cache.cc (11600:a38c3f9c82d1) cache.cc (11601:382e0637fae0)
1/*
2 * Copyright (c) 2010-2016 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 * Dave Greene
43 * Nathan Binkert
44 * Steve Reinhardt
45 * Ron Dreslinski
46 * Andreas Sandberg
47 */
48
49/**
50 * @file
51 * Cache definitions.
52 */
53
54#include "mem/cache/cache.hh"
55
56#include "base/misc.hh"
57#include "base/types.hh"
58#include "debug/Cache.hh"
59#include "debug/CachePort.hh"
60#include "debug/CacheTags.hh"
61#include "debug/CacheVerbose.hh"
62#include "mem/cache/blk.hh"
63#include "mem/cache/mshr.hh"
64#include "mem/cache/prefetch/base.hh"
65#include "sim/sim_exit.hh"
66
67Cache::Cache(const CacheParams *p)
68 : BaseCache(p, p->system->cacheLineSize()),
69 tags(p->tags),
70 prefetcher(p->prefetcher),
71 doFastWrites(true),
72 prefetchOnAccess(p->prefetch_on_access),
73 clusivity(p->clusivity),
74 writebackClean(p->writeback_clean),
75 tempBlockWriteback(nullptr),
76 writebackTempBlockAtomicEvent(this, false,
77 EventBase::Delayed_Writeback_Pri)
78{
79 tempBlock = new CacheBlk();
80 tempBlock->data = new uint8_t[blkSize];
81
82 cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
83 "CpuSidePort");
84 memSidePort = new MemSidePort(p->name + ".mem_side", this,
85 "MemSidePort");
86
87 tags->setCache(this);
88 if (prefetcher)
89 prefetcher->setCache(this);
90}
91
92Cache::~Cache()
93{
94 delete [] tempBlock->data;
95 delete tempBlock;
96
97 delete cpuSidePort;
98 delete memSidePort;
99}
100
101void
102Cache::regStats()
103{
104 BaseCache::regStats();
105}
106
107void
108Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
109{
110 assert(pkt->isRequest());
111
112 uint64_t overwrite_val;
113 bool overwrite_mem;
114 uint64_t condition_val64;
115 uint32_t condition_val32;
116
117 int offset = tags->extractBlkOffset(pkt->getAddr());
118 uint8_t *blk_data = blk->data + offset;
119
120 assert(sizeof(uint64_t) >= pkt->getSize());
121
122 overwrite_mem = true;
123 // keep a copy of our possible write value, and copy what is at the
124 // memory address into the packet
125 pkt->writeData((uint8_t *)&overwrite_val);
126 pkt->setData(blk_data);
127
128 if (pkt->req->isCondSwap()) {
129 if (pkt->getSize() == sizeof(uint64_t)) {
130 condition_val64 = pkt->req->getExtraData();
131 overwrite_mem = !std::memcmp(&condition_val64, blk_data,
132 sizeof(uint64_t));
133 } else if (pkt->getSize() == sizeof(uint32_t)) {
134 condition_val32 = (uint32_t)pkt->req->getExtraData();
135 overwrite_mem = !std::memcmp(&condition_val32, blk_data,
136 sizeof(uint32_t));
137 } else
138 panic("Invalid size for conditional read/write\n");
139 }
140
141 if (overwrite_mem) {
142 std::memcpy(blk_data, &overwrite_val, pkt->getSize());
143 blk->status |= BlkDirty;
144 }
145}
146
147
148void
1/*
2 * Copyright (c) 2010-2016 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 * Dave Greene
43 * Nathan Binkert
44 * Steve Reinhardt
45 * Ron Dreslinski
46 * Andreas Sandberg
47 */
48
49/**
50 * @file
51 * Cache definitions.
52 */
53
54#include "mem/cache/cache.hh"
55
56#include "base/misc.hh"
57#include "base/types.hh"
58#include "debug/Cache.hh"
59#include "debug/CachePort.hh"
60#include "debug/CacheTags.hh"
61#include "debug/CacheVerbose.hh"
62#include "mem/cache/blk.hh"
63#include "mem/cache/mshr.hh"
64#include "mem/cache/prefetch/base.hh"
65#include "sim/sim_exit.hh"
66
67Cache::Cache(const CacheParams *p)
68 : BaseCache(p, p->system->cacheLineSize()),
69 tags(p->tags),
70 prefetcher(p->prefetcher),
71 doFastWrites(true),
72 prefetchOnAccess(p->prefetch_on_access),
73 clusivity(p->clusivity),
74 writebackClean(p->writeback_clean),
75 tempBlockWriteback(nullptr),
76 writebackTempBlockAtomicEvent(this, false,
77 EventBase::Delayed_Writeback_Pri)
78{
79 tempBlock = new CacheBlk();
80 tempBlock->data = new uint8_t[blkSize];
81
82 cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
83 "CpuSidePort");
84 memSidePort = new MemSidePort(p->name + ".mem_side", this,
85 "MemSidePort");
86
87 tags->setCache(this);
88 if (prefetcher)
89 prefetcher->setCache(this);
90}
91
92Cache::~Cache()
93{
94 delete [] tempBlock->data;
95 delete tempBlock;
96
97 delete cpuSidePort;
98 delete memSidePort;
99}
100
101void
102Cache::regStats()
103{
104 BaseCache::regStats();
105}
106
107void
108Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
109{
110 assert(pkt->isRequest());
111
112 uint64_t overwrite_val;
113 bool overwrite_mem;
114 uint64_t condition_val64;
115 uint32_t condition_val32;
116
117 int offset = tags->extractBlkOffset(pkt->getAddr());
118 uint8_t *blk_data = blk->data + offset;
119
120 assert(sizeof(uint64_t) >= pkt->getSize());
121
122 overwrite_mem = true;
123 // keep a copy of our possible write value, and copy what is at the
124 // memory address into the packet
125 pkt->writeData((uint8_t *)&overwrite_val);
126 pkt->setData(blk_data);
127
128 if (pkt->req->isCondSwap()) {
129 if (pkt->getSize() == sizeof(uint64_t)) {
130 condition_val64 = pkt->req->getExtraData();
131 overwrite_mem = !std::memcmp(&condition_val64, blk_data,
132 sizeof(uint64_t));
133 } else if (pkt->getSize() == sizeof(uint32_t)) {
134 condition_val32 = (uint32_t)pkt->req->getExtraData();
135 overwrite_mem = !std::memcmp(&condition_val32, blk_data,
136 sizeof(uint32_t));
137 } else
138 panic("Invalid size for conditional read/write\n");
139 }
140
141 if (overwrite_mem) {
142 std::memcpy(blk_data, &overwrite_val, pkt->getSize());
143 blk->status |= BlkDirty;
144 }
145}
146
147
148void
149Cache::satisfyCpuSideRequest(PacketPtr pkt, CacheBlk *blk,
150 bool deferred_response, bool pending_downgrade)
149Cache::satisfyRequest(PacketPtr pkt, CacheBlk *blk,
150 bool deferred_response, bool pending_downgrade)
151{
152 assert(pkt->isRequest());
153
154 assert(blk && blk->isValid());
155 // Occasionally this is not true... if we are a lower-level cache
156 // satisfying a string of Read and ReadEx requests from
157 // upper-level caches, a Read will mark the block as shared but we
158 // can satisfy a following ReadEx anyway since we can rely on the
159 // Read requester(s) to have buffered the ReadEx snoop and to
160 // invalidate their blocks after receiving them.
161 // assert(!pkt->needsWritable() || blk->isWritable());
162 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
163
164 // Check RMW operations first since both isRead() and
165 // isWrite() will be true for them
166 if (pkt->cmd == MemCmd::SwapReq) {
167 cmpAndSwap(blk, pkt);
168 } else if (pkt->isWrite()) {
169 // we have the block in a writable state and can go ahead,
170 // note that the line may be also be considered writable in
171 // downstream caches along the path to memory, but always
172 // Exclusive, and never Modified
173 assert(blk->isWritable());
174 // Write or WriteLine at the first cache with block in writable state
175 if (blk->checkWrite(pkt)) {
176 pkt->writeDataToBlock(blk->data, blkSize);
177 }
178 // Always mark the line as dirty (and thus transition to the
179 // Modified state) even if we are a failed StoreCond so we
180 // supply data to any snoops that have appended themselves to
181 // this cache before knowing the store will fail.
182 blk->status |= BlkDirty;
183 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d (write)\n",
184 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
185 } else if (pkt->isRead()) {
186 if (pkt->isLLSC()) {
187 blk->trackLoadLocked(pkt);
188 }
189
190 // all read responses have a data payload
191 assert(pkt->hasRespData());
192 pkt->setDataFromBlock(blk->data, blkSize);
193
194 // determine if this read is from a (coherent) cache or not
195 if (pkt->fromCache()) {
196 assert(pkt->getSize() == blkSize);
197 // special handling for coherent block requests from
198 // upper-level caches
199 if (pkt->needsWritable()) {
200 // sanity check
201 assert(pkt->cmd == MemCmd::ReadExReq ||
202 pkt->cmd == MemCmd::SCUpgradeFailReq);
203
204 // if we have a dirty copy, make sure the recipient
205 // keeps it marked dirty (in the modified state)
206 if (blk->isDirty()) {
207 pkt->setCacheResponding();
208 }
209 // on ReadExReq we give up our copy unconditionally,
210 // even if this cache is mostly inclusive, we may want
211 // to revisit this
212 invalidateBlock(blk);
213 } else if (blk->isWritable() && !pending_downgrade &&
214 !pkt->hasSharers() &&
215 pkt->cmd != MemCmd::ReadCleanReq) {
216 // we can give the requester a writable copy on a read
217 // request if:
218 // - we have a writable copy at this level (& below)
219 // - we don't have a pending snoop from below
220 // signaling another read request
221 // - no other cache above has a copy (otherwise it
222 // would have set hasSharers flag when
223 // snooping the packet)
224 // - the read has explicitly asked for a clean
225 // copy of the line
226 if (blk->isDirty()) {
227 // special considerations if we're owner:
228 if (!deferred_response) {
229 // respond with the line in Modified state
230 // (cacheResponding set, hasSharers not set)
231 pkt->setCacheResponding();
232
151{
152 assert(pkt->isRequest());
153
154 assert(blk && blk->isValid());
155 // Occasionally this is not true... if we are a lower-level cache
156 // satisfying a string of Read and ReadEx requests from
157 // upper-level caches, a Read will mark the block as shared but we
158 // can satisfy a following ReadEx anyway since we can rely on the
159 // Read requester(s) to have buffered the ReadEx snoop and to
160 // invalidate their blocks after receiving them.
161 // assert(!pkt->needsWritable() || blk->isWritable());
162 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
163
164 // Check RMW operations first since both isRead() and
165 // isWrite() will be true for them
166 if (pkt->cmd == MemCmd::SwapReq) {
167 cmpAndSwap(blk, pkt);
168 } else if (pkt->isWrite()) {
169 // we have the block in a writable state and can go ahead,
170 // note that the line may be also be considered writable in
171 // downstream caches along the path to memory, but always
172 // Exclusive, and never Modified
173 assert(blk->isWritable());
174 // Write or WriteLine at the first cache with block in writable state
175 if (blk->checkWrite(pkt)) {
176 pkt->writeDataToBlock(blk->data, blkSize);
177 }
178 // Always mark the line as dirty (and thus transition to the
179 // Modified state) even if we are a failed StoreCond so we
180 // supply data to any snoops that have appended themselves to
181 // this cache before knowing the store will fail.
182 blk->status |= BlkDirty;
183 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d (write)\n",
184 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
185 } else if (pkt->isRead()) {
186 if (pkt->isLLSC()) {
187 blk->trackLoadLocked(pkt);
188 }
189
190 // all read responses have a data payload
191 assert(pkt->hasRespData());
192 pkt->setDataFromBlock(blk->data, blkSize);
193
194 // determine if this read is from a (coherent) cache or not
195 if (pkt->fromCache()) {
196 assert(pkt->getSize() == blkSize);
197 // special handling for coherent block requests from
198 // upper-level caches
199 if (pkt->needsWritable()) {
200 // sanity check
201 assert(pkt->cmd == MemCmd::ReadExReq ||
202 pkt->cmd == MemCmd::SCUpgradeFailReq);
203
204 // if we have a dirty copy, make sure the recipient
205 // keeps it marked dirty (in the modified state)
206 if (blk->isDirty()) {
207 pkt->setCacheResponding();
208 }
209 // on ReadExReq we give up our copy unconditionally,
210 // even if this cache is mostly inclusive, we may want
211 // to revisit this
212 invalidateBlock(blk);
213 } else if (blk->isWritable() && !pending_downgrade &&
214 !pkt->hasSharers() &&
215 pkt->cmd != MemCmd::ReadCleanReq) {
216 // we can give the requester a writable copy on a read
217 // request if:
218 // - we have a writable copy at this level (& below)
219 // - we don't have a pending snoop from below
220 // signaling another read request
221 // - no other cache above has a copy (otherwise it
222 // would have set hasSharers flag when
223 // snooping the packet)
224 // - the read has explicitly asked for a clean
225 // copy of the line
226 if (blk->isDirty()) {
227 // special considerations if we're owner:
228 if (!deferred_response) {
229 // respond with the line in Modified state
230 // (cacheResponding set, hasSharers not set)
231 pkt->setCacheResponding();
232
233 if (clusivity == Enums::mostly_excl) {
234 // if this cache is mostly exclusive with
235 // respect to the cache above, drop the
236 // block, no need to first unset the dirty
237 // bit
238 invalidateBlock(blk);
239 } else {
240 // if this cache is mostly inclusive, we
241 // keep the block in the Exclusive state,
242 // and pass it upwards as Modified
243 // (writable and dirty), hence we have
244 // multiple caches, all on the same path
245 // towards memory, all considering the
246 // same block writable, but only one
247 // considering it Modified
233 // if this cache is mostly inclusive, we
234 // keep the block in the Exclusive state,
235 // and pass it upwards as Modified
236 // (writable and dirty), hence we have
237 // multiple caches, all on the same path
238 // towards memory, all considering the
239 // same block writable, but only one
240 // considering it Modified
248
241
249 // we get away with multiple caches (on
250 // the same path to memory) considering
251 // the block writeable as we always enter
252 // the cache hierarchy through a cache,
253 // and first snoop upwards in all other
254 // branches
255 blk->status &= ~BlkDirty;
256 }
242 // we get away with multiple caches (on
243 // the same path to memory) considering
244 // the block writeable as we always enter
245 // the cache hierarchy through a cache,
246 // and first snoop upwards in all other
247 // branches
248 blk->status &= ~BlkDirty;
257 } else {
258 // if we're responding after our own miss,
259 // there's a window where the recipient didn't
260 // know it was getting ownership and may not
261 // have responded to snoops correctly, so we
262 // have to respond with a shared line
263 pkt->setHasSharers();
264 }
265 }
266 } else {
267 // otherwise only respond with a shared copy
268 pkt->setHasSharers();
269 }
270 }
271 } else {
272 // Upgrade or Invalidate
273 assert(pkt->isUpgrade() || pkt->isInvalidate());
274
275 // for invalidations we could be looking at the temp block
276 // (for upgrades we always allocate)
277 invalidateBlock(blk);
278 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d (invalidation)\n",
279 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
280 }
281}
282
283/////////////////////////////////////////////////////
284//
285// Access path: requests coming in from the CPU side
286//
287/////////////////////////////////////////////////////
288
289bool
290Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
291 PacketList &writebacks)
292{
293 // sanity check
294 assert(pkt->isRequest());
295
296 chatty_assert(!(isReadOnly && pkt->isWrite()),
297 "Should never see a write in a read-only cache %s\n",
298 name());
299
300 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
301 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
302
303 if (pkt->req->isUncacheable()) {
304 DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(),
305 pkt->req->isInstFetch() ? " (ifetch)" : "",
306 pkt->getAddr());
307
308 // flush and invalidate any existing block
309 CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
310 if (old_blk && old_blk->isValid()) {
311 if (old_blk->isDirty() || writebackClean)
312 writebacks.push_back(writebackBlk(old_blk));
313 else
314 writebacks.push_back(cleanEvictBlk(old_blk));
315 tags->invalidate(old_blk);
316 old_blk->invalidate();
317 }
318
319 blk = nullptr;
320 // lookupLatency is the latency in case the request is uncacheable.
321 lat = lookupLatency;
322 return false;
323 }
324
325 ContextID id = pkt->req->hasContextId() ?
326 pkt->req->contextId() : InvalidContextID;
327 // Here lat is the value passed as parameter to accessBlock() function
328 // that can modify its value.
329 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id);
330
331 DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(),
332 pkt->req->isInstFetch() ? " (ifetch)" : "",
333 pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns",
334 blk ? "hit " + blk->print() : "miss");
335
336
337 if (pkt->isEviction()) {
338 // We check for presence of block in above caches before issuing
339 // Writeback or CleanEvict to write buffer. Therefore the only
340 // possible cases can be of a CleanEvict packet coming from above
341 // encountering a Writeback generated in this cache peer cache and
342 // waiting in the write buffer. Cases of upper level peer caches
343 // generating CleanEvict and Writeback or simply CleanEvict and
344 // CleanEvict almost simultaneously will be caught by snoops sent out
345 // by crossbar.
346 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
347 pkt->isSecure());
348 if (wb_entry) {
349 assert(wb_entry->getNumTargets() == 1);
350 PacketPtr wbPkt = wb_entry->getTarget()->pkt;
351 assert(wbPkt->isWriteback());
352
353 if (pkt->isCleanEviction()) {
354 // The CleanEvict and WritebackClean snoops into other
355 // peer caches of the same level while traversing the
356 // crossbar. If a copy of the block is found, the
357 // packet is deleted in the crossbar. Hence, none of
358 // the other upper level caches connected to this
359 // cache have the block, so we can clear the
360 // BLOCK_CACHED flag in the Writeback if set and
361 // discard the CleanEvict by returning true.
362 wbPkt->clearBlockCached();
363 return true;
364 } else {
365 assert(pkt->cmd == MemCmd::WritebackDirty);
366 // Dirty writeback from above trumps our clean
367 // writeback... discard here
368 // Note: markInService will remove entry from writeback buffer.
369 markInService(wb_entry);
370 delete wbPkt;
371 }
372 }
373 }
374
375 // Writeback handling is special case. We can write the block into
376 // the cache without having a writeable copy (or any copy at all).
377 if (pkt->isWriteback()) {
378 assert(blkSize == pkt->getSize());
379
380 // we could get a clean writeback while we are having
381 // outstanding accesses to a block, do the simple thing for
382 // now and drop the clean writeback so that we do not upset
383 // any ordering/decisions about ownership already taken
384 if (pkt->cmd == MemCmd::WritebackClean &&
385 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
386 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
387 "dropping\n", pkt->getAddr());
388 return true;
389 }
390
391 if (blk == nullptr) {
392 // need to do a replacement
393 blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
394 if (blk == nullptr) {
395 // no replaceable block available: give up, fwd to next level.
396 incMissCount(pkt);
397 return false;
398 }
399 tags->insertBlock(pkt, blk);
400
401 blk->status = (BlkValid | BlkReadable);
402 if (pkt->isSecure()) {
403 blk->status |= BlkSecure;
404 }
405 }
406 // only mark the block dirty if we got a writeback command,
407 // and leave it as is for a clean writeback
408 if (pkt->cmd == MemCmd::WritebackDirty) {
409 blk->status |= BlkDirty;
410 }
411 // if the packet does not have sharers, it is passing
412 // writable, and we got the writeback in Modified or Exclusive
413 // state, if not we are in the Owned or Shared state
414 if (!pkt->hasSharers()) {
415 blk->status |= BlkWritable;
416 }
417 // nothing else to do; writeback doesn't expect response
418 assert(!pkt->needsResponse());
419 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
420 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
421 incHitCount(pkt);
422 return true;
423 } else if (pkt->cmd == MemCmd::CleanEvict) {
424 if (blk != nullptr) {
425 // Found the block in the tags, need to stop CleanEvict from
426 // propagating further down the hierarchy. Returning true will
427 // treat the CleanEvict like a satisfied write request and delete
428 // it.
429 return true;
430 }
431 // We didn't find the block here, propagate the CleanEvict further
432 // down the memory hierarchy. Returning false will treat the CleanEvict
433 // like a Writeback which could not find a replaceable block so has to
434 // go to next level.
435 return false;
249 } else {
250 // if we're responding after our own miss,
251 // there's a window where the recipient didn't
252 // know it was getting ownership and may not
253 // have responded to snoops correctly, so we
254 // have to respond with a shared line
255 pkt->setHasSharers();
256 }
257 }
258 } else {
259 // otherwise only respond with a shared copy
260 pkt->setHasSharers();
261 }
262 }
263 } else {
264 // Upgrade or Invalidate
265 assert(pkt->isUpgrade() || pkt->isInvalidate());
266
267 // for invalidations we could be looking at the temp block
268 // (for upgrades we always allocate)
269 invalidateBlock(blk);
270 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d (invalidation)\n",
271 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
272 }
273}
274
275/////////////////////////////////////////////////////
276//
277// Access path: requests coming in from the CPU side
278//
279/////////////////////////////////////////////////////
280
281bool
282Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
283 PacketList &writebacks)
284{
285 // sanity check
286 assert(pkt->isRequest());
287
288 chatty_assert(!(isReadOnly && pkt->isWrite()),
289 "Should never see a write in a read-only cache %s\n",
290 name());
291
292 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
293 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
294
295 if (pkt->req->isUncacheable()) {
296 DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(),
297 pkt->req->isInstFetch() ? " (ifetch)" : "",
298 pkt->getAddr());
299
300 // flush and invalidate any existing block
301 CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
302 if (old_blk && old_blk->isValid()) {
303 if (old_blk->isDirty() || writebackClean)
304 writebacks.push_back(writebackBlk(old_blk));
305 else
306 writebacks.push_back(cleanEvictBlk(old_blk));
307 tags->invalidate(old_blk);
308 old_blk->invalidate();
309 }
310
311 blk = nullptr;
312 // lookupLatency is the latency in case the request is uncacheable.
313 lat = lookupLatency;
314 return false;
315 }
316
317 ContextID id = pkt->req->hasContextId() ?
318 pkt->req->contextId() : InvalidContextID;
319 // Here lat is the value passed as parameter to accessBlock() function
320 // that can modify its value.
321 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id);
322
323 DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(),
324 pkt->req->isInstFetch() ? " (ifetch)" : "",
325 pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns",
326 blk ? "hit " + blk->print() : "miss");
327
328
329 if (pkt->isEviction()) {
330 // We check for presence of block in above caches before issuing
331 // Writeback or CleanEvict to write buffer. Therefore the only
332 // possible cases can be of a CleanEvict packet coming from above
333 // encountering a Writeback generated in this cache peer cache and
334 // waiting in the write buffer. Cases of upper level peer caches
335 // generating CleanEvict and Writeback or simply CleanEvict and
336 // CleanEvict almost simultaneously will be caught by snoops sent out
337 // by crossbar.
338 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
339 pkt->isSecure());
340 if (wb_entry) {
341 assert(wb_entry->getNumTargets() == 1);
342 PacketPtr wbPkt = wb_entry->getTarget()->pkt;
343 assert(wbPkt->isWriteback());
344
345 if (pkt->isCleanEviction()) {
346 // The CleanEvict and WritebackClean snoops into other
347 // peer caches of the same level while traversing the
348 // crossbar. If a copy of the block is found, the
349 // packet is deleted in the crossbar. Hence, none of
350 // the other upper level caches connected to this
351 // cache have the block, so we can clear the
352 // BLOCK_CACHED flag in the Writeback if set and
353 // discard the CleanEvict by returning true.
354 wbPkt->clearBlockCached();
355 return true;
356 } else {
357 assert(pkt->cmd == MemCmd::WritebackDirty);
358 // Dirty writeback from above trumps our clean
359 // writeback... discard here
360 // Note: markInService will remove entry from writeback buffer.
361 markInService(wb_entry);
362 delete wbPkt;
363 }
364 }
365 }
366
367 // Writeback handling is special case. We can write the block into
368 // the cache without having a writeable copy (or any copy at all).
369 if (pkt->isWriteback()) {
370 assert(blkSize == pkt->getSize());
371
372 // we could get a clean writeback while we are having
373 // outstanding accesses to a block, do the simple thing for
374 // now and drop the clean writeback so that we do not upset
375 // any ordering/decisions about ownership already taken
376 if (pkt->cmd == MemCmd::WritebackClean &&
377 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
378 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
379 "dropping\n", pkt->getAddr());
380 return true;
381 }
382
383 if (blk == nullptr) {
384 // need to do a replacement
385 blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
386 if (blk == nullptr) {
387 // no replaceable block available: give up, fwd to next level.
388 incMissCount(pkt);
389 return false;
390 }
391 tags->insertBlock(pkt, blk);
392
393 blk->status = (BlkValid | BlkReadable);
394 if (pkt->isSecure()) {
395 blk->status |= BlkSecure;
396 }
397 }
398 // only mark the block dirty if we got a writeback command,
399 // and leave it as is for a clean writeback
400 if (pkt->cmd == MemCmd::WritebackDirty) {
401 blk->status |= BlkDirty;
402 }
403 // if the packet does not have sharers, it is passing
404 // writable, and we got the writeback in Modified or Exclusive
405 // state, if not we are in the Owned or Shared state
406 if (!pkt->hasSharers()) {
407 blk->status |= BlkWritable;
408 }
409 // nothing else to do; writeback doesn't expect response
410 assert(!pkt->needsResponse());
411 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
412 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
413 incHitCount(pkt);
414 return true;
415 } else if (pkt->cmd == MemCmd::CleanEvict) {
416 if (blk != nullptr) {
417 // Found the block in the tags, need to stop CleanEvict from
418 // propagating further down the hierarchy. Returning true will
419 // treat the CleanEvict like a satisfied write request and delete
420 // it.
421 return true;
422 }
423 // We didn't find the block here, propagate the CleanEvict further
424 // down the memory hierarchy. Returning false will treat the CleanEvict
425 // like a Writeback which could not find a replaceable block so has to
426 // go to next level.
427 return false;
436 } else if ((blk != nullptr) &&
437 (pkt->needsWritable() ? blk->isWritable() :
438 blk->isReadable())) {
428 } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
429 blk->isReadable())) {
439 // OK to satisfy access
440 incHitCount(pkt);
430 // OK to satisfy access
431 incHitCount(pkt);
441 satisfyCpuSideRequest(pkt, blk);
432 satisfyRequest(pkt, blk);
433 maintainClusivity(pkt->fromCache(), blk);
434
442 return true;
443 }
444
445 // Can't satisfy access normally... either no block (blk == nullptr)
446 // or have block but need writable
447
448 incMissCount(pkt);
449
450 if (blk == nullptr && pkt->isLLSC() && pkt->isWrite()) {
451 // complete miss on store conditional... just give up now
452 pkt->req->setExtraData(0);
453 return true;
454 }
455
456 return false;
457}
458
459void
435 return true;
436 }
437
438 // Can't satisfy access normally... either no block (blk == nullptr)
439 // or have block but need writable
440
441 incMissCount(pkt);
442
443 if (blk == nullptr && pkt->isLLSC() && pkt->isWrite()) {
444 // complete miss on store conditional... just give up now
445 pkt->req->setExtraData(0);
446 return true;
447 }
448
449 return false;
450}
451
452void
453Cache::maintainClusivity(bool from_cache, CacheBlk *blk)
454{
455 if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
456 clusivity == Enums::mostly_excl) {
457 // if we have responded to a cache, and our block is still
458 // valid, but not dirty, and this cache is mostly exclusive
459 // with respect to the cache above, drop the block
460 invalidateBlock(blk);
461 }
462}
463
464void
460Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
461{
462 while (!writebacks.empty()) {
463 PacketPtr wbPkt = writebacks.front();
464 // We use forwardLatency here because we are copying writebacks to
465 // write buffer. Call isCachedAbove for both Writebacks and
466 // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag
467 // in Writebacks and discard CleanEvicts.
468 if (isCachedAbove(wbPkt)) {
469 if (wbPkt->cmd == MemCmd::CleanEvict) {
470 // Delete CleanEvict because cached copies exist above. The
471 // packet destructor will delete the request object because
472 // this is a non-snoop request packet which does not require a
473 // response.
474 delete wbPkt;
475 } else if (wbPkt->cmd == MemCmd::WritebackClean) {
476 // clean writeback, do not send since the block is
477 // still cached above
478 assert(writebackClean);
479 delete wbPkt;
480 } else {
481 assert(wbPkt->cmd == MemCmd::WritebackDirty);
482 // Set BLOCK_CACHED flag in Writeback and send below, so that
483 // the Writeback does not reset the bit corresponding to this
484 // address in the snoop filter below.
485 wbPkt->setBlockCached();
486 allocateWriteBuffer(wbPkt, forward_time);
487 }
488 } else {
489 // If the block is not cached above, send packet below. Both
490 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
491 // reset the bit corresponding to this address in the snoop filter
492 // below.
493 allocateWriteBuffer(wbPkt, forward_time);
494 }
495 writebacks.pop_front();
496 }
497}
498
499void
500Cache::doWritebacksAtomic(PacketList& writebacks)
501{
502 while (!writebacks.empty()) {
503 PacketPtr wbPkt = writebacks.front();
504 // Call isCachedAbove for both Writebacks and CleanEvicts. If
505 // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
506 // and discard CleanEvicts.
507 if (isCachedAbove(wbPkt, false)) {
508 if (wbPkt->cmd == MemCmd::WritebackDirty) {
509 // Set BLOCK_CACHED flag in Writeback and send below,
510 // so that the Writeback does not reset the bit
511 // corresponding to this address in the snoop filter
512 // below. We can discard CleanEvicts because cached
513 // copies exist above. Atomic mode isCachedAbove
514 // modifies packet to set BLOCK_CACHED flag
515 memSidePort->sendAtomic(wbPkt);
516 }
517 } else {
518 // If the block is not cached above, send packet below. Both
519 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
520 // reset the bit corresponding to this address in the snoop filter
521 // below.
522 memSidePort->sendAtomic(wbPkt);
523 }
524 writebacks.pop_front();
525 // In case of CleanEvicts, the packet destructor will delete the
526 // request object because this is a non-snoop request packet which
527 // does not require a response.
528 delete wbPkt;
529 }
530}
531
532
533void
534Cache::recvTimingSnoopResp(PacketPtr pkt)
535{
536 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
537 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
538
539 assert(pkt->isResponse());
540 assert(!system->bypassCaches());
541
542 // determine if the response is from a snoop request we created
543 // (in which case it should be in the outstandingSnoop), or if we
544 // merely forwarded someone else's snoop request
545 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
546 outstandingSnoop.end();
547
548 if (!forwardAsSnoop) {
549 // the packet came from this cache, so sink it here and do not
550 // forward it
551 assert(pkt->cmd == MemCmd::HardPFResp);
552
553 outstandingSnoop.erase(pkt->req);
554
555 DPRINTF(Cache, "Got prefetch response from above for addr "
556 "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
557 recvTimingResp(pkt);
558 return;
559 }
560
561 // forwardLatency is set here because there is a response from an
562 // upper level cache.
563 // To pay the delay that occurs if the packet comes from the bus,
564 // we charge also headerDelay.
565 Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
566 // Reset the timing of the packet.
567 pkt->headerDelay = pkt->payloadDelay = 0;
568 memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
569}
570
571void
572Cache::promoteWholeLineWrites(PacketPtr pkt)
573{
574 // Cache line clearing instructions
575 if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
576 (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
577 pkt->cmd = MemCmd::WriteLineReq;
578 DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
579 }
580}
581
582bool
583Cache::recvTimingReq(PacketPtr pkt)
584{
585 DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print());
586
587 assert(pkt->isRequest());
588
589 // Just forward the packet if caches are disabled.
590 if (system->bypassCaches()) {
591 // @todo This should really enqueue the packet rather
592 bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
593 assert(success);
594 return true;
595 }
596
597 promoteWholeLineWrites(pkt);
598
599 if (pkt->cacheResponding()) {
600 // a cache above us (but not where the packet came from) is
601 // responding to the request, in other words it has the line
602 // in Modified or Owned state
603 DPRINTF(Cache, "Cache above responding to %#llx (%s): "
604 "not responding\n",
605 pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
606
607 // if the packet needs the block to be writable, and the cache
608 // that has promised to respond (setting the cache responding
609 // flag) is not providing writable (it is in Owned rather than
610 // the Modified state), we know that there may be other Shared
611 // copies in the system; go out and invalidate them all
612 assert(pkt->needsWritable() && !pkt->responderHadWritable());
613
614 // an upstream cache that had the line in Owned state
615 // (dirty, but not writable), is responding and thus
616 // transferring the dirty line from one branch of the
617 // cache hierarchy to another
618
619 // send out an express snoop and invalidate all other
620 // copies (snooping a packet that needs writable is the
621 // same as an invalidation), thus turning the Owned line
622 // into a Modified line, note that we don't invalidate the
623 // block in the current cache or any other cache on the
624 // path to memory
625
626 // create a downstream express snoop with cleared packet
627 // flags, there is no need to allocate any data as the
628 // packet is merely used to co-ordinate state transitions
629 Packet *snoop_pkt = new Packet(pkt, true, false);
630
631 // also reset the bus time that the original packet has
632 // not yet paid for
633 snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
634
635 // make this an instantaneous express snoop, and let the
636 // other caches in the system know that the another cache
637 // is responding, because we have found the authorative
638 // copy (Modified or Owned) that will supply the right
639 // data
640 snoop_pkt->setExpressSnoop();
641 snoop_pkt->setCacheResponding();
642
643 // this express snoop travels towards the memory, and at
644 // every crossbar it is snooped upwards thus reaching
645 // every cache in the system
646 bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
647 // express snoops always succeed
648 assert(success);
649
650 // main memory will delete the snoop packet
651
652 // queue for deletion, as opposed to immediate deletion, as
653 // the sending cache is still relying on the packet
654 pendingDelete.reset(pkt);
655
656 // no need to take any further action in this particular cache
657 // as an upstram cache has already committed to responding,
658 // and we have already sent out any express snoops in the
659 // section above to ensure all other copies in the system are
660 // invalidated
661 return true;
662 }
663
664 // anything that is merely forwarded pays for the forward latency and
665 // the delay provided by the crossbar
666 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
667
668 // We use lookupLatency here because it is used to specify the latency
669 // to access.
670 Cycles lat = lookupLatency;
671 CacheBlk *blk = nullptr;
672 bool satisfied = false;
673 {
674 PacketList writebacks;
675 // Note that lat is passed by reference here. The function
676 // access() calls accessBlock() which can modify lat value.
677 satisfied = access(pkt, blk, lat, writebacks);
678
679 // copy writebacks to write buffer here to ensure they logically
680 // proceed anything happening below
681 doWritebacks(writebacks, forward_time);
682 }
683
684 // Here we charge the headerDelay that takes into account the latencies
685 // of the bus, if the packet comes from it.
686 // The latency charged it is just lat that is the value of lookupLatency
687 // modified by access() function, or if not just lookupLatency.
688 // In case of a hit we are neglecting response latency.
689 // In case of a miss we are neglecting forward latency.
690 Tick request_time = clockEdge(lat) + pkt->headerDelay;
691 // Here we reset the timing of the packet.
692 pkt->headerDelay = pkt->payloadDelay = 0;
693
694 // track time of availability of next prefetch, if any
695 Tick next_pf_time = MaxTick;
696
697 bool needsResponse = pkt->needsResponse();
698
699 if (satisfied) {
700 // should never be satisfying an uncacheable access as we
701 // flush and invalidate any existing block as part of the
702 // lookup
703 assert(!pkt->req->isUncacheable());
704
705 // hit (for all other request types)
706
707 if (prefetcher && (prefetchOnAccess ||
708 (blk && blk->wasPrefetched()))) {
709 if (blk)
710 blk->status &= ~BlkHWPrefetched;
711
712 // Don't notify on SWPrefetch
713 if (!pkt->cmd.isSWPrefetch())
714 next_pf_time = prefetcher->notify(pkt);
715 }
716
717 if (needsResponse) {
718 pkt->makeTimingResponse();
719 // @todo: Make someone pay for this
720 pkt->headerDelay = pkt->payloadDelay = 0;
721
722 // In this case we are considering request_time that takes
723 // into account the delay of the xbar, if any, and just
724 // lat, neglecting responseLatency, modelling hit latency
725 // just as lookupLatency or or the value of lat overriden
726 // by access(), that calls accessBlock() function.
727 cpuSidePort->schedTimingResp(pkt, request_time, true);
728 } else {
729 DPRINTF(Cache, "%s satisfied %s addr %#llx, no response needed\n",
730 __func__, pkt->cmdString(), pkt->getAddr());
731
732 // queue the packet for deletion, as the sending cache is
733 // still relying on it; if the block is found in access(),
734 // CleanEvict and Writeback messages will be deleted
735 // here as well
736 pendingDelete.reset(pkt);
737 }
738 } else {
739 // miss
740
741 Addr blk_addr = blockAlign(pkt->getAddr());
742
743 // ignore any existing MSHR if we are dealing with an
744 // uncacheable request
745 MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
746 mshrQueue.findMatch(blk_addr, pkt->isSecure());
747
748 // Software prefetch handling:
749 // To keep the core from waiting on data it won't look at
750 // anyway, send back a response with dummy data. Miss handling
751 // will continue asynchronously. Unfortunately, the core will
752 // insist upon freeing original Packet/Request, so we have to
753 // create a new pair with a different lifecycle. Note that this
754 // processing happens before any MSHR munging on the behalf of
755 // this request because this new Request will be the one stored
756 // into the MSHRs, not the original.
757 if (pkt->cmd.isSWPrefetch()) {
758 assert(needsResponse);
759 assert(pkt->req->hasPaddr());
760 assert(!pkt->req->isUncacheable());
761
762 // There's no reason to add a prefetch as an additional target
763 // to an existing MSHR. If an outstanding request is already
764 // in progress, there is nothing for the prefetch to do.
765 // If this is the case, we don't even create a request at all.
766 PacketPtr pf = nullptr;
767
768 if (!mshr) {
769 // copy the request and create a new SoftPFReq packet
770 RequestPtr req = new Request(pkt->req->getPaddr(),
771 pkt->req->getSize(),
772 pkt->req->getFlags(),
773 pkt->req->masterId());
774 pf = new Packet(req, pkt->cmd);
775 pf->allocate();
776 assert(pf->getAddr() == pkt->getAddr());
777 assert(pf->getSize() == pkt->getSize());
778 }
779
780 pkt->makeTimingResponse();
781
782 // request_time is used here, taking into account lat and the delay
783 // charged if the packet comes from the xbar.
784 cpuSidePort->schedTimingResp(pkt, request_time, true);
785
786 // If an outstanding request is in progress (we found an
787 // MSHR) this is set to null
788 pkt = pf;
789 }
790
791 if (mshr) {
792 /// MSHR hit
793 /// @note writebacks will be checked in getNextMSHR()
794 /// for any conflicting requests to the same block
795
796 //@todo remove hw_pf here
797
798 // Coalesce unless it was a software prefetch (see above).
799 if (pkt) {
800 assert(!pkt->isWriteback());
801 // CleanEvicts corresponding to blocks which have
802 // outstanding requests in MSHRs are simply sunk here
803 if (pkt->cmd == MemCmd::CleanEvict) {
804 pendingDelete.reset(pkt);
805 } else {
806 DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx "
807 "size %d\n", __func__, pkt->cmdString(),
808 pkt->getAddr(), pkt->getSize());
809
810 assert(pkt->req->masterId() < system->maxMasters());
811 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
812 // We use forward_time here because it is the same
813 // considering new targets. We have multiple
814 // requests for the same address here. It
815 // specifies the latency to allocate an internal
816 // buffer and to schedule an event to the queued
817 // port and also takes into account the additional
818 // delay of the xbar.
819 mshr->allocateTarget(pkt, forward_time, order++,
820 allocOnFill(pkt->cmd));
821 if (mshr->getNumTargets() == numTarget) {
822 noTargetMSHR = mshr;
823 setBlocked(Blocked_NoTargets);
824 // need to be careful with this... if this mshr isn't
825 // ready yet (i.e. time > curTick()), we don't want to
826 // move it ahead of mshrs that are ready
827 // mshrQueue.moveToFront(mshr);
828 }
829 }
830 // We should call the prefetcher reguardless if the request is
831 // satisfied or not, reguardless if the request is in the MSHR
832 // or not. The request could be a ReadReq hit, but still not
833 // satisfied (potentially because of a prior write to the same
834 // cache line. So, even when not satisfied, tehre is an MSHR
835 // already allocated for this, we need to let the prefetcher
836 // know about the request
837 if (prefetcher) {
838 // Don't notify on SWPrefetch
839 if (!pkt->cmd.isSWPrefetch())
840 next_pf_time = prefetcher->notify(pkt);
841 }
842 }
843 } else {
844 // no MSHR
845 assert(pkt->req->masterId() < system->maxMasters());
846 if (pkt->req->isUncacheable()) {
847 mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
848 } else {
849 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
850 }
851
852 if (pkt->isEviction() ||
853 (pkt->req->isUncacheable() && pkt->isWrite())) {
854 // We use forward_time here because there is an
855 // uncached memory write, forwarded to WriteBuffer.
856 allocateWriteBuffer(pkt, forward_time);
857 } else {
858 if (blk && blk->isValid()) {
859 // should have flushed and have no valid block
860 assert(!pkt->req->isUncacheable());
861
862 // If we have a write miss to a valid block, we
863 // need to mark the block non-readable. Otherwise
864 // if we allow reads while there's an outstanding
865 // write miss, the read could return stale data
866 // out of the cache block... a more aggressive
867 // system could detect the overlap (if any) and
868 // forward data out of the MSHRs, but we don't do
869 // that yet. Note that we do need to leave the
870 // block valid so that it stays in the cache, in
871 // case we get an upgrade response (and hence no
872 // new data) when the write miss completes.
873 // As long as CPUs do proper store/load forwarding
874 // internally, and have a sufficiently weak memory
875 // model, this is probably unnecessary, but at some
876 // point it must have seemed like we needed it...
877 assert(pkt->needsWritable());
878 assert(!blk->isWritable());
879 blk->status &= ~BlkReadable;
880 }
881 // Here we are using forward_time, modelling the latency of
882 // a miss (outbound) just as forwardLatency, neglecting the
883 // lookupLatency component.
884 allocateMissBuffer(pkt, forward_time);
885 }
886
887 if (prefetcher) {
888 // Don't notify on SWPrefetch
889 if (!pkt->cmd.isSWPrefetch())
890 next_pf_time = prefetcher->notify(pkt);
891 }
892 }
893 }
894
895 if (next_pf_time != MaxTick)
896 schedMemSideSendEvent(next_pf_time);
897
898 return true;
899}
900
901PacketPtr
902Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk,
903 bool needsWritable) const
904{
905 // should never see evictions here
906 assert(!cpu_pkt->isEviction());
907
908 bool blkValid = blk && blk->isValid();
909
910 if (cpu_pkt->req->isUncacheable() ||
911 (!blkValid && cpu_pkt->isUpgrade())) {
912 // uncacheable requests and upgrades from upper-level caches
913 // that missed completely just go through as is
914 return nullptr;
915 }
916
917 assert(cpu_pkt->needsResponse());
918
919 MemCmd cmd;
920 // @TODO make useUpgrades a parameter.
921 // Note that ownership protocols require upgrade, otherwise a
922 // write miss on a shared owned block will generate a ReadExcl,
923 // which will clobber the owned copy.
924 const bool useUpgrades = true;
925 if (blkValid && useUpgrades) {
926 // only reason to be here is that blk is read only and we need
927 // it to be writable
928 assert(needsWritable);
929 assert(!blk->isWritable());
930 cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
931 } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
932 cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
933 // Even though this SC will fail, we still need to send out the
934 // request and get the data to supply it to other snoopers in the case
935 // where the determination the StoreCond fails is delayed due to
936 // all caches not being on the same local bus.
937 cmd = MemCmd::SCUpgradeFailReq;
938 } else if (cpu_pkt->cmd == MemCmd::WriteLineReq ||
939 cpu_pkt->cmd == MemCmd::InvalidateReq) {
940 // forward as invalidate to all other caches, this gives us
941 // the line in Exclusive state, and invalidates all other
942 // copies
943 cmd = MemCmd::InvalidateReq;
944 } else {
945 // block is invalid
946 cmd = needsWritable ? MemCmd::ReadExReq :
947 (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
948 }
949 PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
950
951 // if there are upstream caches that have already marked the
952 // packet as having sharers (not passing writable), pass that info
953 // downstream
954 if (cpu_pkt->hasSharers()) {
955 // note that cpu_pkt may have spent a considerable time in the
956 // MSHR queue and that the information could possibly be out
957 // of date, however, there is no harm in conservatively
958 // assuming the block has sharers
959 pkt->setHasSharers();
960 DPRINTF(Cache, "%s passing hasSharers from %s to %s addr %#llx "
961 "size %d\n",
962 __func__, cpu_pkt->cmdString(), pkt->cmdString(),
963 pkt->getAddr(), pkt->getSize());
964 }
965
966 // the packet should be block aligned
967 assert(pkt->getAddr() == blockAlign(pkt->getAddr()));
968
969 pkt->allocate();
970 DPRINTF(Cache, "%s created %s from %s for addr %#llx size %d\n",
971 __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(),
972 pkt->getSize());
973 return pkt;
974}
975
976
977Tick
978Cache::recvAtomic(PacketPtr pkt)
979{
980 // We are in atomic mode so we pay just for lookupLatency here.
981 Cycles lat = lookupLatency;
982
983 // Forward the request if the system is in cache bypass mode.
984 if (system->bypassCaches())
985 return ticksToCycles(memSidePort->sendAtomic(pkt));
986
987 promoteWholeLineWrites(pkt);
988
989 // follow the same flow as in recvTimingReq, and check if a cache
990 // above us is responding
991 if (pkt->cacheResponding()) {
992 DPRINTF(Cache, "Cache above responding to %#llx (%s): "
993 "not responding\n",
994 pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
995
996 // if a cache is responding, and it had the line in Owned
997 // rather than Modified state, we need to invalidate any
998 // copies that are not on the same path to memory
999 assert(pkt->needsWritable() && !pkt->responderHadWritable());
1000 lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1001
1002 return lat * clockPeriod();
1003 }
1004
1005 // should assert here that there are no outstanding MSHRs or
1006 // writebacks... that would mean that someone used an atomic
1007 // access in timing mode
1008
1009 CacheBlk *blk = nullptr;
1010 PacketList writebacks;
1011 bool satisfied = access(pkt, blk, lat, writebacks);
1012
1013 // handle writebacks resulting from the access here to ensure they
1014 // logically proceed anything happening below
1015 doWritebacksAtomic(writebacks);
1016
1017 if (!satisfied) {
1018 // MISS
1019
1020 // deal with the packets that go through the write path of
1021 // the cache, i.e. any evictions and uncacheable writes
1022 if (pkt->isEviction() ||
1023 (pkt->req->isUncacheable() && pkt->isWrite())) {
1024 lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1025 return lat * clockPeriod();
1026 }
1027 // only misses left
1028
1029 PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable());
1030
1031 bool is_forward = (bus_pkt == nullptr);
1032
1033 if (is_forward) {
1034 // just forwarding the same request to the next level
1035 // no local cache operation involved
1036 bus_pkt = pkt;
1037 }
1038
1039 DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n",
1040 bus_pkt->cmdString(), bus_pkt->getAddr(),
1041 bus_pkt->isSecure() ? "s" : "ns");
1042
1043#if TRACING_ON
1044 CacheBlk::State old_state = blk ? blk->status : 0;
1045#endif
1046
1047 lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1048
1049 bool is_invalidate = bus_pkt->isInvalidate();
1050
1051 // We are now dealing with the response handling
1052 DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in "
1053 "state %i\n", bus_pkt->cmdString(), bus_pkt->getAddr(),
1054 bus_pkt->isSecure() ? "s" : "ns",
1055 old_state);
1056
1057 // If packet was a forward, the response (if any) is already
1058 // in place in the bus_pkt == pkt structure, so we don't need
1059 // to do anything. Otherwise, use the separate bus_pkt to
1060 // generate response to pkt and then delete it.
1061 if (!is_forward) {
1062 if (pkt->needsResponse()) {
1063 assert(bus_pkt->isResponse());
1064 if (bus_pkt->isError()) {
1065 pkt->makeAtomicResponse();
1066 pkt->copyError(bus_pkt);
1067 } else if (pkt->cmd == MemCmd::WriteLineReq) {
1068 // note the use of pkt, not bus_pkt here.
1069
1070 // write-line request to the cache that promoted
1071 // the write to a whole line
1072 blk = handleFill(pkt, blk, writebacks,
1073 allocOnFill(pkt->cmd));
1074 assert(blk != NULL);
1075 is_invalidate = false;
465Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
466{
467 while (!writebacks.empty()) {
468 PacketPtr wbPkt = writebacks.front();
469 // We use forwardLatency here because we are copying writebacks to
470 // write buffer. Call isCachedAbove for both Writebacks and
471 // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag
472 // in Writebacks and discard CleanEvicts.
473 if (isCachedAbove(wbPkt)) {
474 if (wbPkt->cmd == MemCmd::CleanEvict) {
475 // Delete CleanEvict because cached copies exist above. The
476 // packet destructor will delete the request object because
477 // this is a non-snoop request packet which does not require a
478 // response.
479 delete wbPkt;
480 } else if (wbPkt->cmd == MemCmd::WritebackClean) {
481 // clean writeback, do not send since the block is
482 // still cached above
483 assert(writebackClean);
484 delete wbPkt;
485 } else {
486 assert(wbPkt->cmd == MemCmd::WritebackDirty);
487 // Set BLOCK_CACHED flag in Writeback and send below, so that
488 // the Writeback does not reset the bit corresponding to this
489 // address in the snoop filter below.
490 wbPkt->setBlockCached();
491 allocateWriteBuffer(wbPkt, forward_time);
492 }
493 } else {
494 // If the block is not cached above, send packet below. Both
495 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
496 // reset the bit corresponding to this address in the snoop filter
497 // below.
498 allocateWriteBuffer(wbPkt, forward_time);
499 }
500 writebacks.pop_front();
501 }
502}
503
504void
505Cache::doWritebacksAtomic(PacketList& writebacks)
506{
507 while (!writebacks.empty()) {
508 PacketPtr wbPkt = writebacks.front();
509 // Call isCachedAbove for both Writebacks and CleanEvicts. If
510 // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
511 // and discard CleanEvicts.
512 if (isCachedAbove(wbPkt, false)) {
513 if (wbPkt->cmd == MemCmd::WritebackDirty) {
514 // Set BLOCK_CACHED flag in Writeback and send below,
515 // so that the Writeback does not reset the bit
516 // corresponding to this address in the snoop filter
517 // below. We can discard CleanEvicts because cached
518 // copies exist above. Atomic mode isCachedAbove
519 // modifies packet to set BLOCK_CACHED flag
520 memSidePort->sendAtomic(wbPkt);
521 }
522 } else {
523 // If the block is not cached above, send packet below. Both
524 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
525 // reset the bit corresponding to this address in the snoop filter
526 // below.
527 memSidePort->sendAtomic(wbPkt);
528 }
529 writebacks.pop_front();
530 // In case of CleanEvicts, the packet destructor will delete the
531 // request object because this is a non-snoop request packet which
532 // does not require a response.
533 delete wbPkt;
534 }
535}
536
537
538void
539Cache::recvTimingSnoopResp(PacketPtr pkt)
540{
541 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
542 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
543
544 assert(pkt->isResponse());
545 assert(!system->bypassCaches());
546
547 // determine if the response is from a snoop request we created
548 // (in which case it should be in the outstandingSnoop), or if we
549 // merely forwarded someone else's snoop request
550 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
551 outstandingSnoop.end();
552
553 if (!forwardAsSnoop) {
554 // the packet came from this cache, so sink it here and do not
555 // forward it
556 assert(pkt->cmd == MemCmd::HardPFResp);
557
558 outstandingSnoop.erase(pkt->req);
559
560 DPRINTF(Cache, "Got prefetch response from above for addr "
561 "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
562 recvTimingResp(pkt);
563 return;
564 }
565
566 // forwardLatency is set here because there is a response from an
567 // upper level cache.
568 // To pay the delay that occurs if the packet comes from the bus,
569 // we charge also headerDelay.
570 Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
571 // Reset the timing of the packet.
572 pkt->headerDelay = pkt->payloadDelay = 0;
573 memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
574}
575
576void
577Cache::promoteWholeLineWrites(PacketPtr pkt)
578{
579 // Cache line clearing instructions
580 if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
581 (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
582 pkt->cmd = MemCmd::WriteLineReq;
583 DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
584 }
585}
586
587bool
588Cache::recvTimingReq(PacketPtr pkt)
589{
590 DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print());
591
592 assert(pkt->isRequest());
593
594 // Just forward the packet if caches are disabled.
595 if (system->bypassCaches()) {
596 // @todo This should really enqueue the packet rather
597 bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
598 assert(success);
599 return true;
600 }
601
602 promoteWholeLineWrites(pkt);
603
604 if (pkt->cacheResponding()) {
605 // a cache above us (but not where the packet came from) is
606 // responding to the request, in other words it has the line
607 // in Modified or Owned state
608 DPRINTF(Cache, "Cache above responding to %#llx (%s): "
609 "not responding\n",
610 pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
611
612 // if the packet needs the block to be writable, and the cache
613 // that has promised to respond (setting the cache responding
614 // flag) is not providing writable (it is in Owned rather than
615 // the Modified state), we know that there may be other Shared
616 // copies in the system; go out and invalidate them all
617 assert(pkt->needsWritable() && !pkt->responderHadWritable());
618
619 // an upstream cache that had the line in Owned state
620 // (dirty, but not writable), is responding and thus
621 // transferring the dirty line from one branch of the
622 // cache hierarchy to another
623
624 // send out an express snoop and invalidate all other
625 // copies (snooping a packet that needs writable is the
626 // same as an invalidation), thus turning the Owned line
627 // into a Modified line, note that we don't invalidate the
628 // block in the current cache or any other cache on the
629 // path to memory
630
631 // create a downstream express snoop with cleared packet
632 // flags, there is no need to allocate any data as the
633 // packet is merely used to co-ordinate state transitions
634 Packet *snoop_pkt = new Packet(pkt, true, false);
635
636 // also reset the bus time that the original packet has
637 // not yet paid for
638 snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
639
640 // make this an instantaneous express snoop, and let the
641 // other caches in the system know that the another cache
642 // is responding, because we have found the authorative
643 // copy (Modified or Owned) that will supply the right
644 // data
645 snoop_pkt->setExpressSnoop();
646 snoop_pkt->setCacheResponding();
647
648 // this express snoop travels towards the memory, and at
649 // every crossbar it is snooped upwards thus reaching
650 // every cache in the system
651 bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
652 // express snoops always succeed
653 assert(success);
654
655 // main memory will delete the snoop packet
656
657 // queue for deletion, as opposed to immediate deletion, as
658 // the sending cache is still relying on the packet
659 pendingDelete.reset(pkt);
660
661 // no need to take any further action in this particular cache
662 // as an upstram cache has already committed to responding,
663 // and we have already sent out any express snoops in the
664 // section above to ensure all other copies in the system are
665 // invalidated
666 return true;
667 }
668
669 // anything that is merely forwarded pays for the forward latency and
670 // the delay provided by the crossbar
671 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
672
673 // We use lookupLatency here because it is used to specify the latency
674 // to access.
675 Cycles lat = lookupLatency;
676 CacheBlk *blk = nullptr;
677 bool satisfied = false;
678 {
679 PacketList writebacks;
680 // Note that lat is passed by reference here. The function
681 // access() calls accessBlock() which can modify lat value.
682 satisfied = access(pkt, blk, lat, writebacks);
683
684 // copy writebacks to write buffer here to ensure they logically
685 // proceed anything happening below
686 doWritebacks(writebacks, forward_time);
687 }
688
689 // Here we charge the headerDelay that takes into account the latencies
690 // of the bus, if the packet comes from it.
691 // The latency charged it is just lat that is the value of lookupLatency
692 // modified by access() function, or if not just lookupLatency.
693 // In case of a hit we are neglecting response latency.
694 // In case of a miss we are neglecting forward latency.
695 Tick request_time = clockEdge(lat) + pkt->headerDelay;
696 // Here we reset the timing of the packet.
697 pkt->headerDelay = pkt->payloadDelay = 0;
698
699 // track time of availability of next prefetch, if any
700 Tick next_pf_time = MaxTick;
701
702 bool needsResponse = pkt->needsResponse();
703
704 if (satisfied) {
705 // should never be satisfying an uncacheable access as we
706 // flush and invalidate any existing block as part of the
707 // lookup
708 assert(!pkt->req->isUncacheable());
709
710 // hit (for all other request types)
711
712 if (prefetcher && (prefetchOnAccess ||
713 (blk && blk->wasPrefetched()))) {
714 if (blk)
715 blk->status &= ~BlkHWPrefetched;
716
717 // Don't notify on SWPrefetch
718 if (!pkt->cmd.isSWPrefetch())
719 next_pf_time = prefetcher->notify(pkt);
720 }
721
722 if (needsResponse) {
723 pkt->makeTimingResponse();
724 // @todo: Make someone pay for this
725 pkt->headerDelay = pkt->payloadDelay = 0;
726
727 // In this case we are considering request_time that takes
728 // into account the delay of the xbar, if any, and just
729 // lat, neglecting responseLatency, modelling hit latency
730 // just as lookupLatency or or the value of lat overriden
731 // by access(), that calls accessBlock() function.
732 cpuSidePort->schedTimingResp(pkt, request_time, true);
733 } else {
734 DPRINTF(Cache, "%s satisfied %s addr %#llx, no response needed\n",
735 __func__, pkt->cmdString(), pkt->getAddr());
736
737 // queue the packet for deletion, as the sending cache is
738 // still relying on it; if the block is found in access(),
739 // CleanEvict and Writeback messages will be deleted
740 // here as well
741 pendingDelete.reset(pkt);
742 }
743 } else {
744 // miss
745
746 Addr blk_addr = blockAlign(pkt->getAddr());
747
748 // ignore any existing MSHR if we are dealing with an
749 // uncacheable request
750 MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
751 mshrQueue.findMatch(blk_addr, pkt->isSecure());
752
753 // Software prefetch handling:
754 // To keep the core from waiting on data it won't look at
755 // anyway, send back a response with dummy data. Miss handling
756 // will continue asynchronously. Unfortunately, the core will
757 // insist upon freeing original Packet/Request, so we have to
758 // create a new pair with a different lifecycle. Note that this
759 // processing happens before any MSHR munging on the behalf of
760 // this request because this new Request will be the one stored
761 // into the MSHRs, not the original.
762 if (pkt->cmd.isSWPrefetch()) {
763 assert(needsResponse);
764 assert(pkt->req->hasPaddr());
765 assert(!pkt->req->isUncacheable());
766
767 // There's no reason to add a prefetch as an additional target
768 // to an existing MSHR. If an outstanding request is already
769 // in progress, there is nothing for the prefetch to do.
770 // If this is the case, we don't even create a request at all.
771 PacketPtr pf = nullptr;
772
773 if (!mshr) {
774 // copy the request and create a new SoftPFReq packet
775 RequestPtr req = new Request(pkt->req->getPaddr(),
776 pkt->req->getSize(),
777 pkt->req->getFlags(),
778 pkt->req->masterId());
779 pf = new Packet(req, pkt->cmd);
780 pf->allocate();
781 assert(pf->getAddr() == pkt->getAddr());
782 assert(pf->getSize() == pkt->getSize());
783 }
784
785 pkt->makeTimingResponse();
786
787 // request_time is used here, taking into account lat and the delay
788 // charged if the packet comes from the xbar.
789 cpuSidePort->schedTimingResp(pkt, request_time, true);
790
791 // If an outstanding request is in progress (we found an
792 // MSHR) this is set to null
793 pkt = pf;
794 }
795
796 if (mshr) {
797 /// MSHR hit
798 /// @note writebacks will be checked in getNextMSHR()
799 /// for any conflicting requests to the same block
800
801 //@todo remove hw_pf here
802
803 // Coalesce unless it was a software prefetch (see above).
804 if (pkt) {
805 assert(!pkt->isWriteback());
806 // CleanEvicts corresponding to blocks which have
807 // outstanding requests in MSHRs are simply sunk here
808 if (pkt->cmd == MemCmd::CleanEvict) {
809 pendingDelete.reset(pkt);
810 } else {
811 DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx "
812 "size %d\n", __func__, pkt->cmdString(),
813 pkt->getAddr(), pkt->getSize());
814
815 assert(pkt->req->masterId() < system->maxMasters());
816 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
817 // We use forward_time here because it is the same
818 // considering new targets. We have multiple
819 // requests for the same address here. It
820 // specifies the latency to allocate an internal
821 // buffer and to schedule an event to the queued
822 // port and also takes into account the additional
823 // delay of the xbar.
824 mshr->allocateTarget(pkt, forward_time, order++,
825 allocOnFill(pkt->cmd));
826 if (mshr->getNumTargets() == numTarget) {
827 noTargetMSHR = mshr;
828 setBlocked(Blocked_NoTargets);
829 // need to be careful with this... if this mshr isn't
830 // ready yet (i.e. time > curTick()), we don't want to
831 // move it ahead of mshrs that are ready
832 // mshrQueue.moveToFront(mshr);
833 }
834 }
835 // We should call the prefetcher reguardless if the request is
836 // satisfied or not, reguardless if the request is in the MSHR
837 // or not. The request could be a ReadReq hit, but still not
838 // satisfied (potentially because of a prior write to the same
839 // cache line. So, even when not satisfied, tehre is an MSHR
840 // already allocated for this, we need to let the prefetcher
841 // know about the request
842 if (prefetcher) {
843 // Don't notify on SWPrefetch
844 if (!pkt->cmd.isSWPrefetch())
845 next_pf_time = prefetcher->notify(pkt);
846 }
847 }
848 } else {
849 // no MSHR
850 assert(pkt->req->masterId() < system->maxMasters());
851 if (pkt->req->isUncacheable()) {
852 mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
853 } else {
854 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
855 }
856
857 if (pkt->isEviction() ||
858 (pkt->req->isUncacheable() && pkt->isWrite())) {
859 // We use forward_time here because there is an
860 // uncached memory write, forwarded to WriteBuffer.
861 allocateWriteBuffer(pkt, forward_time);
862 } else {
863 if (blk && blk->isValid()) {
864 // should have flushed and have no valid block
865 assert(!pkt->req->isUncacheable());
866
867 // If we have a write miss to a valid block, we
868 // need to mark the block non-readable. Otherwise
869 // if we allow reads while there's an outstanding
870 // write miss, the read could return stale data
871 // out of the cache block... a more aggressive
872 // system could detect the overlap (if any) and
873 // forward data out of the MSHRs, but we don't do
874 // that yet. Note that we do need to leave the
875 // block valid so that it stays in the cache, in
876 // case we get an upgrade response (and hence no
877 // new data) when the write miss completes.
878 // As long as CPUs do proper store/load forwarding
879 // internally, and have a sufficiently weak memory
880 // model, this is probably unnecessary, but at some
881 // point it must have seemed like we needed it...
882 assert(pkt->needsWritable());
883 assert(!blk->isWritable());
884 blk->status &= ~BlkReadable;
885 }
886 // Here we are using forward_time, modelling the latency of
887 // a miss (outbound) just as forwardLatency, neglecting the
888 // lookupLatency component.
889 allocateMissBuffer(pkt, forward_time);
890 }
891
892 if (prefetcher) {
893 // Don't notify on SWPrefetch
894 if (!pkt->cmd.isSWPrefetch())
895 next_pf_time = prefetcher->notify(pkt);
896 }
897 }
898 }
899
900 if (next_pf_time != MaxTick)
901 schedMemSideSendEvent(next_pf_time);
902
903 return true;
904}
905
906PacketPtr
907Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk,
908 bool needsWritable) const
909{
910 // should never see evictions here
911 assert(!cpu_pkt->isEviction());
912
913 bool blkValid = blk && blk->isValid();
914
915 if (cpu_pkt->req->isUncacheable() ||
916 (!blkValid && cpu_pkt->isUpgrade())) {
917 // uncacheable requests and upgrades from upper-level caches
918 // that missed completely just go through as is
919 return nullptr;
920 }
921
922 assert(cpu_pkt->needsResponse());
923
924 MemCmd cmd;
925 // @TODO make useUpgrades a parameter.
926 // Note that ownership protocols require upgrade, otherwise a
927 // write miss on a shared owned block will generate a ReadExcl,
928 // which will clobber the owned copy.
929 const bool useUpgrades = true;
930 if (blkValid && useUpgrades) {
931 // only reason to be here is that blk is read only and we need
932 // it to be writable
933 assert(needsWritable);
934 assert(!blk->isWritable());
935 cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
936 } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
937 cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
938 // Even though this SC will fail, we still need to send out the
939 // request and get the data to supply it to other snoopers in the case
940 // where the determination the StoreCond fails is delayed due to
941 // all caches not being on the same local bus.
942 cmd = MemCmd::SCUpgradeFailReq;
943 } else if (cpu_pkt->cmd == MemCmd::WriteLineReq ||
944 cpu_pkt->cmd == MemCmd::InvalidateReq) {
945 // forward as invalidate to all other caches, this gives us
946 // the line in Exclusive state, and invalidates all other
947 // copies
948 cmd = MemCmd::InvalidateReq;
949 } else {
950 // block is invalid
951 cmd = needsWritable ? MemCmd::ReadExReq :
952 (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
953 }
954 PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
955
956 // if there are upstream caches that have already marked the
957 // packet as having sharers (not passing writable), pass that info
958 // downstream
959 if (cpu_pkt->hasSharers()) {
960 // note that cpu_pkt may have spent a considerable time in the
961 // MSHR queue and that the information could possibly be out
962 // of date, however, there is no harm in conservatively
963 // assuming the block has sharers
964 pkt->setHasSharers();
965 DPRINTF(Cache, "%s passing hasSharers from %s to %s addr %#llx "
966 "size %d\n",
967 __func__, cpu_pkt->cmdString(), pkt->cmdString(),
968 pkt->getAddr(), pkt->getSize());
969 }
970
971 // the packet should be block aligned
972 assert(pkt->getAddr() == blockAlign(pkt->getAddr()));
973
974 pkt->allocate();
975 DPRINTF(Cache, "%s created %s from %s for addr %#llx size %d\n",
976 __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(),
977 pkt->getSize());
978 return pkt;
979}
980
981
982Tick
983Cache::recvAtomic(PacketPtr pkt)
984{
985 // We are in atomic mode so we pay just for lookupLatency here.
986 Cycles lat = lookupLatency;
987
988 // Forward the request if the system is in cache bypass mode.
989 if (system->bypassCaches())
990 return ticksToCycles(memSidePort->sendAtomic(pkt));
991
992 promoteWholeLineWrites(pkt);
993
994 // follow the same flow as in recvTimingReq, and check if a cache
995 // above us is responding
996 if (pkt->cacheResponding()) {
997 DPRINTF(Cache, "Cache above responding to %#llx (%s): "
998 "not responding\n",
999 pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
1000
1001 // if a cache is responding, and it had the line in Owned
1002 // rather than Modified state, we need to invalidate any
1003 // copies that are not on the same path to memory
1004 assert(pkt->needsWritable() && !pkt->responderHadWritable());
1005 lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1006
1007 return lat * clockPeriod();
1008 }
1009
1010 // should assert here that there are no outstanding MSHRs or
1011 // writebacks... that would mean that someone used an atomic
1012 // access in timing mode
1013
1014 CacheBlk *blk = nullptr;
1015 PacketList writebacks;
1016 bool satisfied = access(pkt, blk, lat, writebacks);
1017
1018 // handle writebacks resulting from the access here to ensure they
1019 // logically proceed anything happening below
1020 doWritebacksAtomic(writebacks);
1021
1022 if (!satisfied) {
1023 // MISS
1024
1025 // deal with the packets that go through the write path of
1026 // the cache, i.e. any evictions and uncacheable writes
1027 if (pkt->isEviction() ||
1028 (pkt->req->isUncacheable() && pkt->isWrite())) {
1029 lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1030 return lat * clockPeriod();
1031 }
1032 // only misses left
1033
1034 PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable());
1035
1036 bool is_forward = (bus_pkt == nullptr);
1037
1038 if (is_forward) {
1039 // just forwarding the same request to the next level
1040 // no local cache operation involved
1041 bus_pkt = pkt;
1042 }
1043
1044 DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n",
1045 bus_pkt->cmdString(), bus_pkt->getAddr(),
1046 bus_pkt->isSecure() ? "s" : "ns");
1047
1048#if TRACING_ON
1049 CacheBlk::State old_state = blk ? blk->status : 0;
1050#endif
1051
1052 lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1053
1054 bool is_invalidate = bus_pkt->isInvalidate();
1055
1056 // We are now dealing with the response handling
1057 DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in "
1058 "state %i\n", bus_pkt->cmdString(), bus_pkt->getAddr(),
1059 bus_pkt->isSecure() ? "s" : "ns",
1060 old_state);
1061
1062 // If packet was a forward, the response (if any) is already
1063 // in place in the bus_pkt == pkt structure, so we don't need
1064 // to do anything. Otherwise, use the separate bus_pkt to
1065 // generate response to pkt and then delete it.
1066 if (!is_forward) {
1067 if (pkt->needsResponse()) {
1068 assert(bus_pkt->isResponse());
1069 if (bus_pkt->isError()) {
1070 pkt->makeAtomicResponse();
1071 pkt->copyError(bus_pkt);
1072 } else if (pkt->cmd == MemCmd::WriteLineReq) {
1073 // note the use of pkt, not bus_pkt here.
1074
1075 // write-line request to the cache that promoted
1076 // the write to a whole line
1077 blk = handleFill(pkt, blk, writebacks,
1078 allocOnFill(pkt->cmd));
1079 assert(blk != NULL);
1080 is_invalidate = false;
1076 satisfyCpuSideRequest(pkt, blk);
1081 satisfyRequest(pkt, blk);
1077 } else if (bus_pkt->isRead() ||
1078 bus_pkt->cmd == MemCmd::UpgradeResp) {
1079 // we're updating cache state to allow us to
1080 // satisfy the upstream request from the cache
1081 blk = handleFill(bus_pkt, blk, writebacks,
1082 allocOnFill(pkt->cmd));
1082 } else if (bus_pkt->isRead() ||
1083 bus_pkt->cmd == MemCmd::UpgradeResp) {
1084 // we're updating cache state to allow us to
1085 // satisfy the upstream request from the cache
1086 blk = handleFill(bus_pkt, blk, writebacks,
1087 allocOnFill(pkt->cmd));
1083 satisfyCpuSideRequest(pkt, blk);
1088 satisfyRequest(pkt, blk);
1089 maintainClusivity(pkt->fromCache(), blk);
1084 } else {
1085 // we're satisfying the upstream request without
1086 // modifying cache state, e.g., a write-through
1087 pkt->makeAtomicResponse();
1088 }
1089 }
1090 delete bus_pkt;
1091 }
1092
1093 if (is_invalidate && blk && blk->isValid()) {
1094 invalidateBlock(blk);
1095 }
1096 }
1097
1098 // Note that we don't invoke the prefetcher at all in atomic mode.
1099 // It's not clear how to do it properly, particularly for
1100 // prefetchers that aggressively generate prefetch candidates and
1101 // rely on bandwidth contention to throttle them; these will tend
1102 // to pollute the cache in atomic mode since there is no bandwidth
1103 // contention. If we ever do want to enable prefetching in atomic
1104 // mode, though, this is the place to do it... see timingAccess()
1105 // for an example (though we'd want to issue the prefetch(es)
1106 // immediately rather than calling requestMemSideBus() as we do
1107 // there).
1108
1109 // do any writebacks resulting from the response handling
1110 doWritebacksAtomic(writebacks);
1111
1112 // if we used temp block, check to see if its valid and if so
1113 // clear it out, but only do so after the call to recvAtomic is
1114 // finished so that any downstream observers (such as a snoop
1115 // filter), first see the fill, and only then see the eviction
1116 if (blk == tempBlock && tempBlock->isValid()) {
1117 // the atomic CPU calls recvAtomic for fetch and load/store
1118 // sequentuially, and we may already have a tempBlock
1119 // writeback from the fetch that we have not yet sent
1120 if (tempBlockWriteback) {
1121 // if that is the case, write the prevoius one back, and
1122 // do not schedule any new event
1123 writebackTempBlockAtomic();
1124 } else {
1125 // the writeback/clean eviction happens after the call to
1126 // recvAtomic has finished (but before any successive
1127 // calls), so that the response handling from the fill is
1128 // allowed to happen first
1129 schedule(writebackTempBlockAtomicEvent, curTick());
1130 }
1131
1132 tempBlockWriteback = (blk->isDirty() || writebackClean) ?
1133 writebackBlk(blk) : cleanEvictBlk(blk);
1134 blk->invalidate();
1135 }
1136
1137 if (pkt->needsResponse()) {
1138 pkt->makeAtomicResponse();
1139 }
1140
1141 return lat * clockPeriod();
1142}
1143
1144
1145void
1146Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1147{
1148 if (system->bypassCaches()) {
1149 // Packets from the memory side are snoop request and
1150 // shouldn't happen in bypass mode.
1151 assert(fromCpuSide);
1152
1153 // The cache should be flushed if we are in cache bypass mode,
1154 // so we don't need to check if we need to update anything.
1155 memSidePort->sendFunctional(pkt);
1156 return;
1157 }
1158
1159 Addr blk_addr = blockAlign(pkt->getAddr());
1160 bool is_secure = pkt->isSecure();
1161 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1162 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1163
1164 pkt->pushLabel(name());
1165
1166 CacheBlkPrintWrapper cbpw(blk);
1167
1168 // Note that just because an L2/L3 has valid data doesn't mean an
1169 // L1 doesn't have a more up-to-date modified copy that still
1170 // needs to be found. As a result we always update the request if
1171 // we have it, but only declare it satisfied if we are the owner.
1172
1173 // see if we have data at all (owned or otherwise)
1174 bool have_data = blk && blk->isValid()
1175 && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1176 blk->data);
1177
1178 // data we have is dirty if marked as such or if we have an
1179 // in-service MSHR that is pending a modified line
1180 bool have_dirty =
1181 have_data && (blk->isDirty() ||
1182 (mshr && mshr->inService && mshr->isPendingModified()));
1183
1184 bool done = have_dirty
1185 || cpuSidePort->checkFunctional(pkt)
1186 || mshrQueue.checkFunctional(pkt, blk_addr)
1187 || writeBuffer.checkFunctional(pkt, blk_addr)
1188 || memSidePort->checkFunctional(pkt);
1189
1190 DPRINTF(CacheVerbose, "functional %s %#llx (%s) %s%s%s\n",
1191 pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns",
1192 (blk && blk->isValid()) ? "valid " : "",
1193 have_data ? "data " : "", done ? "done " : "");
1194
1195 // We're leaving the cache, so pop cache->name() label
1196 pkt->popLabel();
1197
1198 if (done) {
1199 pkt->makeResponse();
1200 } else {
1201 // if it came as a request from the CPU side then make sure it
1202 // continues towards the memory side
1203 if (fromCpuSide) {
1204 memSidePort->sendFunctional(pkt);
1205 } else if (cpuSidePort->isSnooping()) {
1206 // if it came from the memory side, it must be a snoop request
1207 // and we should only forward it if we are forwarding snoops
1208 cpuSidePort->sendFunctionalSnoop(pkt);
1209 }
1210 }
1211}
1212
1213
1214/////////////////////////////////////////////////////
1215//
1216// Response handling: responses from the memory side
1217//
1218/////////////////////////////////////////////////////
1219
1220
1221void
1222Cache::handleUncacheableWriteResp(PacketPtr pkt)
1223{
1224 Tick completion_time = clockEdge(responseLatency) +
1225 pkt->headerDelay + pkt->payloadDelay;
1226
1227 // Reset the bus additional time as it is now accounted for
1228 pkt->headerDelay = pkt->payloadDelay = 0;
1229
1230 cpuSidePort->schedTimingResp(pkt, completion_time, true);
1231}
1232
1233void
1234Cache::recvTimingResp(PacketPtr pkt)
1235{
1236 assert(pkt->isResponse());
1237
1238 // all header delay should be paid for by the crossbar, unless
1239 // this is a prefetch response from above
1240 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1241 "%s saw a non-zero packet delay\n", name());
1242
1243 bool is_error = pkt->isError();
1244
1245 if (is_error) {
1246 DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), "
1247 "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns",
1248 pkt->cmdString());
1249 }
1250
1251 DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n",
1252 pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1253 pkt->isSecure() ? "s" : "ns");
1254
1255 // if this is a write, we should be looking at an uncacheable
1256 // write
1257 if (pkt->isWrite()) {
1258 assert(pkt->req->isUncacheable());
1259 handleUncacheableWriteResp(pkt);
1260 return;
1261 }
1262
1263 // we have dealt with any (uncacheable) writes above, from here on
1264 // we know we are dealing with an MSHR due to a miss or a prefetch
1265 MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
1266 assert(mshr);
1267
1268 if (mshr == noTargetMSHR) {
1269 // we always clear at least one target
1270 clearBlocked(Blocked_NoTargets);
1271 noTargetMSHR = nullptr;
1272 }
1273
1274 // Initial target is used just for stats
1275 MSHR::Target *initial_tgt = mshr->getTarget();
1276 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1277 Tick miss_latency = curTick() - initial_tgt->recvTime;
1278
1279 if (pkt->req->isUncacheable()) {
1280 assert(pkt->req->masterId() < system->maxMasters());
1281 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1282 miss_latency;
1283 } else {
1284 assert(pkt->req->masterId() < system->maxMasters());
1285 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1286 miss_latency;
1287 }
1288
1289 bool wasFull = mshrQueue.isFull();
1290
1291 PacketList writebacks;
1292
1293 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1294
1295 // upgrade deferred targets if the response has no sharers, and is
1296 // thus passing writable
1297 if (!pkt->hasSharers()) {
1298 mshr->promoteWritable();
1299 }
1300
1301 bool is_fill = !mshr->isForward &&
1302 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1303
1304 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1305
1306 if (is_fill && !is_error) {
1307 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1308 pkt->getAddr());
1309
1310 blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill);
1311 assert(blk != nullptr);
1312 }
1313
1314 // allow invalidation responses originating from write-line
1315 // requests to be discarded
1316 bool is_invalidate = pkt->isInvalidate();
1317
1318 // First offset for critical word first calculations
1319 int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1320
1090 } else {
1091 // we're satisfying the upstream request without
1092 // modifying cache state, e.g., a write-through
1093 pkt->makeAtomicResponse();
1094 }
1095 }
1096 delete bus_pkt;
1097 }
1098
1099 if (is_invalidate && blk && blk->isValid()) {
1100 invalidateBlock(blk);
1101 }
1102 }
1103
1104 // Note that we don't invoke the prefetcher at all in atomic mode.
1105 // It's not clear how to do it properly, particularly for
1106 // prefetchers that aggressively generate prefetch candidates and
1107 // rely on bandwidth contention to throttle them; these will tend
1108 // to pollute the cache in atomic mode since there is no bandwidth
1109 // contention. If we ever do want to enable prefetching in atomic
1110 // mode, though, this is the place to do it... see timingAccess()
1111 // for an example (though we'd want to issue the prefetch(es)
1112 // immediately rather than calling requestMemSideBus() as we do
1113 // there).
1114
1115 // do any writebacks resulting from the response handling
1116 doWritebacksAtomic(writebacks);
1117
1118 // if we used temp block, check to see if its valid and if so
1119 // clear it out, but only do so after the call to recvAtomic is
1120 // finished so that any downstream observers (such as a snoop
1121 // filter), first see the fill, and only then see the eviction
1122 if (blk == tempBlock && tempBlock->isValid()) {
1123 // the atomic CPU calls recvAtomic for fetch and load/store
1124 // sequentuially, and we may already have a tempBlock
1125 // writeback from the fetch that we have not yet sent
1126 if (tempBlockWriteback) {
1127 // if that is the case, write the prevoius one back, and
1128 // do not schedule any new event
1129 writebackTempBlockAtomic();
1130 } else {
1131 // the writeback/clean eviction happens after the call to
1132 // recvAtomic has finished (but before any successive
1133 // calls), so that the response handling from the fill is
1134 // allowed to happen first
1135 schedule(writebackTempBlockAtomicEvent, curTick());
1136 }
1137
1138 tempBlockWriteback = (blk->isDirty() || writebackClean) ?
1139 writebackBlk(blk) : cleanEvictBlk(blk);
1140 blk->invalidate();
1141 }
1142
1143 if (pkt->needsResponse()) {
1144 pkt->makeAtomicResponse();
1145 }
1146
1147 return lat * clockPeriod();
1148}
1149
1150
1151void
1152Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1153{
1154 if (system->bypassCaches()) {
1155 // Packets from the memory side are snoop request and
1156 // shouldn't happen in bypass mode.
1157 assert(fromCpuSide);
1158
1159 // The cache should be flushed if we are in cache bypass mode,
1160 // so we don't need to check if we need to update anything.
1161 memSidePort->sendFunctional(pkt);
1162 return;
1163 }
1164
1165 Addr blk_addr = blockAlign(pkt->getAddr());
1166 bool is_secure = pkt->isSecure();
1167 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1168 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1169
1170 pkt->pushLabel(name());
1171
1172 CacheBlkPrintWrapper cbpw(blk);
1173
1174 // Note that just because an L2/L3 has valid data doesn't mean an
1175 // L1 doesn't have a more up-to-date modified copy that still
1176 // needs to be found. As a result we always update the request if
1177 // we have it, but only declare it satisfied if we are the owner.
1178
1179 // see if we have data at all (owned or otherwise)
1180 bool have_data = blk && blk->isValid()
1181 && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1182 blk->data);
1183
1184 // data we have is dirty if marked as such or if we have an
1185 // in-service MSHR that is pending a modified line
1186 bool have_dirty =
1187 have_data && (blk->isDirty() ||
1188 (mshr && mshr->inService && mshr->isPendingModified()));
1189
1190 bool done = have_dirty
1191 || cpuSidePort->checkFunctional(pkt)
1192 || mshrQueue.checkFunctional(pkt, blk_addr)
1193 || writeBuffer.checkFunctional(pkt, blk_addr)
1194 || memSidePort->checkFunctional(pkt);
1195
1196 DPRINTF(CacheVerbose, "functional %s %#llx (%s) %s%s%s\n",
1197 pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns",
1198 (blk && blk->isValid()) ? "valid " : "",
1199 have_data ? "data " : "", done ? "done " : "");
1200
1201 // We're leaving the cache, so pop cache->name() label
1202 pkt->popLabel();
1203
1204 if (done) {
1205 pkt->makeResponse();
1206 } else {
1207 // if it came as a request from the CPU side then make sure it
1208 // continues towards the memory side
1209 if (fromCpuSide) {
1210 memSidePort->sendFunctional(pkt);
1211 } else if (cpuSidePort->isSnooping()) {
1212 // if it came from the memory side, it must be a snoop request
1213 // and we should only forward it if we are forwarding snoops
1214 cpuSidePort->sendFunctionalSnoop(pkt);
1215 }
1216 }
1217}
1218
1219
1220/////////////////////////////////////////////////////
1221//
1222// Response handling: responses from the memory side
1223//
1224/////////////////////////////////////////////////////
1225
1226
1227void
1228Cache::handleUncacheableWriteResp(PacketPtr pkt)
1229{
1230 Tick completion_time = clockEdge(responseLatency) +
1231 pkt->headerDelay + pkt->payloadDelay;
1232
1233 // Reset the bus additional time as it is now accounted for
1234 pkt->headerDelay = pkt->payloadDelay = 0;
1235
1236 cpuSidePort->schedTimingResp(pkt, completion_time, true);
1237}
1238
1239void
1240Cache::recvTimingResp(PacketPtr pkt)
1241{
1242 assert(pkt->isResponse());
1243
1244 // all header delay should be paid for by the crossbar, unless
1245 // this is a prefetch response from above
1246 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1247 "%s saw a non-zero packet delay\n", name());
1248
1249 bool is_error = pkt->isError();
1250
1251 if (is_error) {
1252 DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), "
1253 "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns",
1254 pkt->cmdString());
1255 }
1256
1257 DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n",
1258 pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1259 pkt->isSecure() ? "s" : "ns");
1260
1261 // if this is a write, we should be looking at an uncacheable
1262 // write
1263 if (pkt->isWrite()) {
1264 assert(pkt->req->isUncacheable());
1265 handleUncacheableWriteResp(pkt);
1266 return;
1267 }
1268
1269 // we have dealt with any (uncacheable) writes above, from here on
1270 // we know we are dealing with an MSHR due to a miss or a prefetch
1271 MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
1272 assert(mshr);
1273
1274 if (mshr == noTargetMSHR) {
1275 // we always clear at least one target
1276 clearBlocked(Blocked_NoTargets);
1277 noTargetMSHR = nullptr;
1278 }
1279
1280 // Initial target is used just for stats
1281 MSHR::Target *initial_tgt = mshr->getTarget();
1282 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1283 Tick miss_latency = curTick() - initial_tgt->recvTime;
1284
1285 if (pkt->req->isUncacheable()) {
1286 assert(pkt->req->masterId() < system->maxMasters());
1287 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1288 miss_latency;
1289 } else {
1290 assert(pkt->req->masterId() < system->maxMasters());
1291 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1292 miss_latency;
1293 }
1294
1295 bool wasFull = mshrQueue.isFull();
1296
1297 PacketList writebacks;
1298
1299 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1300
1301 // upgrade deferred targets if the response has no sharers, and is
1302 // thus passing writable
1303 if (!pkt->hasSharers()) {
1304 mshr->promoteWritable();
1305 }
1306
1307 bool is_fill = !mshr->isForward &&
1308 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1309
1310 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1311
1312 if (is_fill && !is_error) {
1313 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1314 pkt->getAddr());
1315
1316 blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill);
1317 assert(blk != nullptr);
1318 }
1319
1320 // allow invalidation responses originating from write-line
1321 // requests to be discarded
1322 bool is_invalidate = pkt->isInvalidate();
1323
1324 // First offset for critical word first calculations
1325 int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1326
1327 bool from_cache = false;
1328
1321 while (mshr->hasTargets()) {
1322 MSHR::Target *target = mshr->getTarget();
1323 Packet *tgt_pkt = target->pkt;
1324
1325 switch (target->source) {
1326 case MSHR::Target::FromCPU:
1327 Tick completion_time;
1328 // Here we charge on completion_time the delay of the xbar if the
1329 // packet comes from it, charged on headerDelay.
1330 completion_time = pkt->headerDelay;
1331
1332 // Software prefetch handling for cache closest to core
1333 if (tgt_pkt->cmd.isSWPrefetch()) {
1334 // a software prefetch would have already been ack'd
1335 // immediately with dummy data so the core would be able to
1336 // retire it. This request completes right here, so we
1337 // deallocate it.
1338 delete tgt_pkt->req;
1339 delete tgt_pkt;
1340 break; // skip response
1341 }
1342
1329 while (mshr->hasTargets()) {
1330 MSHR::Target *target = mshr->getTarget();
1331 Packet *tgt_pkt = target->pkt;
1332
1333 switch (target->source) {
1334 case MSHR::Target::FromCPU:
1335 Tick completion_time;
1336 // Here we charge on completion_time the delay of the xbar if the
1337 // packet comes from it, charged on headerDelay.
1338 completion_time = pkt->headerDelay;
1339
1340 // Software prefetch handling for cache closest to core
1341 if (tgt_pkt->cmd.isSWPrefetch()) {
1342 // a software prefetch would have already been ack'd
1343 // immediately with dummy data so the core would be able to
1344 // retire it. This request completes right here, so we
1345 // deallocate it.
1346 delete tgt_pkt->req;
1347 delete tgt_pkt;
1348 break; // skip response
1349 }
1350
1351 // keep track of whether we have responded to another
1352 // cache
1353 from_cache = from_cache || tgt_pkt->fromCache();
1354
1343 // unlike the other packet flows, where data is found in other
1344 // caches or memory and brought back, write-line requests always
1345 // have the data right away, so the above check for "is fill?"
1346 // cannot actually be determined until examining the stored MSHR
1347 // state. We "catch up" with that logic here, which is duplicated
1348 // from above.
1349 if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1350 assert(!is_error);
1351 // we got the block in a writable state, so promote
1352 // any deferred targets if possible
1353 mshr->promoteWritable();
1354 // NB: we use the original packet here and not the response!
1355 blk = handleFill(tgt_pkt, blk, writebacks, mshr->allocOnFill);
1356 assert(blk != nullptr);
1357
1358 // treat as a fill, and discard the invalidation
1359 // response
1360 is_fill = true;
1361 is_invalidate = false;
1362 }
1363
1364 if (is_fill) {
1355 // unlike the other packet flows, where data is found in other
1356 // caches or memory and brought back, write-line requests always
1357 // have the data right away, so the above check for "is fill?"
1358 // cannot actually be determined until examining the stored MSHR
1359 // state. We "catch up" with that logic here, which is duplicated
1360 // from above.
1361 if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1362 assert(!is_error);
1363 // we got the block in a writable state, so promote
1364 // any deferred targets if possible
1365 mshr->promoteWritable();
1366 // NB: we use the original packet here and not the response!
1367 blk = handleFill(tgt_pkt, blk, writebacks, mshr->allocOnFill);
1368 assert(blk != nullptr);
1369
1370 // treat as a fill, and discard the invalidation
1371 // response
1372 is_fill = true;
1373 is_invalidate = false;
1374 }
1375
1376 if (is_fill) {
1365 satisfyCpuSideRequest(tgt_pkt, blk,
1366 true, mshr->hasPostDowngrade());
1377 satisfyRequest(tgt_pkt, blk, true, mshr->hasPostDowngrade());
1367
1368 // How many bytes past the first request is this one
1369 int transfer_offset =
1370 tgt_pkt->getOffset(blkSize) - initial_offset;
1371 if (transfer_offset < 0) {
1372 transfer_offset += blkSize;
1373 }
1374
1375 // If not critical word (offset) return payloadDelay.
1376 // responseLatency is the latency of the return path
1377 // from lower level caches/memory to an upper level cache or
1378 // the core.
1379 completion_time += clockEdge(responseLatency) +
1380 (transfer_offset ? pkt->payloadDelay : 0);
1381
1382 assert(!tgt_pkt->req->isUncacheable());
1383
1384 assert(tgt_pkt->req->masterId() < system->maxMasters());
1385 missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1386 completion_time - target->recvTime;
1387 } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1388 // failed StoreCond upgrade
1389 assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1390 tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1391 tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1392 // responseLatency is the latency of the return path
1393 // from lower level caches/memory to an upper level cache or
1394 // the core.
1395 completion_time += clockEdge(responseLatency) +
1396 pkt->payloadDelay;
1397 tgt_pkt->req->setExtraData(0);
1398 } else {
1399 // not a cache fill, just forwarding response
1400 // responseLatency is the latency of the return path
1401 // from lower level cahces/memory to the core.
1402 completion_time += clockEdge(responseLatency) +
1403 pkt->payloadDelay;
1404 if (pkt->isRead() && !is_error) {
1405 // sanity check
1406 assert(pkt->getAddr() == tgt_pkt->getAddr());
1407 assert(pkt->getSize() >= tgt_pkt->getSize());
1408
1409 tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1410 }
1411 }
1412 tgt_pkt->makeTimingResponse();
1413 // if this packet is an error copy that to the new packet
1414 if (is_error)
1415 tgt_pkt->copyError(pkt);
1416 if (tgt_pkt->cmd == MemCmd::ReadResp &&
1417 (is_invalidate || mshr->hasPostInvalidate())) {
1418 // If intermediate cache got ReadRespWithInvalidate,
1419 // propagate that. Response should not have
1420 // isInvalidate() set otherwise.
1421 tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1422 DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n",
1423 __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr());
1424 }
1425 // Reset the bus additional time as it is now accounted for
1426 tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1427 cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
1428 break;
1429
1430 case MSHR::Target::FromPrefetcher:
1431 assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1432 if (blk)
1433 blk->status |= BlkHWPrefetched;
1434 delete tgt_pkt->req;
1435 delete tgt_pkt;
1436 break;
1437
1438 case MSHR::Target::FromSnoop:
1439 // I don't believe that a snoop can be in an error state
1440 assert(!is_error);
1441 // response to snoop request
1442 DPRINTF(Cache, "processing deferred snoop...\n");
1443 assert(!(is_invalidate && !mshr->hasPostInvalidate()));
1444 handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1445 break;
1446
1447 default:
1448 panic("Illegal target->source enum %d\n", target->source);
1449 }
1450
1451 mshr->popTarget();
1452 }
1453
1378
1379 // How many bytes past the first request is this one
1380 int transfer_offset =
1381 tgt_pkt->getOffset(blkSize) - initial_offset;
1382 if (transfer_offset < 0) {
1383 transfer_offset += blkSize;
1384 }
1385
1386 // If not critical word (offset) return payloadDelay.
1387 // responseLatency is the latency of the return path
1388 // from lower level caches/memory to an upper level cache or
1389 // the core.
1390 completion_time += clockEdge(responseLatency) +
1391 (transfer_offset ? pkt->payloadDelay : 0);
1392
1393 assert(!tgt_pkt->req->isUncacheable());
1394
1395 assert(tgt_pkt->req->masterId() < system->maxMasters());
1396 missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1397 completion_time - target->recvTime;
1398 } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1399 // failed StoreCond upgrade
1400 assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1401 tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1402 tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1403 // responseLatency is the latency of the return path
1404 // from lower level caches/memory to an upper level cache or
1405 // the core.
1406 completion_time += clockEdge(responseLatency) +
1407 pkt->payloadDelay;
1408 tgt_pkt->req->setExtraData(0);
1409 } else {
1410 // not a cache fill, just forwarding response
1411 // responseLatency is the latency of the return path
1412 // from lower level cahces/memory to the core.
1413 completion_time += clockEdge(responseLatency) +
1414 pkt->payloadDelay;
1415 if (pkt->isRead() && !is_error) {
1416 // sanity check
1417 assert(pkt->getAddr() == tgt_pkt->getAddr());
1418 assert(pkt->getSize() >= tgt_pkt->getSize());
1419
1420 tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1421 }
1422 }
1423 tgt_pkt->makeTimingResponse();
1424 // if this packet is an error copy that to the new packet
1425 if (is_error)
1426 tgt_pkt->copyError(pkt);
1427 if (tgt_pkt->cmd == MemCmd::ReadResp &&
1428 (is_invalidate || mshr->hasPostInvalidate())) {
1429 // If intermediate cache got ReadRespWithInvalidate,
1430 // propagate that. Response should not have
1431 // isInvalidate() set otherwise.
1432 tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1433 DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n",
1434 __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr());
1435 }
1436 // Reset the bus additional time as it is now accounted for
1437 tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1438 cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
1439 break;
1440
1441 case MSHR::Target::FromPrefetcher:
1442 assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1443 if (blk)
1444 blk->status |= BlkHWPrefetched;
1445 delete tgt_pkt->req;
1446 delete tgt_pkt;
1447 break;
1448
1449 case MSHR::Target::FromSnoop:
1450 // I don't believe that a snoop can be in an error state
1451 assert(!is_error);
1452 // response to snoop request
1453 DPRINTF(Cache, "processing deferred snoop...\n");
1454 assert(!(is_invalidate && !mshr->hasPostInvalidate()));
1455 handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1456 break;
1457
1458 default:
1459 panic("Illegal target->source enum %d\n", target->source);
1460 }
1461
1462 mshr->popTarget();
1463 }
1464
1465 maintainClusivity(from_cache, blk);
1466
1454 if (blk && blk->isValid()) {
1455 // an invalidate response stemming from a write line request
1456 // should not invalidate the block, so check if the
1457 // invalidation should be discarded
1458 if (is_invalidate || mshr->hasPostInvalidate()) {
1459 invalidateBlock(blk);
1460 } else if (mshr->hasPostDowngrade()) {
1461 blk->status &= ~BlkWritable;
1462 }
1463 }
1464
1465 if (mshr->promoteDeferredTargets()) {
1466 // avoid later read getting stale data while write miss is
1467 // outstanding.. see comment in timingAccess()
1468 if (blk) {
1469 blk->status &= ~BlkReadable;
1470 }
1471 mshrQueue.markPending(mshr);
1472 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1473 } else {
1474 mshrQueue.deallocate(mshr);
1475 if (wasFull && !mshrQueue.isFull()) {
1476 clearBlocked(Blocked_NoMSHRs);
1477 }
1478
1479 // Request the bus for a prefetch if this deallocation freed enough
1480 // MSHRs for a prefetch to take place
1481 if (prefetcher && mshrQueue.canPrefetch()) {
1482 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1483 clockEdge());
1484 if (next_pf_time != MaxTick)
1485 schedMemSideSendEvent(next_pf_time);
1486 }
1487 }
1488 // reset the xbar additional timinig as it is now accounted for
1489 pkt->headerDelay = pkt->payloadDelay = 0;
1490
1491 // copy writebacks to write buffer
1492 doWritebacks(writebacks, forward_time);
1493
1494 // if we used temp block, check to see if its valid and then clear it out
1495 if (blk == tempBlock && tempBlock->isValid()) {
1496 // We use forwardLatency here because we are copying
1497 // Writebacks/CleanEvicts to write buffer. It specifies the latency to
1498 // allocate an internal buffer and to schedule an event to the
1499 // queued port.
1500 if (blk->isDirty() || writebackClean) {
1501 PacketPtr wbPkt = writebackBlk(blk);
1502 allocateWriteBuffer(wbPkt, forward_time);
1503 // Set BLOCK_CACHED flag if cached above.
1504 if (isCachedAbove(wbPkt))
1505 wbPkt->setBlockCached();
1506 } else {
1507 PacketPtr wcPkt = cleanEvictBlk(blk);
1508 // Check to see if block is cached above. If not allocate
1509 // write buffer
1510 if (isCachedAbove(wcPkt))
1511 delete wcPkt;
1512 else
1513 allocateWriteBuffer(wcPkt, forward_time);
1514 }
1515 blk->invalidate();
1516 }
1517
1518 DPRINTF(CacheVerbose, "Leaving %s with %s for addr %#llx\n", __func__,
1519 pkt->cmdString(), pkt->getAddr());
1520 delete pkt;
1521}
1522
1523PacketPtr
1524Cache::writebackBlk(CacheBlk *blk)
1525{
1526 chatty_assert(!isReadOnly || writebackClean,
1527 "Writeback from read-only cache");
1528 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1529
1530 writebacks[Request::wbMasterId]++;
1531
1532 Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set),
1533 blkSize, 0, Request::wbMasterId);
1534 if (blk->isSecure())
1535 req->setFlags(Request::SECURE);
1536
1537 req->taskId(blk->task_id);
1538 blk->task_id= ContextSwitchTaskId::Unknown;
1539 blk->tickInserted = curTick();
1540
1541 PacketPtr pkt =
1542 new Packet(req, blk->isDirty() ?
1543 MemCmd::WritebackDirty : MemCmd::WritebackClean);
1544
1545 DPRINTF(Cache, "Create Writeback %#llx writable: %d, dirty: %d\n",
1546 pkt->getAddr(), blk->isWritable(), blk->isDirty());
1547
1548 if (blk->isWritable()) {
1549 // not asserting shared means we pass the block in modified
1550 // state, mark our own block non-writeable
1551 blk->status &= ~BlkWritable;
1552 } else {
1553 // we are in the Owned state, tell the receiver
1554 pkt->setHasSharers();
1555 }
1556
1557 // make sure the block is not marked dirty
1558 blk->status &= ~BlkDirty;
1559
1560 pkt->allocate();
1561 std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize);
1562
1563 return pkt;
1564}
1565
1566PacketPtr
1567Cache::cleanEvictBlk(CacheBlk *blk)
1568{
1569 assert(!writebackClean);
1570 assert(blk && blk->isValid() && !blk->isDirty());
1571 // Creating a zero sized write, a message to the snoop filter
1572 Request *req =
1573 new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1574 Request::wbMasterId);
1575 if (blk->isSecure())
1576 req->setFlags(Request::SECURE);
1577
1578 req->taskId(blk->task_id);
1579 blk->task_id = ContextSwitchTaskId::Unknown;
1580 blk->tickInserted = curTick();
1581
1582 PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1583 pkt->allocate();
1584 DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(),
1585 pkt->req->isInstFetch() ? " (ifetch)" : "",
1586 pkt->getAddr());
1587
1588 return pkt;
1589}
1590
1591void
1592Cache::memWriteback()
1593{
1594 CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1595 tags->forEachBlk(visitor);
1596}
1597
1598void
1599Cache::memInvalidate()
1600{
1601 CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1602 tags->forEachBlk(visitor);
1603}
1604
1605bool
1606Cache::isDirty() const
1607{
1608 CacheBlkIsDirtyVisitor visitor;
1609 tags->forEachBlk(visitor);
1610
1611 return visitor.isDirty();
1612}
1613
1614bool
1615Cache::writebackVisitor(CacheBlk &blk)
1616{
1617 if (blk.isDirty()) {
1618 assert(blk.isValid());
1619
1620 Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
1621 blkSize, 0, Request::funcMasterId);
1622 request.taskId(blk.task_id);
1623
1624 Packet packet(&request, MemCmd::WriteReq);
1625 packet.dataStatic(blk.data);
1626
1627 memSidePort->sendFunctional(&packet);
1628
1629 blk.status &= ~BlkDirty;
1630 }
1631
1632 return true;
1633}
1634
1635bool
1636Cache::invalidateVisitor(CacheBlk &blk)
1637{
1638
1639 if (blk.isDirty())
1640 warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1641
1642 if (blk.isValid()) {
1643 assert(!blk.isDirty());
1644 tags->invalidate(&blk);
1645 blk.invalidate();
1646 }
1647
1648 return true;
1649}
1650
1651CacheBlk*
1652Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1653{
1654 CacheBlk *blk = tags->findVictim(addr);
1655
1656 // It is valid to return nullptr if there is no victim
1657 if (!blk)
1658 return nullptr;
1659
1660 if (blk->isValid()) {
1661 Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
1662 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1663 if (repl_mshr) {
1664 // must be an outstanding upgrade request
1665 // on a block we're about to replace...
1666 assert(!blk->isWritable() || blk->isDirty());
1667 assert(repl_mshr->needsWritable());
1668 // too hard to replace block with transient state
1669 // allocation failed, block not inserted
1670 return nullptr;
1671 } else {
1672 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1673 "(%s): %s\n", repl_addr, blk->isSecure() ? "s" : "ns",
1674 addr, is_secure ? "s" : "ns",
1675 blk->isDirty() ? "writeback" : "clean");
1676
1677 if (blk->wasPrefetched()) {
1678 unusedPrefetches++;
1679 }
1680 // Will send up Writeback/CleanEvict snoops via isCachedAbove
1681 // when pushing this writeback list into the write buffer.
1682 if (blk->isDirty() || writebackClean) {
1683 // Save writeback packet for handling by caller
1684 writebacks.push_back(writebackBlk(blk));
1685 } else {
1686 writebacks.push_back(cleanEvictBlk(blk));
1687 }
1688 }
1689 }
1690
1691 return blk;
1692}
1693
1694void
1695Cache::invalidateBlock(CacheBlk *blk)
1696{
1697 if (blk != tempBlock)
1698 tags->invalidate(blk);
1699 blk->invalidate();
1700}
1701
1702// Note that the reason we return a list of writebacks rather than
1703// inserting them directly in the write buffer is that this function
1704// is called by both atomic and timing-mode accesses, and in atomic
1705// mode we don't mess with the write buffer (we just perform the
1706// writebacks atomically once the original request is complete).
1707CacheBlk*
1708Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1709 bool allocate)
1710{
1711 assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1712 Addr addr = pkt->getAddr();
1713 bool is_secure = pkt->isSecure();
1714#if TRACING_ON
1715 CacheBlk::State old_state = blk ? blk->status : 0;
1716#endif
1717
1718 // When handling a fill, we should have no writes to this line.
1719 assert(addr == blockAlign(addr));
1720 assert(!writeBuffer.findMatch(addr, is_secure));
1721
1722 if (blk == nullptr) {
1723 // better have read new data...
1724 assert(pkt->hasData());
1725
1726 // only read responses and write-line requests have data;
1727 // note that we don't write the data here for write-line - that
1467 if (blk && blk->isValid()) {
1468 // an invalidate response stemming from a write line request
1469 // should not invalidate the block, so check if the
1470 // invalidation should be discarded
1471 if (is_invalidate || mshr->hasPostInvalidate()) {
1472 invalidateBlock(blk);
1473 } else if (mshr->hasPostDowngrade()) {
1474 blk->status &= ~BlkWritable;
1475 }
1476 }
1477
1478 if (mshr->promoteDeferredTargets()) {
1479 // avoid later read getting stale data while write miss is
1480 // outstanding.. see comment in timingAccess()
1481 if (blk) {
1482 blk->status &= ~BlkReadable;
1483 }
1484 mshrQueue.markPending(mshr);
1485 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1486 } else {
1487 mshrQueue.deallocate(mshr);
1488 if (wasFull && !mshrQueue.isFull()) {
1489 clearBlocked(Blocked_NoMSHRs);
1490 }
1491
1492 // Request the bus for a prefetch if this deallocation freed enough
1493 // MSHRs for a prefetch to take place
1494 if (prefetcher && mshrQueue.canPrefetch()) {
1495 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1496 clockEdge());
1497 if (next_pf_time != MaxTick)
1498 schedMemSideSendEvent(next_pf_time);
1499 }
1500 }
1501 // reset the xbar additional timinig as it is now accounted for
1502 pkt->headerDelay = pkt->payloadDelay = 0;
1503
1504 // copy writebacks to write buffer
1505 doWritebacks(writebacks, forward_time);
1506
1507 // if we used temp block, check to see if its valid and then clear it out
1508 if (blk == tempBlock && tempBlock->isValid()) {
1509 // We use forwardLatency here because we are copying
1510 // Writebacks/CleanEvicts to write buffer. It specifies the latency to
1511 // allocate an internal buffer and to schedule an event to the
1512 // queued port.
1513 if (blk->isDirty() || writebackClean) {
1514 PacketPtr wbPkt = writebackBlk(blk);
1515 allocateWriteBuffer(wbPkt, forward_time);
1516 // Set BLOCK_CACHED flag if cached above.
1517 if (isCachedAbove(wbPkt))
1518 wbPkt->setBlockCached();
1519 } else {
1520 PacketPtr wcPkt = cleanEvictBlk(blk);
1521 // Check to see if block is cached above. If not allocate
1522 // write buffer
1523 if (isCachedAbove(wcPkt))
1524 delete wcPkt;
1525 else
1526 allocateWriteBuffer(wcPkt, forward_time);
1527 }
1528 blk->invalidate();
1529 }
1530
1531 DPRINTF(CacheVerbose, "Leaving %s with %s for addr %#llx\n", __func__,
1532 pkt->cmdString(), pkt->getAddr());
1533 delete pkt;
1534}
1535
1536PacketPtr
1537Cache::writebackBlk(CacheBlk *blk)
1538{
1539 chatty_assert(!isReadOnly || writebackClean,
1540 "Writeback from read-only cache");
1541 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1542
1543 writebacks[Request::wbMasterId]++;
1544
1545 Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set),
1546 blkSize, 0, Request::wbMasterId);
1547 if (blk->isSecure())
1548 req->setFlags(Request::SECURE);
1549
1550 req->taskId(blk->task_id);
1551 blk->task_id= ContextSwitchTaskId::Unknown;
1552 blk->tickInserted = curTick();
1553
1554 PacketPtr pkt =
1555 new Packet(req, blk->isDirty() ?
1556 MemCmd::WritebackDirty : MemCmd::WritebackClean);
1557
1558 DPRINTF(Cache, "Create Writeback %#llx writable: %d, dirty: %d\n",
1559 pkt->getAddr(), blk->isWritable(), blk->isDirty());
1560
1561 if (blk->isWritable()) {
1562 // not asserting shared means we pass the block in modified
1563 // state, mark our own block non-writeable
1564 blk->status &= ~BlkWritable;
1565 } else {
1566 // we are in the Owned state, tell the receiver
1567 pkt->setHasSharers();
1568 }
1569
1570 // make sure the block is not marked dirty
1571 blk->status &= ~BlkDirty;
1572
1573 pkt->allocate();
1574 std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize);
1575
1576 return pkt;
1577}
1578
1579PacketPtr
1580Cache::cleanEvictBlk(CacheBlk *blk)
1581{
1582 assert(!writebackClean);
1583 assert(blk && blk->isValid() && !blk->isDirty());
1584 // Creating a zero sized write, a message to the snoop filter
1585 Request *req =
1586 new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1587 Request::wbMasterId);
1588 if (blk->isSecure())
1589 req->setFlags(Request::SECURE);
1590
1591 req->taskId(blk->task_id);
1592 blk->task_id = ContextSwitchTaskId::Unknown;
1593 blk->tickInserted = curTick();
1594
1595 PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1596 pkt->allocate();
1597 DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(),
1598 pkt->req->isInstFetch() ? " (ifetch)" : "",
1599 pkt->getAddr());
1600
1601 return pkt;
1602}
1603
1604void
1605Cache::memWriteback()
1606{
1607 CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1608 tags->forEachBlk(visitor);
1609}
1610
1611void
1612Cache::memInvalidate()
1613{
1614 CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1615 tags->forEachBlk(visitor);
1616}
1617
1618bool
1619Cache::isDirty() const
1620{
1621 CacheBlkIsDirtyVisitor visitor;
1622 tags->forEachBlk(visitor);
1623
1624 return visitor.isDirty();
1625}
1626
1627bool
1628Cache::writebackVisitor(CacheBlk &blk)
1629{
1630 if (blk.isDirty()) {
1631 assert(blk.isValid());
1632
1633 Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
1634 blkSize, 0, Request::funcMasterId);
1635 request.taskId(blk.task_id);
1636
1637 Packet packet(&request, MemCmd::WriteReq);
1638 packet.dataStatic(blk.data);
1639
1640 memSidePort->sendFunctional(&packet);
1641
1642 blk.status &= ~BlkDirty;
1643 }
1644
1645 return true;
1646}
1647
1648bool
1649Cache::invalidateVisitor(CacheBlk &blk)
1650{
1651
1652 if (blk.isDirty())
1653 warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1654
1655 if (blk.isValid()) {
1656 assert(!blk.isDirty());
1657 tags->invalidate(&blk);
1658 blk.invalidate();
1659 }
1660
1661 return true;
1662}
1663
1664CacheBlk*
1665Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1666{
1667 CacheBlk *blk = tags->findVictim(addr);
1668
1669 // It is valid to return nullptr if there is no victim
1670 if (!blk)
1671 return nullptr;
1672
1673 if (blk->isValid()) {
1674 Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
1675 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1676 if (repl_mshr) {
1677 // must be an outstanding upgrade request
1678 // on a block we're about to replace...
1679 assert(!blk->isWritable() || blk->isDirty());
1680 assert(repl_mshr->needsWritable());
1681 // too hard to replace block with transient state
1682 // allocation failed, block not inserted
1683 return nullptr;
1684 } else {
1685 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1686 "(%s): %s\n", repl_addr, blk->isSecure() ? "s" : "ns",
1687 addr, is_secure ? "s" : "ns",
1688 blk->isDirty() ? "writeback" : "clean");
1689
1690 if (blk->wasPrefetched()) {
1691 unusedPrefetches++;
1692 }
1693 // Will send up Writeback/CleanEvict snoops via isCachedAbove
1694 // when pushing this writeback list into the write buffer.
1695 if (blk->isDirty() || writebackClean) {
1696 // Save writeback packet for handling by caller
1697 writebacks.push_back(writebackBlk(blk));
1698 } else {
1699 writebacks.push_back(cleanEvictBlk(blk));
1700 }
1701 }
1702 }
1703
1704 return blk;
1705}
1706
1707void
1708Cache::invalidateBlock(CacheBlk *blk)
1709{
1710 if (blk != tempBlock)
1711 tags->invalidate(blk);
1712 blk->invalidate();
1713}
1714
1715// Note that the reason we return a list of writebacks rather than
1716// inserting them directly in the write buffer is that this function
1717// is called by both atomic and timing-mode accesses, and in atomic
1718// mode we don't mess with the write buffer (we just perform the
1719// writebacks atomically once the original request is complete).
1720CacheBlk*
1721Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1722 bool allocate)
1723{
1724 assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1725 Addr addr = pkt->getAddr();
1726 bool is_secure = pkt->isSecure();
1727#if TRACING_ON
1728 CacheBlk::State old_state = blk ? blk->status : 0;
1729#endif
1730
1731 // When handling a fill, we should have no writes to this line.
1732 assert(addr == blockAlign(addr));
1733 assert(!writeBuffer.findMatch(addr, is_secure));
1734
1735 if (blk == nullptr) {
1736 // better have read new data...
1737 assert(pkt->hasData());
1738
1739 // only read responses and write-line requests have data;
1740 // note that we don't write the data here for write-line - that
1728 // happens in the subsequent satisfyCpuSideRequest.
1741 // happens in the subsequent call to satisfyRequest
1729 assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1730
1731 // need to do a replacement if allocating, otherwise we stick
1732 // with the temporary storage
1733 blk = allocate ? allocateBlock(addr, is_secure, writebacks) : nullptr;
1734
1735 if (blk == nullptr) {
1736 // No replaceable block or a mostly exclusive
1737 // cache... just use temporary storage to complete the
1738 // current request and then get rid of it
1739 assert(!tempBlock->isValid());
1740 blk = tempBlock;
1741 tempBlock->set = tags->extractSet(addr);
1742 tempBlock->tag = tags->extractTag(addr);
1743 // @todo: set security state as well...
1744 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1745 is_secure ? "s" : "ns");
1746 } else {
1747 tags->insertBlock(pkt, blk);
1748 }
1749
1750 // we should never be overwriting a valid block
1751 assert(!blk->isValid());
1752 } else {
1753 // existing block... probably an upgrade
1754 assert(blk->tag == tags->extractTag(addr));
1755 // either we're getting new data or the block should already be valid
1756 assert(pkt->hasData() || blk->isValid());
1757 // don't clear block status... if block is already dirty we
1758 // don't want to lose that
1759 }
1760
1761 if (is_secure)
1762 blk->status |= BlkSecure;
1763 blk->status |= BlkValid | BlkReadable;
1764
1765 // sanity check for whole-line writes, which should always be
1766 // marked as writable as part of the fill, and then later marked
1742 assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1743
1744 // need to do a replacement if allocating, otherwise we stick
1745 // with the temporary storage
1746 blk = allocate ? allocateBlock(addr, is_secure, writebacks) : nullptr;
1747
1748 if (blk == nullptr) {
1749 // No replaceable block or a mostly exclusive
1750 // cache... just use temporary storage to complete the
1751 // current request and then get rid of it
1752 assert(!tempBlock->isValid());
1753 blk = tempBlock;
1754 tempBlock->set = tags->extractSet(addr);
1755 tempBlock->tag = tags->extractTag(addr);
1756 // @todo: set security state as well...
1757 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1758 is_secure ? "s" : "ns");
1759 } else {
1760 tags->insertBlock(pkt, blk);
1761 }
1762
1763 // we should never be overwriting a valid block
1764 assert(!blk->isValid());
1765 } else {
1766 // existing block... probably an upgrade
1767 assert(blk->tag == tags->extractTag(addr));
1768 // either we're getting new data or the block should already be valid
1769 assert(pkt->hasData() || blk->isValid());
1770 // don't clear block status... if block is already dirty we
1771 // don't want to lose that
1772 }
1773
1774 if (is_secure)
1775 blk->status |= BlkSecure;
1776 blk->status |= BlkValid | BlkReadable;
1777
1778 // sanity check for whole-line writes, which should always be
1779 // marked as writable as part of the fill, and then later marked
1767 // dirty as part of satisfyCpuSideRequest
1780 // dirty as part of satisfyRequest
1768 if (pkt->cmd == MemCmd::WriteLineReq) {
1769 assert(!pkt->hasSharers());
1770 // at the moment other caches do not respond to the
1771 // invalidation requests corresponding to a whole-line write
1772 assert(!pkt->cacheResponding());
1773 }
1774
1775 // here we deal with setting the appropriate state of the line,
1776 // and we start by looking at the hasSharers flag, and ignore the
1777 // cacheResponding flag (normally signalling dirty data) if the
1778 // packet has sharers, thus the line is never allocated as Owned
1779 // (dirty but not writable), and always ends up being either
1780 // Shared, Exclusive or Modified, see Packet::setCacheResponding
1781 // for more details
1782 if (!pkt->hasSharers()) {
1783 // we could get a writable line from memory (rather than a
1784 // cache) even in a read-only cache, note that we set this bit
1785 // even for a read-only cache, possibly revisit this decision
1786 blk->status |= BlkWritable;
1787
1788 // check if we got this via cache-to-cache transfer (i.e., from a
1789 // cache that had the block in Modified or Owned state)
1790 if (pkt->cacheResponding()) {
1791 // we got the block in Modified state, and invalidated the
1792 // owners copy
1793 blk->status |= BlkDirty;
1794
1795 chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1796 "in read-only cache %s\n", name());
1797 }
1798 }
1799
1800 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1801 addr, is_secure ? "s" : "ns", old_state, blk->print());
1802
1803 // if we got new data, copy it in (checking for a read response
1804 // and a response that has data is the same in the end)
1805 if (pkt->isRead()) {
1806 // sanity checks
1807 assert(pkt->hasData());
1808 assert(pkt->getSize() == blkSize);
1809
1810 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
1811 }
1812 // We pay for fillLatency here.
1813 blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1814 pkt->payloadDelay;
1815
1816 return blk;
1817}
1818
1819
1820/////////////////////////////////////////////////////
1821//
1822// Snoop path: requests coming in from the memory side
1823//
1824/////////////////////////////////////////////////////
1825
1826void
1827Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1828 bool already_copied, bool pending_inval)
1829{
1830 // sanity check
1831 assert(req_pkt->isRequest());
1832 assert(req_pkt->needsResponse());
1833
1834 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1835 req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize());
1836 // timing-mode snoop responses require a new packet, unless we
1837 // already made a copy...
1838 PacketPtr pkt = req_pkt;
1839 if (!already_copied)
1840 // do not clear flags, and allocate space for data if the
1841 // packet needs it (the only packets that carry data are read
1842 // responses)
1843 pkt = new Packet(req_pkt, false, req_pkt->isRead());
1844
1845 assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
1846 pkt->hasSharers());
1847 pkt->makeTimingResponse();
1848 if (pkt->isRead()) {
1849 pkt->setDataFromBlock(blk_data, blkSize);
1850 }
1851 if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
1852 // Assume we defer a response to a read from a far-away cache
1853 // A, then later defer a ReadExcl from a cache B on the same
1854 // bus as us. We'll assert cacheResponding in both cases, but
1855 // in the latter case cacheResponding will keep the
1856 // invalidation from reaching cache A. This special response
1857 // tells cache A that it gets the block to satisfy its read,
1858 // but must immediately invalidate it.
1859 pkt->cmd = MemCmd::ReadRespWithInvalidate;
1860 }
1861 // Here we consider forward_time, paying for just forward latency and
1862 // also charging the delay provided by the xbar.
1863 // forward_time is used as send_time in next allocateWriteBuffer().
1864 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1865 // Here we reset the timing of the packet.
1866 pkt->headerDelay = pkt->payloadDelay = 0;
1867 DPRINTF(CacheVerbose,
1868 "%s created response: %s addr %#llx size %d tick: %lu\n",
1869 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1870 forward_time);
1871 memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
1872}
1873
1874uint32_t
1875Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
1876 bool is_deferred, bool pending_inval)
1877{
1878 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
1879 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1880 // deferred snoops can only happen in timing mode
1881 assert(!(is_deferred && !is_timing));
1882 // pending_inval only makes sense on deferred snoops
1883 assert(!(pending_inval && !is_deferred));
1884 assert(pkt->isRequest());
1885
1886 // the packet may get modified if we or a forwarded snooper
1887 // responds in atomic mode, so remember a few things about the
1888 // original packet up front
1889 bool invalidate = pkt->isInvalidate();
1890 bool M5_VAR_USED needs_writable = pkt->needsWritable();
1891
1892 // at the moment we could get an uncacheable write which does not
1893 // have the invalidate flag, and we need a suitable way of dealing
1894 // with this case
1895 panic_if(invalidate && pkt->req->isUncacheable(),
1896 "%s got an invalidating uncacheable snoop request %s to %#llx",
1897 name(), pkt->cmdString(), pkt->getAddr());
1898
1899 uint32_t snoop_delay = 0;
1900
1901 if (forwardSnoops) {
1902 // first propagate snoop upward to see if anyone above us wants to
1903 // handle it. save & restore packet src since it will get
1904 // rewritten to be relative to cpu-side bus (if any)
1905 bool alreadyResponded = pkt->cacheResponding();
1906 if (is_timing) {
1907 // copy the packet so that we can clear any flags before
1908 // forwarding it upwards, we also allocate data (passing
1909 // the pointer along in case of static data), in case
1910 // there is a snoop hit in upper levels
1911 Packet snoopPkt(pkt, true, true);
1912 snoopPkt.setExpressSnoop();
1913 // the snoop packet does not need to wait any additional
1914 // time
1915 snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
1916 cpuSidePort->sendTimingSnoopReq(&snoopPkt);
1917
1918 // add the header delay (including crossbar and snoop
1919 // delays) of the upward snoop to the snoop delay for this
1920 // cache
1921 snoop_delay += snoopPkt.headerDelay;
1922
1923 if (snoopPkt.cacheResponding()) {
1924 // cache-to-cache response from some upper cache
1925 assert(!alreadyResponded);
1926 pkt->setCacheResponding();
1927 }
1928 // upstream cache has the block, or has an outstanding
1929 // MSHR, pass the flag on
1930 if (snoopPkt.hasSharers()) {
1931 pkt->setHasSharers();
1932 }
1933 // If this request is a prefetch or clean evict and an upper level
1934 // signals block present, make sure to propagate the block
1935 // presence to the requester.
1936 if (snoopPkt.isBlockCached()) {
1937 pkt->setBlockCached();
1938 }
1939 } else {
1940 cpuSidePort->sendAtomicSnoop(pkt);
1941 if (!alreadyResponded && pkt->cacheResponding()) {
1942 // cache-to-cache response from some upper cache:
1943 // forward response to original requester
1944 assert(pkt->isResponse());
1945 }
1946 }
1947 }
1948
1949 if (!blk || !blk->isValid()) {
1950 if (is_deferred) {
1951 // we no longer have the block, and will not respond, but a
1952 // packet was allocated in MSHR::handleSnoop and we have
1953 // to delete it
1954 assert(pkt->needsResponse());
1955
1956 // we have passed the block to a cache upstream, that
1957 // cache should be responding
1958 assert(pkt->cacheResponding());
1959
1960 delete pkt;
1961 }
1962
1963 DPRINTF(CacheVerbose, "%s snoop miss for %s addr %#llx size %d\n",
1964 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1965 return snoop_delay;
1966 } else {
1967 DPRINTF(Cache, "%s snoop hit for %s addr %#llx size %d, "
1968 "old state is %s\n", __func__, pkt->cmdString(),
1969 pkt->getAddr(), pkt->getSize(), blk->print());
1970 }
1971
1972 chatty_assert(!(isReadOnly && blk->isDirty()),
1973 "Should never have a dirty block in a read-only cache %s\n",
1974 name());
1975
1976 // We may end up modifying both the block state and the packet (if
1977 // we respond in atomic mode), so just figure out what to do now
1978 // and then do it later. If we find dirty data while snooping for
1979 // an invalidate, we don't need to send a response. The
1980 // invalidation itself is taken care of below.
1981 bool respond = blk->isDirty() && pkt->needsResponse() &&
1982 pkt->cmd != MemCmd::InvalidateReq;
1983 bool have_writable = blk->isWritable();
1984
1985 // Invalidate any prefetch's from below that would strip write permissions
1986 // MemCmd::HardPFReq is only observed by upstream caches. After missing
1987 // above and in it's own cache, a new MemCmd::ReadReq is created that
1988 // downstream caches observe.
1989 if (pkt->mustCheckAbove()) {
1990 DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s "
1991 "from lower cache\n", pkt->getAddr(), pkt->cmdString());
1992 pkt->setBlockCached();
1993 return snoop_delay;
1994 }
1995
1996 if (pkt->isRead() && !invalidate) {
1997 // reading without requiring the line in a writable state
1998 assert(!needs_writable);
1999 pkt->setHasSharers();
2000
2001 // if the requesting packet is uncacheable, retain the line in
2002 // the current state, otherwhise unset the writable flag,
2003 // which means we go from Modified to Owned (and will respond
2004 // below), remain in Owned (and will respond below), from
2005 // Exclusive to Shared, or remain in Shared
2006 if (!pkt->req->isUncacheable())
2007 blk->status &= ~BlkWritable;
2008 }
2009
2010 if (respond) {
2011 // prevent anyone else from responding, cache as well as
2012 // memory, and also prevent any memory from even seeing the
2013 // request
2014 pkt->setCacheResponding();
2015 if (have_writable) {
2016 // inform the cache hierarchy that this cache had the line
2017 // in the Modified state so that we avoid unnecessary
2018 // invalidations (see Packet::setResponderHadWritable)
2019 pkt->setResponderHadWritable();
2020
2021 // in the case of an uncacheable request there is no point
2022 // in setting the responderHadWritable flag, but since the
2023 // recipient does not care there is no harm in doing so
2024 } else {
2025 // if the packet has needsWritable set we invalidate our
2026 // copy below and all other copies will be invalidates
2027 // through express snoops, and if needsWritable is not set
2028 // we already called setHasSharers above
2029 }
2030
2031 // if we are returning a writable and dirty (Modified) line,
2032 // we should be invalidating the line
2033 panic_if(!invalidate && !pkt->hasSharers(),
2034 "%s is passing a Modified line through %s to %#llx, "
2035 "but keeping the block",
2036 name(), pkt->cmdString(), pkt->getAddr());
2037
2038 if (is_timing) {
2039 doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
2040 } else {
2041 pkt->makeAtomicResponse();
2042 // packets such as upgrades do not actually have any data
2043 // payload
2044 if (pkt->hasData())
2045 pkt->setDataFromBlock(blk->data, blkSize);
2046 }
2047 }
2048
2049 if (!respond && is_timing && is_deferred) {
2050 // if it's a deferred timing snoop to which we are not
2051 // responding, then we've made a copy of both the request and
2052 // the packet, delete them here
2053 assert(pkt->needsResponse());
2054 assert(!pkt->cacheResponding());
2055 delete pkt->req;
2056 delete pkt;
2057 }
2058
2059 // Do this last in case it deallocates block data or something
2060 // like that
2061 if (invalidate) {
2062 invalidateBlock(blk);
2063 }
2064
2065 DPRINTF(Cache, "new state is %s\n", blk->print());
2066
2067 return snoop_delay;
2068}
2069
2070
2071void
2072Cache::recvTimingSnoopReq(PacketPtr pkt)
2073{
2074 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
2075 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
2076
2077 // Snoops shouldn't happen when bypassing caches
2078 assert(!system->bypassCaches());
2079
2080 // no need to snoop requests that are not in range
2081 if (!inRange(pkt->getAddr())) {
2082 return;
2083 }
2084
2085 bool is_secure = pkt->isSecure();
2086 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
2087
2088 Addr blk_addr = blockAlign(pkt->getAddr());
2089 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
2090
2091 // Update the latency cost of the snoop so that the crossbar can
2092 // account for it. Do not overwrite what other neighbouring caches
2093 // have already done, rather take the maximum. The update is
2094 // tentative, for cases where we return before an upward snoop
2095 // happens below.
2096 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
2097 lookupLatency * clockPeriod());
2098
2099 // Inform request(Prefetch, CleanEvict or Writeback) from below of
2100 // MSHR hit, set setBlockCached.
2101 if (mshr && pkt->mustCheckAbove()) {
2102 DPRINTF(Cache, "Setting block cached for %s from"
2103 "lower cache on mshr hit %#x\n",
2104 pkt->cmdString(), pkt->getAddr());
2105 pkt->setBlockCached();
2106 return;
2107 }
2108
2109 // Let the MSHR itself track the snoop and decide whether we want
2110 // to go ahead and do the regular cache snoop
2111 if (mshr && mshr->handleSnoop(pkt, order++)) {
2112 DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
2113 "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
2114 mshr->print());
2115
2116 if (mshr->getNumTargets() > numTarget)
2117 warn("allocating bonus target for snoop"); //handle later
2118 return;
2119 }
2120
2121 //We also need to check the writeback buffers and handle those
2122 WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure);
2123 if (wb_entry) {
2124 DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
2125 pkt->getAddr(), is_secure ? "s" : "ns");
2126 // Expect to see only Writebacks and/or CleanEvicts here, both of
2127 // which should not be generated for uncacheable data.
2128 assert(!wb_entry->isUncacheable());
2129 // There should only be a single request responsible for generating
2130 // Writebacks/CleanEvicts.
2131 assert(wb_entry->getNumTargets() == 1);
2132 PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
2133 assert(wb_pkt->isEviction());
2134
2135 if (pkt->isEviction()) {
2136 // if the block is found in the write queue, set the BLOCK_CACHED
2137 // flag for Writeback/CleanEvict snoop. On return the snoop will
2138 // propagate the BLOCK_CACHED flag in Writeback packets and prevent
2139 // any CleanEvicts from travelling down the memory hierarchy.
2140 pkt->setBlockCached();
2141 DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit"
2142 " %#x\n", pkt->cmdString(), pkt->getAddr());
2143 return;
2144 }
2145
2146 // conceptually writebacks are no different to other blocks in
2147 // this cache, so the behaviour is modelled after handleSnoop,
2148 // the difference being that instead of querying the block
2149 // state to determine if it is dirty and writable, we use the
2150 // command and fields of the writeback packet
2151 bool respond = wb_pkt->cmd == MemCmd::WritebackDirty &&
2152 pkt->needsResponse() && pkt->cmd != MemCmd::InvalidateReq;
2153 bool have_writable = !wb_pkt->hasSharers();
2154 bool invalidate = pkt->isInvalidate();
2155
2156 if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
2157 assert(!pkt->needsWritable());
2158 pkt->setHasSharers();
2159 wb_pkt->setHasSharers();
2160 }
2161
2162 if (respond) {
2163 pkt->setCacheResponding();
2164
2165 if (have_writable) {
2166 pkt->setResponderHadWritable();
2167 }
2168
2169 doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2170 false, false);
2171 }
2172
2173 if (invalidate) {
2174 // Invalidation trumps our writeback... discard here
2175 // Note: markInService will remove entry from writeback buffer.
2176 markInService(wb_entry);
2177 delete wb_pkt;
2178 }
2179 }
2180
2181 // If this was a shared writeback, there may still be
2182 // other shared copies above that require invalidation.
2183 // We could be more selective and return here if the
2184 // request is non-exclusive or if the writeback is
2185 // exclusive.
2186 uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2187
2188 // Override what we did when we first saw the snoop, as we now
2189 // also have the cost of the upwards snoops to account for
2190 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2191 lookupLatency * clockPeriod());
2192}
2193
2194bool
2195Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2196{
2197 // Express snoop responses from master to slave, e.g., from L1 to L2
2198 cache->recvTimingSnoopResp(pkt);
2199 return true;
2200}
2201
2202Tick
2203Cache::recvAtomicSnoop(PacketPtr pkt)
2204{
2205 // Snoops shouldn't happen when bypassing caches
2206 assert(!system->bypassCaches());
2207
2208 // no need to snoop requests that are not in range.
2209 if (!inRange(pkt->getAddr())) {
2210 return 0;
2211 }
2212
2213 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2214 uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2215 return snoop_delay + lookupLatency * clockPeriod();
2216}
2217
2218
2219QueueEntry*
2220Cache::getNextQueueEntry()
2221{
2222 // Check both MSHR queue and write buffer for potential requests,
2223 // note that null does not mean there is no request, it could
2224 // simply be that it is not ready
2225 MSHR *miss_mshr = mshrQueue.getNext();
2226 WriteQueueEntry *wq_entry = writeBuffer.getNext();
2227
2228 // If we got a write buffer request ready, first priority is a
2229 // full write buffer, otherwise we favour the miss requests
2230 if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
2231 // need to search MSHR queue for conflicting earlier miss.
2232 MSHR *conflict_mshr =
2233 mshrQueue.findPending(wq_entry->blkAddr,
2234 wq_entry->isSecure);
2235
2236 if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
2237 // Service misses in order until conflict is cleared.
2238 return conflict_mshr;
2239
2240 // @todo Note that we ignore the ready time of the conflict here
2241 }
2242
2243 // No conflicts; issue write
2244 return wq_entry;
2245 } else if (miss_mshr) {
2246 // need to check for conflicting earlier writeback
2247 WriteQueueEntry *conflict_mshr =
2248 writeBuffer.findPending(miss_mshr->blkAddr,
2249 miss_mshr->isSecure);
2250 if (conflict_mshr) {
2251 // not sure why we don't check order here... it was in the
2252 // original code but commented out.
2253
2254 // The only way this happens is if we are
2255 // doing a write and we didn't have permissions
2256 // then subsequently saw a writeback (owned got evicted)
2257 // We need to make sure to perform the writeback first
2258 // To preserve the dirty data, then we can issue the write
2259
2260 // should we return wq_entry here instead? I.e. do we
2261 // have to flush writes in order? I don't think so... not
2262 // for Alpha anyway. Maybe for x86?
2263 return conflict_mshr;
2264
2265 // @todo Note that we ignore the ready time of the conflict here
2266 }
2267
2268 // No conflicts; issue read
2269 return miss_mshr;
2270 }
2271
2272 // fall through... no pending requests. Try a prefetch.
2273 assert(!miss_mshr && !wq_entry);
2274 if (prefetcher && mshrQueue.canPrefetch()) {
2275 // If we have a miss queue slot, we can try a prefetch
2276 PacketPtr pkt = prefetcher->getPacket();
2277 if (pkt) {
2278 Addr pf_addr = blockAlign(pkt->getAddr());
2279 if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2280 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2281 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2282 // Update statistic on number of prefetches issued
2283 // (hwpf_mshr_misses)
2284 assert(pkt->req->masterId() < system->maxMasters());
2285 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2286
2287 // allocate an MSHR and return it, note
2288 // that we send the packet straight away, so do not
2289 // schedule the send
2290 return allocateMissBuffer(pkt, curTick(), false);
2291 } else {
2292 // free the request and packet
2293 delete pkt->req;
2294 delete pkt;
2295 }
2296 }
2297 }
2298
2299 return nullptr;
2300}
2301
2302bool
2303Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
2304{
2305 if (!forwardSnoops)
2306 return false;
2307 // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2308 // Writeback snoops into upper level caches to check for copies of the
2309 // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2310 // packet, the cache can inform the crossbar below of presence or absence
2311 // of the block.
2312 if (is_timing) {
2313 Packet snoop_pkt(pkt, true, false);
2314 snoop_pkt.setExpressSnoop();
2315 // Assert that packet is either Writeback or CleanEvict and not a
2316 // prefetch request because prefetch requests need an MSHR and may
2317 // generate a snoop response.
2318 assert(pkt->isEviction());
2319 snoop_pkt.senderState = nullptr;
2320 cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2321 // Writeback/CleanEvict snoops do not generate a snoop response.
2322 assert(!(snoop_pkt.cacheResponding()));
2323 return snoop_pkt.isBlockCached();
2324 } else {
2325 cpuSidePort->sendAtomicSnoop(pkt);
2326 return pkt->isBlockCached();
2327 }
2328}
2329
2330Tick
2331Cache::nextQueueReadyTime() const
2332{
2333 Tick nextReady = std::min(mshrQueue.nextReadyTime(),
2334 writeBuffer.nextReadyTime());
2335
2336 // Don't signal prefetch ready time if no MSHRs available
2337 // Will signal once enoguh MSHRs are deallocated
2338 if (prefetcher && mshrQueue.canPrefetch()) {
2339 nextReady = std::min(nextReady,
2340 prefetcher->nextPrefetchReadyTime());
2341 }
2342
2343 return nextReady;
2344}
2345
2346bool
2347Cache::sendMSHRQueuePacket(MSHR* mshr)
2348{
2349 assert(mshr);
2350
2351 // use request from 1st target
2352 PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2353
2354 DPRINTF(Cache, "%s MSHR %s for addr %#llx size %d\n", __func__,
2355 tgt_pkt->cmdString(), tgt_pkt->getAddr(),
2356 tgt_pkt->getSize());
2357
2358 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2359
2360 if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2361 // we should never have hardware prefetches to allocated
2362 // blocks
2363 assert(blk == nullptr);
2364
2365 // We need to check the caches above us to verify that
2366 // they don't have a copy of this block in the dirty state
2367 // at the moment. Without this check we could get a stale
2368 // copy from memory that might get used in place of the
2369 // dirty one.
2370 Packet snoop_pkt(tgt_pkt, true, false);
2371 snoop_pkt.setExpressSnoop();
2372 // We are sending this packet upwards, but if it hits we will
2373 // get a snoop response that we end up treating just like a
2374 // normal response, hence it needs the MSHR as its sender
2375 // state
2376 snoop_pkt.senderState = mshr;
2377 cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2378
2379 // Check to see if the prefetch was squashed by an upper cache (to
2380 // prevent us from grabbing the line) or if a Check to see if a
2381 // writeback arrived between the time the prefetch was placed in
2382 // the MSHRs and when it was selected to be sent or if the
2383 // prefetch was squashed by an upper cache.
2384
2385 // It is important to check cacheResponding before
2386 // prefetchSquashed. If another cache has committed to
2387 // responding, it will be sending a dirty response which will
2388 // arrive at the MSHR allocated for this request. Checking the
2389 // prefetchSquash first may result in the MSHR being
2390 // prematurely deallocated.
2391 if (snoop_pkt.cacheResponding()) {
2392 auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req);
2393 assert(r.second);
2394
2395 // if we are getting a snoop response with no sharers it
2396 // will be allocated as Modified
2397 bool pending_modified_resp = !snoop_pkt.hasSharers();
2398 markInService(mshr, pending_modified_resp);
2399
2400 DPRINTF(Cache, "Upward snoop of prefetch for addr"
2401 " %#x (%s) hit\n",
2402 tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2403 return false;
2404 }
2405
2406 if (snoop_pkt.isBlockCached()) {
2407 DPRINTF(Cache, "Block present, prefetch squashed by cache. "
2408 "Deallocating mshr target %#x.\n",
2409 mshr->blkAddr);
2410
2411 // Deallocate the mshr target
2412 if (mshrQueue.forceDeallocateTarget(mshr)) {
2413 // Clear block if this deallocation resulted freed an
2414 // mshr when all had previously been utilized
2415 clearBlocked(Blocked_NoMSHRs);
2416 }
2417 return false;
2418 }
2419 }
2420
2421 // either a prefetch that is not present upstream, or a normal
2422 // MSHR request, proceed to get the packet to send downstream
2423 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
2424
2425 mshr->isForward = (pkt == nullptr);
2426
2427 if (mshr->isForward) {
2428 // not a cache block request, but a response is expected
2429 // make copy of current packet to forward, keep current
2430 // copy for response handling
2431 pkt = new Packet(tgt_pkt, false, true);
2432 assert(!pkt->isWrite());
2433 }
2434
2435 // play it safe and append (rather than set) the sender state,
2436 // as forwarded packets may already have existing state
2437 pkt->pushSenderState(mshr);
2438
2439 if (!memSidePort->sendTimingReq(pkt)) {
2440 // we are awaiting a retry, but we
2441 // delete the packet and will be creating a new packet
2442 // when we get the opportunity
2443 delete pkt;
2444
2445 // note that we have now masked any requestBus and
2446 // schedSendEvent (we will wait for a retry before
2447 // doing anything), and this is so even if we do not
2448 // care about this packet and might override it before
2449 // it gets retried
2450 return true;
2451 } else {
2452 // As part of the call to sendTimingReq the packet is
2453 // forwarded to all neighbouring caches (and any caches
2454 // above them) as a snoop. Thus at this point we know if
2455 // any of the neighbouring caches are responding, and if
2456 // so, we know it is dirty, and we can determine if it is
2457 // being passed as Modified, making our MSHR the ordering
2458 // point
2459 bool pending_modified_resp = !pkt->hasSharers() &&
2460 pkt->cacheResponding();
2461 markInService(mshr, pending_modified_resp);
2462 return false;
2463 }
2464}
2465
2466bool
2467Cache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
2468{
2469 assert(wq_entry);
2470
2471 // always a single target for write queue entries
2472 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
2473
2474 DPRINTF(Cache, "%s write %s for addr %#llx size %d\n", __func__,
2475 tgt_pkt->cmdString(), tgt_pkt->getAddr(),
2476 tgt_pkt->getSize());
2477
2478 // forward as is, both for evictions and uncacheable writes
2479 if (!memSidePort->sendTimingReq(tgt_pkt)) {
2480 // note that we have now masked any requestBus and
2481 // schedSendEvent (we will wait for a retry before
2482 // doing anything), and this is so even if we do not
2483 // care about this packet and might override it before
2484 // it gets retried
2485 return true;
2486 } else {
2487 markInService(wq_entry);
2488 return false;
2489 }
2490}
2491
2492void
2493Cache::serialize(CheckpointOut &cp) const
2494{
2495 bool dirty(isDirty());
2496
2497 if (dirty) {
2498 warn("*** The cache still contains dirty data. ***\n");
2499 warn(" Make sure to drain the system using the correct flags.\n");
2500 warn(" This checkpoint will not restore correctly and dirty data "
2501 " in the cache will be lost!\n");
2502 }
2503
2504 // Since we don't checkpoint the data in the cache, any dirty data
2505 // will be lost when restoring from a checkpoint of a system that
2506 // wasn't drained properly. Flag the checkpoint as invalid if the
2507 // cache contains dirty data.
2508 bool bad_checkpoint(dirty);
2509 SERIALIZE_SCALAR(bad_checkpoint);
2510}
2511
2512void
2513Cache::unserialize(CheckpointIn &cp)
2514{
2515 bool bad_checkpoint;
2516 UNSERIALIZE_SCALAR(bad_checkpoint);
2517 if (bad_checkpoint) {
2518 fatal("Restoring from checkpoints with dirty caches is not supported "
2519 "in the classic memory system. Please remove any caches or "
2520 " drain them properly before taking checkpoints.\n");
2521 }
2522}
2523
2524///////////////
2525//
2526// CpuSidePort
2527//
2528///////////////
2529
2530AddrRangeList
2531Cache::CpuSidePort::getAddrRanges() const
2532{
2533 return cache->getAddrRanges();
2534}
2535
2536bool
2537Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2538{
2539 assert(!cache->system->bypassCaches());
2540
2541 bool success = false;
2542
2543 // always let express snoop packets through if even if blocked
2544 if (pkt->isExpressSnoop()) {
2545 // do not change the current retry state
2546 bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
2547 assert(bypass_success);
2548 return true;
2549 } else if (blocked || mustSendRetry) {
2550 // either already committed to send a retry, or blocked
2551 success = false;
2552 } else {
2553 // pass it on to the cache, and let the cache decide if we
2554 // have to retry or not
2555 success = cache->recvTimingReq(pkt);
2556 }
2557
2558 // remember if we have to retry
2559 mustSendRetry = !success;
2560 return success;
2561}
2562
2563Tick
2564Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2565{
2566 return cache->recvAtomic(pkt);
2567}
2568
2569void
2570Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2571{
2572 // functional request
2573 cache->functionalAccess(pkt, true);
2574}
2575
2576Cache::
2577CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2578 const std::string &_label)
2579 : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2580{
2581}
2582
2583Cache*
2584CacheParams::create()
2585{
2586 assert(tags);
2587
2588 return new Cache(this);
2589}
2590///////////////
2591//
2592// MemSidePort
2593//
2594///////////////
2595
2596bool
2597Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2598{
2599 cache->recvTimingResp(pkt);
2600 return true;
2601}
2602
2603// Express snooping requests to memside port
2604void
2605Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2606{
2607 // handle snooping requests
2608 cache->recvTimingSnoopReq(pkt);
2609}
2610
2611Tick
2612Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2613{
2614 return cache->recvAtomicSnoop(pkt);
2615}
2616
2617void
2618Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2619{
2620 // functional snoop (note that in contrast to atomic we don't have
2621 // a specific functionalSnoop method, as they have the same
2622 // behaviour regardless)
2623 cache->functionalAccess(pkt, false);
2624}
2625
2626void
2627Cache::CacheReqPacketQueue::sendDeferredPacket()
2628{
2629 // sanity check
2630 assert(!waitingOnRetry);
2631
2632 // there should never be any deferred request packets in the
2633 // queue, instead we resly on the cache to provide the packets
2634 // from the MSHR queue or write queue
2635 assert(deferredPacketReadyTime() == MaxTick);
2636
2637 // check for request packets (requests & writebacks)
2638 QueueEntry* entry = cache.getNextQueueEntry();
2639
2640 if (!entry) {
2641 // can happen if e.g. we attempt a writeback and fail, but
2642 // before the retry, the writeback is eliminated because
2643 // we snoop another cache's ReadEx.
2644 } else {
2645 // let our snoop responses go first if there are responses to
2646 // the same addresses
2647 if (checkConflictingSnoop(entry->blkAddr)) {
2648 return;
2649 }
2650 waitingOnRetry = entry->sendPacket(cache);
2651 }
2652
2653 // if we succeeded and are not waiting for a retry, schedule the
2654 // next send considering when the next queue is ready, note that
2655 // snoop responses have their own packet queue and thus schedule
2656 // their own events
2657 if (!waitingOnRetry) {
2658 schedSendEvent(cache.nextQueueReadyTime());
2659 }
2660}
2661
2662Cache::
2663MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2664 const std::string &_label)
2665 : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2666 _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2667 _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2668{
2669}
1781 if (pkt->cmd == MemCmd::WriteLineReq) {
1782 assert(!pkt->hasSharers());
1783 // at the moment other caches do not respond to the
1784 // invalidation requests corresponding to a whole-line write
1785 assert(!pkt->cacheResponding());
1786 }
1787
1788 // here we deal with setting the appropriate state of the line,
1789 // and we start by looking at the hasSharers flag, and ignore the
1790 // cacheResponding flag (normally signalling dirty data) if the
1791 // packet has sharers, thus the line is never allocated as Owned
1792 // (dirty but not writable), and always ends up being either
1793 // Shared, Exclusive or Modified, see Packet::setCacheResponding
1794 // for more details
1795 if (!pkt->hasSharers()) {
1796 // we could get a writable line from memory (rather than a
1797 // cache) even in a read-only cache, note that we set this bit
1798 // even for a read-only cache, possibly revisit this decision
1799 blk->status |= BlkWritable;
1800
1801 // check if we got this via cache-to-cache transfer (i.e., from a
1802 // cache that had the block in Modified or Owned state)
1803 if (pkt->cacheResponding()) {
1804 // we got the block in Modified state, and invalidated the
1805 // owners copy
1806 blk->status |= BlkDirty;
1807
1808 chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1809 "in read-only cache %s\n", name());
1810 }
1811 }
1812
1813 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1814 addr, is_secure ? "s" : "ns", old_state, blk->print());
1815
1816 // if we got new data, copy it in (checking for a read response
1817 // and a response that has data is the same in the end)
1818 if (pkt->isRead()) {
1819 // sanity checks
1820 assert(pkt->hasData());
1821 assert(pkt->getSize() == blkSize);
1822
1823 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
1824 }
1825 // We pay for fillLatency here.
1826 blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1827 pkt->payloadDelay;
1828
1829 return blk;
1830}
1831
1832
1833/////////////////////////////////////////////////////
1834//
1835// Snoop path: requests coming in from the memory side
1836//
1837/////////////////////////////////////////////////////
1838
1839void
1840Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1841 bool already_copied, bool pending_inval)
1842{
1843 // sanity check
1844 assert(req_pkt->isRequest());
1845 assert(req_pkt->needsResponse());
1846
1847 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1848 req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize());
1849 // timing-mode snoop responses require a new packet, unless we
1850 // already made a copy...
1851 PacketPtr pkt = req_pkt;
1852 if (!already_copied)
1853 // do not clear flags, and allocate space for data if the
1854 // packet needs it (the only packets that carry data are read
1855 // responses)
1856 pkt = new Packet(req_pkt, false, req_pkt->isRead());
1857
1858 assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
1859 pkt->hasSharers());
1860 pkt->makeTimingResponse();
1861 if (pkt->isRead()) {
1862 pkt->setDataFromBlock(blk_data, blkSize);
1863 }
1864 if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
1865 // Assume we defer a response to a read from a far-away cache
1866 // A, then later defer a ReadExcl from a cache B on the same
1867 // bus as us. We'll assert cacheResponding in both cases, but
1868 // in the latter case cacheResponding will keep the
1869 // invalidation from reaching cache A. This special response
1870 // tells cache A that it gets the block to satisfy its read,
1871 // but must immediately invalidate it.
1872 pkt->cmd = MemCmd::ReadRespWithInvalidate;
1873 }
1874 // Here we consider forward_time, paying for just forward latency and
1875 // also charging the delay provided by the xbar.
1876 // forward_time is used as send_time in next allocateWriteBuffer().
1877 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1878 // Here we reset the timing of the packet.
1879 pkt->headerDelay = pkt->payloadDelay = 0;
1880 DPRINTF(CacheVerbose,
1881 "%s created response: %s addr %#llx size %d tick: %lu\n",
1882 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1883 forward_time);
1884 memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
1885}
1886
1887uint32_t
1888Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
1889 bool is_deferred, bool pending_inval)
1890{
1891 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
1892 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1893 // deferred snoops can only happen in timing mode
1894 assert(!(is_deferred && !is_timing));
1895 // pending_inval only makes sense on deferred snoops
1896 assert(!(pending_inval && !is_deferred));
1897 assert(pkt->isRequest());
1898
1899 // the packet may get modified if we or a forwarded snooper
1900 // responds in atomic mode, so remember a few things about the
1901 // original packet up front
1902 bool invalidate = pkt->isInvalidate();
1903 bool M5_VAR_USED needs_writable = pkt->needsWritable();
1904
1905 // at the moment we could get an uncacheable write which does not
1906 // have the invalidate flag, and we need a suitable way of dealing
1907 // with this case
1908 panic_if(invalidate && pkt->req->isUncacheable(),
1909 "%s got an invalidating uncacheable snoop request %s to %#llx",
1910 name(), pkt->cmdString(), pkt->getAddr());
1911
1912 uint32_t snoop_delay = 0;
1913
1914 if (forwardSnoops) {
1915 // first propagate snoop upward to see if anyone above us wants to
1916 // handle it. save & restore packet src since it will get
1917 // rewritten to be relative to cpu-side bus (if any)
1918 bool alreadyResponded = pkt->cacheResponding();
1919 if (is_timing) {
1920 // copy the packet so that we can clear any flags before
1921 // forwarding it upwards, we also allocate data (passing
1922 // the pointer along in case of static data), in case
1923 // there is a snoop hit in upper levels
1924 Packet snoopPkt(pkt, true, true);
1925 snoopPkt.setExpressSnoop();
1926 // the snoop packet does not need to wait any additional
1927 // time
1928 snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
1929 cpuSidePort->sendTimingSnoopReq(&snoopPkt);
1930
1931 // add the header delay (including crossbar and snoop
1932 // delays) of the upward snoop to the snoop delay for this
1933 // cache
1934 snoop_delay += snoopPkt.headerDelay;
1935
1936 if (snoopPkt.cacheResponding()) {
1937 // cache-to-cache response from some upper cache
1938 assert(!alreadyResponded);
1939 pkt->setCacheResponding();
1940 }
1941 // upstream cache has the block, or has an outstanding
1942 // MSHR, pass the flag on
1943 if (snoopPkt.hasSharers()) {
1944 pkt->setHasSharers();
1945 }
1946 // If this request is a prefetch or clean evict and an upper level
1947 // signals block present, make sure to propagate the block
1948 // presence to the requester.
1949 if (snoopPkt.isBlockCached()) {
1950 pkt->setBlockCached();
1951 }
1952 } else {
1953 cpuSidePort->sendAtomicSnoop(pkt);
1954 if (!alreadyResponded && pkt->cacheResponding()) {
1955 // cache-to-cache response from some upper cache:
1956 // forward response to original requester
1957 assert(pkt->isResponse());
1958 }
1959 }
1960 }
1961
1962 if (!blk || !blk->isValid()) {
1963 if (is_deferred) {
1964 // we no longer have the block, and will not respond, but a
1965 // packet was allocated in MSHR::handleSnoop and we have
1966 // to delete it
1967 assert(pkt->needsResponse());
1968
1969 // we have passed the block to a cache upstream, that
1970 // cache should be responding
1971 assert(pkt->cacheResponding());
1972
1973 delete pkt;
1974 }
1975
1976 DPRINTF(CacheVerbose, "%s snoop miss for %s addr %#llx size %d\n",
1977 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1978 return snoop_delay;
1979 } else {
1980 DPRINTF(Cache, "%s snoop hit for %s addr %#llx size %d, "
1981 "old state is %s\n", __func__, pkt->cmdString(),
1982 pkt->getAddr(), pkt->getSize(), blk->print());
1983 }
1984
1985 chatty_assert(!(isReadOnly && blk->isDirty()),
1986 "Should never have a dirty block in a read-only cache %s\n",
1987 name());
1988
1989 // We may end up modifying both the block state and the packet (if
1990 // we respond in atomic mode), so just figure out what to do now
1991 // and then do it later. If we find dirty data while snooping for
1992 // an invalidate, we don't need to send a response. The
1993 // invalidation itself is taken care of below.
1994 bool respond = blk->isDirty() && pkt->needsResponse() &&
1995 pkt->cmd != MemCmd::InvalidateReq;
1996 bool have_writable = blk->isWritable();
1997
1998 // Invalidate any prefetch's from below that would strip write permissions
1999 // MemCmd::HardPFReq is only observed by upstream caches. After missing
2000 // above and in it's own cache, a new MemCmd::ReadReq is created that
2001 // downstream caches observe.
2002 if (pkt->mustCheckAbove()) {
2003 DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s "
2004 "from lower cache\n", pkt->getAddr(), pkt->cmdString());
2005 pkt->setBlockCached();
2006 return snoop_delay;
2007 }
2008
2009 if (pkt->isRead() && !invalidate) {
2010 // reading without requiring the line in a writable state
2011 assert(!needs_writable);
2012 pkt->setHasSharers();
2013
2014 // if the requesting packet is uncacheable, retain the line in
2015 // the current state, otherwhise unset the writable flag,
2016 // which means we go from Modified to Owned (and will respond
2017 // below), remain in Owned (and will respond below), from
2018 // Exclusive to Shared, or remain in Shared
2019 if (!pkt->req->isUncacheable())
2020 blk->status &= ~BlkWritable;
2021 }
2022
2023 if (respond) {
2024 // prevent anyone else from responding, cache as well as
2025 // memory, and also prevent any memory from even seeing the
2026 // request
2027 pkt->setCacheResponding();
2028 if (have_writable) {
2029 // inform the cache hierarchy that this cache had the line
2030 // in the Modified state so that we avoid unnecessary
2031 // invalidations (see Packet::setResponderHadWritable)
2032 pkt->setResponderHadWritable();
2033
2034 // in the case of an uncacheable request there is no point
2035 // in setting the responderHadWritable flag, but since the
2036 // recipient does not care there is no harm in doing so
2037 } else {
2038 // if the packet has needsWritable set we invalidate our
2039 // copy below and all other copies will be invalidates
2040 // through express snoops, and if needsWritable is not set
2041 // we already called setHasSharers above
2042 }
2043
2044 // if we are returning a writable and dirty (Modified) line,
2045 // we should be invalidating the line
2046 panic_if(!invalidate && !pkt->hasSharers(),
2047 "%s is passing a Modified line through %s to %#llx, "
2048 "but keeping the block",
2049 name(), pkt->cmdString(), pkt->getAddr());
2050
2051 if (is_timing) {
2052 doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
2053 } else {
2054 pkt->makeAtomicResponse();
2055 // packets such as upgrades do not actually have any data
2056 // payload
2057 if (pkt->hasData())
2058 pkt->setDataFromBlock(blk->data, blkSize);
2059 }
2060 }
2061
2062 if (!respond && is_timing && is_deferred) {
2063 // if it's a deferred timing snoop to which we are not
2064 // responding, then we've made a copy of both the request and
2065 // the packet, delete them here
2066 assert(pkt->needsResponse());
2067 assert(!pkt->cacheResponding());
2068 delete pkt->req;
2069 delete pkt;
2070 }
2071
2072 // Do this last in case it deallocates block data or something
2073 // like that
2074 if (invalidate) {
2075 invalidateBlock(blk);
2076 }
2077
2078 DPRINTF(Cache, "new state is %s\n", blk->print());
2079
2080 return snoop_delay;
2081}
2082
2083
2084void
2085Cache::recvTimingSnoopReq(PacketPtr pkt)
2086{
2087 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
2088 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
2089
2090 // Snoops shouldn't happen when bypassing caches
2091 assert(!system->bypassCaches());
2092
2093 // no need to snoop requests that are not in range
2094 if (!inRange(pkt->getAddr())) {
2095 return;
2096 }
2097
2098 bool is_secure = pkt->isSecure();
2099 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
2100
2101 Addr blk_addr = blockAlign(pkt->getAddr());
2102 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
2103
2104 // Update the latency cost of the snoop so that the crossbar can
2105 // account for it. Do not overwrite what other neighbouring caches
2106 // have already done, rather take the maximum. The update is
2107 // tentative, for cases where we return before an upward snoop
2108 // happens below.
2109 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
2110 lookupLatency * clockPeriod());
2111
2112 // Inform request(Prefetch, CleanEvict or Writeback) from below of
2113 // MSHR hit, set setBlockCached.
2114 if (mshr && pkt->mustCheckAbove()) {
2115 DPRINTF(Cache, "Setting block cached for %s from"
2116 "lower cache on mshr hit %#x\n",
2117 pkt->cmdString(), pkt->getAddr());
2118 pkt->setBlockCached();
2119 return;
2120 }
2121
2122 // Let the MSHR itself track the snoop and decide whether we want
2123 // to go ahead and do the regular cache snoop
2124 if (mshr && mshr->handleSnoop(pkt, order++)) {
2125 DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
2126 "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
2127 mshr->print());
2128
2129 if (mshr->getNumTargets() > numTarget)
2130 warn("allocating bonus target for snoop"); //handle later
2131 return;
2132 }
2133
2134 //We also need to check the writeback buffers and handle those
2135 WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure);
2136 if (wb_entry) {
2137 DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
2138 pkt->getAddr(), is_secure ? "s" : "ns");
2139 // Expect to see only Writebacks and/or CleanEvicts here, both of
2140 // which should not be generated for uncacheable data.
2141 assert(!wb_entry->isUncacheable());
2142 // There should only be a single request responsible for generating
2143 // Writebacks/CleanEvicts.
2144 assert(wb_entry->getNumTargets() == 1);
2145 PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
2146 assert(wb_pkt->isEviction());
2147
2148 if (pkt->isEviction()) {
2149 // if the block is found in the write queue, set the BLOCK_CACHED
2150 // flag for Writeback/CleanEvict snoop. On return the snoop will
2151 // propagate the BLOCK_CACHED flag in Writeback packets and prevent
2152 // any CleanEvicts from travelling down the memory hierarchy.
2153 pkt->setBlockCached();
2154 DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit"
2155 " %#x\n", pkt->cmdString(), pkt->getAddr());
2156 return;
2157 }
2158
2159 // conceptually writebacks are no different to other blocks in
2160 // this cache, so the behaviour is modelled after handleSnoop,
2161 // the difference being that instead of querying the block
2162 // state to determine if it is dirty and writable, we use the
2163 // command and fields of the writeback packet
2164 bool respond = wb_pkt->cmd == MemCmd::WritebackDirty &&
2165 pkt->needsResponse() && pkt->cmd != MemCmd::InvalidateReq;
2166 bool have_writable = !wb_pkt->hasSharers();
2167 bool invalidate = pkt->isInvalidate();
2168
2169 if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
2170 assert(!pkt->needsWritable());
2171 pkt->setHasSharers();
2172 wb_pkt->setHasSharers();
2173 }
2174
2175 if (respond) {
2176 pkt->setCacheResponding();
2177
2178 if (have_writable) {
2179 pkt->setResponderHadWritable();
2180 }
2181
2182 doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2183 false, false);
2184 }
2185
2186 if (invalidate) {
2187 // Invalidation trumps our writeback... discard here
2188 // Note: markInService will remove entry from writeback buffer.
2189 markInService(wb_entry);
2190 delete wb_pkt;
2191 }
2192 }
2193
2194 // If this was a shared writeback, there may still be
2195 // other shared copies above that require invalidation.
2196 // We could be more selective and return here if the
2197 // request is non-exclusive or if the writeback is
2198 // exclusive.
2199 uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2200
2201 // Override what we did when we first saw the snoop, as we now
2202 // also have the cost of the upwards snoops to account for
2203 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2204 lookupLatency * clockPeriod());
2205}
2206
2207bool
2208Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2209{
2210 // Express snoop responses from master to slave, e.g., from L1 to L2
2211 cache->recvTimingSnoopResp(pkt);
2212 return true;
2213}
2214
2215Tick
2216Cache::recvAtomicSnoop(PacketPtr pkt)
2217{
2218 // Snoops shouldn't happen when bypassing caches
2219 assert(!system->bypassCaches());
2220
2221 // no need to snoop requests that are not in range.
2222 if (!inRange(pkt->getAddr())) {
2223 return 0;
2224 }
2225
2226 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2227 uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2228 return snoop_delay + lookupLatency * clockPeriod();
2229}
2230
2231
2232QueueEntry*
2233Cache::getNextQueueEntry()
2234{
2235 // Check both MSHR queue and write buffer for potential requests,
2236 // note that null does not mean there is no request, it could
2237 // simply be that it is not ready
2238 MSHR *miss_mshr = mshrQueue.getNext();
2239 WriteQueueEntry *wq_entry = writeBuffer.getNext();
2240
2241 // If we got a write buffer request ready, first priority is a
2242 // full write buffer, otherwise we favour the miss requests
2243 if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
2244 // need to search MSHR queue for conflicting earlier miss.
2245 MSHR *conflict_mshr =
2246 mshrQueue.findPending(wq_entry->blkAddr,
2247 wq_entry->isSecure);
2248
2249 if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
2250 // Service misses in order until conflict is cleared.
2251 return conflict_mshr;
2252
2253 // @todo Note that we ignore the ready time of the conflict here
2254 }
2255
2256 // No conflicts; issue write
2257 return wq_entry;
2258 } else if (miss_mshr) {
2259 // need to check for conflicting earlier writeback
2260 WriteQueueEntry *conflict_mshr =
2261 writeBuffer.findPending(miss_mshr->blkAddr,
2262 miss_mshr->isSecure);
2263 if (conflict_mshr) {
2264 // not sure why we don't check order here... it was in the
2265 // original code but commented out.
2266
2267 // The only way this happens is if we are
2268 // doing a write and we didn't have permissions
2269 // then subsequently saw a writeback (owned got evicted)
2270 // We need to make sure to perform the writeback first
2271 // To preserve the dirty data, then we can issue the write
2272
2273 // should we return wq_entry here instead? I.e. do we
2274 // have to flush writes in order? I don't think so... not
2275 // for Alpha anyway. Maybe for x86?
2276 return conflict_mshr;
2277
2278 // @todo Note that we ignore the ready time of the conflict here
2279 }
2280
2281 // No conflicts; issue read
2282 return miss_mshr;
2283 }
2284
2285 // fall through... no pending requests. Try a prefetch.
2286 assert(!miss_mshr && !wq_entry);
2287 if (prefetcher && mshrQueue.canPrefetch()) {
2288 // If we have a miss queue slot, we can try a prefetch
2289 PacketPtr pkt = prefetcher->getPacket();
2290 if (pkt) {
2291 Addr pf_addr = blockAlign(pkt->getAddr());
2292 if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2293 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2294 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2295 // Update statistic on number of prefetches issued
2296 // (hwpf_mshr_misses)
2297 assert(pkt->req->masterId() < system->maxMasters());
2298 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2299
2300 // allocate an MSHR and return it, note
2301 // that we send the packet straight away, so do not
2302 // schedule the send
2303 return allocateMissBuffer(pkt, curTick(), false);
2304 } else {
2305 // free the request and packet
2306 delete pkt->req;
2307 delete pkt;
2308 }
2309 }
2310 }
2311
2312 return nullptr;
2313}
2314
2315bool
2316Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
2317{
2318 if (!forwardSnoops)
2319 return false;
2320 // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2321 // Writeback snoops into upper level caches to check for copies of the
2322 // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2323 // packet, the cache can inform the crossbar below of presence or absence
2324 // of the block.
2325 if (is_timing) {
2326 Packet snoop_pkt(pkt, true, false);
2327 snoop_pkt.setExpressSnoop();
2328 // Assert that packet is either Writeback or CleanEvict and not a
2329 // prefetch request because prefetch requests need an MSHR and may
2330 // generate a snoop response.
2331 assert(pkt->isEviction());
2332 snoop_pkt.senderState = nullptr;
2333 cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2334 // Writeback/CleanEvict snoops do not generate a snoop response.
2335 assert(!(snoop_pkt.cacheResponding()));
2336 return snoop_pkt.isBlockCached();
2337 } else {
2338 cpuSidePort->sendAtomicSnoop(pkt);
2339 return pkt->isBlockCached();
2340 }
2341}
2342
2343Tick
2344Cache::nextQueueReadyTime() const
2345{
2346 Tick nextReady = std::min(mshrQueue.nextReadyTime(),
2347 writeBuffer.nextReadyTime());
2348
2349 // Don't signal prefetch ready time if no MSHRs available
2350 // Will signal once enoguh MSHRs are deallocated
2351 if (prefetcher && mshrQueue.canPrefetch()) {
2352 nextReady = std::min(nextReady,
2353 prefetcher->nextPrefetchReadyTime());
2354 }
2355
2356 return nextReady;
2357}
2358
2359bool
2360Cache::sendMSHRQueuePacket(MSHR* mshr)
2361{
2362 assert(mshr);
2363
2364 // use request from 1st target
2365 PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2366
2367 DPRINTF(Cache, "%s MSHR %s for addr %#llx size %d\n", __func__,
2368 tgt_pkt->cmdString(), tgt_pkt->getAddr(),
2369 tgt_pkt->getSize());
2370
2371 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2372
2373 if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2374 // we should never have hardware prefetches to allocated
2375 // blocks
2376 assert(blk == nullptr);
2377
2378 // We need to check the caches above us to verify that
2379 // they don't have a copy of this block in the dirty state
2380 // at the moment. Without this check we could get a stale
2381 // copy from memory that might get used in place of the
2382 // dirty one.
2383 Packet snoop_pkt(tgt_pkt, true, false);
2384 snoop_pkt.setExpressSnoop();
2385 // We are sending this packet upwards, but if it hits we will
2386 // get a snoop response that we end up treating just like a
2387 // normal response, hence it needs the MSHR as its sender
2388 // state
2389 snoop_pkt.senderState = mshr;
2390 cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2391
2392 // Check to see if the prefetch was squashed by an upper cache (to
2393 // prevent us from grabbing the line) or if a Check to see if a
2394 // writeback arrived between the time the prefetch was placed in
2395 // the MSHRs and when it was selected to be sent or if the
2396 // prefetch was squashed by an upper cache.
2397
2398 // It is important to check cacheResponding before
2399 // prefetchSquashed. If another cache has committed to
2400 // responding, it will be sending a dirty response which will
2401 // arrive at the MSHR allocated for this request. Checking the
2402 // prefetchSquash first may result in the MSHR being
2403 // prematurely deallocated.
2404 if (snoop_pkt.cacheResponding()) {
2405 auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req);
2406 assert(r.second);
2407
2408 // if we are getting a snoop response with no sharers it
2409 // will be allocated as Modified
2410 bool pending_modified_resp = !snoop_pkt.hasSharers();
2411 markInService(mshr, pending_modified_resp);
2412
2413 DPRINTF(Cache, "Upward snoop of prefetch for addr"
2414 " %#x (%s) hit\n",
2415 tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2416 return false;
2417 }
2418
2419 if (snoop_pkt.isBlockCached()) {
2420 DPRINTF(Cache, "Block present, prefetch squashed by cache. "
2421 "Deallocating mshr target %#x.\n",
2422 mshr->blkAddr);
2423
2424 // Deallocate the mshr target
2425 if (mshrQueue.forceDeallocateTarget(mshr)) {
2426 // Clear block if this deallocation resulted freed an
2427 // mshr when all had previously been utilized
2428 clearBlocked(Blocked_NoMSHRs);
2429 }
2430 return false;
2431 }
2432 }
2433
2434 // either a prefetch that is not present upstream, or a normal
2435 // MSHR request, proceed to get the packet to send downstream
2436 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
2437
2438 mshr->isForward = (pkt == nullptr);
2439
2440 if (mshr->isForward) {
2441 // not a cache block request, but a response is expected
2442 // make copy of current packet to forward, keep current
2443 // copy for response handling
2444 pkt = new Packet(tgt_pkt, false, true);
2445 assert(!pkt->isWrite());
2446 }
2447
2448 // play it safe and append (rather than set) the sender state,
2449 // as forwarded packets may already have existing state
2450 pkt->pushSenderState(mshr);
2451
2452 if (!memSidePort->sendTimingReq(pkt)) {
2453 // we are awaiting a retry, but we
2454 // delete the packet and will be creating a new packet
2455 // when we get the opportunity
2456 delete pkt;
2457
2458 // note that we have now masked any requestBus and
2459 // schedSendEvent (we will wait for a retry before
2460 // doing anything), and this is so even if we do not
2461 // care about this packet and might override it before
2462 // it gets retried
2463 return true;
2464 } else {
2465 // As part of the call to sendTimingReq the packet is
2466 // forwarded to all neighbouring caches (and any caches
2467 // above them) as a snoop. Thus at this point we know if
2468 // any of the neighbouring caches are responding, and if
2469 // so, we know it is dirty, and we can determine if it is
2470 // being passed as Modified, making our MSHR the ordering
2471 // point
2472 bool pending_modified_resp = !pkt->hasSharers() &&
2473 pkt->cacheResponding();
2474 markInService(mshr, pending_modified_resp);
2475 return false;
2476 }
2477}
2478
2479bool
2480Cache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
2481{
2482 assert(wq_entry);
2483
2484 // always a single target for write queue entries
2485 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
2486
2487 DPRINTF(Cache, "%s write %s for addr %#llx size %d\n", __func__,
2488 tgt_pkt->cmdString(), tgt_pkt->getAddr(),
2489 tgt_pkt->getSize());
2490
2491 // forward as is, both for evictions and uncacheable writes
2492 if (!memSidePort->sendTimingReq(tgt_pkt)) {
2493 // note that we have now masked any requestBus and
2494 // schedSendEvent (we will wait for a retry before
2495 // doing anything), and this is so even if we do not
2496 // care about this packet and might override it before
2497 // it gets retried
2498 return true;
2499 } else {
2500 markInService(wq_entry);
2501 return false;
2502 }
2503}
2504
2505void
2506Cache::serialize(CheckpointOut &cp) const
2507{
2508 bool dirty(isDirty());
2509
2510 if (dirty) {
2511 warn("*** The cache still contains dirty data. ***\n");
2512 warn(" Make sure to drain the system using the correct flags.\n");
2513 warn(" This checkpoint will not restore correctly and dirty data "
2514 " in the cache will be lost!\n");
2515 }
2516
2517 // Since we don't checkpoint the data in the cache, any dirty data
2518 // will be lost when restoring from a checkpoint of a system that
2519 // wasn't drained properly. Flag the checkpoint as invalid if the
2520 // cache contains dirty data.
2521 bool bad_checkpoint(dirty);
2522 SERIALIZE_SCALAR(bad_checkpoint);
2523}
2524
2525void
2526Cache::unserialize(CheckpointIn &cp)
2527{
2528 bool bad_checkpoint;
2529 UNSERIALIZE_SCALAR(bad_checkpoint);
2530 if (bad_checkpoint) {
2531 fatal("Restoring from checkpoints with dirty caches is not supported "
2532 "in the classic memory system. Please remove any caches or "
2533 " drain them properly before taking checkpoints.\n");
2534 }
2535}
2536
2537///////////////
2538//
2539// CpuSidePort
2540//
2541///////////////
2542
2543AddrRangeList
2544Cache::CpuSidePort::getAddrRanges() const
2545{
2546 return cache->getAddrRanges();
2547}
2548
2549bool
2550Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2551{
2552 assert(!cache->system->bypassCaches());
2553
2554 bool success = false;
2555
2556 // always let express snoop packets through if even if blocked
2557 if (pkt->isExpressSnoop()) {
2558 // do not change the current retry state
2559 bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
2560 assert(bypass_success);
2561 return true;
2562 } else if (blocked || mustSendRetry) {
2563 // either already committed to send a retry, or blocked
2564 success = false;
2565 } else {
2566 // pass it on to the cache, and let the cache decide if we
2567 // have to retry or not
2568 success = cache->recvTimingReq(pkt);
2569 }
2570
2571 // remember if we have to retry
2572 mustSendRetry = !success;
2573 return success;
2574}
2575
2576Tick
2577Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2578{
2579 return cache->recvAtomic(pkt);
2580}
2581
2582void
2583Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2584{
2585 // functional request
2586 cache->functionalAccess(pkt, true);
2587}
2588
2589Cache::
2590CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2591 const std::string &_label)
2592 : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2593{
2594}
2595
2596Cache*
2597CacheParams::create()
2598{
2599 assert(tags);
2600
2601 return new Cache(this);
2602}
2603///////////////
2604//
2605// MemSidePort
2606//
2607///////////////
2608
2609bool
2610Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2611{
2612 cache->recvTimingResp(pkt);
2613 return true;
2614}
2615
2616// Express snooping requests to memside port
2617void
2618Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2619{
2620 // handle snooping requests
2621 cache->recvTimingSnoopReq(pkt);
2622}
2623
2624Tick
2625Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2626{
2627 return cache->recvAtomicSnoop(pkt);
2628}
2629
2630void
2631Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2632{
2633 // functional snoop (note that in contrast to atomic we don't have
2634 // a specific functionalSnoop method, as they have the same
2635 // behaviour regardless)
2636 cache->functionalAccess(pkt, false);
2637}
2638
2639void
2640Cache::CacheReqPacketQueue::sendDeferredPacket()
2641{
2642 // sanity check
2643 assert(!waitingOnRetry);
2644
2645 // there should never be any deferred request packets in the
2646 // queue, instead we resly on the cache to provide the packets
2647 // from the MSHR queue or write queue
2648 assert(deferredPacketReadyTime() == MaxTick);
2649
2650 // check for request packets (requests & writebacks)
2651 QueueEntry* entry = cache.getNextQueueEntry();
2652
2653 if (!entry) {
2654 // can happen if e.g. we attempt a writeback and fail, but
2655 // before the retry, the writeback is eliminated because
2656 // we snoop another cache's ReadEx.
2657 } else {
2658 // let our snoop responses go first if there are responses to
2659 // the same addresses
2660 if (checkConflictingSnoop(entry->blkAddr)) {
2661 return;
2662 }
2663 waitingOnRetry = entry->sendPacket(cache);
2664 }
2665
2666 // if we succeeded and are not waiting for a retry, schedule the
2667 // next send considering when the next queue is ready, note that
2668 // snoop responses have their own packet queue and thus schedule
2669 // their own events
2670 if (!waitingOnRetry) {
2671 schedSendEvent(cache.nextQueueReadyTime());
2672 }
2673}
2674
2675Cache::
2676MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2677 const std::string &_label)
2678 : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2679 _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2680 _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2681{
2682}