();
1047 delete wbPkt;
1048 }
1071 doWritebacksAtomic(writebacks);
1072
1073 if (pkt->needsResponse()) {
1074 pkt->makeAtomicResponse();
1075 }
1076
1077 return lat * clockPeriod();
1078}
1079
1080
1081void
1082Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1083{
1084 if (system->bypassCaches()) {
1085 // Packets from the memory side are snoop request and
1086 // shouldn't happen in bypass mode.
1087 assert(fromCpuSide);
1088
1089 // The cache should be flushed if we are in cache bypass mode,
1090 // so we don't need to check if we need to update anything.
1091 memSidePort->sendFunctional(pkt);
1092 return;
1093 }
1094
1095 Addr blk_addr = blockAlign(pkt->getAddr());
1096 bool is_secure = pkt->isSecure();
1097 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1098 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1099
1100 pkt->pushLabel(name());
1101
1102 CacheBlkPrintWrapper cbpw(blk);
1103
1104 // Note that just because an L2/L3 has valid data doesn't mean an
1105 // L1 doesn't have a more up-to-date modified copy that still
1106 // needs to be found. As a result we always update the request if
1107 // we have it, but only declare it satisfied if we are the owner.
1108
1109 // see if we have data at all (owned or otherwise)
1110 bool have_data = blk && blk->isValid()
1111 && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1112 blk->data);
1113
1114 // data we have is dirty if marked as such or if valid & ownership
1115 // pending due to outstanding UpgradeReq
1116 bool have_dirty =
1117 have_data && (blk->isDirty() ||
1118 (mshr && mshr->inService && mshr->isPendingDirty()));
1119
1120 bool done = have_dirty
1121 || cpuSidePort->checkFunctional(pkt)
1122 || mshrQueue.checkFunctional(pkt, blk_addr)
1123 || writeBuffer.checkFunctional(pkt, blk_addr)
1124 || memSidePort->checkFunctional(pkt);
1125
1126 DPRINTF(Cache, "functional %s %#llx (%s) %s%s%s\n",
1127 pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns",
1128 (blk && blk->isValid()) ? "valid " : "",
1129 have_data ? "data " : "", done ? "done " : "");
1130
1131 // We're leaving the cache, so pop cache->name() label
1132 pkt->popLabel();
1133
1134 if (done) {
1135 pkt->makeResponse();
1136 } else {
1137 // if it came as a request from the CPU side then make sure it
1138 // continues towards the memory side
1139 if (fromCpuSide) {
1140 memSidePort->sendFunctional(pkt);
1141 } else if (forwardSnoops && cpuSidePort->isSnooping()) {
1142 // if it came from the memory side, it must be a snoop request
1143 // and we should only forward it if we are forwarding snoops
1144 cpuSidePort->sendFunctionalSnoop(pkt);
1145 }
1146 }
1147}
1148
1149
1150/////////////////////////////////////////////////////
1151//
1152// Response handling: responses from the memory side
1153//
1154/////////////////////////////////////////////////////
1155
1156
1157void
1158Cache::recvTimingResp(PacketPtr pkt)
1159{
1160 assert(pkt->isResponse());
1161
1162 // all header delay should be paid for by the crossbar, unless
1163 // this is a prefetch response from above
1164 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1165 "%s saw a non-zero packet delay\n", name());
1166
1167 MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
1168 bool is_error = pkt->isError();
1169
1170 assert(mshr);
1171
1172 if (is_error) {
1173 DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), "
1174 "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns",
1175 pkt->cmdString());
1176 }
1177
1178 DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n",
1179 pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1180 pkt->isSecure() ? "s" : "ns");
1181
1182 MSHRQueue *mq = mshr->queue;
1183 bool wasFull = mq->isFull();
1184
1185 if (mshr == noTargetMSHR) {
1186 // we always clear at least one target
1187 clearBlocked(Blocked_NoTargets);
1188 noTargetMSHR = NULL;
1189 }
1190
1191 // Initial target is used just for stats
1192 MSHR::Target *initial_tgt = mshr->getTarget();
1193 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1194 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1195 Tick miss_latency = curTick() - initial_tgt->recvTime;
1196 PacketList writebacks;
1197 // We need forward_time here because we have a call of
1198 // allocateWriteBuffer() that need this parameter to specify the
1199 // time to request the bus. In this case we use forward latency
1200 // because there is a writeback. We pay also here for headerDelay
1201 // that is charged of bus latencies if the packet comes from the
1202 // bus.
1203 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1204
1205 if (pkt->req->isUncacheable()) {
1206 assert(pkt->req->masterId() < system->maxMasters());
1207 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1208 miss_latency;
1209 } else {
1210 assert(pkt->req->masterId() < system->maxMasters());
1211 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1212 miss_latency;
1213 }
1214
1215 bool is_fill = !mshr->isForward &&
1216 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1217
1218 if (is_fill && !is_error) {
1219 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1220 pkt->getAddr());
1221
1222 // give mshr a chance to do some dirty work
1223 mshr->handleFill(pkt, blk);
1224
1225 blk = handleFill(pkt, blk, writebacks);
1226 assert(blk != NULL);
1227 }
1228
1229 // allow invalidation responses originating from write-line
1230 // requests to be discarded
1231 bool discard_invalidate = false;
1232
1233 // First offset for critical word first calculations
1234 int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1235
1236 while (mshr->hasTargets()) {
1237 MSHR::Target *target = mshr->getTarget();
1238 Packet *tgt_pkt = target->pkt;
1239
1240 switch (target->source) {
1241 case MSHR::Target::FromCPU:
1242 Tick completion_time;
1243 // Here we charge on completion_time the delay of the xbar if the
1244 // packet comes from it, charged on headerDelay.
1245 completion_time = pkt->headerDelay;
1246
1247 // Software prefetch handling for cache closest to core
1248 if (tgt_pkt->cmd.isSWPrefetch()) {
1249 // a software prefetch would have already been ack'd immediately
1250 // with dummy data so the core would be able to retire it.
1251 // this request completes right here, so we deallocate it.
1252 delete tgt_pkt->req;
1253 delete tgt_pkt;
1254 break; // skip response
1255 }
1256
1257 // unlike the other packet flows, where data is found in other
1258 // caches or memory and brought back, write-line requests always
1259 // have the data right away, so the above check for "is fill?"
1260 // cannot actually be determined until examining the stored MSHR
1261 // state. We "catch up" with that logic here, which is duplicated
1262 // from above.
1263 if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1264 assert(!is_error);
1265
1266 // NB: we use the original packet here and not the response!
1267 mshr->handleFill(tgt_pkt, blk);
1268 blk = handleFill(tgt_pkt, blk, writebacks);
1269 assert(blk != NULL);
1270
1271 // treat as a fill, and discard the invalidation
1272 // response
1273 is_fill = true;
1274 discard_invalidate = true;
1275 }
1276
1277 if (is_fill) {
1278 satisfyCpuSideRequest(tgt_pkt, blk,
1279 true, mshr->hasPostDowngrade());
1280
1281 // How many bytes past the first request is this one
1282 int transfer_offset =
1283 tgt_pkt->getOffset(blkSize) - initial_offset;
1284 if (transfer_offset < 0) {
1285 transfer_offset += blkSize;
1286 }
1287
1288 // If not critical word (offset) return payloadDelay.
1289 // responseLatency is the latency of the return path
1290 // from lower level caches/memory to an upper level cache or
1291 // the core.
1292 completion_time += clockEdge(responseLatency) +
1293 (transfer_offset ? pkt->payloadDelay : 0);
1294
1295 assert(!tgt_pkt->req->isUncacheable());
1296
1297 assert(tgt_pkt->req->masterId() < system->maxMasters());
1298 missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1299 completion_time - target->recvTime;
1300 } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1301 // failed StoreCond upgrade
1302 assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1303 tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1304 tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1305 // responseLatency is the latency of the return path
1306 // from lower level caches/memory to an upper level cache or
1307 // the core.
1308 completion_time += clockEdge(responseLatency) +
1309 pkt->payloadDelay;
1310 tgt_pkt->req->setExtraData(0);
1311 } else {
1312 // not a cache fill, just forwarding response
1313 // responseLatency is the latency of the return path
1314 // from lower level cahces/memory to the core.
1315 completion_time += clockEdge(responseLatency) +
1316 pkt->payloadDelay;
1317 if (pkt->isRead() && !is_error) {
1318 // sanity check
1319 assert(pkt->getAddr() == tgt_pkt->getAddr());
1320 assert(pkt->getSize() >= tgt_pkt->getSize());
1321
1322 tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1323 }
1324 }
1325 tgt_pkt->makeTimingResponse();
1326 // if this packet is an error copy that to the new packet
1327 if (is_error)
1328 tgt_pkt->copyError(pkt);
1329 if (tgt_pkt->cmd == MemCmd::ReadResp &&
1330 (pkt->isInvalidate() || mshr->hasPostInvalidate())) {
1331 // If intermediate cache got ReadRespWithInvalidate,
1332 // propagate that. Response should not have
1333 // isInvalidate() set otherwise.
1334 tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1335 DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n",
1336 __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr());
1337 }
1338 // Reset the bus additional time as it is now accounted for
1339 tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1340 cpuSidePort->schedTimingResp(tgt_pkt, completion_time);
1341 break;
1342
1343 case MSHR::Target::FromPrefetcher:
1344 assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1345 if (blk)
1346 blk->status |= BlkHWPrefetched;
1347 delete tgt_pkt->req;
1348 delete tgt_pkt;
1349 break;
1350
1351 case MSHR::Target::FromSnoop:
1352 // I don't believe that a snoop can be in an error state
1353 assert(!is_error);
1354 // response to snoop request
1355 DPRINTF(Cache, "processing deferred snoop...\n");
1356 assert(!(pkt->isInvalidate() && !mshr->hasPostInvalidate()));
1357 handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1358 break;
1359
1360 default:
1361 panic("Illegal target->source enum %d\n", target->source);
1362 }
1363
1364 mshr->popTarget();
1365 }
1366
1367 if (blk && blk->isValid()) {
1368 // an invalidate response stemming from a write line request
1369 // should not invalidate the block, so check if the
1370 // invalidation should be discarded
1371 if ((pkt->isInvalidate() || mshr->hasPostInvalidate()) &&
1372 !discard_invalidate) {
1373 assert(blk != tempBlock);
1374 tags->invalidate(blk);
1375 blk->invalidate();
1376 } else if (mshr->hasPostDowngrade()) {
1377 blk->status &= ~BlkWritable;
1378 }
1379 }
1380
1381 if (mshr->promoteDeferredTargets()) {
1382 // avoid later read getting stale data while write miss is
1383 // outstanding.. see comment in timingAccess()
1384 if (blk) {
1385 blk->status &= ~BlkReadable;
1386 }
1387 mq = mshr->queue;
1388 mq->markPending(mshr);
1389 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1390 } else {
1391 mq->deallocate(mshr);
1392 if (wasFull && !mq->isFull()) {
1393 clearBlocked((BlockedCause)mq->index);
1394 }
1395
1396 // Request the bus for a prefetch if this deallocation freed enough
1397 // MSHRs for a prefetch to take place
1398 if (prefetcher && mq == &mshrQueue && mshrQueue.canPrefetch()) {
1399 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1400 clockEdge());
1401 if (next_pf_time != MaxTick)
1402 schedMemSideSendEvent(next_pf_time);
1403 }
1404 }
1405 // reset the xbar additional timinig as it is now accounted for
1406 pkt->headerDelay = pkt->payloadDelay = 0;
1407
1408 // copy writebacks to write buffer
1409 doWritebacks(writebacks, forward_time);
1410
1411 // if we used temp block, check to see if its valid and then clear it out
1412 if (blk == tempBlock && tempBlock->isValid()) {
1413 // We use forwardLatency here because we are copying
1414 // Writebacks/CleanEvicts to write buffer. It specifies the latency to
1415 // allocate an internal buffer and to schedule an event to the
1416 // queued port.
1417 if (blk->isDirty()) {
1418 PacketPtr wbPkt = writebackBlk(blk);
1419 allocateWriteBuffer(wbPkt, forward_time);
1420 // Set BLOCK_CACHED flag if cached above.
1421 if (isCachedAbove(wbPkt))
1422 wbPkt->setBlockCached();
1423 } else {
1424 PacketPtr wcPkt = cleanEvictBlk(blk);
1425 // Check to see if block is cached above. If not allocate
1426 // write buffer
1427 if (isCachedAbove(wcPkt))
1428 delete wcPkt;
1429 else
1430 allocateWriteBuffer(wcPkt, forward_time);
1431 }
1432 blk->invalidate();
1433 }
1434
1435 DPRINTF(Cache, "Leaving %s with %s for addr %#llx\n", __func__,
1436 pkt->cmdString(), pkt->getAddr());
1437 delete pkt;
1438}
1439
1440PacketPtr
1441Cache::writebackBlk(CacheBlk *blk)
1442{
1443 chatty_assert(!isReadOnly, "Writeback from read-only cache");
1444 assert(blk && blk->isValid() && blk->isDirty());
1445
1446 writebacks[Request::wbMasterId]++;
1447
1448 Request *writebackReq =
1449 new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1450 Request::wbMasterId);
1451 if (blk->isSecure())
1452 writebackReq->setFlags(Request::SECURE);
1453
1454 writebackReq->taskId(blk->task_id);
1455 blk->task_id= ContextSwitchTaskId::Unknown;
1456 blk->tickInserted = curTick();
1457
1458 PacketPtr writeback = new Packet(writebackReq, MemCmd::Writeback);
1459 if (blk->isWritable()) {
1460 // not asserting shared means we pass the block in modified
1461 // state, mark our own block non-writeable
1462 blk->status &= ~BlkWritable;
1463 } else {
1464 // we are in the owned state, tell the receiver
1465 writeback->assertShared();
1466 }
1467
1468 writeback->allocate();
1469 std::memcpy(writeback->getPtr<uint8_t>(), blk->data, blkSize);
1470
1471 blk->status &= ~BlkDirty;
1472 return writeback;
1473}
1474
1475PacketPtr
1476Cache::cleanEvictBlk(CacheBlk *blk)
1477{
1478 assert(blk && blk->isValid() && !blk->isDirty());
1479 // Creating a zero sized write, a message to the snoop filter
1480 Request *req =
1481 new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1482 Request::wbMasterId);
1483 if (blk->isSecure())
1484 req->setFlags(Request::SECURE);
1485
1486 req->taskId(blk->task_id);
1487 blk->task_id = ContextSwitchTaskId::Unknown;
1488 blk->tickInserted = curTick();
1489
1490 PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1491 pkt->allocate();
1492 DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(),
1493 pkt->req->isInstFetch() ? " (ifetch)" : "",
1494 pkt->getAddr());
1495
1496 return pkt;
1497}
1498
1499void
1500Cache::memWriteback()
1501{
1502 CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1503 tags->forEachBlk(visitor);
1504}
1505
1506void
1507Cache::memInvalidate()
1508{
1509 CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1510 tags->forEachBlk(visitor);
1511}
1512
1513bool
1514Cache::isDirty() const
1515{
1516 CacheBlkIsDirtyVisitor visitor;
1517 tags->forEachBlk(visitor);
1518
1519 return visitor.isDirty();
1520}
1521
1522bool
1523Cache::writebackVisitor(CacheBlk &blk)
1524{
1525 if (blk.isDirty()) {
1526 assert(blk.isValid());
1527
1528 Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
1529 blkSize, 0, Request::funcMasterId);
1530 request.taskId(blk.task_id);
1531
1532 Packet packet(&request, MemCmd::WriteReq);
1533 packet.dataStatic(blk.data);
1534
1535 memSidePort->sendFunctional(&packet);
1536
1537 blk.status &= ~BlkDirty;
1538 }
1539
1540 return true;
1541}
1542
1543bool
1544Cache::invalidateVisitor(CacheBlk &blk)
1545{
1546
1547 if (blk.isDirty())
1548 warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1549
1550 if (blk.isValid()) {
1551 assert(!blk.isDirty());
1552 tags->invalidate(&blk);
1553 blk.invalidate();
1554 }
1555
1556 return true;
1557}
1558
1559CacheBlk*
1560Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1561{
1562 CacheBlk *blk = tags->findVictim(addr);
1563
1564 // It is valid to return NULL if there is no victim
1565 if (!blk)
1566 return nullptr;
1567
1568 if (blk->isValid()) {
1569 Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
1570 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1571 if (repl_mshr) {
1572 // must be an outstanding upgrade request
1573 // on a block we're about to replace...
1574 assert(!blk->isWritable() || blk->isDirty());
1575 assert(repl_mshr->needsExclusive());
1576 // too hard to replace block with transient state
1577 // allocation failed, block not inserted
1578 return NULL;
1579 } else {
1580 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx (%s): %s\n",
1581 repl_addr, blk->isSecure() ? "s" : "ns",
1582 addr, is_secure ? "s" : "ns",
1583 blk->isDirty() ? "writeback" : "clean");
1584
1585 // Will send up Writeback/CleanEvict snoops via isCachedAbove
1586 // when pushing this writeback list into the write buffer.
1587 if (blk->isDirty()) {
1588 // Save writeback packet for handling by caller
1589 writebacks.push_back(writebackBlk(blk));
1590 } else {
1591 writebacks.push_back(cleanEvictBlk(blk));
1592 }
1593 }
1594 }
1595
1596 return blk;
1597}
1598
1599
1600// Note that the reason we return a list of writebacks rather than
1601// inserting them directly in the write buffer is that this function
1602// is called by both atomic and timing-mode accesses, and in atomic
1603// mode we don't mess with the write buffer (we just perform the
1604// writebacks atomically once the original request is complete).
1605CacheBlk*
1606Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks)
1607{
1608 assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1609 Addr addr = pkt->getAddr();
1610 bool is_secure = pkt->isSecure();
1611#if TRACING_ON
1612 CacheBlk::State old_state = blk ? blk->status : 0;
1613#endif
1614
1615 // When handling a fill, discard any CleanEvicts for the
1616 // same address in write buffer.
1617 Addr M5_VAR_USED blk_addr = blockAlign(pkt->getAddr());
1618 std::vector<MSHR *> M5_VAR_USED wbs;
1619 assert (!writeBuffer.findMatches(blk_addr, is_secure, wbs));
1620
1621 if (blk == NULL) {
1622 // better have read new data...
1623 assert(pkt->hasData());
1624
1625 // only read responses and write-line requests have data;
1626 // note that we don't write the data here for write-line - that
1627 // happens in the subsequent satisfyCpuSideRequest.
1628 assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1629
1630 // need to do a replacement
1631 blk = allocateBlock(addr, is_secure, writebacks);
1632 if (blk == NULL) {
1633 // No replaceable block... just use temporary storage to
1634 // complete the current request and then get rid of it
1635 assert(!tempBlock->isValid());
1636 blk = tempBlock;
1637 tempBlock->set = tags->extractSet(addr);
1638 tempBlock->tag = tags->extractTag(addr);
1639 // @todo: set security state as well...
1640 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1641 is_secure ? "s" : "ns");
1642 } else {
1643 tags->insertBlock(pkt, blk);
1644 }
1645
1646 // we should never be overwriting a valid block
1647 assert(!blk->isValid());
1648 } else {
1649 // existing block... probably an upgrade
1650 assert(blk->tag == tags->extractTag(addr));
1651 // either we're getting new data or the block should already be valid
1652 assert(pkt->hasData() || blk->isValid());
1653 // don't clear block status... if block is already dirty we
1654 // don't want to lose that
1655 }
1656
1657 if (is_secure)
1658 blk->status |= BlkSecure;
1659 blk->status |= BlkValid | BlkReadable;
1660
1661 if (!pkt->sharedAsserted()) {
1662 // we could get non-shared responses from memory (rather than
1663 // a cache) even in a read-only cache, note that we set this
1664 // bit even for a read-only cache as we use it to represent
1665 // the exclusive state
1666 blk->status |= BlkWritable;
1667
1668 // If we got this via cache-to-cache transfer (i.e., from a
1669 // cache that was an owner) and took away that owner's copy,
1670 // then we need to write it back. Normally this happens
1671 // anyway as a side effect of getting a copy to write it, but
1672 // there are cases (such as failed store conditionals or
1673 // compare-and-swaps) where we'll demand an exclusive copy but
1674 // end up not writing it.
1675 if (pkt->memInhibitAsserted()) {
1676 blk->status |= BlkDirty;
1677
1678 chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1679 "in read-only cache %s\n", name());
1680 }
1681 }
1682
1683 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1684 addr, is_secure ? "s" : "ns", old_state, blk->print());
1685
1686 // if we got new data, copy it in (checking for a read response
1687 // and a response that has data is the same in the end)
1688 if (pkt->isRead()) {
1689 // sanity checks
1690 assert(pkt->hasData());
1691 assert(pkt->getSize() == blkSize);
1692
1693 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
1694 }
1695 // We pay for fillLatency here.
1696 blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1697 pkt->payloadDelay;
1698
1699 return blk;
1700}
1701
1702
1703/////////////////////////////////////////////////////
1704//
1705// Snoop path: requests coming in from the memory side
1706//
1707/////////////////////////////////////////////////////
1708
1709void
1710Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1711 bool already_copied, bool pending_inval)
1712{
1713 // sanity check
1714 assert(req_pkt->isRequest());
1715 assert(req_pkt->needsResponse());
1716
1717 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1718 req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize());
1719 // timing-mode snoop responses require a new packet, unless we
1720 // already made a copy...
1721 PacketPtr pkt = req_pkt;
1722 if (!already_copied)
1723 // do not clear flags, and allocate space for data if the
1724 // packet needs it (the only packets that carry data are read
1725 // responses)
1726 pkt = new Packet(req_pkt, false, req_pkt->isRead());
1727
1728 assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
1729 pkt->sharedAsserted());
1730 pkt->makeTimingResponse();
1731 if (pkt->isRead()) {
1732 pkt->setDataFromBlock(blk_data, blkSize);
1733 }
1734 if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
1735 // Assume we defer a response to a read from a far-away cache
1736 // A, then later defer a ReadExcl from a cache B on the same
1737 // bus as us. We'll assert MemInhibit in both cases, but in
1738 // the latter case MemInhibit will keep the invalidation from
1739 // reaching cache A. This special response tells cache A that
1740 // it gets the block to satisfy its read, but must immediately
1741 // invalidate it.
1742 pkt->cmd = MemCmd::ReadRespWithInvalidate;
1743 }
1744 // Here we consider forward_time, paying for just forward latency and
1745 // also charging the delay provided by the xbar.
1746 // forward_time is used as send_time in next allocateWriteBuffer().
1747 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1748 // Here we reset the timing of the packet.
1749 pkt->headerDelay = pkt->payloadDelay = 0;
1750 DPRINTF(Cache, "%s created response: %s addr %#llx size %d tick: %lu\n",
1751 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1752 forward_time);
1753 memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
1754}
1755
1756uint32_t
1757Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
1758 bool is_deferred, bool pending_inval)
1759{
1760 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1761 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1762 // deferred snoops can only happen in timing mode
1763 assert(!(is_deferred && !is_timing));
1764 // pending_inval only makes sense on deferred snoops
1765 assert(!(pending_inval && !is_deferred));
1766 assert(pkt->isRequest());
1767
1768 // the packet may get modified if we or a forwarded snooper
1769 // responds in atomic mode, so remember a few things about the
1770 // original packet up front
1771 bool invalidate = pkt->isInvalidate();
1772 bool M5_VAR_USED needs_exclusive = pkt->needsExclusive();
1773
1774 uint32_t snoop_delay = 0;
1775
1776 if (forwardSnoops) {
1777 // first propagate snoop upward to see if anyone above us wants to
1778 // handle it. save & restore packet src since it will get
1779 // rewritten to be relative to cpu-side bus (if any)
1780 bool alreadyResponded = pkt->memInhibitAsserted();
1781 if (is_timing) {
1782 // copy the packet so that we can clear any flags before
1783 // forwarding it upwards, we also allocate data (passing
1784 // the pointer along in case of static data), in case
1785 // there is a snoop hit in upper levels
1786 Packet snoopPkt(pkt, true, true);
1787 snoopPkt.setExpressSnoop();
1788 snoopPkt.pushSenderState(new ForwardResponseRecord());
1789 // the snoop packet does not need to wait any additional
1790 // time
1791 snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
1792 cpuSidePort->sendTimingSnoopReq(&snoopPkt);
1793
1794 // add the header delay (including crossbar and snoop
1795 // delays) of the upward snoop to the snoop delay for this
1796 // cache
1797 snoop_delay += snoopPkt.headerDelay;
1798
1799 if (snoopPkt.memInhibitAsserted()) {
1800 // cache-to-cache response from some upper cache
1801 assert(!alreadyResponded);
1802 pkt->assertMemInhibit();
1803 } else {
1804 // no cache (or anyone else for that matter) will
1805 // respond, so delete the ForwardResponseRecord here
1806 delete snoopPkt.popSenderState();
1807 }
1808 if (snoopPkt.sharedAsserted()) {
1809 pkt->assertShared();
1810 }
1811 // If this request is a prefetch or clean evict and an upper level
1812 // signals block present, make sure to propagate the block
1813 // presence to the requester.
1814 if (snoopPkt.isBlockCached()) {
1815 pkt->setBlockCached();
1816 }
1817 } else {
1818 cpuSidePort->sendAtomicSnoop(pkt);
1819 if (!alreadyResponded && pkt->memInhibitAsserted()) {
1820 // cache-to-cache response from some upper cache:
1821 // forward response to original requester
1822 assert(pkt->isResponse());
1823 }
1824 }
1825 }
1826
1827 if (!blk || !blk->isValid()) {
1828 DPRINTF(Cache, "%s snoop miss for %s addr %#llx size %d\n",
1829 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1830 return snoop_delay;
1831 } else {
1832 DPRINTF(Cache, "%s snoop hit for %s for addr %#llx size %d, "
1833 "old state is %s\n", __func__, pkt->cmdString(),
1834 pkt->getAddr(), pkt->getSize(), blk->print());
1835 }
1836
1837 chatty_assert(!(isReadOnly && blk->isDirty()),
1838 "Should never have a dirty block in a read-only cache %s\n",
1839 name());
1840
1841 // We may end up modifying both the block state and the packet (if
1842 // we respond in atomic mode), so just figure out what to do now
1843 // and then do it later. If we find dirty data while snooping for
1844 // an invalidate, we don't need to send a response. The
1845 // invalidation itself is taken care of below.
1846 bool respond = blk->isDirty() && pkt->needsResponse() &&
1847 pkt->cmd != MemCmd::InvalidateReq;
1848 bool have_exclusive = blk->isWritable();
1849
1850 // Invalidate any prefetch's from below that would strip write permissions
1851 // MemCmd::HardPFReq is only observed by upstream caches. After missing
1852 // above and in it's own cache, a new MemCmd::ReadReq is created that
1853 // downstream caches observe.
1854 if (pkt->mustCheckAbove()) {
1855 DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s from"
1856 " lower cache\n", pkt->getAddr(), pkt->cmdString());
1857 pkt->setBlockCached();
1858 return snoop_delay;
1859 }
1860
1861 if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
1862 // reading non-exclusive shared data, note that we retain
1863 // the block in owned state if it is dirty, with the response
1864 // taken care of below, and otherwhise simply downgrade to
1865 // shared
1866 assert(!needs_exclusive);
1867 pkt->assertShared();
1868 blk->status &= ~BlkWritable;
1869 }
1870
1871 if (respond) {
1872 // prevent anyone else from responding, cache as well as
1873 // memory, and also prevent any memory from even seeing the
1874 // request (with current inhibited semantics), note that this
1875 // applies both to reads and writes and that for writes it
1876 // works thanks to the fact that we still have dirty data and
1877 // will write it back at a later point
1878 pkt->assertMemInhibit();
1879 if (have_exclusive) {
1880 // in the case of an uncacheable request there is no point
1881 // in setting the exclusive flag, but since the recipient
1882 // does not care there is no harm in doing so, in any case
1883 // it is just a hint
1884 pkt->setSupplyExclusive();
1885 }
1886 if (is_timing) {
1887 doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
1888 } else {
1889 pkt->makeAtomicResponse();
1890 pkt->setDataFromBlock(blk->data, blkSize);
1891 }
1892 }
1893
1894 if (!respond && is_timing && is_deferred) {
1895 // if it's a deferred timing snoop then we've made a copy of
1896 // both the request and the packet, and so if we're not using
1897 // those copies to respond and delete them here
1898 DPRINTF(Cache, "Deleting pkt %p and request %p for cmd %s addr: %p\n",
1899 pkt, pkt->req, pkt->cmdString(), pkt->getAddr());
1900
1901 // the packets needs a response (just not from us), so we also
1902 // need to delete the request and not rely on the packet
1903 // destructor
1904 assert(pkt->needsResponse());
1905 delete pkt->req;
1906 delete pkt;
1907 }
1908
1909 // Do this last in case it deallocates block data or something
1910 // like that
1911 if (invalidate) {
1912 if (blk != tempBlock)
1913 tags->invalidate(blk);
1914 blk->invalidate();
1915 }
1916
1917 DPRINTF(Cache, "new state is %s\n", blk->print());
1918
1919 return snoop_delay;
1920}
1921
1922
1923void
1924Cache::recvTimingSnoopReq(PacketPtr pkt)
1925{
1926 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1927 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1928
1929 // Snoops shouldn't happen when bypassing caches
1930 assert(!system->bypassCaches());
1931
1909 // no need to snoop writebacks or requests that are not in range
1932 // no need to snoop requests that are not in range
1933 if (!inRange(pkt->getAddr())) {
1934 return;
1935 }
1936
1937 bool is_secure = pkt->isSecure();
1938 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1939
1940 Addr blk_addr = blockAlign(pkt->getAddr());
1941 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1942
1943 // Update the latency cost of the snoop so that the crossbar can
1944 // account for it. Do not overwrite what other neighbouring caches
1945 // have already done, rather take the maximum. The update is
1946 // tentative, for cases where we return before an upward snoop
1947 // happens below.
1948 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
1949 lookupLatency * clockPeriod());
1950
1951 // Inform request(Prefetch, CleanEvict or Writeback) from below of
1952 // MSHR hit, set setBlockCached.
1953 if (mshr && pkt->mustCheckAbove()) {
1954 DPRINTF(Cache, "Setting block cached for %s from"
1955 "lower cache on mshr hit %#x\n",
1956 pkt->cmdString(), pkt->getAddr());
1957 pkt->setBlockCached();
1958 return;
1959 }
1960
1961 // Let the MSHR itself track the snoop and decide whether we want
1962 // to go ahead and do the regular cache snoop
1963 if (mshr && mshr->handleSnoop(pkt, order++)) {
1964 DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
1965 "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
1966 mshr->print());
1967
1968 if (mshr->getNumTargets() > numTarget)
1969 warn("allocating bonus target for snoop"); //handle later
1970 return;
1971 }
1972
1973 //We also need to check the writeback buffers and handle those
1974 std::vector<MSHR *> writebacks;
1975 if (writeBuffer.findMatches(blk_addr, is_secure, writebacks)) {
1976 DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
1977 pkt->getAddr(), is_secure ? "s" : "ns");
1978
1979 // Look through writebacks for any cachable writes.
1980 // We should only ever find a single match
1981 assert(writebacks.size() == 1);
1982 MSHR *wb_entry = writebacks[0];
1983 // Expect to see only Writebacks and/or CleanEvicts here, both of
1984 // which should not be generated for uncacheable data.
1985 assert(!wb_entry->isUncacheable());
1986 // There should only be a single request responsible for generating
1987 // Writebacks/CleanEvicts.
1988 assert(wb_entry->getNumTargets() == 1);
1989 PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
1990 assert(wb_pkt->evictingBlock());
1991
1992 if (pkt->evictingBlock()) {
1993 // if the block is found in the write queue, set the BLOCK_CACHED
1994 // flag for Writeback/CleanEvict snoop. On return the snoop will
1995 // propagate the BLOCK_CACHED flag in Writeback packets and prevent
1996 // any CleanEvicts from travelling down the memory hierarchy.
1997 pkt->setBlockCached();
1998 DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit"
1999 " %#x\n", pkt->cmdString(), pkt->getAddr());
2000 return;
2001 }
2002
2003 if (wb_pkt->cmd == MemCmd::Writeback) {
2004 assert(!pkt->memInhibitAsserted());
2005 pkt->assertMemInhibit();
2006 if (!pkt->needsExclusive()) {
2007 pkt->assertShared();
2008 // the writeback is no longer passing exclusivity (the
2009 // receiving cache should consider the block owned
2010 // rather than modified)
2011 wb_pkt->assertShared();
2012 } else {
2013 // if we're not asserting the shared line, we need to
2014 // invalidate our copy. we'll do that below as long as
2015 // the packet's invalidate flag is set...
2016 assert(pkt->isInvalidate());
2017 }
2018 doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2019 false, false);
2020 } else {
2021 assert(wb_pkt->cmd == MemCmd::CleanEvict);
2022 // The cache technically holds the block until the
2023 // corresponding CleanEvict message reaches the crossbar
2024 // below. Therefore when a snoop encounters a CleanEvict
2025 // message we must set assertShared (just like when it
2026 // encounters a Writeback) to avoid the snoop filter
2027 // prematurely clearing the holder bit in the crossbar
2028 // below
2029 if (!pkt->needsExclusive())
2030 pkt->assertShared();
2031 else
2032 assert(pkt->isInvalidate());
2033 }
2034
2035 if (pkt->isInvalidate()) {
2036 // Invalidation trumps our writeback... discard here
2037 // Note: markInService will remove entry from writeback buffer.
2038 markInService(wb_entry, false);
2039 delete wb_pkt;
2040 }
2041 }
2042
2043 // If this was a shared writeback, there may still be
2044 // other shared copies above that require invalidation.
2045 // We could be more selective and return here if the
2046 // request is non-exclusive or if the writeback is
2047 // exclusive.
2048 uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2049
2050 // Override what we did when we first saw the snoop, as we now
2051 // also have the cost of the upwards snoops to account for
2052 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2053 lookupLatency * clockPeriod());
2054}
2055
2056bool
2057Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2058{
2059 // Express snoop responses from master to slave, e.g., from L1 to L2
2060 cache->recvTimingSnoopResp(pkt);
2061 return true;
2062}
2063
2064Tick
2065Cache::recvAtomicSnoop(PacketPtr pkt)
2066{
2067 // Snoops shouldn't happen when bypassing caches
2068 assert(!system->bypassCaches());
2069
2047 // no need to snoop writebacks or requests that are not in range. In
2048 // atomic we have no Writebacks/CleanEvicts queued and no prefetches,
2049 // hence there is no need to snoop upwards and determine if they are
2050 // present above.
2051 if (pkt->evictingBlock() || !inRange(pkt->getAddr())) {
2070 // no need to snoop requests that are not in range.
2071 if (!inRange(pkt->getAddr())) {
2072 return 0;
2073 }
2074
2075 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2076 uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2077 return snoop_delay + lookupLatency * clockPeriod();
2078}
2079
2080
2081MSHR *
2082Cache::getNextMSHR()
2083{
2084 // Check both MSHR queue and write buffer for potential requests,
2085 // note that null does not mean there is no request, it could
2086 // simply be that it is not ready
2087 MSHR *miss_mshr = mshrQueue.getNextMSHR();
2088 MSHR *write_mshr = writeBuffer.getNextMSHR();
2089
2090 // If we got a write buffer request ready, first priority is a
2091 // full write buffer, otherwhise we favour the miss requests
2092 if (write_mshr &&
2093 ((writeBuffer.isFull() && writeBuffer.inServiceEntries == 0) ||
2094 !miss_mshr)) {
2095 // need to search MSHR queue for conflicting earlier miss.
2096 MSHR *conflict_mshr =
2097 mshrQueue.findPending(write_mshr->blkAddr,
2098 write_mshr->isSecure);
2099
2100 if (conflict_mshr && conflict_mshr->order < write_mshr->order) {
2101 // Service misses in order until conflict is cleared.
2102 return conflict_mshr;
2103
2104 // @todo Note that we ignore the ready time of the conflict here
2105 }
2106
2107 // No conflicts; issue write
2108 return write_mshr;
2109 } else if (miss_mshr) {
2110 // need to check for conflicting earlier writeback
2111 MSHR *conflict_mshr =
2112 writeBuffer.findPending(miss_mshr->blkAddr,
2113 miss_mshr->isSecure);
2114 if (conflict_mshr) {
2115 // not sure why we don't check order here... it was in the
2116 // original code but commented out.
2117
2118 // The only way this happens is if we are
2119 // doing a write and we didn't have permissions
2120 // then subsequently saw a writeback (owned got evicted)
2121 // We need to make sure to perform the writeback first
2122 // To preserve the dirty data, then we can issue the write
2123
2124 // should we return write_mshr here instead? I.e. do we
2125 // have to flush writes in order? I don't think so... not
2126 // for Alpha anyway. Maybe for x86?
2127 return conflict_mshr;
2128
2129 // @todo Note that we ignore the ready time of the conflict here
2130 }
2131
2132 // No conflicts; issue read
2133 return miss_mshr;
2134 }
2135
2136 // fall through... no pending requests. Try a prefetch.
2137 assert(!miss_mshr && !write_mshr);
2138 if (prefetcher && mshrQueue.canPrefetch()) {
2139 // If we have a miss queue slot, we can try a prefetch
2140 PacketPtr pkt = prefetcher->getPacket();
2141 if (pkt) {
2142 Addr pf_addr = blockAlign(pkt->getAddr());
2143 if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2144 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2145 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2146 // Update statistic on number of prefetches issued
2147 // (hwpf_mshr_misses)
2148 assert(pkt->req->masterId() < system->maxMasters());
2149 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2150
2151 // allocate an MSHR and return it, note
2152 // that we send the packet straight away, so do not
2153 // schedule the send
2154 return allocateMissBuffer(pkt, curTick(), false);
2155 } else {
2156 // free the request and packet
2157 delete pkt->req;
2158 delete pkt;
2159 }
2160 }
2161 }
2162
2163 return NULL;
2164}
2165
2166bool
2147Cache::isCachedAbove(const PacketPtr pkt) const
2167Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
2168{
2169 if (!forwardSnoops)
2170 return false;
2171 // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2172 // Writeback snoops into upper level caches to check for copies of the
2173 // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2174 // packet, the cache can inform the crossbar below of presence or absence
2175 // of the block.
2156
2157 Packet snoop_pkt(pkt, true, false);
2158 snoop_pkt.setExpressSnoop();
2159 // Assert that packet is either Writeback or CleanEvict and not a prefetch
2160 // request because prefetch requests need an MSHR and may generate a snoop
2161 // response.
2162 assert(pkt->evictingBlock());
2163 snoop_pkt.senderState = NULL;
2164 cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2165 // Writeback/CleanEvict snoops do not generate a separate snoop response.
2166 assert(!(snoop_pkt.memInhibitAsserted()));
2167 return snoop_pkt.isBlockCached();
2176 if (is_timing) {
2177 Packet snoop_pkt(pkt, true, false);
2178 snoop_pkt.setExpressSnoop();
2179 // Assert that packet is either Writeback or CleanEvict and not a
2180 // prefetch request because prefetch requests need an MSHR and may
2181 // generate a snoop response.
2182 assert(pkt->evictingBlock());
2183 snoop_pkt.senderState = NULL;
2184 cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2185 // Writeback/CleanEvict snoops do not generate a snoop response.
2186 assert(!(snoop_pkt.memInhibitAsserted()));
2187 return snoop_pkt.isBlockCached();
2188 } else {
2189 cpuSidePort->sendAtomicSnoop(pkt);
2190 return pkt->isBlockCached();
2191 }
2192}
2193
2194PacketPtr
2195Cache::getTimingPacket()
2196{
2197 MSHR *mshr = getNextMSHR();
2198
2199 if (mshr == NULL) {
2200 return NULL;
2201 }
2202
2203 // use request from 1st target
2204 PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2205 PacketPtr pkt = NULL;
2206
2207 DPRINTF(CachePort, "%s %s for addr %#llx size %d\n", __func__,
2208 tgt_pkt->cmdString(), tgt_pkt->getAddr(), tgt_pkt->getSize());
2209
2210 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2211
2212 if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2213 // We need to check the caches above us to verify that
2214 // they don't have a copy of this block in the dirty state
2215 // at the moment. Without this check we could get a stale
2216 // copy from memory that might get used in place of the
2217 // dirty one.
2218 Packet snoop_pkt(tgt_pkt, true, false);
2219 snoop_pkt.setExpressSnoop();
2220 snoop_pkt.senderState = mshr;
2221 cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2222
2223 // Check to see if the prefetch was squashed by an upper cache (to
2224 // prevent us from grabbing the line) or if a Check to see if a
2225 // writeback arrived between the time the prefetch was placed in
2226 // the MSHRs and when it was selected to be sent or if the
2227 // prefetch was squashed by an upper cache.
2228
2229 // It is important to check memInhibitAsserted before
2230 // prefetchSquashed. If another cache has asserted MEM_INGIBIT, it
2231 // will be sending a response which will arrive at the MSHR
2232 // allocated ofr this request. Checking the prefetchSquash first
2233 // may result in the MSHR being prematurely deallocated.
2234
2235 if (snoop_pkt.memInhibitAsserted()) {
2236 // If we are getting a non-shared response it is dirty
2237 bool pending_dirty_resp = !snoop_pkt.sharedAsserted();
2238 markInService(mshr, pending_dirty_resp);
2239 DPRINTF(Cache, "Upward snoop of prefetch for addr"
2240 " %#x (%s) hit\n",
2241 tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2242 return NULL;
2243 }
2244
2245 if (snoop_pkt.isBlockCached() || blk != NULL) {
2246 DPRINTF(Cache, "Block present, prefetch squashed by cache. "
2247 "Deallocating mshr target %#x.\n",
2248 mshr->blkAddr);
2249
2250 // Deallocate the mshr target
2251 if (tgt_pkt->cmd != MemCmd::Writeback) {
2252 if (mshr->queue->forceDeallocateTarget(mshr)) {
2253 // Clear block if this deallocation resulted freed an
2254 // mshr when all had previously been utilized
2255 clearBlocked((BlockedCause)(mshr->queue->index));
2256 }
2257 return NULL;
2258 } else {
2259 // If this is a Writeback, and the snoops indicate that the blk
2260 // is cached above, set the BLOCK_CACHED flag in the Writeback
2261 // packet, so that it does not reset the bits corresponding to
2262 // this block in the snoop filter below.
2263 tgt_pkt->setBlockCached();
2264 }
2265 }
2266 }
2267
2268 if (mshr->isForwardNoResponse()) {
2269 // no response expected, just forward packet as it is
2270 assert(tags->findBlock(mshr->blkAddr, mshr->isSecure) == NULL);
2271 pkt = tgt_pkt;
2272 } else {
2273 pkt = getBusPacket(tgt_pkt, blk, mshr->needsExclusive());
2274
2275 mshr->isForward = (pkt == NULL);
2276
2277 if (mshr->isForward) {
2278 // not a cache block request, but a response is expected
2279 // make copy of current packet to forward, keep current
2280 // copy for response handling
2281 pkt = new Packet(tgt_pkt, false, true);
2282 if (pkt->isWrite()) {
2283 pkt->setData(tgt_pkt->getConstPtr<uint8_t>());
2284 }
2285 }
2286 }
2287
2288 assert(pkt != NULL);
2289 pkt->senderState = mshr;
2290 return pkt;
2291}
2292
2293
2294Tick
2295Cache::nextMSHRReadyTime() const
2296{
2297 Tick nextReady = std::min(mshrQueue.nextMSHRReadyTime(),
2298 writeBuffer.nextMSHRReadyTime());
2299
2300 // Don't signal prefetch ready time if no MSHRs available
2301 // Will signal once enoguh MSHRs are deallocated
2302 if (prefetcher && mshrQueue.canPrefetch()) {
2303 nextReady = std::min(nextReady,
2304 prefetcher->nextPrefetchReadyTime());
2305 }
2306
2307 return nextReady;
2308}
2309
2310void
2311Cache::serialize(CheckpointOut &cp) const
2312{
2313 bool dirty(isDirty());
2314
2315 if (dirty) {
2316 warn("*** The cache still contains dirty data. ***\n");
2317 warn(" Make sure to drain the system using the correct flags.\n");
2318 warn(" This checkpoint will not restore correctly and dirty data in "
2319 "the cache will be lost!\n");
2320 }
2321
2322 // Since we don't checkpoint the data in the cache, any dirty data
2323 // will be lost when restoring from a checkpoint of a system that
2324 // wasn't drained properly. Flag the checkpoint as invalid if the
2325 // cache contains dirty data.
2326 bool bad_checkpoint(dirty);
2327 SERIALIZE_SCALAR(bad_checkpoint);
2328}
2329
2330void
2331Cache::unserialize(CheckpointIn &cp)
2332{
2333 bool bad_checkpoint;
2334 UNSERIALIZE_SCALAR(bad_checkpoint);
2335 if (bad_checkpoint) {
2336 fatal("Restoring from checkpoints with dirty caches is not supported "
2337 "in the classic memory system. Please remove any caches or "
2338 " drain them properly before taking checkpoints.\n");
2339 }
2340}
2341
2342///////////////
2343//
2344// CpuSidePort
2345//
2346///////////////
2347
2348AddrRangeList
2349Cache::CpuSidePort::getAddrRanges() const
2350{
2351 return cache->getAddrRanges();
2352}
2353
2354bool
2355Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2356{
2357 assert(!cache->system->bypassCaches());
2358
2359 bool success = false;
2360
2361 // always let inhibited requests through, even if blocked,
2362 // ultimately we should check if this is an express snoop, but at
2363 // the moment that flag is only set in the cache itself
2364 if (pkt->memInhibitAsserted()) {
2365 // do not change the current retry state
2366 bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
2367 assert(bypass_success);
2368 return true;
2369 } else if (blocked || mustSendRetry) {
2370 // either already committed to send a retry, or blocked
2371 success = false;
2372 } else {
2373 // pass it on to the cache, and let the cache decide if we
2374 // have to retry or not
2375 success = cache->recvTimingReq(pkt);
2376 }
2377
2378 // remember if we have to retry
2379 mustSendRetry = !success;
2380 return success;
2381}
2382
2383Tick
2384Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2385{
2386 return cache->recvAtomic(pkt);
2387}
2388
2389void
2390Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2391{
2392 // functional request
2393 cache->functionalAccess(pkt, true);
2394}
2395
2396Cache::
2397CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2398 const std::string &_label)
2399 : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2400{
2401}
2402
2403Cache*
2404CacheParams::create()
2405{
2406 assert(tags);
2407
2408 return new Cache(this);
2409}
2410///////////////
2411//
2412// MemSidePort
2413//
2414///////////////
2415
2416bool
2417Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2418{
2419 cache->recvTimingResp(pkt);
2420 return true;
2421}
2422
2423// Express snooping requests to memside port
2424void
2425Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2426{
2427 // handle snooping requests
2428 cache->recvTimingSnoopReq(pkt);
2429}
2430
2431Tick
2432Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2433{
2434 return cache->recvAtomicSnoop(pkt);
2435}
2436
2437void
2438Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2439{
2440 // functional snoop (note that in contrast to atomic we don't have
2441 // a specific functionalSnoop method, as they have the same
2442 // behaviour regardless)
2443 cache->functionalAccess(pkt, false);
2444}
2445
2446void
2447Cache::CacheReqPacketQueue::sendDeferredPacket()
2448{
2449 // sanity check
2450 assert(!waitingOnRetry);
2451
2452 // there should never be any deferred request packets in the
2453 // queue, instead we resly on the cache to provide the packets
2454 // from the MSHR queue or write queue
2455 assert(deferredPacketReadyTime() == MaxTick);
2456
2457 // check for request packets (requests & writebacks)
2458 PacketPtr pkt = cache.getTimingPacket();
2459 if (pkt == NULL) {
2460 // can happen if e.g. we attempt a writeback and fail, but
2461 // before the retry, the writeback is eliminated because
2462 // we snoop another cache's ReadEx.
2463 } else {
2464 MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
2465 // in most cases getTimingPacket allocates a new packet, and
2466 // we must delete it unless it is successfully sent
2467 bool delete_pkt = !mshr->isForwardNoResponse();
2468
2469 // let our snoop responses go first if there are responses to
2470 // the same addresses we are about to writeback, note that
2471 // this creates a dependency between requests and snoop
2472 // responses, but that should not be a problem since there is
2473 // a chain already and the key is that the snoop responses can
2474 // sink unconditionally
2475 if (snoopRespQueue.hasAddr(pkt->getAddr())) {
2476 DPRINTF(CachePort, "Waiting for snoop response to be sent\n");
2477 Tick when = snoopRespQueue.deferredPacketReadyTime();
2478 schedSendEvent(when);
2479
2480 if (delete_pkt)
2481 delete pkt;
2482
2483 return;
2484 }
2485
2486
2487 waitingOnRetry = !masterPort.sendTimingReq(pkt);
2488
2489 if (waitingOnRetry) {
2490 DPRINTF(CachePort, "now waiting on a retry\n");
2491 if (delete_pkt) {
2492 // we are awaiting a retry, but we
2493 // delete the packet and will be creating a new packet
2494 // when we get the opportunity
2495 delete pkt;
2496 }
2497 // note that we have now masked any requestBus and
2498 // schedSendEvent (we will wait for a retry before
2499 // doing anything), and this is so even if we do not
2500 // care about this packet and might override it before
2501 // it gets retried
2502 } else {
2503 // As part of the call to sendTimingReq the packet is
2504 // forwarded to all neighbouring caches (and any
2505 // caches above them) as a snoop. The packet is also
2506 // sent to any potential cache below as the
2507 // interconnect is not allowed to buffer the
2508 // packet. Thus at this point we know if any of the
2509 // neighbouring, or the downstream cache is
2510 // responding, and if so, if it is with a dirty line
2511 // or not.
2512 bool pending_dirty_resp = !pkt->sharedAsserted() &&
2513 pkt->memInhibitAsserted();
2514
2515 cache.markInService(mshr, pending_dirty_resp);
2516 }
2517 }
2518
2519 // if we succeeded and are not waiting for a retry, schedule the
2520 // next send considering when the next MSHR is ready, note that
2521 // snoop responses have their own packet queue and thus schedule
2522 // their own events
2523 if (!waitingOnRetry) {
2524 schedSendEvent(cache.nextMSHRReadyTime());
2525 }
2526}
2527
2528Cache::
2529MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2530 const std::string &_label)
2531 : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2532 _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2533 _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2534{
2535}