cache.cc (11436:f351b7f248db) cache.cc (11452:4bc3a0c0861c)
1/*
2 * Copyright (c) 2010-2016 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 * Dave Greene
43 * Nathan Binkert
44 * Steve Reinhardt
45 * Ron Dreslinski
46 * Andreas Sandberg
47 */
48
49/**
50 * @file
51 * Cache definitions.
52 */
53
54#include "mem/cache/cache.hh"
55
56#include "base/misc.hh"
57#include "base/types.hh"
58#include "debug/Cache.hh"
59#include "debug/CachePort.hh"
60#include "debug/CacheTags.hh"
61#include "debug/CacheVerbose.hh"
62#include "mem/cache/blk.hh"
63#include "mem/cache/mshr.hh"
64#include "mem/cache/prefetch/base.hh"
65#include "sim/sim_exit.hh"
66
67Cache::Cache(const CacheParams *p)
68 : BaseCache(p, p->system->cacheLineSize()),
69 tags(p->tags),
70 prefetcher(p->prefetcher),
71 doFastWrites(true),
72 prefetchOnAccess(p->prefetch_on_access),
73 clusivity(p->clusivity),
74 writebackClean(p->writeback_clean),
75 tempBlockWriteback(nullptr),
76 writebackTempBlockAtomicEvent(this, false,
77 EventBase::Delayed_Writeback_Pri)
78{
79 tempBlock = new CacheBlk();
80 tempBlock->data = new uint8_t[blkSize];
81
82 cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
83 "CpuSidePort");
84 memSidePort = new MemSidePort(p->name + ".mem_side", this,
85 "MemSidePort");
86
87 tags->setCache(this);
88 if (prefetcher)
89 prefetcher->setCache(this);
90}
91
92Cache::~Cache()
93{
94 delete [] tempBlock->data;
95 delete tempBlock;
96
97 delete cpuSidePort;
98 delete memSidePort;
99}
100
101void
102Cache::regStats()
103{
104 BaseCache::regStats();
105}
106
107void
108Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
109{
110 assert(pkt->isRequest());
111
112 uint64_t overwrite_val;
113 bool overwrite_mem;
114 uint64_t condition_val64;
115 uint32_t condition_val32;
116
117 int offset = tags->extractBlkOffset(pkt->getAddr());
118 uint8_t *blk_data = blk->data + offset;
119
120 assert(sizeof(uint64_t) >= pkt->getSize());
121
122 overwrite_mem = true;
123 // keep a copy of our possible write value, and copy what is at the
124 // memory address into the packet
125 pkt->writeData((uint8_t *)&overwrite_val);
126 pkt->setData(blk_data);
127
128 if (pkt->req->isCondSwap()) {
129 if (pkt->getSize() == sizeof(uint64_t)) {
130 condition_val64 = pkt->req->getExtraData();
131 overwrite_mem = !std::memcmp(&condition_val64, blk_data,
132 sizeof(uint64_t));
133 } else if (pkt->getSize() == sizeof(uint32_t)) {
134 condition_val32 = (uint32_t)pkt->req->getExtraData();
135 overwrite_mem = !std::memcmp(&condition_val32, blk_data,
136 sizeof(uint32_t));
137 } else
138 panic("Invalid size for conditional read/write\n");
139 }
140
141 if (overwrite_mem) {
142 std::memcpy(blk_data, &overwrite_val, pkt->getSize());
143 blk->status |= BlkDirty;
144 }
145}
146
147
148void
149Cache::satisfyCpuSideRequest(PacketPtr pkt, CacheBlk *blk,
150 bool deferred_response, bool pending_downgrade)
151{
152 assert(pkt->isRequest());
153
154 assert(blk && blk->isValid());
155 // Occasionally this is not true... if we are a lower-level cache
156 // satisfying a string of Read and ReadEx requests from
157 // upper-level caches, a Read will mark the block as shared but we
158 // can satisfy a following ReadEx anyway since we can rely on the
159 // Read requester(s) to have buffered the ReadEx snoop and to
160 // invalidate their blocks after receiving them.
161 // assert(!pkt->needsWritable() || blk->isWritable());
162 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
163
164 // Check RMW operations first since both isRead() and
165 // isWrite() will be true for them
166 if (pkt->cmd == MemCmd::SwapReq) {
167 cmpAndSwap(blk, pkt);
168 } else if (pkt->isWrite()) {
169 // we have the block in a writable state and can go ahead,
170 // note that the line may be also be considered writable in
171 // downstream caches along the path to memory, but always
172 // Exclusive, and never Modified
173 assert(blk->isWritable());
174 // Write or WriteLine at the first cache with block in writable state
175 if (blk->checkWrite(pkt)) {
176 pkt->writeDataToBlock(blk->data, blkSize);
177 }
178 // Always mark the line as dirty (and thus transition to the
179 // Modified state) even if we are a failed StoreCond so we
180 // supply data to any snoops that have appended themselves to
181 // this cache before knowing the store will fail.
182 blk->status |= BlkDirty;
183 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d (write)\n",
184 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
185 } else if (pkt->isRead()) {
186 if (pkt->isLLSC()) {
187 blk->trackLoadLocked(pkt);
188 }
189
190 // all read responses have a data payload
191 assert(pkt->hasRespData());
192 pkt->setDataFromBlock(blk->data, blkSize);
193
194 // determine if this read is from a (coherent) cache, or not
195 // by looking at the command type; we could potentially add a
196 // packet attribute such as 'FromCache' to make this check a
197 // bit cleaner
198 if (pkt->cmd == MemCmd::ReadExReq ||
199 pkt->cmd == MemCmd::ReadSharedReq ||
200 pkt->cmd == MemCmd::ReadCleanReq ||
201 pkt->cmd == MemCmd::SCUpgradeFailReq) {
202 assert(pkt->getSize() == blkSize);
203 // special handling for coherent block requests from
204 // upper-level caches
205 if (pkt->needsWritable()) {
206 // sanity check
207 assert(pkt->cmd == MemCmd::ReadExReq ||
208 pkt->cmd == MemCmd::SCUpgradeFailReq);
209
210 // if we have a dirty copy, make sure the recipient
211 // keeps it marked dirty (in the modified state)
212 if (blk->isDirty()) {
213 pkt->setCacheResponding();
214 }
215 // on ReadExReq we give up our copy unconditionally,
216 // even if this cache is mostly inclusive, we may want
217 // to revisit this
218 invalidateBlock(blk);
219 } else if (blk->isWritable() && !pending_downgrade &&
220 !pkt->hasSharers() &&
221 pkt->cmd != MemCmd::ReadCleanReq) {
222 // we can give the requester a writable copy on a read
223 // request if:
224 // - we have a writable copy at this level (& below)
225 // - we don't have a pending snoop from below
226 // signaling another read request
227 // - no other cache above has a copy (otherwise it
228 // would have set hasSharers flag when
229 // snooping the packet)
230 // - the read has explicitly asked for a clean
231 // copy of the line
232 if (blk->isDirty()) {
233 // special considerations if we're owner:
234 if (!deferred_response) {
235 // respond with the line in Modified state
236 // (cacheResponding set, hasSharers not set)
237 pkt->setCacheResponding();
238
239 if (clusivity == Enums::mostly_excl) {
240 // if this cache is mostly exclusive with
241 // respect to the cache above, drop the
242 // block, no need to first unset the dirty
243 // bit
244 invalidateBlock(blk);
245 } else {
246 // if this cache is mostly inclusive, we
247 // keep the block in the Exclusive state,
248 // and pass it upwards as Modified
249 // (writable and dirty), hence we have
250 // multiple caches, all on the same path
251 // towards memory, all considering the
252 // same block writable, but only one
253 // considering it Modified
254
255 // we get away with multiple caches (on
256 // the same path to memory) considering
257 // the block writeable as we always enter
258 // the cache hierarchy through a cache,
259 // and first snoop upwards in all other
260 // branches
261 blk->status &= ~BlkDirty;
262 }
263 } else {
264 // if we're responding after our own miss,
265 // there's a window where the recipient didn't
266 // know it was getting ownership and may not
267 // have responded to snoops correctly, so we
268 // have to respond with a shared line
269 pkt->setHasSharers();
270 }
271 }
272 } else {
273 // otherwise only respond with a shared copy
274 pkt->setHasSharers();
275 }
276 }
277 } else {
278 // Upgrade or Invalidate
279 assert(pkt->isUpgrade() || pkt->isInvalidate());
280
281 // for invalidations we could be looking at the temp block
282 // (for upgrades we always allocate)
283 invalidateBlock(blk);
284 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d (invalidation)\n",
285 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
286 }
287}
288
289/////////////////////////////////////////////////////
290//
291// Access path: requests coming in from the CPU side
292//
293/////////////////////////////////////////////////////
294
295bool
296Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
297 PacketList &writebacks)
298{
299 // sanity check
300 assert(pkt->isRequest());
301
302 chatty_assert(!(isReadOnly && pkt->isWrite()),
303 "Should never see a write in a read-only cache %s\n",
304 name());
305
306 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
307 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
308
309 if (pkt->req->isUncacheable()) {
310 DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(),
311 pkt->req->isInstFetch() ? " (ifetch)" : "",
312 pkt->getAddr());
313
314 // flush and invalidate any existing block
315 CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
316 if (old_blk && old_blk->isValid()) {
317 if (old_blk->isDirty() || writebackClean)
318 writebacks.push_back(writebackBlk(old_blk));
319 else
320 writebacks.push_back(cleanEvictBlk(old_blk));
321 tags->invalidate(old_blk);
322 old_blk->invalidate();
323 }
324
325 blk = NULL;
326 // lookupLatency is the latency in case the request is uncacheable.
327 lat = lookupLatency;
328 return false;
329 }
330
331 ContextID id = pkt->req->hasContextId() ?
332 pkt->req->contextId() : InvalidContextID;
333 // Here lat is the value passed as parameter to accessBlock() function
334 // that can modify its value.
335 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id);
336
337 DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(),
338 pkt->req->isInstFetch() ? " (ifetch)" : "",
339 pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns",
340 blk ? "hit " + blk->print() : "miss");
341
342
343 if (pkt->isEviction()) {
344 // We check for presence of block in above caches before issuing
345 // Writeback or CleanEvict to write buffer. Therefore the only
346 // possible cases can be of a CleanEvict packet coming from above
347 // encountering a Writeback generated in this cache peer cache and
348 // waiting in the write buffer. Cases of upper level peer caches
349 // generating CleanEvict and Writeback or simply CleanEvict and
350 // CleanEvict almost simultaneously will be caught by snoops sent out
351 // by crossbar.
352 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
353 pkt->isSecure());
354 if (wb_entry) {
355 assert(wb_entry->getNumTargets() == 1);
356 PacketPtr wbPkt = wb_entry->getTarget()->pkt;
357 assert(wbPkt->isWriteback());
358
359 if (pkt->isCleanEviction()) {
360 // The CleanEvict and WritebackClean snoops into other
361 // peer caches of the same level while traversing the
362 // crossbar. If a copy of the block is found, the
363 // packet is deleted in the crossbar. Hence, none of
364 // the other upper level caches connected to this
365 // cache have the block, so we can clear the
366 // BLOCK_CACHED flag in the Writeback if set and
367 // discard the CleanEvict by returning true.
368 wbPkt->clearBlockCached();
369 return true;
370 } else {
371 assert(pkt->cmd == MemCmd::WritebackDirty);
372 // Dirty writeback from above trumps our clean
373 // writeback... discard here
374 // Note: markInService will remove entry from writeback buffer.
375 markInService(wb_entry);
376 delete wbPkt;
377 }
378 }
379 }
380
381 // Writeback handling is special case. We can write the block into
382 // the cache without having a writeable copy (or any copy at all).
383 if (pkt->isWriteback()) {
384 assert(blkSize == pkt->getSize());
385
386 // we could get a clean writeback while we are having
387 // outstanding accesses to a block, do the simple thing for
388 // now and drop the clean writeback so that we do not upset
389 // any ordering/decisions about ownership already taken
390 if (pkt->cmd == MemCmd::WritebackClean &&
391 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
392 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
393 "dropping\n", pkt->getAddr());
394 return true;
395 }
396
397 if (blk == NULL) {
398 // need to do a replacement
399 blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
400 if (blk == NULL) {
401 // no replaceable block available: give up, fwd to next level.
402 incMissCount(pkt);
403 return false;
404 }
405 tags->insertBlock(pkt, blk);
406
407 blk->status = (BlkValid | BlkReadable);
408 if (pkt->isSecure()) {
409 blk->status |= BlkSecure;
410 }
411 }
412 // only mark the block dirty if we got a writeback command,
413 // and leave it as is for a clean writeback
414 if (pkt->cmd == MemCmd::WritebackDirty) {
415 blk->status |= BlkDirty;
416 }
417 // if the packet does not have sharers, it is passing
418 // writable, and we got the writeback in Modified or Exclusive
419 // state, if not we are in the Owned or Shared state
420 if (!pkt->hasSharers()) {
421 blk->status |= BlkWritable;
422 }
423 // nothing else to do; writeback doesn't expect response
424 assert(!pkt->needsResponse());
425 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
426 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
427 incHitCount(pkt);
428 return true;
429 } else if (pkt->cmd == MemCmd::CleanEvict) {
430 if (blk != NULL) {
431 // Found the block in the tags, need to stop CleanEvict from
432 // propagating further down the hierarchy. Returning true will
433 // treat the CleanEvict like a satisfied write request and delete
434 // it.
435 return true;
436 }
437 // We didn't find the block here, propagate the CleanEvict further
438 // down the memory hierarchy. Returning false will treat the CleanEvict
439 // like a Writeback which could not find a replaceable block so has to
440 // go to next level.
441 return false;
442 } else if ((blk != NULL) &&
443 (pkt->needsWritable() ? blk->isWritable() : blk->isReadable())) {
444 // OK to satisfy access
445 incHitCount(pkt);
446 satisfyCpuSideRequest(pkt, blk);
447 return true;
448 }
449
450 // Can't satisfy access normally... either no block (blk == NULL)
451 // or have block but need writable
452
453 incMissCount(pkt);
454
455 if (blk == NULL && pkt->isLLSC() && pkt->isWrite()) {
456 // complete miss on store conditional... just give up now
457 pkt->req->setExtraData(0);
458 return true;
459 }
460
461 return false;
462}
463
464void
465Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
466{
467 while (!writebacks.empty()) {
468 PacketPtr wbPkt = writebacks.front();
469 // We use forwardLatency here because we are copying writebacks to
470 // write buffer. Call isCachedAbove for both Writebacks and
471 // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag
472 // in Writebacks and discard CleanEvicts.
473 if (isCachedAbove(wbPkt)) {
474 if (wbPkt->cmd == MemCmd::CleanEvict) {
475 // Delete CleanEvict because cached copies exist above. The
476 // packet destructor will delete the request object because
477 // this is a non-snoop request packet which does not require a
478 // response.
479 delete wbPkt;
480 } else if (wbPkt->cmd == MemCmd::WritebackClean) {
481 // clean writeback, do not send since the block is
482 // still cached above
483 assert(writebackClean);
484 delete wbPkt;
485 } else {
486 assert(wbPkt->cmd == MemCmd::WritebackDirty);
487 // Set BLOCK_CACHED flag in Writeback and send below, so that
488 // the Writeback does not reset the bit corresponding to this
489 // address in the snoop filter below.
490 wbPkt->setBlockCached();
491 allocateWriteBuffer(wbPkt, forward_time);
492 }
493 } else {
494 // If the block is not cached above, send packet below. Both
495 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
496 // reset the bit corresponding to this address in the snoop filter
497 // below.
498 allocateWriteBuffer(wbPkt, forward_time);
499 }
500 writebacks.pop_front();
501 }
502}
503
504void
505Cache::doWritebacksAtomic(PacketList& writebacks)
506{
507 while (!writebacks.empty()) {
508 PacketPtr wbPkt = writebacks.front();
509 // Call isCachedAbove for both Writebacks and CleanEvicts. If
510 // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
511 // and discard CleanEvicts.
512 if (isCachedAbove(wbPkt, false)) {
513 if (wbPkt->cmd == MemCmd::WritebackDirty) {
514 // Set BLOCK_CACHED flag in Writeback and send below,
515 // so that the Writeback does not reset the bit
516 // corresponding to this address in the snoop filter
517 // below. We can discard CleanEvicts because cached
518 // copies exist above. Atomic mode isCachedAbove
519 // modifies packet to set BLOCK_CACHED flag
520 memSidePort->sendAtomic(wbPkt);
521 }
522 } else {
523 // If the block is not cached above, send packet below. Both
524 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
525 // reset the bit corresponding to this address in the snoop filter
526 // below.
527 memSidePort->sendAtomic(wbPkt);
528 }
529 writebacks.pop_front();
530 // In case of CleanEvicts, the packet destructor will delete the
531 // request object because this is a non-snoop request packet which
532 // does not require a response.
533 delete wbPkt;
534 }
535}
536
537
538void
539Cache::recvTimingSnoopResp(PacketPtr pkt)
540{
541 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
542 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
543
544 assert(pkt->isResponse());
545 assert(!system->bypassCaches());
546
547 // determine if the response is from a snoop request we created
548 // (in which case it should be in the outstandingSnoop), or if we
549 // merely forwarded someone else's snoop request
550 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
551 outstandingSnoop.end();
552
553 if (!forwardAsSnoop) {
554 // the packet came from this cache, so sink it here and do not
555 // forward it
556 assert(pkt->cmd == MemCmd::HardPFResp);
557
558 outstandingSnoop.erase(pkt->req);
559
560 DPRINTF(Cache, "Got prefetch response from above for addr "
561 "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
562 recvTimingResp(pkt);
563 return;
564 }
565
566 // forwardLatency is set here because there is a response from an
567 // upper level cache.
568 // To pay the delay that occurs if the packet comes from the bus,
569 // we charge also headerDelay.
570 Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
571 // Reset the timing of the packet.
572 pkt->headerDelay = pkt->payloadDelay = 0;
573 memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
574}
575
576void
577Cache::promoteWholeLineWrites(PacketPtr pkt)
578{
579 // Cache line clearing instructions
580 if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
581 (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
582 pkt->cmd = MemCmd::WriteLineReq;
583 DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
584 }
585}
586
587bool
588Cache::recvTimingReq(PacketPtr pkt)
589{
590 DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print());
591
592 assert(pkt->isRequest());
593
594 // Just forward the packet if caches are disabled.
595 if (system->bypassCaches()) {
596 // @todo This should really enqueue the packet rather
597 bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
598 assert(success);
599 return true;
600 }
601
602 promoteWholeLineWrites(pkt);
603
604 if (pkt->cacheResponding()) {
605 // a cache above us (but not where the packet came from) is
606 // responding to the request, in other words it has the line
607 // in Modified or Owned state
608 DPRINTF(Cache, "Cache above responding to %#llx (%s): "
609 "not responding\n",
610 pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
611
612 // if the packet needs the block to be writable, and the cache
613 // that has promised to respond (setting the cache responding
614 // flag) is not providing writable (it is in Owned rather than
615 // the Modified state), we know that there may be other Shared
616 // copies in the system; go out and invalidate them all
617 assert(pkt->needsWritable() && !pkt->responderHadWritable());
618
619 // an upstream cache that had the line in Owned state
620 // (dirty, but not writable), is responding and thus
621 // transferring the dirty line from one branch of the
622 // cache hierarchy to another
623
624 // send out an express snoop and invalidate all other
625 // copies (snooping a packet that needs writable is the
626 // same as an invalidation), thus turning the Owned line
627 // into a Modified line, note that we don't invalidate the
628 // block in the current cache or any other cache on the
629 // path to memory
630
631 // create a downstream express snoop with cleared packet
632 // flags, there is no need to allocate any data as the
633 // packet is merely used to co-ordinate state transitions
634 Packet *snoop_pkt = new Packet(pkt, true, false);
635
636 // also reset the bus time that the original packet has
637 // not yet paid for
638 snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
639
640 // make this an instantaneous express snoop, and let the
641 // other caches in the system know that the another cache
642 // is responding, because we have found the authorative
643 // copy (Modified or Owned) that will supply the right
644 // data
645 snoop_pkt->setExpressSnoop();
646 snoop_pkt->setCacheResponding();
647
648 // this express snoop travels towards the memory, and at
649 // every crossbar it is snooped upwards thus reaching
650 // every cache in the system
651 bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
652 // express snoops always succeed
653 assert(success);
654
655 // main memory will delete the snoop packet
656
657 // queue for deletion, as opposed to immediate deletion, as
658 // the sending cache is still relying on the packet
659 pendingDelete.reset(pkt);
660
661 // no need to take any further action in this particular cache
662 // as an upstram cache has already committed to responding,
663 // and we have already sent out any express snoops in the
664 // section above to ensure all other copies in the system are
665 // invalidated
666 return true;
667 }
668
669 // anything that is merely forwarded pays for the forward latency and
670 // the delay provided by the crossbar
671 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
672
673 // We use lookupLatency here because it is used to specify the latency
674 // to access.
675 Cycles lat = lookupLatency;
676 CacheBlk *blk = NULL;
677 bool satisfied = false;
678 {
679 PacketList writebacks;
680 // Note that lat is passed by reference here. The function
681 // access() calls accessBlock() which can modify lat value.
682 satisfied = access(pkt, blk, lat, writebacks);
683
684 // copy writebacks to write buffer here to ensure they logically
685 // proceed anything happening below
686 doWritebacks(writebacks, forward_time);
687 }
688
689 // Here we charge the headerDelay that takes into account the latencies
690 // of the bus, if the packet comes from it.
691 // The latency charged it is just lat that is the value of lookupLatency
692 // modified by access() function, or if not just lookupLatency.
693 // In case of a hit we are neglecting response latency.
694 // In case of a miss we are neglecting forward latency.
695 Tick request_time = clockEdge(lat) + pkt->headerDelay;
696 // Here we reset the timing of the packet.
697 pkt->headerDelay = pkt->payloadDelay = 0;
698
699 // track time of availability of next prefetch, if any
700 Tick next_pf_time = MaxTick;
701
702 bool needsResponse = pkt->needsResponse();
703
704 if (satisfied) {
705 // should never be satisfying an uncacheable access as we
706 // flush and invalidate any existing block as part of the
707 // lookup
708 assert(!pkt->req->isUncacheable());
709
710 // hit (for all other request types)
711
712 if (prefetcher && (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
713 if (blk)
714 blk->status &= ~BlkHWPrefetched;
715
716 // Don't notify on SWPrefetch
717 if (!pkt->cmd.isSWPrefetch())
718 next_pf_time = prefetcher->notify(pkt);
719 }
720
721 if (needsResponse) {
722 pkt->makeTimingResponse();
723 // @todo: Make someone pay for this
724 pkt->headerDelay = pkt->payloadDelay = 0;
725
726 // In this case we are considering request_time that takes
727 // into account the delay of the xbar, if any, and just
728 // lat, neglecting responseLatency, modelling hit latency
729 // just as lookupLatency or or the value of lat overriden
730 // by access(), that calls accessBlock() function.
731 cpuSidePort->schedTimingResp(pkt, request_time, true);
732 } else {
733 DPRINTF(Cache, "%s satisfied %s addr %#llx, no response needed\n",
734 __func__, pkt->cmdString(), pkt->getAddr(),
735 pkt->getSize());
736
737 // queue the packet for deletion, as the sending cache is
738 // still relying on it; if the block is found in access(),
739 // CleanEvict and Writeback messages will be deleted
740 // here as well
741 pendingDelete.reset(pkt);
742 }
743 } else {
744 // miss
745
746 Addr blk_addr = blockAlign(pkt->getAddr());
747
748 // ignore any existing MSHR if we are dealing with an
749 // uncacheable request
750 MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
751 mshrQueue.findMatch(blk_addr, pkt->isSecure());
752
753 // Software prefetch handling:
754 // To keep the core from waiting on data it won't look at
755 // anyway, send back a response with dummy data. Miss handling
756 // will continue asynchronously. Unfortunately, the core will
757 // insist upon freeing original Packet/Request, so we have to
758 // create a new pair with a different lifecycle. Note that this
759 // processing happens before any MSHR munging on the behalf of
760 // this request because this new Request will be the one stored
761 // into the MSHRs, not the original.
762 if (pkt->cmd.isSWPrefetch()) {
763 assert(needsResponse);
764 assert(pkt->req->hasPaddr());
765 assert(!pkt->req->isUncacheable());
766
767 // There's no reason to add a prefetch as an additional target
768 // to an existing MSHR. If an outstanding request is already
769 // in progress, there is nothing for the prefetch to do.
770 // If this is the case, we don't even create a request at all.
771 PacketPtr pf = nullptr;
772
773 if (!mshr) {
774 // copy the request and create a new SoftPFReq packet
775 RequestPtr req = new Request(pkt->req->getPaddr(),
776 pkt->req->getSize(),
777 pkt->req->getFlags(),
778 pkt->req->masterId());
779 pf = new Packet(req, pkt->cmd);
780 pf->allocate();
781 assert(pf->getAddr() == pkt->getAddr());
782 assert(pf->getSize() == pkt->getSize());
783 }
784
785 pkt->makeTimingResponse();
786
787 // request_time is used here, taking into account lat and the delay
788 // charged if the packet comes from the xbar.
789 cpuSidePort->schedTimingResp(pkt, request_time, true);
790
791 // If an outstanding request is in progress (we found an
792 // MSHR) this is set to null
793 pkt = pf;
794 }
795
796 if (mshr) {
797 /// MSHR hit
798 /// @note writebacks will be checked in getNextMSHR()
799 /// for any conflicting requests to the same block
800
801 //@todo remove hw_pf here
802
803 // Coalesce unless it was a software prefetch (see above).
804 if (pkt) {
805 assert(!pkt->isWriteback());
806 // CleanEvicts corresponding to blocks which have
807 // outstanding requests in MSHRs are simply sunk here
808 if (pkt->cmd == MemCmd::CleanEvict) {
809 pendingDelete.reset(pkt);
810 } else {
811 DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx size %d\n",
812 __func__, pkt->cmdString(), pkt->getAddr(),
813 pkt->getSize());
814
815 assert(pkt->req->masterId() < system->maxMasters());
816 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
817 // We use forward_time here because it is the same
818 // considering new targets. We have multiple
819 // requests for the same address here. It
820 // specifies the latency to allocate an internal
821 // buffer and to schedule an event to the queued
822 // port and also takes into account the additional
823 // delay of the xbar.
824 mshr->allocateTarget(pkt, forward_time, order++,
825 allocOnFill(pkt->cmd));
826 if (mshr->getNumTargets() == numTarget) {
827 noTargetMSHR = mshr;
828 setBlocked(Blocked_NoTargets);
829 // need to be careful with this... if this mshr isn't
830 // ready yet (i.e. time > curTick()), we don't want to
831 // move it ahead of mshrs that are ready
832 // mshrQueue.moveToFront(mshr);
833 }
834 }
835 // We should call the prefetcher reguardless if the request is
836 // satisfied or not, reguardless if the request is in the MSHR or
837 // not. The request could be a ReadReq hit, but still not
838 // satisfied (potentially because of a prior write to the same
839 // cache line. So, even when not satisfied, tehre is an MSHR
840 // already allocated for this, we need to let the prefetcher know
841 // about the request
842 if (prefetcher) {
843 // Don't notify on SWPrefetch
844 if (!pkt->cmd.isSWPrefetch())
845 next_pf_time = prefetcher->notify(pkt);
846 }
847 }
848 } else {
849 // no MSHR
850 assert(pkt->req->masterId() < system->maxMasters());
851 if (pkt->req->isUncacheable()) {
852 mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
853 } else {
854 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
855 }
856
857 if (pkt->isEviction() ||
858 (pkt->req->isUncacheable() && pkt->isWrite())) {
859 // We use forward_time here because there is an
860 // uncached memory write, forwarded to WriteBuffer.
861 allocateWriteBuffer(pkt, forward_time);
862 } else {
863 if (blk && blk->isValid()) {
864 // should have flushed and have no valid block
865 assert(!pkt->req->isUncacheable());
866
867 // If we have a write miss to a valid block, we
868 // need to mark the block non-readable. Otherwise
869 // if we allow reads while there's an outstanding
870 // write miss, the read could return stale data
871 // out of the cache block... a more aggressive
872 // system could detect the overlap (if any) and
873 // forward data out of the MSHRs, but we don't do
874 // that yet. Note that we do need to leave the
875 // block valid so that it stays in the cache, in
876 // case we get an upgrade response (and hence no
877 // new data) when the write miss completes.
878 // As long as CPUs do proper store/load forwarding
879 // internally, and have a sufficiently weak memory
880 // model, this is probably unnecessary, but at some
881 // point it must have seemed like we needed it...
882 assert(pkt->needsWritable());
883 assert(!blk->isWritable());
884 blk->status &= ~BlkReadable;
885 }
886 // Here we are using forward_time, modelling the latency of
887 // a miss (outbound) just as forwardLatency, neglecting the
888 // lookupLatency component.
889 allocateMissBuffer(pkt, forward_time);
890 }
891
892 if (prefetcher) {
893 // Don't notify on SWPrefetch
894 if (!pkt->cmd.isSWPrefetch())
895 next_pf_time = prefetcher->notify(pkt);
896 }
897 }
898 }
899
900 if (next_pf_time != MaxTick)
901 schedMemSideSendEvent(next_pf_time);
902
903 return true;
904}
905
1/*
2 * Copyright (c) 2010-2016 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 * Dave Greene
43 * Nathan Binkert
44 * Steve Reinhardt
45 * Ron Dreslinski
46 * Andreas Sandberg
47 */
48
49/**
50 * @file
51 * Cache definitions.
52 */
53
54#include "mem/cache/cache.hh"
55
56#include "base/misc.hh"
57#include "base/types.hh"
58#include "debug/Cache.hh"
59#include "debug/CachePort.hh"
60#include "debug/CacheTags.hh"
61#include "debug/CacheVerbose.hh"
62#include "mem/cache/blk.hh"
63#include "mem/cache/mshr.hh"
64#include "mem/cache/prefetch/base.hh"
65#include "sim/sim_exit.hh"
66
67Cache::Cache(const CacheParams *p)
68 : BaseCache(p, p->system->cacheLineSize()),
69 tags(p->tags),
70 prefetcher(p->prefetcher),
71 doFastWrites(true),
72 prefetchOnAccess(p->prefetch_on_access),
73 clusivity(p->clusivity),
74 writebackClean(p->writeback_clean),
75 tempBlockWriteback(nullptr),
76 writebackTempBlockAtomicEvent(this, false,
77 EventBase::Delayed_Writeback_Pri)
78{
79 tempBlock = new CacheBlk();
80 tempBlock->data = new uint8_t[blkSize];
81
82 cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
83 "CpuSidePort");
84 memSidePort = new MemSidePort(p->name + ".mem_side", this,
85 "MemSidePort");
86
87 tags->setCache(this);
88 if (prefetcher)
89 prefetcher->setCache(this);
90}
91
92Cache::~Cache()
93{
94 delete [] tempBlock->data;
95 delete tempBlock;
96
97 delete cpuSidePort;
98 delete memSidePort;
99}
100
101void
102Cache::regStats()
103{
104 BaseCache::regStats();
105}
106
107void
108Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
109{
110 assert(pkt->isRequest());
111
112 uint64_t overwrite_val;
113 bool overwrite_mem;
114 uint64_t condition_val64;
115 uint32_t condition_val32;
116
117 int offset = tags->extractBlkOffset(pkt->getAddr());
118 uint8_t *blk_data = blk->data + offset;
119
120 assert(sizeof(uint64_t) >= pkt->getSize());
121
122 overwrite_mem = true;
123 // keep a copy of our possible write value, and copy what is at the
124 // memory address into the packet
125 pkt->writeData((uint8_t *)&overwrite_val);
126 pkt->setData(blk_data);
127
128 if (pkt->req->isCondSwap()) {
129 if (pkt->getSize() == sizeof(uint64_t)) {
130 condition_val64 = pkt->req->getExtraData();
131 overwrite_mem = !std::memcmp(&condition_val64, blk_data,
132 sizeof(uint64_t));
133 } else if (pkt->getSize() == sizeof(uint32_t)) {
134 condition_val32 = (uint32_t)pkt->req->getExtraData();
135 overwrite_mem = !std::memcmp(&condition_val32, blk_data,
136 sizeof(uint32_t));
137 } else
138 panic("Invalid size for conditional read/write\n");
139 }
140
141 if (overwrite_mem) {
142 std::memcpy(blk_data, &overwrite_val, pkt->getSize());
143 blk->status |= BlkDirty;
144 }
145}
146
147
148void
149Cache::satisfyCpuSideRequest(PacketPtr pkt, CacheBlk *blk,
150 bool deferred_response, bool pending_downgrade)
151{
152 assert(pkt->isRequest());
153
154 assert(blk && blk->isValid());
155 // Occasionally this is not true... if we are a lower-level cache
156 // satisfying a string of Read and ReadEx requests from
157 // upper-level caches, a Read will mark the block as shared but we
158 // can satisfy a following ReadEx anyway since we can rely on the
159 // Read requester(s) to have buffered the ReadEx snoop and to
160 // invalidate their blocks after receiving them.
161 // assert(!pkt->needsWritable() || blk->isWritable());
162 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
163
164 // Check RMW operations first since both isRead() and
165 // isWrite() will be true for them
166 if (pkt->cmd == MemCmd::SwapReq) {
167 cmpAndSwap(blk, pkt);
168 } else if (pkt->isWrite()) {
169 // we have the block in a writable state and can go ahead,
170 // note that the line may be also be considered writable in
171 // downstream caches along the path to memory, but always
172 // Exclusive, and never Modified
173 assert(blk->isWritable());
174 // Write or WriteLine at the first cache with block in writable state
175 if (blk->checkWrite(pkt)) {
176 pkt->writeDataToBlock(blk->data, blkSize);
177 }
178 // Always mark the line as dirty (and thus transition to the
179 // Modified state) even if we are a failed StoreCond so we
180 // supply data to any snoops that have appended themselves to
181 // this cache before knowing the store will fail.
182 blk->status |= BlkDirty;
183 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d (write)\n",
184 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
185 } else if (pkt->isRead()) {
186 if (pkt->isLLSC()) {
187 blk->trackLoadLocked(pkt);
188 }
189
190 // all read responses have a data payload
191 assert(pkt->hasRespData());
192 pkt->setDataFromBlock(blk->data, blkSize);
193
194 // determine if this read is from a (coherent) cache, or not
195 // by looking at the command type; we could potentially add a
196 // packet attribute such as 'FromCache' to make this check a
197 // bit cleaner
198 if (pkt->cmd == MemCmd::ReadExReq ||
199 pkt->cmd == MemCmd::ReadSharedReq ||
200 pkt->cmd == MemCmd::ReadCleanReq ||
201 pkt->cmd == MemCmd::SCUpgradeFailReq) {
202 assert(pkt->getSize() == blkSize);
203 // special handling for coherent block requests from
204 // upper-level caches
205 if (pkt->needsWritable()) {
206 // sanity check
207 assert(pkt->cmd == MemCmd::ReadExReq ||
208 pkt->cmd == MemCmd::SCUpgradeFailReq);
209
210 // if we have a dirty copy, make sure the recipient
211 // keeps it marked dirty (in the modified state)
212 if (blk->isDirty()) {
213 pkt->setCacheResponding();
214 }
215 // on ReadExReq we give up our copy unconditionally,
216 // even if this cache is mostly inclusive, we may want
217 // to revisit this
218 invalidateBlock(blk);
219 } else if (blk->isWritable() && !pending_downgrade &&
220 !pkt->hasSharers() &&
221 pkt->cmd != MemCmd::ReadCleanReq) {
222 // we can give the requester a writable copy on a read
223 // request if:
224 // - we have a writable copy at this level (& below)
225 // - we don't have a pending snoop from below
226 // signaling another read request
227 // - no other cache above has a copy (otherwise it
228 // would have set hasSharers flag when
229 // snooping the packet)
230 // - the read has explicitly asked for a clean
231 // copy of the line
232 if (blk->isDirty()) {
233 // special considerations if we're owner:
234 if (!deferred_response) {
235 // respond with the line in Modified state
236 // (cacheResponding set, hasSharers not set)
237 pkt->setCacheResponding();
238
239 if (clusivity == Enums::mostly_excl) {
240 // if this cache is mostly exclusive with
241 // respect to the cache above, drop the
242 // block, no need to first unset the dirty
243 // bit
244 invalidateBlock(blk);
245 } else {
246 // if this cache is mostly inclusive, we
247 // keep the block in the Exclusive state,
248 // and pass it upwards as Modified
249 // (writable and dirty), hence we have
250 // multiple caches, all on the same path
251 // towards memory, all considering the
252 // same block writable, but only one
253 // considering it Modified
254
255 // we get away with multiple caches (on
256 // the same path to memory) considering
257 // the block writeable as we always enter
258 // the cache hierarchy through a cache,
259 // and first snoop upwards in all other
260 // branches
261 blk->status &= ~BlkDirty;
262 }
263 } else {
264 // if we're responding after our own miss,
265 // there's a window where the recipient didn't
266 // know it was getting ownership and may not
267 // have responded to snoops correctly, so we
268 // have to respond with a shared line
269 pkt->setHasSharers();
270 }
271 }
272 } else {
273 // otherwise only respond with a shared copy
274 pkt->setHasSharers();
275 }
276 }
277 } else {
278 // Upgrade or Invalidate
279 assert(pkt->isUpgrade() || pkt->isInvalidate());
280
281 // for invalidations we could be looking at the temp block
282 // (for upgrades we always allocate)
283 invalidateBlock(blk);
284 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d (invalidation)\n",
285 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
286 }
287}
288
289/////////////////////////////////////////////////////
290//
291// Access path: requests coming in from the CPU side
292//
293/////////////////////////////////////////////////////
294
295bool
296Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
297 PacketList &writebacks)
298{
299 // sanity check
300 assert(pkt->isRequest());
301
302 chatty_assert(!(isReadOnly && pkt->isWrite()),
303 "Should never see a write in a read-only cache %s\n",
304 name());
305
306 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
307 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
308
309 if (pkt->req->isUncacheable()) {
310 DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(),
311 pkt->req->isInstFetch() ? " (ifetch)" : "",
312 pkt->getAddr());
313
314 // flush and invalidate any existing block
315 CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
316 if (old_blk && old_blk->isValid()) {
317 if (old_blk->isDirty() || writebackClean)
318 writebacks.push_back(writebackBlk(old_blk));
319 else
320 writebacks.push_back(cleanEvictBlk(old_blk));
321 tags->invalidate(old_blk);
322 old_blk->invalidate();
323 }
324
325 blk = NULL;
326 // lookupLatency is the latency in case the request is uncacheable.
327 lat = lookupLatency;
328 return false;
329 }
330
331 ContextID id = pkt->req->hasContextId() ?
332 pkt->req->contextId() : InvalidContextID;
333 // Here lat is the value passed as parameter to accessBlock() function
334 // that can modify its value.
335 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id);
336
337 DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(),
338 pkt->req->isInstFetch() ? " (ifetch)" : "",
339 pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns",
340 blk ? "hit " + blk->print() : "miss");
341
342
343 if (pkt->isEviction()) {
344 // We check for presence of block in above caches before issuing
345 // Writeback or CleanEvict to write buffer. Therefore the only
346 // possible cases can be of a CleanEvict packet coming from above
347 // encountering a Writeback generated in this cache peer cache and
348 // waiting in the write buffer. Cases of upper level peer caches
349 // generating CleanEvict and Writeback or simply CleanEvict and
350 // CleanEvict almost simultaneously will be caught by snoops sent out
351 // by crossbar.
352 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
353 pkt->isSecure());
354 if (wb_entry) {
355 assert(wb_entry->getNumTargets() == 1);
356 PacketPtr wbPkt = wb_entry->getTarget()->pkt;
357 assert(wbPkt->isWriteback());
358
359 if (pkt->isCleanEviction()) {
360 // The CleanEvict and WritebackClean snoops into other
361 // peer caches of the same level while traversing the
362 // crossbar. If a copy of the block is found, the
363 // packet is deleted in the crossbar. Hence, none of
364 // the other upper level caches connected to this
365 // cache have the block, so we can clear the
366 // BLOCK_CACHED flag in the Writeback if set and
367 // discard the CleanEvict by returning true.
368 wbPkt->clearBlockCached();
369 return true;
370 } else {
371 assert(pkt->cmd == MemCmd::WritebackDirty);
372 // Dirty writeback from above trumps our clean
373 // writeback... discard here
374 // Note: markInService will remove entry from writeback buffer.
375 markInService(wb_entry);
376 delete wbPkt;
377 }
378 }
379 }
380
381 // Writeback handling is special case. We can write the block into
382 // the cache without having a writeable copy (or any copy at all).
383 if (pkt->isWriteback()) {
384 assert(blkSize == pkt->getSize());
385
386 // we could get a clean writeback while we are having
387 // outstanding accesses to a block, do the simple thing for
388 // now and drop the clean writeback so that we do not upset
389 // any ordering/decisions about ownership already taken
390 if (pkt->cmd == MemCmd::WritebackClean &&
391 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
392 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
393 "dropping\n", pkt->getAddr());
394 return true;
395 }
396
397 if (blk == NULL) {
398 // need to do a replacement
399 blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
400 if (blk == NULL) {
401 // no replaceable block available: give up, fwd to next level.
402 incMissCount(pkt);
403 return false;
404 }
405 tags->insertBlock(pkt, blk);
406
407 blk->status = (BlkValid | BlkReadable);
408 if (pkt->isSecure()) {
409 blk->status |= BlkSecure;
410 }
411 }
412 // only mark the block dirty if we got a writeback command,
413 // and leave it as is for a clean writeback
414 if (pkt->cmd == MemCmd::WritebackDirty) {
415 blk->status |= BlkDirty;
416 }
417 // if the packet does not have sharers, it is passing
418 // writable, and we got the writeback in Modified or Exclusive
419 // state, if not we are in the Owned or Shared state
420 if (!pkt->hasSharers()) {
421 blk->status |= BlkWritable;
422 }
423 // nothing else to do; writeback doesn't expect response
424 assert(!pkt->needsResponse());
425 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
426 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
427 incHitCount(pkt);
428 return true;
429 } else if (pkt->cmd == MemCmd::CleanEvict) {
430 if (blk != NULL) {
431 // Found the block in the tags, need to stop CleanEvict from
432 // propagating further down the hierarchy. Returning true will
433 // treat the CleanEvict like a satisfied write request and delete
434 // it.
435 return true;
436 }
437 // We didn't find the block here, propagate the CleanEvict further
438 // down the memory hierarchy. Returning false will treat the CleanEvict
439 // like a Writeback which could not find a replaceable block so has to
440 // go to next level.
441 return false;
442 } else if ((blk != NULL) &&
443 (pkt->needsWritable() ? blk->isWritable() : blk->isReadable())) {
444 // OK to satisfy access
445 incHitCount(pkt);
446 satisfyCpuSideRequest(pkt, blk);
447 return true;
448 }
449
450 // Can't satisfy access normally... either no block (blk == NULL)
451 // or have block but need writable
452
453 incMissCount(pkt);
454
455 if (blk == NULL && pkt->isLLSC() && pkt->isWrite()) {
456 // complete miss on store conditional... just give up now
457 pkt->req->setExtraData(0);
458 return true;
459 }
460
461 return false;
462}
463
464void
465Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
466{
467 while (!writebacks.empty()) {
468 PacketPtr wbPkt = writebacks.front();
469 // We use forwardLatency here because we are copying writebacks to
470 // write buffer. Call isCachedAbove for both Writebacks and
471 // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag
472 // in Writebacks and discard CleanEvicts.
473 if (isCachedAbove(wbPkt)) {
474 if (wbPkt->cmd == MemCmd::CleanEvict) {
475 // Delete CleanEvict because cached copies exist above. The
476 // packet destructor will delete the request object because
477 // this is a non-snoop request packet which does not require a
478 // response.
479 delete wbPkt;
480 } else if (wbPkt->cmd == MemCmd::WritebackClean) {
481 // clean writeback, do not send since the block is
482 // still cached above
483 assert(writebackClean);
484 delete wbPkt;
485 } else {
486 assert(wbPkt->cmd == MemCmd::WritebackDirty);
487 // Set BLOCK_CACHED flag in Writeback and send below, so that
488 // the Writeback does not reset the bit corresponding to this
489 // address in the snoop filter below.
490 wbPkt->setBlockCached();
491 allocateWriteBuffer(wbPkt, forward_time);
492 }
493 } else {
494 // If the block is not cached above, send packet below. Both
495 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
496 // reset the bit corresponding to this address in the snoop filter
497 // below.
498 allocateWriteBuffer(wbPkt, forward_time);
499 }
500 writebacks.pop_front();
501 }
502}
503
504void
505Cache::doWritebacksAtomic(PacketList& writebacks)
506{
507 while (!writebacks.empty()) {
508 PacketPtr wbPkt = writebacks.front();
509 // Call isCachedAbove for both Writebacks and CleanEvicts. If
510 // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
511 // and discard CleanEvicts.
512 if (isCachedAbove(wbPkt, false)) {
513 if (wbPkt->cmd == MemCmd::WritebackDirty) {
514 // Set BLOCK_CACHED flag in Writeback and send below,
515 // so that the Writeback does not reset the bit
516 // corresponding to this address in the snoop filter
517 // below. We can discard CleanEvicts because cached
518 // copies exist above. Atomic mode isCachedAbove
519 // modifies packet to set BLOCK_CACHED flag
520 memSidePort->sendAtomic(wbPkt);
521 }
522 } else {
523 // If the block is not cached above, send packet below. Both
524 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
525 // reset the bit corresponding to this address in the snoop filter
526 // below.
527 memSidePort->sendAtomic(wbPkt);
528 }
529 writebacks.pop_front();
530 // In case of CleanEvicts, the packet destructor will delete the
531 // request object because this is a non-snoop request packet which
532 // does not require a response.
533 delete wbPkt;
534 }
535}
536
537
538void
539Cache::recvTimingSnoopResp(PacketPtr pkt)
540{
541 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
542 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
543
544 assert(pkt->isResponse());
545 assert(!system->bypassCaches());
546
547 // determine if the response is from a snoop request we created
548 // (in which case it should be in the outstandingSnoop), or if we
549 // merely forwarded someone else's snoop request
550 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
551 outstandingSnoop.end();
552
553 if (!forwardAsSnoop) {
554 // the packet came from this cache, so sink it here and do not
555 // forward it
556 assert(pkt->cmd == MemCmd::HardPFResp);
557
558 outstandingSnoop.erase(pkt->req);
559
560 DPRINTF(Cache, "Got prefetch response from above for addr "
561 "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
562 recvTimingResp(pkt);
563 return;
564 }
565
566 // forwardLatency is set here because there is a response from an
567 // upper level cache.
568 // To pay the delay that occurs if the packet comes from the bus,
569 // we charge also headerDelay.
570 Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
571 // Reset the timing of the packet.
572 pkt->headerDelay = pkt->payloadDelay = 0;
573 memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
574}
575
576void
577Cache::promoteWholeLineWrites(PacketPtr pkt)
578{
579 // Cache line clearing instructions
580 if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
581 (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
582 pkt->cmd = MemCmd::WriteLineReq;
583 DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
584 }
585}
586
587bool
588Cache::recvTimingReq(PacketPtr pkt)
589{
590 DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print());
591
592 assert(pkt->isRequest());
593
594 // Just forward the packet if caches are disabled.
595 if (system->bypassCaches()) {
596 // @todo This should really enqueue the packet rather
597 bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
598 assert(success);
599 return true;
600 }
601
602 promoteWholeLineWrites(pkt);
603
604 if (pkt->cacheResponding()) {
605 // a cache above us (but not where the packet came from) is
606 // responding to the request, in other words it has the line
607 // in Modified or Owned state
608 DPRINTF(Cache, "Cache above responding to %#llx (%s): "
609 "not responding\n",
610 pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
611
612 // if the packet needs the block to be writable, and the cache
613 // that has promised to respond (setting the cache responding
614 // flag) is not providing writable (it is in Owned rather than
615 // the Modified state), we know that there may be other Shared
616 // copies in the system; go out and invalidate them all
617 assert(pkt->needsWritable() && !pkt->responderHadWritable());
618
619 // an upstream cache that had the line in Owned state
620 // (dirty, but not writable), is responding and thus
621 // transferring the dirty line from one branch of the
622 // cache hierarchy to another
623
624 // send out an express snoop and invalidate all other
625 // copies (snooping a packet that needs writable is the
626 // same as an invalidation), thus turning the Owned line
627 // into a Modified line, note that we don't invalidate the
628 // block in the current cache or any other cache on the
629 // path to memory
630
631 // create a downstream express snoop with cleared packet
632 // flags, there is no need to allocate any data as the
633 // packet is merely used to co-ordinate state transitions
634 Packet *snoop_pkt = new Packet(pkt, true, false);
635
636 // also reset the bus time that the original packet has
637 // not yet paid for
638 snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
639
640 // make this an instantaneous express snoop, and let the
641 // other caches in the system know that the another cache
642 // is responding, because we have found the authorative
643 // copy (Modified or Owned) that will supply the right
644 // data
645 snoop_pkt->setExpressSnoop();
646 snoop_pkt->setCacheResponding();
647
648 // this express snoop travels towards the memory, and at
649 // every crossbar it is snooped upwards thus reaching
650 // every cache in the system
651 bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
652 // express snoops always succeed
653 assert(success);
654
655 // main memory will delete the snoop packet
656
657 // queue for deletion, as opposed to immediate deletion, as
658 // the sending cache is still relying on the packet
659 pendingDelete.reset(pkt);
660
661 // no need to take any further action in this particular cache
662 // as an upstram cache has already committed to responding,
663 // and we have already sent out any express snoops in the
664 // section above to ensure all other copies in the system are
665 // invalidated
666 return true;
667 }
668
669 // anything that is merely forwarded pays for the forward latency and
670 // the delay provided by the crossbar
671 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
672
673 // We use lookupLatency here because it is used to specify the latency
674 // to access.
675 Cycles lat = lookupLatency;
676 CacheBlk *blk = NULL;
677 bool satisfied = false;
678 {
679 PacketList writebacks;
680 // Note that lat is passed by reference here. The function
681 // access() calls accessBlock() which can modify lat value.
682 satisfied = access(pkt, blk, lat, writebacks);
683
684 // copy writebacks to write buffer here to ensure they logically
685 // proceed anything happening below
686 doWritebacks(writebacks, forward_time);
687 }
688
689 // Here we charge the headerDelay that takes into account the latencies
690 // of the bus, if the packet comes from it.
691 // The latency charged it is just lat that is the value of lookupLatency
692 // modified by access() function, or if not just lookupLatency.
693 // In case of a hit we are neglecting response latency.
694 // In case of a miss we are neglecting forward latency.
695 Tick request_time = clockEdge(lat) + pkt->headerDelay;
696 // Here we reset the timing of the packet.
697 pkt->headerDelay = pkt->payloadDelay = 0;
698
699 // track time of availability of next prefetch, if any
700 Tick next_pf_time = MaxTick;
701
702 bool needsResponse = pkt->needsResponse();
703
704 if (satisfied) {
705 // should never be satisfying an uncacheable access as we
706 // flush and invalidate any existing block as part of the
707 // lookup
708 assert(!pkt->req->isUncacheable());
709
710 // hit (for all other request types)
711
712 if (prefetcher && (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
713 if (blk)
714 blk->status &= ~BlkHWPrefetched;
715
716 // Don't notify on SWPrefetch
717 if (!pkt->cmd.isSWPrefetch())
718 next_pf_time = prefetcher->notify(pkt);
719 }
720
721 if (needsResponse) {
722 pkt->makeTimingResponse();
723 // @todo: Make someone pay for this
724 pkt->headerDelay = pkt->payloadDelay = 0;
725
726 // In this case we are considering request_time that takes
727 // into account the delay of the xbar, if any, and just
728 // lat, neglecting responseLatency, modelling hit latency
729 // just as lookupLatency or or the value of lat overriden
730 // by access(), that calls accessBlock() function.
731 cpuSidePort->schedTimingResp(pkt, request_time, true);
732 } else {
733 DPRINTF(Cache, "%s satisfied %s addr %#llx, no response needed\n",
734 __func__, pkt->cmdString(), pkt->getAddr(),
735 pkt->getSize());
736
737 // queue the packet for deletion, as the sending cache is
738 // still relying on it; if the block is found in access(),
739 // CleanEvict and Writeback messages will be deleted
740 // here as well
741 pendingDelete.reset(pkt);
742 }
743 } else {
744 // miss
745
746 Addr blk_addr = blockAlign(pkt->getAddr());
747
748 // ignore any existing MSHR if we are dealing with an
749 // uncacheable request
750 MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
751 mshrQueue.findMatch(blk_addr, pkt->isSecure());
752
753 // Software prefetch handling:
754 // To keep the core from waiting on data it won't look at
755 // anyway, send back a response with dummy data. Miss handling
756 // will continue asynchronously. Unfortunately, the core will
757 // insist upon freeing original Packet/Request, so we have to
758 // create a new pair with a different lifecycle. Note that this
759 // processing happens before any MSHR munging on the behalf of
760 // this request because this new Request will be the one stored
761 // into the MSHRs, not the original.
762 if (pkt->cmd.isSWPrefetch()) {
763 assert(needsResponse);
764 assert(pkt->req->hasPaddr());
765 assert(!pkt->req->isUncacheable());
766
767 // There's no reason to add a prefetch as an additional target
768 // to an existing MSHR. If an outstanding request is already
769 // in progress, there is nothing for the prefetch to do.
770 // If this is the case, we don't even create a request at all.
771 PacketPtr pf = nullptr;
772
773 if (!mshr) {
774 // copy the request and create a new SoftPFReq packet
775 RequestPtr req = new Request(pkt->req->getPaddr(),
776 pkt->req->getSize(),
777 pkt->req->getFlags(),
778 pkt->req->masterId());
779 pf = new Packet(req, pkt->cmd);
780 pf->allocate();
781 assert(pf->getAddr() == pkt->getAddr());
782 assert(pf->getSize() == pkt->getSize());
783 }
784
785 pkt->makeTimingResponse();
786
787 // request_time is used here, taking into account lat and the delay
788 // charged if the packet comes from the xbar.
789 cpuSidePort->schedTimingResp(pkt, request_time, true);
790
791 // If an outstanding request is in progress (we found an
792 // MSHR) this is set to null
793 pkt = pf;
794 }
795
796 if (mshr) {
797 /// MSHR hit
798 /// @note writebacks will be checked in getNextMSHR()
799 /// for any conflicting requests to the same block
800
801 //@todo remove hw_pf here
802
803 // Coalesce unless it was a software prefetch (see above).
804 if (pkt) {
805 assert(!pkt->isWriteback());
806 // CleanEvicts corresponding to blocks which have
807 // outstanding requests in MSHRs are simply sunk here
808 if (pkt->cmd == MemCmd::CleanEvict) {
809 pendingDelete.reset(pkt);
810 } else {
811 DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx size %d\n",
812 __func__, pkt->cmdString(), pkt->getAddr(),
813 pkt->getSize());
814
815 assert(pkt->req->masterId() < system->maxMasters());
816 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
817 // We use forward_time here because it is the same
818 // considering new targets. We have multiple
819 // requests for the same address here. It
820 // specifies the latency to allocate an internal
821 // buffer and to schedule an event to the queued
822 // port and also takes into account the additional
823 // delay of the xbar.
824 mshr->allocateTarget(pkt, forward_time, order++,
825 allocOnFill(pkt->cmd));
826 if (mshr->getNumTargets() == numTarget) {
827 noTargetMSHR = mshr;
828 setBlocked(Blocked_NoTargets);
829 // need to be careful with this... if this mshr isn't
830 // ready yet (i.e. time > curTick()), we don't want to
831 // move it ahead of mshrs that are ready
832 // mshrQueue.moveToFront(mshr);
833 }
834 }
835 // We should call the prefetcher reguardless if the request is
836 // satisfied or not, reguardless if the request is in the MSHR or
837 // not. The request could be a ReadReq hit, but still not
838 // satisfied (potentially because of a prior write to the same
839 // cache line. So, even when not satisfied, tehre is an MSHR
840 // already allocated for this, we need to let the prefetcher know
841 // about the request
842 if (prefetcher) {
843 // Don't notify on SWPrefetch
844 if (!pkt->cmd.isSWPrefetch())
845 next_pf_time = prefetcher->notify(pkt);
846 }
847 }
848 } else {
849 // no MSHR
850 assert(pkt->req->masterId() < system->maxMasters());
851 if (pkt->req->isUncacheable()) {
852 mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
853 } else {
854 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
855 }
856
857 if (pkt->isEviction() ||
858 (pkt->req->isUncacheable() && pkt->isWrite())) {
859 // We use forward_time here because there is an
860 // uncached memory write, forwarded to WriteBuffer.
861 allocateWriteBuffer(pkt, forward_time);
862 } else {
863 if (blk && blk->isValid()) {
864 // should have flushed and have no valid block
865 assert(!pkt->req->isUncacheable());
866
867 // If we have a write miss to a valid block, we
868 // need to mark the block non-readable. Otherwise
869 // if we allow reads while there's an outstanding
870 // write miss, the read could return stale data
871 // out of the cache block... a more aggressive
872 // system could detect the overlap (if any) and
873 // forward data out of the MSHRs, but we don't do
874 // that yet. Note that we do need to leave the
875 // block valid so that it stays in the cache, in
876 // case we get an upgrade response (and hence no
877 // new data) when the write miss completes.
878 // As long as CPUs do proper store/load forwarding
879 // internally, and have a sufficiently weak memory
880 // model, this is probably unnecessary, but at some
881 // point it must have seemed like we needed it...
882 assert(pkt->needsWritable());
883 assert(!blk->isWritable());
884 blk->status &= ~BlkReadable;
885 }
886 // Here we are using forward_time, modelling the latency of
887 // a miss (outbound) just as forwardLatency, neglecting the
888 // lookupLatency component.
889 allocateMissBuffer(pkt, forward_time);
890 }
891
892 if (prefetcher) {
893 // Don't notify on SWPrefetch
894 if (!pkt->cmd.isSWPrefetch())
895 next_pf_time = prefetcher->notify(pkt);
896 }
897 }
898 }
899
900 if (next_pf_time != MaxTick)
901 schedMemSideSendEvent(next_pf_time);
902
903 return true;
904}
905
906
907// See comment in cache.hh.
908PacketPtr
906PacketPtr
909Cache::getBusPacket(PacketPtr cpu_pkt, CacheBlk *blk,
910 bool needsWritable) const
907Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk,
908 bool needsWritable) const
911{
909{
910 // should never see evictions here
911 assert(!cpu_pkt->isEviction());
912
912 bool blkValid = blk && blk->isValid();
913
913 bool blkValid = blk && blk->isValid();
914
914 if (cpu_pkt->req->isUncacheable()) {
915 // note that at the point we see the uncacheable request we
916 // flush any block, but there could be an outstanding MSHR,
917 // and the cache could have filled again before we actually
918 // send out the forwarded uncacheable request (blk could thus
919 // be non-null)
920 return NULL;
915 if (cpu_pkt->req->isUncacheable() ||
916 (!blkValid && cpu_pkt->isUpgrade())) {
917 // uncacheable requests and upgrades from upper-level caches
918 // that missed completely just go through as is
919 return nullptr;
921 }
922
920 }
921
923 if (!blkValid &&
924 (cpu_pkt->isUpgrade() ||
925 cpu_pkt->isEviction())) {
926 // Writebacks that weren't allocated in access() and upgrades
927 // from upper-level caches that missed completely just go
928 // through.
929 return NULL;
930 }
931
932 assert(cpu_pkt->needsResponse());
933
934 MemCmd cmd;
935 // @TODO make useUpgrades a parameter.
936 // Note that ownership protocols require upgrade, otherwise a
937 // write miss on a shared owned block will generate a ReadExcl,
938 // which will clobber the owned copy.
939 const bool useUpgrades = true;
940 if (blkValid && useUpgrades) {
941 // only reason to be here is that blk is read only and we need
942 // it to be writable
943 assert(needsWritable);
944 assert(!blk->isWritable());
945 cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
946 } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
947 cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
948 // Even though this SC will fail, we still need to send out the
949 // request and get the data to supply it to other snoopers in the case
950 // where the determination the StoreCond fails is delayed due to
951 // all caches not being on the same local bus.
952 cmd = MemCmd::SCUpgradeFailReq;
953 } else if (cpu_pkt->cmd == MemCmd::WriteLineReq ||
954 cpu_pkt->cmd == MemCmd::InvalidateReq) {
955 // forward as invalidate to all other caches, this gives us
956 // the line in Exclusive state, and invalidates all other
957 // copies
958 cmd = MemCmd::InvalidateReq;
959 } else {
960 // block is invalid
961 cmd = needsWritable ? MemCmd::ReadExReq :
962 (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
963 }
964 PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
965
966 // if there are upstream caches that have already marked the
967 // packet as having sharers (not passing writable), pass that info
968 // downstream
969 if (cpu_pkt->hasSharers()) {
970 // note that cpu_pkt may have spent a considerable time in the
971 // MSHR queue and that the information could possibly be out
972 // of date, however, there is no harm in conservatively
973 // assuming the block has sharers
974 pkt->setHasSharers();
975 DPRINTF(Cache, "%s passing hasSharers from %s to %s addr %#llx "
976 "size %d\n",
977 __func__, cpu_pkt->cmdString(), pkt->cmdString(),
978 pkt->getAddr(), pkt->getSize());
979 }
980
981 // the packet should be block aligned
982 assert(pkt->getAddr() == blockAlign(pkt->getAddr()));
983
984 pkt->allocate();
985 DPRINTF(Cache, "%s created %s from %s for addr %#llx size %d\n",
986 __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(),
987 pkt->getSize());
988 return pkt;
989}
990
991
992Tick
993Cache::recvAtomic(PacketPtr pkt)
994{
995 // We are in atomic mode so we pay just for lookupLatency here.
996 Cycles lat = lookupLatency;
997
998 // Forward the request if the system is in cache bypass mode.
999 if (system->bypassCaches())
1000 return ticksToCycles(memSidePort->sendAtomic(pkt));
1001
1002 promoteWholeLineWrites(pkt);
1003
1004 // follow the same flow as in recvTimingReq, and check if a cache
1005 // above us is responding
1006 if (pkt->cacheResponding()) {
1007 DPRINTF(Cache, "Cache above responding to %#llx (%s): "
1008 "not responding\n",
1009 pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
1010
1011 // if a cache is responding, and it had the line in Owned
1012 // rather than Modified state, we need to invalidate any
1013 // copies that are not on the same path to memory
1014 assert(pkt->needsWritable() && !pkt->responderHadWritable());
1015 lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1016
1017 return lat * clockPeriod();
1018 }
1019
1020 // should assert here that there are no outstanding MSHRs or
1021 // writebacks... that would mean that someone used an atomic
1022 // access in timing mode
1023
1024 CacheBlk *blk = NULL;
1025 PacketList writebacks;
1026 bool satisfied = access(pkt, blk, lat, writebacks);
1027
1028 // handle writebacks resulting from the access here to ensure they
1029 // logically proceed anything happening below
1030 doWritebacksAtomic(writebacks);
1031
1032 if (!satisfied) {
1033 // MISS
1034
922 assert(cpu_pkt->needsResponse());
923
924 MemCmd cmd;
925 // @TODO make useUpgrades a parameter.
926 // Note that ownership protocols require upgrade, otherwise a
927 // write miss on a shared owned block will generate a ReadExcl,
928 // which will clobber the owned copy.
929 const bool useUpgrades = true;
930 if (blkValid && useUpgrades) {
931 // only reason to be here is that blk is read only and we need
932 // it to be writable
933 assert(needsWritable);
934 assert(!blk->isWritable());
935 cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
936 } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
937 cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
938 // Even though this SC will fail, we still need to send out the
939 // request and get the data to supply it to other snoopers in the case
940 // where the determination the StoreCond fails is delayed due to
941 // all caches not being on the same local bus.
942 cmd = MemCmd::SCUpgradeFailReq;
943 } else if (cpu_pkt->cmd == MemCmd::WriteLineReq ||
944 cpu_pkt->cmd == MemCmd::InvalidateReq) {
945 // forward as invalidate to all other caches, this gives us
946 // the line in Exclusive state, and invalidates all other
947 // copies
948 cmd = MemCmd::InvalidateReq;
949 } else {
950 // block is invalid
951 cmd = needsWritable ? MemCmd::ReadExReq :
952 (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
953 }
954 PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
955
956 // if there are upstream caches that have already marked the
957 // packet as having sharers (not passing writable), pass that info
958 // downstream
959 if (cpu_pkt->hasSharers()) {
960 // note that cpu_pkt may have spent a considerable time in the
961 // MSHR queue and that the information could possibly be out
962 // of date, however, there is no harm in conservatively
963 // assuming the block has sharers
964 pkt->setHasSharers();
965 DPRINTF(Cache, "%s passing hasSharers from %s to %s addr %#llx "
966 "size %d\n",
967 __func__, cpu_pkt->cmdString(), pkt->cmdString(),
968 pkt->getAddr(), pkt->getSize());
969 }
970
971 // the packet should be block aligned
972 assert(pkt->getAddr() == blockAlign(pkt->getAddr()));
973
974 pkt->allocate();
975 DPRINTF(Cache, "%s created %s from %s for addr %#llx size %d\n",
976 __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(),
977 pkt->getSize());
978 return pkt;
979}
980
981
982Tick
983Cache::recvAtomic(PacketPtr pkt)
984{
985 // We are in atomic mode so we pay just for lookupLatency here.
986 Cycles lat = lookupLatency;
987
988 // Forward the request if the system is in cache bypass mode.
989 if (system->bypassCaches())
990 return ticksToCycles(memSidePort->sendAtomic(pkt));
991
992 promoteWholeLineWrites(pkt);
993
994 // follow the same flow as in recvTimingReq, and check if a cache
995 // above us is responding
996 if (pkt->cacheResponding()) {
997 DPRINTF(Cache, "Cache above responding to %#llx (%s): "
998 "not responding\n",
999 pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
1000
1001 // if a cache is responding, and it had the line in Owned
1002 // rather than Modified state, we need to invalidate any
1003 // copies that are not on the same path to memory
1004 assert(pkt->needsWritable() && !pkt->responderHadWritable());
1005 lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1006
1007 return lat * clockPeriod();
1008 }
1009
1010 // should assert here that there are no outstanding MSHRs or
1011 // writebacks... that would mean that someone used an atomic
1012 // access in timing mode
1013
1014 CacheBlk *blk = NULL;
1015 PacketList writebacks;
1016 bool satisfied = access(pkt, blk, lat, writebacks);
1017
1018 // handle writebacks resulting from the access here to ensure they
1019 // logically proceed anything happening below
1020 doWritebacksAtomic(writebacks);
1021
1022 if (!satisfied) {
1023 // MISS
1024
1035 PacketPtr bus_pkt = getBusPacket(pkt, blk, pkt->needsWritable());
1025 // deal with the packets that go through the write path of
1026 // the cache, i.e. any evictions and uncacheable writes
1027 if (pkt->isEviction() ||
1028 (pkt->req->isUncacheable() && pkt->isWrite())) {
1029 lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1030 return lat * clockPeriod();
1031 }
1032 // only misses left
1036
1033
1034 PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable());
1035
1037 bool is_forward = (bus_pkt == NULL);
1038
1039 if (is_forward) {
1040 // just forwarding the same request to the next level
1041 // no local cache operation involved
1042 bus_pkt = pkt;
1043 }
1044
1045 DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n",
1046 bus_pkt->cmdString(), bus_pkt->getAddr(),
1047 bus_pkt->isSecure() ? "s" : "ns");
1048
1049#if TRACING_ON
1050 CacheBlk::State old_state = blk ? blk->status : 0;
1051#endif
1052
1053 lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1054
1036 bool is_forward = (bus_pkt == NULL);
1037
1038 if (is_forward) {
1039 // just forwarding the same request to the next level
1040 // no local cache operation involved
1041 bus_pkt = pkt;
1042 }
1043
1044 DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n",
1045 bus_pkt->cmdString(), bus_pkt->getAddr(),
1046 bus_pkt->isSecure() ? "s" : "ns");
1047
1048#if TRACING_ON
1049 CacheBlk::State old_state = blk ? blk->status : 0;
1050#endif
1051
1052 lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1053
1054 bool is_invalidate = bus_pkt->isInvalidate();
1055
1055 // We are now dealing with the response handling
1056 DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in state %i\n",
1057 bus_pkt->cmdString(), bus_pkt->getAddr(),
1058 bus_pkt->isSecure() ? "s" : "ns",
1059 old_state);
1060
1061 // If packet was a forward, the response (if any) is already
1062 // in place in the bus_pkt == pkt structure, so we don't need
1063 // to do anything. Otherwise, use the separate bus_pkt to
1064 // generate response to pkt and then delete it.
1065 if (!is_forward) {
1066 if (pkt->needsResponse()) {
1067 assert(bus_pkt->isResponse());
1068 if (bus_pkt->isError()) {
1069 pkt->makeAtomicResponse();
1070 pkt->copyError(bus_pkt);
1056 // We are now dealing with the response handling
1057 DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in state %i\n",
1058 bus_pkt->cmdString(), bus_pkt->getAddr(),
1059 bus_pkt->isSecure() ? "s" : "ns",
1060 old_state);
1061
1062 // If packet was a forward, the response (if any) is already
1063 // in place in the bus_pkt == pkt structure, so we don't need
1064 // to do anything. Otherwise, use the separate bus_pkt to
1065 // generate response to pkt and then delete it.
1066 if (!is_forward) {
1067 if (pkt->needsResponse()) {
1068 assert(bus_pkt->isResponse());
1069 if (bus_pkt->isError()) {
1070 pkt->makeAtomicResponse();
1071 pkt->copyError(bus_pkt);
1071 } else if (pkt->cmd == MemCmd::InvalidateReq) {
1072 if (blk) {
1073 // invalidate response to a cache that received
1074 // an invalidate request
1075 satisfyCpuSideRequest(pkt, blk);
1076 }
1077 } else if (pkt->cmd == MemCmd::WriteLineReq) {
1078 // note the use of pkt, not bus_pkt here.
1079
1080 // write-line request to the cache that promoted
1081 // the write to a whole line
1082 blk = handleFill(pkt, blk, writebacks,
1083 allocOnFill(pkt->cmd));
1072 } else if (pkt->cmd == MemCmd::WriteLineReq) {
1073 // note the use of pkt, not bus_pkt here.
1074
1075 // write-line request to the cache that promoted
1076 // the write to a whole line
1077 blk = handleFill(pkt, blk, writebacks,
1078 allocOnFill(pkt->cmd));
1079 assert(blk != NULL);
1080 is_invalidate = false;
1084 satisfyCpuSideRequest(pkt, blk);
1085 } else if (bus_pkt->isRead() ||
1086 bus_pkt->cmd == MemCmd::UpgradeResp) {
1087 // we're updating cache state to allow us to
1088 // satisfy the upstream request from the cache
1089 blk = handleFill(bus_pkt, blk, writebacks,
1090 allocOnFill(pkt->cmd));
1091 satisfyCpuSideRequest(pkt, blk);
1092 } else {
1093 // we're satisfying the upstream request without
1094 // modifying cache state, e.g., a write-through
1095 pkt->makeAtomicResponse();
1096 }
1097 }
1098 delete bus_pkt;
1099 }
1081 satisfyCpuSideRequest(pkt, blk);
1082 } else if (bus_pkt->isRead() ||
1083 bus_pkt->cmd == MemCmd::UpgradeResp) {
1084 // we're updating cache state to allow us to
1085 // satisfy the upstream request from the cache
1086 blk = handleFill(bus_pkt, blk, writebacks,
1087 allocOnFill(pkt->cmd));
1088 satisfyCpuSideRequest(pkt, blk);
1089 } else {
1090 // we're satisfying the upstream request without
1091 // modifying cache state, e.g., a write-through
1092 pkt->makeAtomicResponse();
1093 }
1094 }
1095 delete bus_pkt;
1096 }
1097
1098 if (is_invalidate && blk && blk->isValid()) {
1099 invalidateBlock(blk);
1100 }
1100 }
1101
1102 // Note that we don't invoke the prefetcher at all in atomic mode.
1103 // It's not clear how to do it properly, particularly for
1104 // prefetchers that aggressively generate prefetch candidates and
1105 // rely on bandwidth contention to throttle them; these will tend
1106 // to pollute the cache in atomic mode since there is no bandwidth
1107 // contention. If we ever do want to enable prefetching in atomic
1108 // mode, though, this is the place to do it... see timingAccess()
1109 // for an example (though we'd want to issue the prefetch(es)
1110 // immediately rather than calling requestMemSideBus() as we do
1111 // there).
1112
1113 // do any writebacks resulting from the response handling
1114 doWritebacksAtomic(writebacks);
1115
1116 // if we used temp block, check to see if its valid and if so
1117 // clear it out, but only do so after the call to recvAtomic is
1118 // finished so that any downstream observers (such as a snoop
1119 // filter), first see the fill, and only then see the eviction
1120 if (blk == tempBlock && tempBlock->isValid()) {
1121 // the atomic CPU calls recvAtomic for fetch and load/store
1122 // sequentuially, and we may already have a tempBlock
1123 // writeback from the fetch that we have not yet sent
1124 if (tempBlockWriteback) {
1125 // if that is the case, write the prevoius one back, and
1126 // do not schedule any new event
1127 writebackTempBlockAtomic();
1128 } else {
1129 // the writeback/clean eviction happens after the call to
1130 // recvAtomic has finished (but before any successive
1131 // calls), so that the response handling from the fill is
1132 // allowed to happen first
1133 schedule(writebackTempBlockAtomicEvent, curTick());
1134 }
1135
1136 tempBlockWriteback = (blk->isDirty() || writebackClean) ?
1137 writebackBlk(blk) : cleanEvictBlk(blk);
1138 blk->invalidate();
1139 }
1140
1141 if (pkt->needsResponse()) {
1142 pkt->makeAtomicResponse();
1143 }
1144
1145 return lat * clockPeriod();
1146}
1147
1148
1149void
1150Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1151{
1152 if (system->bypassCaches()) {
1153 // Packets from the memory side are snoop request and
1154 // shouldn't happen in bypass mode.
1155 assert(fromCpuSide);
1156
1157 // The cache should be flushed if we are in cache bypass mode,
1158 // so we don't need to check if we need to update anything.
1159 memSidePort->sendFunctional(pkt);
1160 return;
1161 }
1162
1163 Addr blk_addr = blockAlign(pkt->getAddr());
1164 bool is_secure = pkt->isSecure();
1165 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1166 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1167
1168 pkt->pushLabel(name());
1169
1170 CacheBlkPrintWrapper cbpw(blk);
1171
1172 // Note that just because an L2/L3 has valid data doesn't mean an
1173 // L1 doesn't have a more up-to-date modified copy that still
1174 // needs to be found. As a result we always update the request if
1175 // we have it, but only declare it satisfied if we are the owner.
1176
1177 // see if we have data at all (owned or otherwise)
1178 bool have_data = blk && blk->isValid()
1179 && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1180 blk->data);
1181
1182 // data we have is dirty if marked as such or if we have an
1183 // in-service MSHR that is pending a modified line
1184 bool have_dirty =
1185 have_data && (blk->isDirty() ||
1186 (mshr && mshr->inService && mshr->isPendingModified()));
1187
1188 bool done = have_dirty
1189 || cpuSidePort->checkFunctional(pkt)
1190 || mshrQueue.checkFunctional(pkt, blk_addr)
1191 || writeBuffer.checkFunctional(pkt, blk_addr)
1192 || memSidePort->checkFunctional(pkt);
1193
1194 DPRINTF(CacheVerbose, "functional %s %#llx (%s) %s%s%s\n",
1195 pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns",
1196 (blk && blk->isValid()) ? "valid " : "",
1197 have_data ? "data " : "", done ? "done " : "");
1198
1199 // We're leaving the cache, so pop cache->name() label
1200 pkt->popLabel();
1201
1202 if (done) {
1203 pkt->makeResponse();
1204 } else {
1205 // if it came as a request from the CPU side then make sure it
1206 // continues towards the memory side
1207 if (fromCpuSide) {
1208 memSidePort->sendFunctional(pkt);
1209 } else if (forwardSnoops && cpuSidePort->isSnooping()) {
1210 // if it came from the memory side, it must be a snoop request
1211 // and we should only forward it if we are forwarding snoops
1212 cpuSidePort->sendFunctionalSnoop(pkt);
1213 }
1214 }
1215}
1216
1217
1218/////////////////////////////////////////////////////
1219//
1220// Response handling: responses from the memory side
1221//
1222/////////////////////////////////////////////////////
1223
1224
1225void
1226Cache::handleUncacheableWriteResp(PacketPtr pkt)
1227{
1228 WriteQueueEntry *wq_entry =
1229 dynamic_cast<WriteQueueEntry*>(pkt->senderState);
1230 assert(wq_entry);
1231
1232 WriteQueueEntry::Target *target = wq_entry->getTarget();
1233 Packet *tgt_pkt = target->pkt;
1234
1235 // we send out invalidation reqs and get invalidation
1236 // responses for write-line requests
1237 assert(tgt_pkt->cmd != MemCmd::WriteLineReq);
1238
1239 int stats_cmd_idx = tgt_pkt->cmdToIndex();
1240 Tick miss_latency = curTick() - target->recvTime;
1241 assert(pkt->req->masterId() < system->maxMasters());
1242 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1243 miss_latency;
1244
1245 tgt_pkt->makeTimingResponse();
1246 // if this packet is an error copy that to the new packet
1247 if (pkt->isError())
1248 tgt_pkt->copyError(pkt);
1249 // Reset the bus additional time as it is now accounted for
1250 tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1251 Tick completion_time = clockEdge(responseLatency) +
1252 pkt->headerDelay + pkt->payloadDelay;
1253
1254 cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
1255
1256 wq_entry->popTarget();
1257 assert(!wq_entry->hasTargets());
1258
1259 bool wasFull = writeBuffer.isFull();
1260 writeBuffer.deallocate(wq_entry);
1261
1262 if (wasFull && !writeBuffer.isFull()) {
1263 clearBlocked(Blocked_NoWBBuffers);
1264 }
1265
1266 delete pkt;
1267}
1268
1269void
1270Cache::recvTimingResp(PacketPtr pkt)
1271{
1272 assert(pkt->isResponse());
1273
1274 // all header delay should be paid for by the crossbar, unless
1275 // this is a prefetch response from above
1276 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1277 "%s saw a non-zero packet delay\n", name());
1278
1279 bool is_error = pkt->isError();
1280
1281 if (is_error) {
1282 DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), "
1283 "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns",
1284 pkt->cmdString());
1285 }
1286
1287 DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n",
1288 pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1289 pkt->isSecure() ? "s" : "ns");
1290
1291 // if this is a write, we should be looking at an uncacheable
1292 // write
1293 if (pkt->isWrite()) {
1294 assert(pkt->req->isUncacheable());
1295 handleUncacheableWriteResp(pkt);
1296 return;
1297 }
1298
1299 // we have dealt with any (uncacheable) writes above, from here on
1300 // we know we are dealing with an MSHR due to a miss or a prefetch
1301 MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
1302 assert(mshr);
1303
1304 if (mshr == noTargetMSHR) {
1305 // we always clear at least one target
1306 clearBlocked(Blocked_NoTargets);
1307 noTargetMSHR = NULL;
1308 }
1309
1310 // Initial target is used just for stats
1311 MSHR::Target *initial_tgt = mshr->getTarget();
1312 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1313 Tick miss_latency = curTick() - initial_tgt->recvTime;
1314
1315 if (pkt->req->isUncacheable()) {
1316 assert(pkt->req->masterId() < system->maxMasters());
1317 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1318 miss_latency;
1319 } else {
1320 assert(pkt->req->masterId() < system->maxMasters());
1321 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1322 miss_latency;
1323 }
1324
1325 bool wasFull = mshrQueue.isFull();
1326
1327 PacketList writebacks;
1328
1329 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1330
1331 // upgrade deferred targets if the response has no sharers, and is
1332 // thus passing writable
1333 if (!pkt->hasSharers()) {
1334 mshr->promoteWritable();
1335 }
1336
1337 bool is_fill = !mshr->isForward &&
1338 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1339
1340 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1341
1342 if (is_fill && !is_error) {
1343 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1344 pkt->getAddr());
1345
1346 blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill);
1347 assert(blk != NULL);
1348 }
1349
1350 // allow invalidation responses originating from write-line
1351 // requests to be discarded
1352 bool is_invalidate = pkt->isInvalidate();
1353
1354 // First offset for critical word first calculations
1355 int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1356
1357 while (mshr->hasTargets()) {
1358 MSHR::Target *target = mshr->getTarget();
1359 Packet *tgt_pkt = target->pkt;
1360
1361 switch (target->source) {
1362 case MSHR::Target::FromCPU:
1363 Tick completion_time;
1364 // Here we charge on completion_time the delay of the xbar if the
1365 // packet comes from it, charged on headerDelay.
1366 completion_time = pkt->headerDelay;
1367
1368 // Software prefetch handling for cache closest to core
1369 if (tgt_pkt->cmd.isSWPrefetch()) {
1370 // a software prefetch would have already been ack'd immediately
1371 // with dummy data so the core would be able to retire it.
1372 // this request completes right here, so we deallocate it.
1373 delete tgt_pkt->req;
1374 delete tgt_pkt;
1375 break; // skip response
1376 }
1377
1378 // unlike the other packet flows, where data is found in other
1379 // caches or memory and brought back, write-line requests always
1380 // have the data right away, so the above check for "is fill?"
1381 // cannot actually be determined until examining the stored MSHR
1382 // state. We "catch up" with that logic here, which is duplicated
1383 // from above.
1384 if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1385 assert(!is_error);
1386 // we got the block in a writable state, so promote
1387 // any deferred targets if possible
1388 mshr->promoteWritable();
1389 // NB: we use the original packet here and not the response!
1390 blk = handleFill(tgt_pkt, blk, writebacks, mshr->allocOnFill);
1391 assert(blk != NULL);
1392
1393 // treat as a fill, and discard the invalidation
1394 // response
1395 is_fill = true;
1396 is_invalidate = false;
1397 }
1398
1399 if (is_fill) {
1400 satisfyCpuSideRequest(tgt_pkt, blk,
1401 true, mshr->hasPostDowngrade());
1402
1403 // How many bytes past the first request is this one
1404 int transfer_offset =
1405 tgt_pkt->getOffset(blkSize) - initial_offset;
1406 if (transfer_offset < 0) {
1407 transfer_offset += blkSize;
1408 }
1409
1410 // If not critical word (offset) return payloadDelay.
1411 // responseLatency is the latency of the return path
1412 // from lower level caches/memory to an upper level cache or
1413 // the core.
1414 completion_time += clockEdge(responseLatency) +
1415 (transfer_offset ? pkt->payloadDelay : 0);
1416
1417 assert(!tgt_pkt->req->isUncacheable());
1418
1419 assert(tgt_pkt->req->masterId() < system->maxMasters());
1420 missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1421 completion_time - target->recvTime;
1422 } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1423 // failed StoreCond upgrade
1424 assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1425 tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1426 tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1427 // responseLatency is the latency of the return path
1428 // from lower level caches/memory to an upper level cache or
1429 // the core.
1430 completion_time += clockEdge(responseLatency) +
1431 pkt->payloadDelay;
1432 tgt_pkt->req->setExtraData(0);
1433 } else {
1434 // not a cache fill, just forwarding response
1435 // responseLatency is the latency of the return path
1436 // from lower level cahces/memory to the core.
1437 completion_time += clockEdge(responseLatency) +
1438 pkt->payloadDelay;
1439 if (pkt->isRead() && !is_error) {
1440 // sanity check
1441 assert(pkt->getAddr() == tgt_pkt->getAddr());
1442 assert(pkt->getSize() >= tgt_pkt->getSize());
1443
1444 tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1445 }
1446 }
1447 tgt_pkt->makeTimingResponse();
1448 // if this packet is an error copy that to the new packet
1449 if (is_error)
1450 tgt_pkt->copyError(pkt);
1451 if (tgt_pkt->cmd == MemCmd::ReadResp &&
1452 (is_invalidate || mshr->hasPostInvalidate())) {
1453 // If intermediate cache got ReadRespWithInvalidate,
1454 // propagate that. Response should not have
1455 // isInvalidate() set otherwise.
1456 tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1457 DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n",
1458 __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr());
1459 }
1460 // Reset the bus additional time as it is now accounted for
1461 tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1462 cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
1463 break;
1464
1465 case MSHR::Target::FromPrefetcher:
1466 assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1467 if (blk)
1468 blk->status |= BlkHWPrefetched;
1469 delete tgt_pkt->req;
1470 delete tgt_pkt;
1471 break;
1472
1473 case MSHR::Target::FromSnoop:
1474 // I don't believe that a snoop can be in an error state
1475 assert(!is_error);
1476 // response to snoop request
1477 DPRINTF(Cache, "processing deferred snoop...\n");
1478 assert(!(is_invalidate && !mshr->hasPostInvalidate()));
1479 handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1480 break;
1481
1482 default:
1483 panic("Illegal target->source enum %d\n", target->source);
1484 }
1485
1486 mshr->popTarget();
1487 }
1488
1489 if (blk && blk->isValid()) {
1490 // an invalidate response stemming from a write line request
1491 // should not invalidate the block, so check if the
1492 // invalidation should be discarded
1493 if (is_invalidate || mshr->hasPostInvalidate()) {
1494 invalidateBlock(blk);
1495 } else if (mshr->hasPostDowngrade()) {
1496 blk->status &= ~BlkWritable;
1497 }
1498 }
1499
1500 if (mshr->promoteDeferredTargets()) {
1501 // avoid later read getting stale data while write miss is
1502 // outstanding.. see comment in timingAccess()
1503 if (blk) {
1504 blk->status &= ~BlkReadable;
1505 }
1506 mshrQueue.markPending(mshr);
1507 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1508 } else {
1509 mshrQueue.deallocate(mshr);
1510 if (wasFull && !mshrQueue.isFull()) {
1511 clearBlocked(Blocked_NoMSHRs);
1512 }
1513
1514 // Request the bus for a prefetch if this deallocation freed enough
1515 // MSHRs for a prefetch to take place
1516 if (prefetcher && mshrQueue.canPrefetch()) {
1517 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1518 clockEdge());
1519 if (next_pf_time != MaxTick)
1520 schedMemSideSendEvent(next_pf_time);
1521 }
1522 }
1523 // reset the xbar additional timinig as it is now accounted for
1524 pkt->headerDelay = pkt->payloadDelay = 0;
1525
1526 // copy writebacks to write buffer
1527 doWritebacks(writebacks, forward_time);
1528
1529 // if we used temp block, check to see if its valid and then clear it out
1530 if (blk == tempBlock && tempBlock->isValid()) {
1531 // We use forwardLatency here because we are copying
1532 // Writebacks/CleanEvicts to write buffer. It specifies the latency to
1533 // allocate an internal buffer and to schedule an event to the
1534 // queued port.
1535 if (blk->isDirty() || writebackClean) {
1536 PacketPtr wbPkt = writebackBlk(blk);
1537 allocateWriteBuffer(wbPkt, forward_time);
1538 // Set BLOCK_CACHED flag if cached above.
1539 if (isCachedAbove(wbPkt))
1540 wbPkt->setBlockCached();
1541 } else {
1542 PacketPtr wcPkt = cleanEvictBlk(blk);
1543 // Check to see if block is cached above. If not allocate
1544 // write buffer
1545 if (isCachedAbove(wcPkt))
1546 delete wcPkt;
1547 else
1548 allocateWriteBuffer(wcPkt, forward_time);
1549 }
1550 blk->invalidate();
1551 }
1552
1553 DPRINTF(CacheVerbose, "Leaving %s with %s for addr %#llx\n", __func__,
1554 pkt->cmdString(), pkt->getAddr());
1555 delete pkt;
1556}
1557
1558PacketPtr
1559Cache::writebackBlk(CacheBlk *blk)
1560{
1561 chatty_assert(!isReadOnly || writebackClean,
1562 "Writeback from read-only cache");
1563 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1564
1565 writebacks[Request::wbMasterId]++;
1566
1567 Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set),
1568 blkSize, 0, Request::wbMasterId);
1569 if (blk->isSecure())
1570 req->setFlags(Request::SECURE);
1571
1572 req->taskId(blk->task_id);
1573 blk->task_id= ContextSwitchTaskId::Unknown;
1574 blk->tickInserted = curTick();
1575
1576 PacketPtr pkt =
1577 new Packet(req, blk->isDirty() ?
1578 MemCmd::WritebackDirty : MemCmd::WritebackClean);
1579
1580 DPRINTF(Cache, "Create Writeback %#llx writable: %d, dirty: %d\n",
1581 pkt->getAddr(), blk->isWritable(), blk->isDirty());
1582
1583 if (blk->isWritable()) {
1584 // not asserting shared means we pass the block in modified
1585 // state, mark our own block non-writeable
1586 blk->status &= ~BlkWritable;
1587 } else {
1588 // we are in the Owned state, tell the receiver
1589 pkt->setHasSharers();
1590 }
1591
1592 // make sure the block is not marked dirty
1593 blk->status &= ~BlkDirty;
1594
1595 pkt->allocate();
1596 std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize);
1597
1598 return pkt;
1599}
1600
1601PacketPtr
1602Cache::cleanEvictBlk(CacheBlk *blk)
1603{
1604 assert(!writebackClean);
1605 assert(blk && blk->isValid() && !blk->isDirty());
1606 // Creating a zero sized write, a message to the snoop filter
1607 Request *req =
1608 new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1609 Request::wbMasterId);
1610 if (blk->isSecure())
1611 req->setFlags(Request::SECURE);
1612
1613 req->taskId(blk->task_id);
1614 blk->task_id = ContextSwitchTaskId::Unknown;
1615 blk->tickInserted = curTick();
1616
1617 PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1618 pkt->allocate();
1619 DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(),
1620 pkt->req->isInstFetch() ? " (ifetch)" : "",
1621 pkt->getAddr());
1622
1623 return pkt;
1624}
1625
1626void
1627Cache::memWriteback()
1628{
1629 CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1630 tags->forEachBlk(visitor);
1631}
1632
1633void
1634Cache::memInvalidate()
1635{
1636 CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1637 tags->forEachBlk(visitor);
1638}
1639
1640bool
1641Cache::isDirty() const
1642{
1643 CacheBlkIsDirtyVisitor visitor;
1644 tags->forEachBlk(visitor);
1645
1646 return visitor.isDirty();
1647}
1648
1649bool
1650Cache::writebackVisitor(CacheBlk &blk)
1651{
1652 if (blk.isDirty()) {
1653 assert(blk.isValid());
1654
1655 Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
1656 blkSize, 0, Request::funcMasterId);
1657 request.taskId(blk.task_id);
1658
1659 Packet packet(&request, MemCmd::WriteReq);
1660 packet.dataStatic(blk.data);
1661
1662 memSidePort->sendFunctional(&packet);
1663
1664 blk.status &= ~BlkDirty;
1665 }
1666
1667 return true;
1668}
1669
1670bool
1671Cache::invalidateVisitor(CacheBlk &blk)
1672{
1673
1674 if (blk.isDirty())
1675 warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1676
1677 if (blk.isValid()) {
1678 assert(!blk.isDirty());
1679 tags->invalidate(&blk);
1680 blk.invalidate();
1681 }
1682
1683 return true;
1684}
1685
1686CacheBlk*
1687Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1688{
1689 CacheBlk *blk = tags->findVictim(addr);
1690
1691 // It is valid to return NULL if there is no victim
1692 if (!blk)
1693 return nullptr;
1694
1695 if (blk->isValid()) {
1696 Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
1697 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1698 if (repl_mshr) {
1699 // must be an outstanding upgrade request
1700 // on a block we're about to replace...
1701 assert(!blk->isWritable() || blk->isDirty());
1702 assert(repl_mshr->needsWritable());
1703 // too hard to replace block with transient state
1704 // allocation failed, block not inserted
1705 return NULL;
1706 } else {
1707 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx (%s): %s\n",
1708 repl_addr, blk->isSecure() ? "s" : "ns",
1709 addr, is_secure ? "s" : "ns",
1710 blk->isDirty() ? "writeback" : "clean");
1711
1712 if (blk->wasPrefetched()) {
1713 unusedPrefetches++;
1714 }
1715 // Will send up Writeback/CleanEvict snoops via isCachedAbove
1716 // when pushing this writeback list into the write buffer.
1717 if (blk->isDirty() || writebackClean) {
1718 // Save writeback packet for handling by caller
1719 writebacks.push_back(writebackBlk(blk));
1720 } else {
1721 writebacks.push_back(cleanEvictBlk(blk));
1722 }
1723 }
1724 }
1725
1726 return blk;
1727}
1728
1729void
1730Cache::invalidateBlock(CacheBlk *blk)
1731{
1732 if (blk != tempBlock)
1733 tags->invalidate(blk);
1734 blk->invalidate();
1735}
1736
1737// Note that the reason we return a list of writebacks rather than
1738// inserting them directly in the write buffer is that this function
1739// is called by both atomic and timing-mode accesses, and in atomic
1740// mode we don't mess with the write buffer (we just perform the
1741// writebacks atomically once the original request is complete).
1742CacheBlk*
1743Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1744 bool allocate)
1745{
1746 assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1747 Addr addr = pkt->getAddr();
1748 bool is_secure = pkt->isSecure();
1749#if TRACING_ON
1750 CacheBlk::State old_state = blk ? blk->status : 0;
1751#endif
1752
1753 // When handling a fill, we should have no writes to this line.
1754 assert(addr == blockAlign(addr));
1755 assert(!writeBuffer.findMatch(addr, is_secure));
1756
1757 if (blk == NULL) {
1758 // better have read new data...
1759 assert(pkt->hasData());
1760
1761 // only read responses and write-line requests have data;
1762 // note that we don't write the data here for write-line - that
1763 // happens in the subsequent satisfyCpuSideRequest.
1764 assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1765
1766 // need to do a replacement if allocating, otherwise we stick
1767 // with the temporary storage
1768 blk = allocate ? allocateBlock(addr, is_secure, writebacks) : NULL;
1769
1770 if (blk == NULL) {
1771 // No replaceable block or a mostly exclusive
1772 // cache... just use temporary storage to complete the
1773 // current request and then get rid of it
1774 assert(!tempBlock->isValid());
1775 blk = tempBlock;
1776 tempBlock->set = tags->extractSet(addr);
1777 tempBlock->tag = tags->extractTag(addr);
1778 // @todo: set security state as well...
1779 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1780 is_secure ? "s" : "ns");
1781 } else {
1782 tags->insertBlock(pkt, blk);
1783 }
1784
1785 // we should never be overwriting a valid block
1786 assert(!blk->isValid());
1787 } else {
1788 // existing block... probably an upgrade
1789 assert(blk->tag == tags->extractTag(addr));
1790 // either we're getting new data or the block should already be valid
1791 assert(pkt->hasData() || blk->isValid());
1792 // don't clear block status... if block is already dirty we
1793 // don't want to lose that
1794 }
1795
1796 if (is_secure)
1797 blk->status |= BlkSecure;
1798 blk->status |= BlkValid | BlkReadable;
1799
1800 // sanity check for whole-line writes, which should always be
1801 // marked as writable as part of the fill, and then later marked
1802 // dirty as part of satisfyCpuSideRequest
1803 if (pkt->cmd == MemCmd::WriteLineReq) {
1804 assert(!pkt->hasSharers());
1805 // at the moment other caches do not respond to the
1806 // invalidation requests corresponding to a whole-line write
1807 assert(!pkt->cacheResponding());
1808 }
1809
1810 // here we deal with setting the appropriate state of the line,
1811 // and we start by looking at the hasSharers flag, and ignore the
1812 // cacheResponding flag (normally signalling dirty data) if the
1813 // packet has sharers, thus the line is never allocated as Owned
1814 // (dirty but not writable), and always ends up being either
1815 // Shared, Exclusive or Modified, see Packet::setCacheResponding
1816 // for more details
1817 if (!pkt->hasSharers()) {
1818 // we could get a writable line from memory (rather than a
1819 // cache) even in a read-only cache, note that we set this bit
1820 // even for a read-only cache, possibly revisit this decision
1821 blk->status |= BlkWritable;
1822
1823 // check if we got this via cache-to-cache transfer (i.e., from a
1824 // cache that had the block in Modified or Owned state)
1825 if (pkt->cacheResponding()) {
1826 // we got the block in Modified state, and invalidated the
1827 // owners copy
1828 blk->status |= BlkDirty;
1829
1830 chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1831 "in read-only cache %s\n", name());
1832 }
1833 }
1834
1835 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1836 addr, is_secure ? "s" : "ns", old_state, blk->print());
1837
1838 // if we got new data, copy it in (checking for a read response
1839 // and a response that has data is the same in the end)
1840 if (pkt->isRead()) {
1841 // sanity checks
1842 assert(pkt->hasData());
1843 assert(pkt->getSize() == blkSize);
1844
1845 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
1846 }
1847 // We pay for fillLatency here.
1848 blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1849 pkt->payloadDelay;
1850
1851 return blk;
1852}
1853
1854
1855/////////////////////////////////////////////////////
1856//
1857// Snoop path: requests coming in from the memory side
1858//
1859/////////////////////////////////////////////////////
1860
1861void
1862Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1863 bool already_copied, bool pending_inval)
1864{
1865 // sanity check
1866 assert(req_pkt->isRequest());
1867 assert(req_pkt->needsResponse());
1868
1869 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1870 req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize());
1871 // timing-mode snoop responses require a new packet, unless we
1872 // already made a copy...
1873 PacketPtr pkt = req_pkt;
1874 if (!already_copied)
1875 // do not clear flags, and allocate space for data if the
1876 // packet needs it (the only packets that carry data are read
1877 // responses)
1878 pkt = new Packet(req_pkt, false, req_pkt->isRead());
1879
1880 assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
1881 pkt->hasSharers());
1882 pkt->makeTimingResponse();
1883 if (pkt->isRead()) {
1884 pkt->setDataFromBlock(blk_data, blkSize);
1885 }
1886 if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
1887 // Assume we defer a response to a read from a far-away cache
1888 // A, then later defer a ReadExcl from a cache B on the same
1889 // bus as us. We'll assert cacheResponding in both cases, but
1890 // in the latter case cacheResponding will keep the
1891 // invalidation from reaching cache A. This special response
1892 // tells cache A that it gets the block to satisfy its read,
1893 // but must immediately invalidate it.
1894 pkt->cmd = MemCmd::ReadRespWithInvalidate;
1895 }
1896 // Here we consider forward_time, paying for just forward latency and
1897 // also charging the delay provided by the xbar.
1898 // forward_time is used as send_time in next allocateWriteBuffer().
1899 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1900 // Here we reset the timing of the packet.
1901 pkt->headerDelay = pkt->payloadDelay = 0;
1902 DPRINTF(CacheVerbose,
1903 "%s created response: %s addr %#llx size %d tick: %lu\n",
1904 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1905 forward_time);
1906 memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
1907}
1908
1909uint32_t
1910Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
1911 bool is_deferred, bool pending_inval)
1912{
1913 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
1914 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1915 // deferred snoops can only happen in timing mode
1916 assert(!(is_deferred && !is_timing));
1917 // pending_inval only makes sense on deferred snoops
1918 assert(!(pending_inval && !is_deferred));
1919 assert(pkt->isRequest());
1920
1921 // the packet may get modified if we or a forwarded snooper
1922 // responds in atomic mode, so remember a few things about the
1923 // original packet up front
1924 bool invalidate = pkt->isInvalidate();
1925 bool M5_VAR_USED needs_writable = pkt->needsWritable();
1926
1927 // at the moment we could get an uncacheable write which does not
1928 // have the invalidate flag, and we need a suitable way of dealing
1929 // with this case
1930 panic_if(invalidate && pkt->req->isUncacheable(),
1931 "%s got an invalidating uncacheable snoop request %s to %#llx",
1932 name(), pkt->cmdString(), pkt->getAddr());
1933
1934 uint32_t snoop_delay = 0;
1935
1936 if (forwardSnoops) {
1937 // first propagate snoop upward to see if anyone above us wants to
1938 // handle it. save & restore packet src since it will get
1939 // rewritten to be relative to cpu-side bus (if any)
1940 bool alreadyResponded = pkt->cacheResponding();
1941 if (is_timing) {
1942 // copy the packet so that we can clear any flags before
1943 // forwarding it upwards, we also allocate data (passing
1944 // the pointer along in case of static data), in case
1945 // there is a snoop hit in upper levels
1946 Packet snoopPkt(pkt, true, true);
1947 snoopPkt.setExpressSnoop();
1948 // the snoop packet does not need to wait any additional
1949 // time
1950 snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
1951 cpuSidePort->sendTimingSnoopReq(&snoopPkt);
1952
1953 // add the header delay (including crossbar and snoop
1954 // delays) of the upward snoop to the snoop delay for this
1955 // cache
1956 snoop_delay += snoopPkt.headerDelay;
1957
1958 if (snoopPkt.cacheResponding()) {
1959 // cache-to-cache response from some upper cache
1960 assert(!alreadyResponded);
1961 pkt->setCacheResponding();
1962 }
1963 // upstream cache has the block, or has an outstanding
1964 // MSHR, pass the flag on
1965 if (snoopPkt.hasSharers()) {
1966 pkt->setHasSharers();
1967 }
1968 // If this request is a prefetch or clean evict and an upper level
1969 // signals block present, make sure to propagate the block
1970 // presence to the requester.
1971 if (snoopPkt.isBlockCached()) {
1972 pkt->setBlockCached();
1973 }
1974 } else {
1975 cpuSidePort->sendAtomicSnoop(pkt);
1976 if (!alreadyResponded && pkt->cacheResponding()) {
1977 // cache-to-cache response from some upper cache:
1978 // forward response to original requester
1979 assert(pkt->isResponse());
1980 }
1981 }
1982 }
1983
1984 if (!blk || !blk->isValid()) {
1985 DPRINTF(CacheVerbose, "%s snoop miss for %s addr %#llx size %d\n",
1986 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1987 return snoop_delay;
1988 } else {
1989 DPRINTF(Cache, "%s snoop hit for %s addr %#llx size %d, "
1990 "old state is %s\n", __func__, pkt->cmdString(),
1991 pkt->getAddr(), pkt->getSize(), blk->print());
1992 }
1993
1994 chatty_assert(!(isReadOnly && blk->isDirty()),
1995 "Should never have a dirty block in a read-only cache %s\n",
1996 name());
1997
1998 // We may end up modifying both the block state and the packet (if
1999 // we respond in atomic mode), so just figure out what to do now
2000 // and then do it later. If we find dirty data while snooping for
2001 // an invalidate, we don't need to send a response. The
2002 // invalidation itself is taken care of below.
2003 bool respond = blk->isDirty() && pkt->needsResponse() &&
2004 pkt->cmd != MemCmd::InvalidateReq;
2005 bool have_writable = blk->isWritable();
2006
2007 // Invalidate any prefetch's from below that would strip write permissions
2008 // MemCmd::HardPFReq is only observed by upstream caches. After missing
2009 // above and in it's own cache, a new MemCmd::ReadReq is created that
2010 // downstream caches observe.
2011 if (pkt->mustCheckAbove()) {
2012 DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s from"
2013 " lower cache\n", pkt->getAddr(), pkt->cmdString());
2014 pkt->setBlockCached();
2015 return snoop_delay;
2016 }
2017
2018 if (pkt->isRead() && !invalidate) {
2019 // reading without requiring the line in a writable state
2020 assert(!needs_writable);
2021 pkt->setHasSharers();
2022
2023 // if the requesting packet is uncacheable, retain the line in
2024 // the current state, otherwhise unset the writable flag,
2025 // which means we go from Modified to Owned (and will respond
2026 // below), remain in Owned (and will respond below), from
2027 // Exclusive to Shared, or remain in Shared
2028 if (!pkt->req->isUncacheable())
2029 blk->status &= ~BlkWritable;
2030 }
2031
2032 if (respond) {
2033 // prevent anyone else from responding, cache as well as
2034 // memory, and also prevent any memory from even seeing the
2035 // request
2036 pkt->setCacheResponding();
2037 if (have_writable) {
2038 // inform the cache hierarchy that this cache had the line
2039 // in the Modified state so that we avoid unnecessary
2040 // invalidations (see Packet::setResponderHadWritable)
2041 pkt->setResponderHadWritable();
2042
2043 // in the case of an uncacheable request there is no point
2044 // in setting the responderHadWritable flag, but since the
2045 // recipient does not care there is no harm in doing so
2046 } else {
2047 // if the packet has needsWritable set we invalidate our
2048 // copy below and all other copies will be invalidates
2049 // through express snoops, and if needsWritable is not set
2050 // we already called setHasSharers above
2051 }
2052
2053 // if we are returning a writable and dirty (Modified) line,
2054 // we should be invalidating the line
2055 panic_if(!invalidate && !pkt->hasSharers(),
2056 "%s is passing a Modified line through %s to %#llx, "
2057 "but keeping the block",
2058 name(), pkt->cmdString(), pkt->getAddr());
2059
2060 if (is_timing) {
2061 doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
2062 } else {
2063 pkt->makeAtomicResponse();
2064 // packets such as upgrades do not actually have any data
2065 // payload
2066 if (pkt->hasData())
2067 pkt->setDataFromBlock(blk->data, blkSize);
2068 }
2069 }
2070
2071 if (!respond && is_timing && is_deferred) {
2072 // if it's a deferred timing snoop to which we are not
2073 // responding, then we've made a copy of both the request and
2074 // the packet, delete them here
2075 assert(pkt->needsResponse());
2076 delete pkt->req;
2077 delete pkt;
2078 }
2079
2080 // Do this last in case it deallocates block data or something
2081 // like that
2082 if (invalidate) {
2083 invalidateBlock(blk);
2084 }
2085
2086 DPRINTF(Cache, "new state is %s\n", blk->print());
2087
2088 return snoop_delay;
2089}
2090
2091
2092void
2093Cache::recvTimingSnoopReq(PacketPtr pkt)
2094{
2095 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
2096 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
2097
2098 // Snoops shouldn't happen when bypassing caches
2099 assert(!system->bypassCaches());
2100
2101 // no need to snoop requests that are not in range
2102 if (!inRange(pkt->getAddr())) {
2103 return;
2104 }
2105
2106 bool is_secure = pkt->isSecure();
2107 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
2108
2109 Addr blk_addr = blockAlign(pkt->getAddr());
2110 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
2111
2112 // Update the latency cost of the snoop so that the crossbar can
2113 // account for it. Do not overwrite what other neighbouring caches
2114 // have already done, rather take the maximum. The update is
2115 // tentative, for cases where we return before an upward snoop
2116 // happens below.
2117 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
2118 lookupLatency * clockPeriod());
2119
2120 // Inform request(Prefetch, CleanEvict or Writeback) from below of
2121 // MSHR hit, set setBlockCached.
2122 if (mshr && pkt->mustCheckAbove()) {
2123 DPRINTF(Cache, "Setting block cached for %s from"
2124 "lower cache on mshr hit %#x\n",
2125 pkt->cmdString(), pkt->getAddr());
2126 pkt->setBlockCached();
2127 return;
2128 }
2129
2130 // Let the MSHR itself track the snoop and decide whether we want
2131 // to go ahead and do the regular cache snoop
2132 if (mshr && mshr->handleSnoop(pkt, order++)) {
2133 DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
2134 "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
2135 mshr->print());
2136
2137 if (mshr->getNumTargets() > numTarget)
2138 warn("allocating bonus target for snoop"); //handle later
2139 return;
2140 }
2141
2142 //We also need to check the writeback buffers and handle those
2143 WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure);
2144 if (wb_entry) {
2145 DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
2146 pkt->getAddr(), is_secure ? "s" : "ns");
2147 // Expect to see only Writebacks and/or CleanEvicts here, both of
2148 // which should not be generated for uncacheable data.
2149 assert(!wb_entry->isUncacheable());
2150 // There should only be a single request responsible for generating
2151 // Writebacks/CleanEvicts.
2152 assert(wb_entry->getNumTargets() == 1);
2153 PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
2154 assert(wb_pkt->isEviction());
2155
2156 if (pkt->isEviction()) {
2157 // if the block is found in the write queue, set the BLOCK_CACHED
2158 // flag for Writeback/CleanEvict snoop. On return the snoop will
2159 // propagate the BLOCK_CACHED flag in Writeback packets and prevent
2160 // any CleanEvicts from travelling down the memory hierarchy.
2161 pkt->setBlockCached();
2162 DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit"
2163 " %#x\n", pkt->cmdString(), pkt->getAddr());
2164 return;
2165 }
2166
2167 // conceptually writebacks are no different to other blocks in
2168 // this cache, so the behaviour is modelled after handleSnoop,
2169 // the difference being that instead of querying the block
2170 // state to determine if it is dirty and writable, we use the
2171 // command and fields of the writeback packet
2172 bool respond = wb_pkt->cmd == MemCmd::WritebackDirty &&
2173 pkt->needsResponse() && pkt->cmd != MemCmd::InvalidateReq;
2174 bool have_writable = !wb_pkt->hasSharers();
2175 bool invalidate = pkt->isInvalidate();
2176
2177 if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
2178 assert(!pkt->needsWritable());
2179 pkt->setHasSharers();
2180 wb_pkt->setHasSharers();
2181 }
2182
2183 if (respond) {
2184 pkt->setCacheResponding();
2185
2186 if (have_writable) {
2187 pkt->setResponderHadWritable();
2188 }
2189
2190 doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2191 false, false);
2192 }
2193
2194 if (invalidate) {
2195 // Invalidation trumps our writeback... discard here
2196 // Note: markInService will remove entry from writeback buffer.
2197 markInService(wb_entry);
2198 delete wb_pkt;
2199 }
2200 }
2201
2202 // If this was a shared writeback, there may still be
2203 // other shared copies above that require invalidation.
2204 // We could be more selective and return here if the
2205 // request is non-exclusive or if the writeback is
2206 // exclusive.
2207 uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2208
2209 // Override what we did when we first saw the snoop, as we now
2210 // also have the cost of the upwards snoops to account for
2211 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2212 lookupLatency * clockPeriod());
2213}
2214
2215bool
2216Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2217{
2218 // Express snoop responses from master to slave, e.g., from L1 to L2
2219 cache->recvTimingSnoopResp(pkt);
2220 return true;
2221}
2222
2223Tick
2224Cache::recvAtomicSnoop(PacketPtr pkt)
2225{
2226 // Snoops shouldn't happen when bypassing caches
2227 assert(!system->bypassCaches());
2228
2229 // no need to snoop requests that are not in range.
2230 if (!inRange(pkt->getAddr())) {
2231 return 0;
2232 }
2233
2234 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2235 uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2236 return snoop_delay + lookupLatency * clockPeriod();
2237}
2238
2239
2240QueueEntry*
2241Cache::getNextQueueEntry()
2242{
2243 // Check both MSHR queue and write buffer for potential requests,
2244 // note that null does not mean there is no request, it could
2245 // simply be that it is not ready
2246 MSHR *miss_mshr = mshrQueue.getNext();
2247 WriteQueueEntry *wq_entry = writeBuffer.getNext();
2248
2249 // If we got a write buffer request ready, first priority is a
2250 // full write buffer (but only if we have no uncacheable write
2251 // responses outstanding, possibly revisit this last part),
2252 // otherwhise we favour the miss requests
2253 if (wq_entry &&
2254 ((writeBuffer.isFull() && writeBuffer.numInService() == 0) ||
2255 !miss_mshr)) {
2256 // need to search MSHR queue for conflicting earlier miss.
2257 MSHR *conflict_mshr =
2258 mshrQueue.findPending(wq_entry->blkAddr,
2259 wq_entry->isSecure);
2260
2261 if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
2262 // Service misses in order until conflict is cleared.
2263 return conflict_mshr;
2264
2265 // @todo Note that we ignore the ready time of the conflict here
2266 }
2267
2268 // No conflicts; issue write
2269 return wq_entry;
2270 } else if (miss_mshr) {
2271 // need to check for conflicting earlier writeback
2272 WriteQueueEntry *conflict_mshr =
2273 writeBuffer.findPending(miss_mshr->blkAddr,
2274 miss_mshr->isSecure);
2275 if (conflict_mshr) {
2276 // not sure why we don't check order here... it was in the
2277 // original code but commented out.
2278
2279 // The only way this happens is if we are
2280 // doing a write and we didn't have permissions
2281 // then subsequently saw a writeback (owned got evicted)
2282 // We need to make sure to perform the writeback first
2283 // To preserve the dirty data, then we can issue the write
2284
2285 // should we return wq_entry here instead? I.e. do we
2286 // have to flush writes in order? I don't think so... not
2287 // for Alpha anyway. Maybe for x86?
2288 return conflict_mshr;
2289
2290 // @todo Note that we ignore the ready time of the conflict here
2291 }
2292
2293 // No conflicts; issue read
2294 return miss_mshr;
2295 }
2296
2297 // fall through... no pending requests. Try a prefetch.
2298 assert(!miss_mshr && !wq_entry);
2299 if (prefetcher && mshrQueue.canPrefetch()) {
2300 // If we have a miss queue slot, we can try a prefetch
2301 PacketPtr pkt = prefetcher->getPacket();
2302 if (pkt) {
2303 Addr pf_addr = blockAlign(pkt->getAddr());
2304 if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2305 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2306 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2307 // Update statistic on number of prefetches issued
2308 // (hwpf_mshr_misses)
2309 assert(pkt->req->masterId() < system->maxMasters());
2310 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2311
2312 // allocate an MSHR and return it, note
2313 // that we send the packet straight away, so do not
2314 // schedule the send
2315 return allocateMissBuffer(pkt, curTick(), false);
2316 } else {
2317 // free the request and packet
2318 delete pkt->req;
2319 delete pkt;
2320 }
2321 }
2322 }
2323
2324 return nullptr;
2325}
2326
2327bool
2328Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
2329{
2330 if (!forwardSnoops)
2331 return false;
2332 // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2333 // Writeback snoops into upper level caches to check for copies of the
2334 // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2335 // packet, the cache can inform the crossbar below of presence or absence
2336 // of the block.
2337 if (is_timing) {
2338 Packet snoop_pkt(pkt, true, false);
2339 snoop_pkt.setExpressSnoop();
2340 // Assert that packet is either Writeback or CleanEvict and not a
2341 // prefetch request because prefetch requests need an MSHR and may
2342 // generate a snoop response.
2343 assert(pkt->isEviction());
2344 snoop_pkt.senderState = NULL;
2345 cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2346 // Writeback/CleanEvict snoops do not generate a snoop response.
2347 assert(!(snoop_pkt.cacheResponding()));
2348 return snoop_pkt.isBlockCached();
2349 } else {
2350 cpuSidePort->sendAtomicSnoop(pkt);
2351 return pkt->isBlockCached();
2352 }
2353}
2354
2355Tick
2356Cache::nextQueueReadyTime() const
2357{
2358 Tick nextReady = std::min(mshrQueue.nextReadyTime(),
2359 writeBuffer.nextReadyTime());
2360
2361 // Don't signal prefetch ready time if no MSHRs available
2362 // Will signal once enoguh MSHRs are deallocated
2363 if (prefetcher && mshrQueue.canPrefetch()) {
2364 nextReady = std::min(nextReady,
2365 prefetcher->nextPrefetchReadyTime());
2366 }
2367
2368 return nextReady;
2369}
2370
2371bool
2372Cache::sendMSHRQueuePacket(MSHR* mshr)
2373{
2374 assert(mshr);
2375
2376 // use request from 1st target
2377 PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2378
2379 DPRINTF(Cache, "%s MSHR %s for addr %#llx size %d\n", __func__,
2380 tgt_pkt->cmdString(), tgt_pkt->getAddr(),
2381 tgt_pkt->getSize());
2382
2383 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2384
2385 if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2386 // we should never have hardware prefetches to allocated
2387 // blocks
2388 assert(blk == NULL);
2389
2390 // We need to check the caches above us to verify that
2391 // they don't have a copy of this block in the dirty state
2392 // at the moment. Without this check we could get a stale
2393 // copy from memory that might get used in place of the
2394 // dirty one.
2395 Packet snoop_pkt(tgt_pkt, true, false);
2396 snoop_pkt.setExpressSnoop();
2397 // We are sending this packet upwards, but if it hits we will
2398 // get a snoop response that we end up treating just like a
2399 // normal response, hence it needs the MSHR as its sender
2400 // state
2401 snoop_pkt.senderState = mshr;
2402 cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2403
2404 // Check to see if the prefetch was squashed by an upper cache (to
2405 // prevent us from grabbing the line) or if a Check to see if a
2406 // writeback arrived between the time the prefetch was placed in
2407 // the MSHRs and when it was selected to be sent or if the
2408 // prefetch was squashed by an upper cache.
2409
2410 // It is important to check cacheResponding before
2411 // prefetchSquashed. If another cache has committed to
2412 // responding, it will be sending a dirty response which will
2413 // arrive at the MSHR allocated for this request. Checking the
2414 // prefetchSquash first may result in the MSHR being
2415 // prematurely deallocated.
2416 if (snoop_pkt.cacheResponding()) {
2417 auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req);
2418 assert(r.second);
2419
2420 // if we are getting a snoop response with no sharers it
2421 // will be allocated as Modified
2422 bool pending_modified_resp = !snoop_pkt.hasSharers();
2423 markInService(mshr, pending_modified_resp);
2424
2425 DPRINTF(Cache, "Upward snoop of prefetch for addr"
2426 " %#x (%s) hit\n",
2427 tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2428 return false;
2429 }
2430
2431 if (snoop_pkt.isBlockCached()) {
2432 DPRINTF(Cache, "Block present, prefetch squashed by cache. "
2433 "Deallocating mshr target %#x.\n",
2434 mshr->blkAddr);
2435
2436 // Deallocate the mshr target
2437 if (mshrQueue.forceDeallocateTarget(mshr)) {
2438 // Clear block if this deallocation resulted freed an
2439 // mshr when all had previously been utilized
2440 clearBlocked(Blocked_NoMSHRs);
2441 }
2442 return false;
2443 }
2444 }
2445
2446 // either a prefetch that is not present upstream, or a normal
2447 // MSHR request, proceed to get the packet to send downstream
1101 }
1102
1103 // Note that we don't invoke the prefetcher at all in atomic mode.
1104 // It's not clear how to do it properly, particularly for
1105 // prefetchers that aggressively generate prefetch candidates and
1106 // rely on bandwidth contention to throttle them; these will tend
1107 // to pollute the cache in atomic mode since there is no bandwidth
1108 // contention. If we ever do want to enable prefetching in atomic
1109 // mode, though, this is the place to do it... see timingAccess()
1110 // for an example (though we'd want to issue the prefetch(es)
1111 // immediately rather than calling requestMemSideBus() as we do
1112 // there).
1113
1114 // do any writebacks resulting from the response handling
1115 doWritebacksAtomic(writebacks);
1116
1117 // if we used temp block, check to see if its valid and if so
1118 // clear it out, but only do so after the call to recvAtomic is
1119 // finished so that any downstream observers (such as a snoop
1120 // filter), first see the fill, and only then see the eviction
1121 if (blk == tempBlock && tempBlock->isValid()) {
1122 // the atomic CPU calls recvAtomic for fetch and load/store
1123 // sequentuially, and we may already have a tempBlock
1124 // writeback from the fetch that we have not yet sent
1125 if (tempBlockWriteback) {
1126 // if that is the case, write the prevoius one back, and
1127 // do not schedule any new event
1128 writebackTempBlockAtomic();
1129 } else {
1130 // the writeback/clean eviction happens after the call to
1131 // recvAtomic has finished (but before any successive
1132 // calls), so that the response handling from the fill is
1133 // allowed to happen first
1134 schedule(writebackTempBlockAtomicEvent, curTick());
1135 }
1136
1137 tempBlockWriteback = (blk->isDirty() || writebackClean) ?
1138 writebackBlk(blk) : cleanEvictBlk(blk);
1139 blk->invalidate();
1140 }
1141
1142 if (pkt->needsResponse()) {
1143 pkt->makeAtomicResponse();
1144 }
1145
1146 return lat * clockPeriod();
1147}
1148
1149
1150void
1151Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1152{
1153 if (system->bypassCaches()) {
1154 // Packets from the memory side are snoop request and
1155 // shouldn't happen in bypass mode.
1156 assert(fromCpuSide);
1157
1158 // The cache should be flushed if we are in cache bypass mode,
1159 // so we don't need to check if we need to update anything.
1160 memSidePort->sendFunctional(pkt);
1161 return;
1162 }
1163
1164 Addr blk_addr = blockAlign(pkt->getAddr());
1165 bool is_secure = pkt->isSecure();
1166 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1167 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1168
1169 pkt->pushLabel(name());
1170
1171 CacheBlkPrintWrapper cbpw(blk);
1172
1173 // Note that just because an L2/L3 has valid data doesn't mean an
1174 // L1 doesn't have a more up-to-date modified copy that still
1175 // needs to be found. As a result we always update the request if
1176 // we have it, but only declare it satisfied if we are the owner.
1177
1178 // see if we have data at all (owned or otherwise)
1179 bool have_data = blk && blk->isValid()
1180 && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1181 blk->data);
1182
1183 // data we have is dirty if marked as such or if we have an
1184 // in-service MSHR that is pending a modified line
1185 bool have_dirty =
1186 have_data && (blk->isDirty() ||
1187 (mshr && mshr->inService && mshr->isPendingModified()));
1188
1189 bool done = have_dirty
1190 || cpuSidePort->checkFunctional(pkt)
1191 || mshrQueue.checkFunctional(pkt, blk_addr)
1192 || writeBuffer.checkFunctional(pkt, blk_addr)
1193 || memSidePort->checkFunctional(pkt);
1194
1195 DPRINTF(CacheVerbose, "functional %s %#llx (%s) %s%s%s\n",
1196 pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns",
1197 (blk && blk->isValid()) ? "valid " : "",
1198 have_data ? "data " : "", done ? "done " : "");
1199
1200 // We're leaving the cache, so pop cache->name() label
1201 pkt->popLabel();
1202
1203 if (done) {
1204 pkt->makeResponse();
1205 } else {
1206 // if it came as a request from the CPU side then make sure it
1207 // continues towards the memory side
1208 if (fromCpuSide) {
1209 memSidePort->sendFunctional(pkt);
1210 } else if (forwardSnoops && cpuSidePort->isSnooping()) {
1211 // if it came from the memory side, it must be a snoop request
1212 // and we should only forward it if we are forwarding snoops
1213 cpuSidePort->sendFunctionalSnoop(pkt);
1214 }
1215 }
1216}
1217
1218
1219/////////////////////////////////////////////////////
1220//
1221// Response handling: responses from the memory side
1222//
1223/////////////////////////////////////////////////////
1224
1225
1226void
1227Cache::handleUncacheableWriteResp(PacketPtr pkt)
1228{
1229 WriteQueueEntry *wq_entry =
1230 dynamic_cast<WriteQueueEntry*>(pkt->senderState);
1231 assert(wq_entry);
1232
1233 WriteQueueEntry::Target *target = wq_entry->getTarget();
1234 Packet *tgt_pkt = target->pkt;
1235
1236 // we send out invalidation reqs and get invalidation
1237 // responses for write-line requests
1238 assert(tgt_pkt->cmd != MemCmd::WriteLineReq);
1239
1240 int stats_cmd_idx = tgt_pkt->cmdToIndex();
1241 Tick miss_latency = curTick() - target->recvTime;
1242 assert(pkt->req->masterId() < system->maxMasters());
1243 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1244 miss_latency;
1245
1246 tgt_pkt->makeTimingResponse();
1247 // if this packet is an error copy that to the new packet
1248 if (pkt->isError())
1249 tgt_pkt->copyError(pkt);
1250 // Reset the bus additional time as it is now accounted for
1251 tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1252 Tick completion_time = clockEdge(responseLatency) +
1253 pkt->headerDelay + pkt->payloadDelay;
1254
1255 cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
1256
1257 wq_entry->popTarget();
1258 assert(!wq_entry->hasTargets());
1259
1260 bool wasFull = writeBuffer.isFull();
1261 writeBuffer.deallocate(wq_entry);
1262
1263 if (wasFull && !writeBuffer.isFull()) {
1264 clearBlocked(Blocked_NoWBBuffers);
1265 }
1266
1267 delete pkt;
1268}
1269
1270void
1271Cache::recvTimingResp(PacketPtr pkt)
1272{
1273 assert(pkt->isResponse());
1274
1275 // all header delay should be paid for by the crossbar, unless
1276 // this is a prefetch response from above
1277 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1278 "%s saw a non-zero packet delay\n", name());
1279
1280 bool is_error = pkt->isError();
1281
1282 if (is_error) {
1283 DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), "
1284 "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns",
1285 pkt->cmdString());
1286 }
1287
1288 DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n",
1289 pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1290 pkt->isSecure() ? "s" : "ns");
1291
1292 // if this is a write, we should be looking at an uncacheable
1293 // write
1294 if (pkt->isWrite()) {
1295 assert(pkt->req->isUncacheable());
1296 handleUncacheableWriteResp(pkt);
1297 return;
1298 }
1299
1300 // we have dealt with any (uncacheable) writes above, from here on
1301 // we know we are dealing with an MSHR due to a miss or a prefetch
1302 MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
1303 assert(mshr);
1304
1305 if (mshr == noTargetMSHR) {
1306 // we always clear at least one target
1307 clearBlocked(Blocked_NoTargets);
1308 noTargetMSHR = NULL;
1309 }
1310
1311 // Initial target is used just for stats
1312 MSHR::Target *initial_tgt = mshr->getTarget();
1313 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1314 Tick miss_latency = curTick() - initial_tgt->recvTime;
1315
1316 if (pkt->req->isUncacheable()) {
1317 assert(pkt->req->masterId() < system->maxMasters());
1318 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1319 miss_latency;
1320 } else {
1321 assert(pkt->req->masterId() < system->maxMasters());
1322 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1323 miss_latency;
1324 }
1325
1326 bool wasFull = mshrQueue.isFull();
1327
1328 PacketList writebacks;
1329
1330 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1331
1332 // upgrade deferred targets if the response has no sharers, and is
1333 // thus passing writable
1334 if (!pkt->hasSharers()) {
1335 mshr->promoteWritable();
1336 }
1337
1338 bool is_fill = !mshr->isForward &&
1339 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1340
1341 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1342
1343 if (is_fill && !is_error) {
1344 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1345 pkt->getAddr());
1346
1347 blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill);
1348 assert(blk != NULL);
1349 }
1350
1351 // allow invalidation responses originating from write-line
1352 // requests to be discarded
1353 bool is_invalidate = pkt->isInvalidate();
1354
1355 // First offset for critical word first calculations
1356 int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1357
1358 while (mshr->hasTargets()) {
1359 MSHR::Target *target = mshr->getTarget();
1360 Packet *tgt_pkt = target->pkt;
1361
1362 switch (target->source) {
1363 case MSHR::Target::FromCPU:
1364 Tick completion_time;
1365 // Here we charge on completion_time the delay of the xbar if the
1366 // packet comes from it, charged on headerDelay.
1367 completion_time = pkt->headerDelay;
1368
1369 // Software prefetch handling for cache closest to core
1370 if (tgt_pkt->cmd.isSWPrefetch()) {
1371 // a software prefetch would have already been ack'd immediately
1372 // with dummy data so the core would be able to retire it.
1373 // this request completes right here, so we deallocate it.
1374 delete tgt_pkt->req;
1375 delete tgt_pkt;
1376 break; // skip response
1377 }
1378
1379 // unlike the other packet flows, where data is found in other
1380 // caches or memory and brought back, write-line requests always
1381 // have the data right away, so the above check for "is fill?"
1382 // cannot actually be determined until examining the stored MSHR
1383 // state. We "catch up" with that logic here, which is duplicated
1384 // from above.
1385 if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1386 assert(!is_error);
1387 // we got the block in a writable state, so promote
1388 // any deferred targets if possible
1389 mshr->promoteWritable();
1390 // NB: we use the original packet here and not the response!
1391 blk = handleFill(tgt_pkt, blk, writebacks, mshr->allocOnFill);
1392 assert(blk != NULL);
1393
1394 // treat as a fill, and discard the invalidation
1395 // response
1396 is_fill = true;
1397 is_invalidate = false;
1398 }
1399
1400 if (is_fill) {
1401 satisfyCpuSideRequest(tgt_pkt, blk,
1402 true, mshr->hasPostDowngrade());
1403
1404 // How many bytes past the first request is this one
1405 int transfer_offset =
1406 tgt_pkt->getOffset(blkSize) - initial_offset;
1407 if (transfer_offset < 0) {
1408 transfer_offset += blkSize;
1409 }
1410
1411 // If not critical word (offset) return payloadDelay.
1412 // responseLatency is the latency of the return path
1413 // from lower level caches/memory to an upper level cache or
1414 // the core.
1415 completion_time += clockEdge(responseLatency) +
1416 (transfer_offset ? pkt->payloadDelay : 0);
1417
1418 assert(!tgt_pkt->req->isUncacheable());
1419
1420 assert(tgt_pkt->req->masterId() < system->maxMasters());
1421 missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1422 completion_time - target->recvTime;
1423 } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1424 // failed StoreCond upgrade
1425 assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1426 tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1427 tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1428 // responseLatency is the latency of the return path
1429 // from lower level caches/memory to an upper level cache or
1430 // the core.
1431 completion_time += clockEdge(responseLatency) +
1432 pkt->payloadDelay;
1433 tgt_pkt->req->setExtraData(0);
1434 } else {
1435 // not a cache fill, just forwarding response
1436 // responseLatency is the latency of the return path
1437 // from lower level cahces/memory to the core.
1438 completion_time += clockEdge(responseLatency) +
1439 pkt->payloadDelay;
1440 if (pkt->isRead() && !is_error) {
1441 // sanity check
1442 assert(pkt->getAddr() == tgt_pkt->getAddr());
1443 assert(pkt->getSize() >= tgt_pkt->getSize());
1444
1445 tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1446 }
1447 }
1448 tgt_pkt->makeTimingResponse();
1449 // if this packet is an error copy that to the new packet
1450 if (is_error)
1451 tgt_pkt->copyError(pkt);
1452 if (tgt_pkt->cmd == MemCmd::ReadResp &&
1453 (is_invalidate || mshr->hasPostInvalidate())) {
1454 // If intermediate cache got ReadRespWithInvalidate,
1455 // propagate that. Response should not have
1456 // isInvalidate() set otherwise.
1457 tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1458 DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n",
1459 __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr());
1460 }
1461 // Reset the bus additional time as it is now accounted for
1462 tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1463 cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
1464 break;
1465
1466 case MSHR::Target::FromPrefetcher:
1467 assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1468 if (blk)
1469 blk->status |= BlkHWPrefetched;
1470 delete tgt_pkt->req;
1471 delete tgt_pkt;
1472 break;
1473
1474 case MSHR::Target::FromSnoop:
1475 // I don't believe that a snoop can be in an error state
1476 assert(!is_error);
1477 // response to snoop request
1478 DPRINTF(Cache, "processing deferred snoop...\n");
1479 assert(!(is_invalidate && !mshr->hasPostInvalidate()));
1480 handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1481 break;
1482
1483 default:
1484 panic("Illegal target->source enum %d\n", target->source);
1485 }
1486
1487 mshr->popTarget();
1488 }
1489
1490 if (blk && blk->isValid()) {
1491 // an invalidate response stemming from a write line request
1492 // should not invalidate the block, so check if the
1493 // invalidation should be discarded
1494 if (is_invalidate || mshr->hasPostInvalidate()) {
1495 invalidateBlock(blk);
1496 } else if (mshr->hasPostDowngrade()) {
1497 blk->status &= ~BlkWritable;
1498 }
1499 }
1500
1501 if (mshr->promoteDeferredTargets()) {
1502 // avoid later read getting stale data while write miss is
1503 // outstanding.. see comment in timingAccess()
1504 if (blk) {
1505 blk->status &= ~BlkReadable;
1506 }
1507 mshrQueue.markPending(mshr);
1508 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1509 } else {
1510 mshrQueue.deallocate(mshr);
1511 if (wasFull && !mshrQueue.isFull()) {
1512 clearBlocked(Blocked_NoMSHRs);
1513 }
1514
1515 // Request the bus for a prefetch if this deallocation freed enough
1516 // MSHRs for a prefetch to take place
1517 if (prefetcher && mshrQueue.canPrefetch()) {
1518 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1519 clockEdge());
1520 if (next_pf_time != MaxTick)
1521 schedMemSideSendEvent(next_pf_time);
1522 }
1523 }
1524 // reset the xbar additional timinig as it is now accounted for
1525 pkt->headerDelay = pkt->payloadDelay = 0;
1526
1527 // copy writebacks to write buffer
1528 doWritebacks(writebacks, forward_time);
1529
1530 // if we used temp block, check to see if its valid and then clear it out
1531 if (blk == tempBlock && tempBlock->isValid()) {
1532 // We use forwardLatency here because we are copying
1533 // Writebacks/CleanEvicts to write buffer. It specifies the latency to
1534 // allocate an internal buffer and to schedule an event to the
1535 // queued port.
1536 if (blk->isDirty() || writebackClean) {
1537 PacketPtr wbPkt = writebackBlk(blk);
1538 allocateWriteBuffer(wbPkt, forward_time);
1539 // Set BLOCK_CACHED flag if cached above.
1540 if (isCachedAbove(wbPkt))
1541 wbPkt->setBlockCached();
1542 } else {
1543 PacketPtr wcPkt = cleanEvictBlk(blk);
1544 // Check to see if block is cached above. If not allocate
1545 // write buffer
1546 if (isCachedAbove(wcPkt))
1547 delete wcPkt;
1548 else
1549 allocateWriteBuffer(wcPkt, forward_time);
1550 }
1551 blk->invalidate();
1552 }
1553
1554 DPRINTF(CacheVerbose, "Leaving %s with %s for addr %#llx\n", __func__,
1555 pkt->cmdString(), pkt->getAddr());
1556 delete pkt;
1557}
1558
1559PacketPtr
1560Cache::writebackBlk(CacheBlk *blk)
1561{
1562 chatty_assert(!isReadOnly || writebackClean,
1563 "Writeback from read-only cache");
1564 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1565
1566 writebacks[Request::wbMasterId]++;
1567
1568 Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set),
1569 blkSize, 0, Request::wbMasterId);
1570 if (blk->isSecure())
1571 req->setFlags(Request::SECURE);
1572
1573 req->taskId(blk->task_id);
1574 blk->task_id= ContextSwitchTaskId::Unknown;
1575 blk->tickInserted = curTick();
1576
1577 PacketPtr pkt =
1578 new Packet(req, blk->isDirty() ?
1579 MemCmd::WritebackDirty : MemCmd::WritebackClean);
1580
1581 DPRINTF(Cache, "Create Writeback %#llx writable: %d, dirty: %d\n",
1582 pkt->getAddr(), blk->isWritable(), blk->isDirty());
1583
1584 if (blk->isWritable()) {
1585 // not asserting shared means we pass the block in modified
1586 // state, mark our own block non-writeable
1587 blk->status &= ~BlkWritable;
1588 } else {
1589 // we are in the Owned state, tell the receiver
1590 pkt->setHasSharers();
1591 }
1592
1593 // make sure the block is not marked dirty
1594 blk->status &= ~BlkDirty;
1595
1596 pkt->allocate();
1597 std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize);
1598
1599 return pkt;
1600}
1601
1602PacketPtr
1603Cache::cleanEvictBlk(CacheBlk *blk)
1604{
1605 assert(!writebackClean);
1606 assert(blk && blk->isValid() && !blk->isDirty());
1607 // Creating a zero sized write, a message to the snoop filter
1608 Request *req =
1609 new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1610 Request::wbMasterId);
1611 if (blk->isSecure())
1612 req->setFlags(Request::SECURE);
1613
1614 req->taskId(blk->task_id);
1615 blk->task_id = ContextSwitchTaskId::Unknown;
1616 blk->tickInserted = curTick();
1617
1618 PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1619 pkt->allocate();
1620 DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(),
1621 pkt->req->isInstFetch() ? " (ifetch)" : "",
1622 pkt->getAddr());
1623
1624 return pkt;
1625}
1626
1627void
1628Cache::memWriteback()
1629{
1630 CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1631 tags->forEachBlk(visitor);
1632}
1633
1634void
1635Cache::memInvalidate()
1636{
1637 CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1638 tags->forEachBlk(visitor);
1639}
1640
1641bool
1642Cache::isDirty() const
1643{
1644 CacheBlkIsDirtyVisitor visitor;
1645 tags->forEachBlk(visitor);
1646
1647 return visitor.isDirty();
1648}
1649
1650bool
1651Cache::writebackVisitor(CacheBlk &blk)
1652{
1653 if (blk.isDirty()) {
1654 assert(blk.isValid());
1655
1656 Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
1657 blkSize, 0, Request::funcMasterId);
1658 request.taskId(blk.task_id);
1659
1660 Packet packet(&request, MemCmd::WriteReq);
1661 packet.dataStatic(blk.data);
1662
1663 memSidePort->sendFunctional(&packet);
1664
1665 blk.status &= ~BlkDirty;
1666 }
1667
1668 return true;
1669}
1670
1671bool
1672Cache::invalidateVisitor(CacheBlk &blk)
1673{
1674
1675 if (blk.isDirty())
1676 warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1677
1678 if (blk.isValid()) {
1679 assert(!blk.isDirty());
1680 tags->invalidate(&blk);
1681 blk.invalidate();
1682 }
1683
1684 return true;
1685}
1686
1687CacheBlk*
1688Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1689{
1690 CacheBlk *blk = tags->findVictim(addr);
1691
1692 // It is valid to return NULL if there is no victim
1693 if (!blk)
1694 return nullptr;
1695
1696 if (blk->isValid()) {
1697 Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
1698 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1699 if (repl_mshr) {
1700 // must be an outstanding upgrade request
1701 // on a block we're about to replace...
1702 assert(!blk->isWritable() || blk->isDirty());
1703 assert(repl_mshr->needsWritable());
1704 // too hard to replace block with transient state
1705 // allocation failed, block not inserted
1706 return NULL;
1707 } else {
1708 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx (%s): %s\n",
1709 repl_addr, blk->isSecure() ? "s" : "ns",
1710 addr, is_secure ? "s" : "ns",
1711 blk->isDirty() ? "writeback" : "clean");
1712
1713 if (blk->wasPrefetched()) {
1714 unusedPrefetches++;
1715 }
1716 // Will send up Writeback/CleanEvict snoops via isCachedAbove
1717 // when pushing this writeback list into the write buffer.
1718 if (blk->isDirty() || writebackClean) {
1719 // Save writeback packet for handling by caller
1720 writebacks.push_back(writebackBlk(blk));
1721 } else {
1722 writebacks.push_back(cleanEvictBlk(blk));
1723 }
1724 }
1725 }
1726
1727 return blk;
1728}
1729
1730void
1731Cache::invalidateBlock(CacheBlk *blk)
1732{
1733 if (blk != tempBlock)
1734 tags->invalidate(blk);
1735 blk->invalidate();
1736}
1737
1738// Note that the reason we return a list of writebacks rather than
1739// inserting them directly in the write buffer is that this function
1740// is called by both atomic and timing-mode accesses, and in atomic
1741// mode we don't mess with the write buffer (we just perform the
1742// writebacks atomically once the original request is complete).
1743CacheBlk*
1744Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1745 bool allocate)
1746{
1747 assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1748 Addr addr = pkt->getAddr();
1749 bool is_secure = pkt->isSecure();
1750#if TRACING_ON
1751 CacheBlk::State old_state = blk ? blk->status : 0;
1752#endif
1753
1754 // When handling a fill, we should have no writes to this line.
1755 assert(addr == blockAlign(addr));
1756 assert(!writeBuffer.findMatch(addr, is_secure));
1757
1758 if (blk == NULL) {
1759 // better have read new data...
1760 assert(pkt->hasData());
1761
1762 // only read responses and write-line requests have data;
1763 // note that we don't write the data here for write-line - that
1764 // happens in the subsequent satisfyCpuSideRequest.
1765 assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1766
1767 // need to do a replacement if allocating, otherwise we stick
1768 // with the temporary storage
1769 blk = allocate ? allocateBlock(addr, is_secure, writebacks) : NULL;
1770
1771 if (blk == NULL) {
1772 // No replaceable block or a mostly exclusive
1773 // cache... just use temporary storage to complete the
1774 // current request and then get rid of it
1775 assert(!tempBlock->isValid());
1776 blk = tempBlock;
1777 tempBlock->set = tags->extractSet(addr);
1778 tempBlock->tag = tags->extractTag(addr);
1779 // @todo: set security state as well...
1780 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1781 is_secure ? "s" : "ns");
1782 } else {
1783 tags->insertBlock(pkt, blk);
1784 }
1785
1786 // we should never be overwriting a valid block
1787 assert(!blk->isValid());
1788 } else {
1789 // existing block... probably an upgrade
1790 assert(blk->tag == tags->extractTag(addr));
1791 // either we're getting new data or the block should already be valid
1792 assert(pkt->hasData() || blk->isValid());
1793 // don't clear block status... if block is already dirty we
1794 // don't want to lose that
1795 }
1796
1797 if (is_secure)
1798 blk->status |= BlkSecure;
1799 blk->status |= BlkValid | BlkReadable;
1800
1801 // sanity check for whole-line writes, which should always be
1802 // marked as writable as part of the fill, and then later marked
1803 // dirty as part of satisfyCpuSideRequest
1804 if (pkt->cmd == MemCmd::WriteLineReq) {
1805 assert(!pkt->hasSharers());
1806 // at the moment other caches do not respond to the
1807 // invalidation requests corresponding to a whole-line write
1808 assert(!pkt->cacheResponding());
1809 }
1810
1811 // here we deal with setting the appropriate state of the line,
1812 // and we start by looking at the hasSharers flag, and ignore the
1813 // cacheResponding flag (normally signalling dirty data) if the
1814 // packet has sharers, thus the line is never allocated as Owned
1815 // (dirty but not writable), and always ends up being either
1816 // Shared, Exclusive or Modified, see Packet::setCacheResponding
1817 // for more details
1818 if (!pkt->hasSharers()) {
1819 // we could get a writable line from memory (rather than a
1820 // cache) even in a read-only cache, note that we set this bit
1821 // even for a read-only cache, possibly revisit this decision
1822 blk->status |= BlkWritable;
1823
1824 // check if we got this via cache-to-cache transfer (i.e., from a
1825 // cache that had the block in Modified or Owned state)
1826 if (pkt->cacheResponding()) {
1827 // we got the block in Modified state, and invalidated the
1828 // owners copy
1829 blk->status |= BlkDirty;
1830
1831 chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1832 "in read-only cache %s\n", name());
1833 }
1834 }
1835
1836 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1837 addr, is_secure ? "s" : "ns", old_state, blk->print());
1838
1839 // if we got new data, copy it in (checking for a read response
1840 // and a response that has data is the same in the end)
1841 if (pkt->isRead()) {
1842 // sanity checks
1843 assert(pkt->hasData());
1844 assert(pkt->getSize() == blkSize);
1845
1846 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
1847 }
1848 // We pay for fillLatency here.
1849 blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1850 pkt->payloadDelay;
1851
1852 return blk;
1853}
1854
1855
1856/////////////////////////////////////////////////////
1857//
1858// Snoop path: requests coming in from the memory side
1859//
1860/////////////////////////////////////////////////////
1861
1862void
1863Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1864 bool already_copied, bool pending_inval)
1865{
1866 // sanity check
1867 assert(req_pkt->isRequest());
1868 assert(req_pkt->needsResponse());
1869
1870 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1871 req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize());
1872 // timing-mode snoop responses require a new packet, unless we
1873 // already made a copy...
1874 PacketPtr pkt = req_pkt;
1875 if (!already_copied)
1876 // do not clear flags, and allocate space for data if the
1877 // packet needs it (the only packets that carry data are read
1878 // responses)
1879 pkt = new Packet(req_pkt, false, req_pkt->isRead());
1880
1881 assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
1882 pkt->hasSharers());
1883 pkt->makeTimingResponse();
1884 if (pkt->isRead()) {
1885 pkt->setDataFromBlock(blk_data, blkSize);
1886 }
1887 if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
1888 // Assume we defer a response to a read from a far-away cache
1889 // A, then later defer a ReadExcl from a cache B on the same
1890 // bus as us. We'll assert cacheResponding in both cases, but
1891 // in the latter case cacheResponding will keep the
1892 // invalidation from reaching cache A. This special response
1893 // tells cache A that it gets the block to satisfy its read,
1894 // but must immediately invalidate it.
1895 pkt->cmd = MemCmd::ReadRespWithInvalidate;
1896 }
1897 // Here we consider forward_time, paying for just forward latency and
1898 // also charging the delay provided by the xbar.
1899 // forward_time is used as send_time in next allocateWriteBuffer().
1900 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1901 // Here we reset the timing of the packet.
1902 pkt->headerDelay = pkt->payloadDelay = 0;
1903 DPRINTF(CacheVerbose,
1904 "%s created response: %s addr %#llx size %d tick: %lu\n",
1905 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1906 forward_time);
1907 memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
1908}
1909
1910uint32_t
1911Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
1912 bool is_deferred, bool pending_inval)
1913{
1914 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
1915 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1916 // deferred snoops can only happen in timing mode
1917 assert(!(is_deferred && !is_timing));
1918 // pending_inval only makes sense on deferred snoops
1919 assert(!(pending_inval && !is_deferred));
1920 assert(pkt->isRequest());
1921
1922 // the packet may get modified if we or a forwarded snooper
1923 // responds in atomic mode, so remember a few things about the
1924 // original packet up front
1925 bool invalidate = pkt->isInvalidate();
1926 bool M5_VAR_USED needs_writable = pkt->needsWritable();
1927
1928 // at the moment we could get an uncacheable write which does not
1929 // have the invalidate flag, and we need a suitable way of dealing
1930 // with this case
1931 panic_if(invalidate && pkt->req->isUncacheable(),
1932 "%s got an invalidating uncacheable snoop request %s to %#llx",
1933 name(), pkt->cmdString(), pkt->getAddr());
1934
1935 uint32_t snoop_delay = 0;
1936
1937 if (forwardSnoops) {
1938 // first propagate snoop upward to see if anyone above us wants to
1939 // handle it. save & restore packet src since it will get
1940 // rewritten to be relative to cpu-side bus (if any)
1941 bool alreadyResponded = pkt->cacheResponding();
1942 if (is_timing) {
1943 // copy the packet so that we can clear any flags before
1944 // forwarding it upwards, we also allocate data (passing
1945 // the pointer along in case of static data), in case
1946 // there is a snoop hit in upper levels
1947 Packet snoopPkt(pkt, true, true);
1948 snoopPkt.setExpressSnoop();
1949 // the snoop packet does not need to wait any additional
1950 // time
1951 snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
1952 cpuSidePort->sendTimingSnoopReq(&snoopPkt);
1953
1954 // add the header delay (including crossbar and snoop
1955 // delays) of the upward snoop to the snoop delay for this
1956 // cache
1957 snoop_delay += snoopPkt.headerDelay;
1958
1959 if (snoopPkt.cacheResponding()) {
1960 // cache-to-cache response from some upper cache
1961 assert(!alreadyResponded);
1962 pkt->setCacheResponding();
1963 }
1964 // upstream cache has the block, or has an outstanding
1965 // MSHR, pass the flag on
1966 if (snoopPkt.hasSharers()) {
1967 pkt->setHasSharers();
1968 }
1969 // If this request is a prefetch or clean evict and an upper level
1970 // signals block present, make sure to propagate the block
1971 // presence to the requester.
1972 if (snoopPkt.isBlockCached()) {
1973 pkt->setBlockCached();
1974 }
1975 } else {
1976 cpuSidePort->sendAtomicSnoop(pkt);
1977 if (!alreadyResponded && pkt->cacheResponding()) {
1978 // cache-to-cache response from some upper cache:
1979 // forward response to original requester
1980 assert(pkt->isResponse());
1981 }
1982 }
1983 }
1984
1985 if (!blk || !blk->isValid()) {
1986 DPRINTF(CacheVerbose, "%s snoop miss for %s addr %#llx size %d\n",
1987 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1988 return snoop_delay;
1989 } else {
1990 DPRINTF(Cache, "%s snoop hit for %s addr %#llx size %d, "
1991 "old state is %s\n", __func__, pkt->cmdString(),
1992 pkt->getAddr(), pkt->getSize(), blk->print());
1993 }
1994
1995 chatty_assert(!(isReadOnly && blk->isDirty()),
1996 "Should never have a dirty block in a read-only cache %s\n",
1997 name());
1998
1999 // We may end up modifying both the block state and the packet (if
2000 // we respond in atomic mode), so just figure out what to do now
2001 // and then do it later. If we find dirty data while snooping for
2002 // an invalidate, we don't need to send a response. The
2003 // invalidation itself is taken care of below.
2004 bool respond = blk->isDirty() && pkt->needsResponse() &&
2005 pkt->cmd != MemCmd::InvalidateReq;
2006 bool have_writable = blk->isWritable();
2007
2008 // Invalidate any prefetch's from below that would strip write permissions
2009 // MemCmd::HardPFReq is only observed by upstream caches. After missing
2010 // above and in it's own cache, a new MemCmd::ReadReq is created that
2011 // downstream caches observe.
2012 if (pkt->mustCheckAbove()) {
2013 DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s from"
2014 " lower cache\n", pkt->getAddr(), pkt->cmdString());
2015 pkt->setBlockCached();
2016 return snoop_delay;
2017 }
2018
2019 if (pkt->isRead() && !invalidate) {
2020 // reading without requiring the line in a writable state
2021 assert(!needs_writable);
2022 pkt->setHasSharers();
2023
2024 // if the requesting packet is uncacheable, retain the line in
2025 // the current state, otherwhise unset the writable flag,
2026 // which means we go from Modified to Owned (and will respond
2027 // below), remain in Owned (and will respond below), from
2028 // Exclusive to Shared, or remain in Shared
2029 if (!pkt->req->isUncacheable())
2030 blk->status &= ~BlkWritable;
2031 }
2032
2033 if (respond) {
2034 // prevent anyone else from responding, cache as well as
2035 // memory, and also prevent any memory from even seeing the
2036 // request
2037 pkt->setCacheResponding();
2038 if (have_writable) {
2039 // inform the cache hierarchy that this cache had the line
2040 // in the Modified state so that we avoid unnecessary
2041 // invalidations (see Packet::setResponderHadWritable)
2042 pkt->setResponderHadWritable();
2043
2044 // in the case of an uncacheable request there is no point
2045 // in setting the responderHadWritable flag, but since the
2046 // recipient does not care there is no harm in doing so
2047 } else {
2048 // if the packet has needsWritable set we invalidate our
2049 // copy below and all other copies will be invalidates
2050 // through express snoops, and if needsWritable is not set
2051 // we already called setHasSharers above
2052 }
2053
2054 // if we are returning a writable and dirty (Modified) line,
2055 // we should be invalidating the line
2056 panic_if(!invalidate && !pkt->hasSharers(),
2057 "%s is passing a Modified line through %s to %#llx, "
2058 "but keeping the block",
2059 name(), pkt->cmdString(), pkt->getAddr());
2060
2061 if (is_timing) {
2062 doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
2063 } else {
2064 pkt->makeAtomicResponse();
2065 // packets such as upgrades do not actually have any data
2066 // payload
2067 if (pkt->hasData())
2068 pkt->setDataFromBlock(blk->data, blkSize);
2069 }
2070 }
2071
2072 if (!respond && is_timing && is_deferred) {
2073 // if it's a deferred timing snoop to which we are not
2074 // responding, then we've made a copy of both the request and
2075 // the packet, delete them here
2076 assert(pkt->needsResponse());
2077 delete pkt->req;
2078 delete pkt;
2079 }
2080
2081 // Do this last in case it deallocates block data or something
2082 // like that
2083 if (invalidate) {
2084 invalidateBlock(blk);
2085 }
2086
2087 DPRINTF(Cache, "new state is %s\n", blk->print());
2088
2089 return snoop_delay;
2090}
2091
2092
2093void
2094Cache::recvTimingSnoopReq(PacketPtr pkt)
2095{
2096 DPRINTF(CacheVerbose, "%s for %s addr %#llx size %d\n", __func__,
2097 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
2098
2099 // Snoops shouldn't happen when bypassing caches
2100 assert(!system->bypassCaches());
2101
2102 // no need to snoop requests that are not in range
2103 if (!inRange(pkt->getAddr())) {
2104 return;
2105 }
2106
2107 bool is_secure = pkt->isSecure();
2108 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
2109
2110 Addr blk_addr = blockAlign(pkt->getAddr());
2111 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
2112
2113 // Update the latency cost of the snoop so that the crossbar can
2114 // account for it. Do not overwrite what other neighbouring caches
2115 // have already done, rather take the maximum. The update is
2116 // tentative, for cases where we return before an upward snoop
2117 // happens below.
2118 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
2119 lookupLatency * clockPeriod());
2120
2121 // Inform request(Prefetch, CleanEvict or Writeback) from below of
2122 // MSHR hit, set setBlockCached.
2123 if (mshr && pkt->mustCheckAbove()) {
2124 DPRINTF(Cache, "Setting block cached for %s from"
2125 "lower cache on mshr hit %#x\n",
2126 pkt->cmdString(), pkt->getAddr());
2127 pkt->setBlockCached();
2128 return;
2129 }
2130
2131 // Let the MSHR itself track the snoop and decide whether we want
2132 // to go ahead and do the regular cache snoop
2133 if (mshr && mshr->handleSnoop(pkt, order++)) {
2134 DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
2135 "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
2136 mshr->print());
2137
2138 if (mshr->getNumTargets() > numTarget)
2139 warn("allocating bonus target for snoop"); //handle later
2140 return;
2141 }
2142
2143 //We also need to check the writeback buffers and handle those
2144 WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure);
2145 if (wb_entry) {
2146 DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
2147 pkt->getAddr(), is_secure ? "s" : "ns");
2148 // Expect to see only Writebacks and/or CleanEvicts here, both of
2149 // which should not be generated for uncacheable data.
2150 assert(!wb_entry->isUncacheable());
2151 // There should only be a single request responsible for generating
2152 // Writebacks/CleanEvicts.
2153 assert(wb_entry->getNumTargets() == 1);
2154 PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
2155 assert(wb_pkt->isEviction());
2156
2157 if (pkt->isEviction()) {
2158 // if the block is found in the write queue, set the BLOCK_CACHED
2159 // flag for Writeback/CleanEvict snoop. On return the snoop will
2160 // propagate the BLOCK_CACHED flag in Writeback packets and prevent
2161 // any CleanEvicts from travelling down the memory hierarchy.
2162 pkt->setBlockCached();
2163 DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit"
2164 " %#x\n", pkt->cmdString(), pkt->getAddr());
2165 return;
2166 }
2167
2168 // conceptually writebacks are no different to other blocks in
2169 // this cache, so the behaviour is modelled after handleSnoop,
2170 // the difference being that instead of querying the block
2171 // state to determine if it is dirty and writable, we use the
2172 // command and fields of the writeback packet
2173 bool respond = wb_pkt->cmd == MemCmd::WritebackDirty &&
2174 pkt->needsResponse() && pkt->cmd != MemCmd::InvalidateReq;
2175 bool have_writable = !wb_pkt->hasSharers();
2176 bool invalidate = pkt->isInvalidate();
2177
2178 if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
2179 assert(!pkt->needsWritable());
2180 pkt->setHasSharers();
2181 wb_pkt->setHasSharers();
2182 }
2183
2184 if (respond) {
2185 pkt->setCacheResponding();
2186
2187 if (have_writable) {
2188 pkt->setResponderHadWritable();
2189 }
2190
2191 doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2192 false, false);
2193 }
2194
2195 if (invalidate) {
2196 // Invalidation trumps our writeback... discard here
2197 // Note: markInService will remove entry from writeback buffer.
2198 markInService(wb_entry);
2199 delete wb_pkt;
2200 }
2201 }
2202
2203 // If this was a shared writeback, there may still be
2204 // other shared copies above that require invalidation.
2205 // We could be more selective and return here if the
2206 // request is non-exclusive or if the writeback is
2207 // exclusive.
2208 uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2209
2210 // Override what we did when we first saw the snoop, as we now
2211 // also have the cost of the upwards snoops to account for
2212 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2213 lookupLatency * clockPeriod());
2214}
2215
2216bool
2217Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2218{
2219 // Express snoop responses from master to slave, e.g., from L1 to L2
2220 cache->recvTimingSnoopResp(pkt);
2221 return true;
2222}
2223
2224Tick
2225Cache::recvAtomicSnoop(PacketPtr pkt)
2226{
2227 // Snoops shouldn't happen when bypassing caches
2228 assert(!system->bypassCaches());
2229
2230 // no need to snoop requests that are not in range.
2231 if (!inRange(pkt->getAddr())) {
2232 return 0;
2233 }
2234
2235 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2236 uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2237 return snoop_delay + lookupLatency * clockPeriod();
2238}
2239
2240
2241QueueEntry*
2242Cache::getNextQueueEntry()
2243{
2244 // Check both MSHR queue and write buffer for potential requests,
2245 // note that null does not mean there is no request, it could
2246 // simply be that it is not ready
2247 MSHR *miss_mshr = mshrQueue.getNext();
2248 WriteQueueEntry *wq_entry = writeBuffer.getNext();
2249
2250 // If we got a write buffer request ready, first priority is a
2251 // full write buffer (but only if we have no uncacheable write
2252 // responses outstanding, possibly revisit this last part),
2253 // otherwhise we favour the miss requests
2254 if (wq_entry &&
2255 ((writeBuffer.isFull() && writeBuffer.numInService() == 0) ||
2256 !miss_mshr)) {
2257 // need to search MSHR queue for conflicting earlier miss.
2258 MSHR *conflict_mshr =
2259 mshrQueue.findPending(wq_entry->blkAddr,
2260 wq_entry->isSecure);
2261
2262 if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
2263 // Service misses in order until conflict is cleared.
2264 return conflict_mshr;
2265
2266 // @todo Note that we ignore the ready time of the conflict here
2267 }
2268
2269 // No conflicts; issue write
2270 return wq_entry;
2271 } else if (miss_mshr) {
2272 // need to check for conflicting earlier writeback
2273 WriteQueueEntry *conflict_mshr =
2274 writeBuffer.findPending(miss_mshr->blkAddr,
2275 miss_mshr->isSecure);
2276 if (conflict_mshr) {
2277 // not sure why we don't check order here... it was in the
2278 // original code but commented out.
2279
2280 // The only way this happens is if we are
2281 // doing a write and we didn't have permissions
2282 // then subsequently saw a writeback (owned got evicted)
2283 // We need to make sure to perform the writeback first
2284 // To preserve the dirty data, then we can issue the write
2285
2286 // should we return wq_entry here instead? I.e. do we
2287 // have to flush writes in order? I don't think so... not
2288 // for Alpha anyway. Maybe for x86?
2289 return conflict_mshr;
2290
2291 // @todo Note that we ignore the ready time of the conflict here
2292 }
2293
2294 // No conflicts; issue read
2295 return miss_mshr;
2296 }
2297
2298 // fall through... no pending requests. Try a prefetch.
2299 assert(!miss_mshr && !wq_entry);
2300 if (prefetcher && mshrQueue.canPrefetch()) {
2301 // If we have a miss queue slot, we can try a prefetch
2302 PacketPtr pkt = prefetcher->getPacket();
2303 if (pkt) {
2304 Addr pf_addr = blockAlign(pkt->getAddr());
2305 if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2306 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2307 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2308 // Update statistic on number of prefetches issued
2309 // (hwpf_mshr_misses)
2310 assert(pkt->req->masterId() < system->maxMasters());
2311 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2312
2313 // allocate an MSHR and return it, note
2314 // that we send the packet straight away, so do not
2315 // schedule the send
2316 return allocateMissBuffer(pkt, curTick(), false);
2317 } else {
2318 // free the request and packet
2319 delete pkt->req;
2320 delete pkt;
2321 }
2322 }
2323 }
2324
2325 return nullptr;
2326}
2327
2328bool
2329Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
2330{
2331 if (!forwardSnoops)
2332 return false;
2333 // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2334 // Writeback snoops into upper level caches to check for copies of the
2335 // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2336 // packet, the cache can inform the crossbar below of presence or absence
2337 // of the block.
2338 if (is_timing) {
2339 Packet snoop_pkt(pkt, true, false);
2340 snoop_pkt.setExpressSnoop();
2341 // Assert that packet is either Writeback or CleanEvict and not a
2342 // prefetch request because prefetch requests need an MSHR and may
2343 // generate a snoop response.
2344 assert(pkt->isEviction());
2345 snoop_pkt.senderState = NULL;
2346 cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2347 // Writeback/CleanEvict snoops do not generate a snoop response.
2348 assert(!(snoop_pkt.cacheResponding()));
2349 return snoop_pkt.isBlockCached();
2350 } else {
2351 cpuSidePort->sendAtomicSnoop(pkt);
2352 return pkt->isBlockCached();
2353 }
2354}
2355
2356Tick
2357Cache::nextQueueReadyTime() const
2358{
2359 Tick nextReady = std::min(mshrQueue.nextReadyTime(),
2360 writeBuffer.nextReadyTime());
2361
2362 // Don't signal prefetch ready time if no MSHRs available
2363 // Will signal once enoguh MSHRs are deallocated
2364 if (prefetcher && mshrQueue.canPrefetch()) {
2365 nextReady = std::min(nextReady,
2366 prefetcher->nextPrefetchReadyTime());
2367 }
2368
2369 return nextReady;
2370}
2371
2372bool
2373Cache::sendMSHRQueuePacket(MSHR* mshr)
2374{
2375 assert(mshr);
2376
2377 // use request from 1st target
2378 PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2379
2380 DPRINTF(Cache, "%s MSHR %s for addr %#llx size %d\n", __func__,
2381 tgt_pkt->cmdString(), tgt_pkt->getAddr(),
2382 tgt_pkt->getSize());
2383
2384 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2385
2386 if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2387 // we should never have hardware prefetches to allocated
2388 // blocks
2389 assert(blk == NULL);
2390
2391 // We need to check the caches above us to verify that
2392 // they don't have a copy of this block in the dirty state
2393 // at the moment. Without this check we could get a stale
2394 // copy from memory that might get used in place of the
2395 // dirty one.
2396 Packet snoop_pkt(tgt_pkt, true, false);
2397 snoop_pkt.setExpressSnoop();
2398 // We are sending this packet upwards, but if it hits we will
2399 // get a snoop response that we end up treating just like a
2400 // normal response, hence it needs the MSHR as its sender
2401 // state
2402 snoop_pkt.senderState = mshr;
2403 cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2404
2405 // Check to see if the prefetch was squashed by an upper cache (to
2406 // prevent us from grabbing the line) or if a Check to see if a
2407 // writeback arrived between the time the prefetch was placed in
2408 // the MSHRs and when it was selected to be sent or if the
2409 // prefetch was squashed by an upper cache.
2410
2411 // It is important to check cacheResponding before
2412 // prefetchSquashed. If another cache has committed to
2413 // responding, it will be sending a dirty response which will
2414 // arrive at the MSHR allocated for this request. Checking the
2415 // prefetchSquash first may result in the MSHR being
2416 // prematurely deallocated.
2417 if (snoop_pkt.cacheResponding()) {
2418 auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req);
2419 assert(r.second);
2420
2421 // if we are getting a snoop response with no sharers it
2422 // will be allocated as Modified
2423 bool pending_modified_resp = !snoop_pkt.hasSharers();
2424 markInService(mshr, pending_modified_resp);
2425
2426 DPRINTF(Cache, "Upward snoop of prefetch for addr"
2427 " %#x (%s) hit\n",
2428 tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2429 return false;
2430 }
2431
2432 if (snoop_pkt.isBlockCached()) {
2433 DPRINTF(Cache, "Block present, prefetch squashed by cache. "
2434 "Deallocating mshr target %#x.\n",
2435 mshr->blkAddr);
2436
2437 // Deallocate the mshr target
2438 if (mshrQueue.forceDeallocateTarget(mshr)) {
2439 // Clear block if this deallocation resulted freed an
2440 // mshr when all had previously been utilized
2441 clearBlocked(Blocked_NoMSHRs);
2442 }
2443 return false;
2444 }
2445 }
2446
2447 // either a prefetch that is not present upstream, or a normal
2448 // MSHR request, proceed to get the packet to send downstream
2448 PacketPtr pkt = getBusPacket(tgt_pkt, blk, mshr->needsWritable());
2449 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
2449
2450 mshr->isForward = (pkt == NULL);
2451
2452 if (mshr->isForward) {
2453 // not a cache block request, but a response is expected
2454 // make copy of current packet to forward, keep current
2455 // copy for response handling
2456 pkt = new Packet(tgt_pkt, false, true);
2457 assert(!pkt->isWrite());
2458 }
2459
2460 // play it safe and append (rather than set) the sender state,
2461 // as forwarded packets may already have existing state
2462 pkt->pushSenderState(mshr);
2463
2464 if (!memSidePort->sendTimingReq(pkt)) {
2465 // we are awaiting a retry, but we
2466 // delete the packet and will be creating a new packet
2467 // when we get the opportunity
2468 delete pkt;
2469
2470 // note that we have now masked any requestBus and
2471 // schedSendEvent (we will wait for a retry before
2472 // doing anything), and this is so even if we do not
2473 // care about this packet and might override it before
2474 // it gets retried
2475 return true;
2476 } else {
2477 // As part of the call to sendTimingReq the packet is
2478 // forwarded to all neighbouring caches (and any caches
2479 // above them) as a snoop. Thus at this point we know if
2480 // any of the neighbouring caches are responding, and if
2481 // so, we know it is dirty, and we can determine if it is
2482 // being passed as Modified, making our MSHR the ordering
2483 // point
2484 bool pending_modified_resp = !pkt->hasSharers() &&
2485 pkt->cacheResponding();
2486 markInService(mshr, pending_modified_resp);
2487 return false;
2488 }
2489}
2490
2491bool
2492Cache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
2493{
2494 assert(wq_entry);
2495
2496 // always a single target for write queue entries
2497 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
2498
2499 DPRINTF(Cache, "%s write %s for addr %#llx size %d\n", __func__,
2500 tgt_pkt->cmdString(), tgt_pkt->getAddr(),
2501 tgt_pkt->getSize());
2502
2503 PacketPtr pkt = nullptr;
2504 bool delete_pkt = false;
2505
2506 if (tgt_pkt->isEviction()) {
2507 assert(!wq_entry->isUncacheable());
2508 // no response expected, just forward packet as it is
2509 pkt = tgt_pkt;
2510 } else {
2511 // the only thing we deal with besides eviction commands
2512 // are uncacheable writes
2513 assert(tgt_pkt->req->isUncacheable() && tgt_pkt->isWrite());
2514 // not a cache block request, but a response is expected
2515 // make copy of current packet to forward, keep current
2516 // copy for response handling
2517 pkt = new Packet(tgt_pkt, false, true);
2518 pkt->setData(tgt_pkt->getConstPtr<uint8_t>());
2519 delete_pkt = true;
2520 }
2521
2522 pkt->pushSenderState(wq_entry);
2523
2524 if (!memSidePort->sendTimingReq(pkt)) {
2525 if (delete_pkt) {
2526 // we are awaiting a retry, but we
2527 // delete the packet and will be creating a new packet
2528 // when we get the opportunity
2529 delete pkt;
2530 }
2531 // note that we have now masked any requestBus and
2532 // schedSendEvent (we will wait for a retry before
2533 // doing anything), and this is so even if we do not
2534 // care about this packet and might override it before
2535 // it gets retried
2536 return true;
2537 } else {
2538 markInService(wq_entry);
2539 return false;
2540 }
2541}
2542
2543void
2544Cache::serialize(CheckpointOut &cp) const
2545{
2546 bool dirty(isDirty());
2547
2548 if (dirty) {
2549 warn("*** The cache still contains dirty data. ***\n");
2550 warn(" Make sure to drain the system using the correct flags.\n");
2551 warn(" This checkpoint will not restore correctly and dirty data in "
2552 "the cache will be lost!\n");
2553 }
2554
2555 // Since we don't checkpoint the data in the cache, any dirty data
2556 // will be lost when restoring from a checkpoint of a system that
2557 // wasn't drained properly. Flag the checkpoint as invalid if the
2558 // cache contains dirty data.
2559 bool bad_checkpoint(dirty);
2560 SERIALIZE_SCALAR(bad_checkpoint);
2561}
2562
2563void
2564Cache::unserialize(CheckpointIn &cp)
2565{
2566 bool bad_checkpoint;
2567 UNSERIALIZE_SCALAR(bad_checkpoint);
2568 if (bad_checkpoint) {
2569 fatal("Restoring from checkpoints with dirty caches is not supported "
2570 "in the classic memory system. Please remove any caches or "
2571 " drain them properly before taking checkpoints.\n");
2572 }
2573}
2574
2575///////////////
2576//
2577// CpuSidePort
2578//
2579///////////////
2580
2581AddrRangeList
2582Cache::CpuSidePort::getAddrRanges() const
2583{
2584 return cache->getAddrRanges();
2585}
2586
2587bool
2588Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2589{
2590 assert(!cache->system->bypassCaches());
2591
2592 bool success = false;
2593
2594 // always let express snoop packets through if even if blocked
2595 if (pkt->isExpressSnoop()) {
2596 // do not change the current retry state
2597 bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
2598 assert(bypass_success);
2599 return true;
2600 } else if (blocked || mustSendRetry) {
2601 // either already committed to send a retry, or blocked
2602 success = false;
2603 } else {
2604 // pass it on to the cache, and let the cache decide if we
2605 // have to retry or not
2606 success = cache->recvTimingReq(pkt);
2607 }
2608
2609 // remember if we have to retry
2610 mustSendRetry = !success;
2611 return success;
2612}
2613
2614Tick
2615Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2616{
2617 return cache->recvAtomic(pkt);
2618}
2619
2620void
2621Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2622{
2623 // functional request
2624 cache->functionalAccess(pkt, true);
2625}
2626
2627Cache::
2628CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2629 const std::string &_label)
2630 : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2631{
2632}
2633
2634Cache*
2635CacheParams::create()
2636{
2637 assert(tags);
2638
2639 return new Cache(this);
2640}
2641///////////////
2642//
2643// MemSidePort
2644//
2645///////////////
2646
2647bool
2648Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2649{
2650 cache->recvTimingResp(pkt);
2651 return true;
2652}
2653
2654// Express snooping requests to memside port
2655void
2656Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2657{
2658 // handle snooping requests
2659 cache->recvTimingSnoopReq(pkt);
2660}
2661
2662Tick
2663Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2664{
2665 return cache->recvAtomicSnoop(pkt);
2666}
2667
2668void
2669Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2670{
2671 // functional snoop (note that in contrast to atomic we don't have
2672 // a specific functionalSnoop method, as they have the same
2673 // behaviour regardless)
2674 cache->functionalAccess(pkt, false);
2675}
2676
2677void
2678Cache::CacheReqPacketQueue::sendDeferredPacket()
2679{
2680 // sanity check
2681 assert(!waitingOnRetry);
2682
2683 // there should never be any deferred request packets in the
2684 // queue, instead we resly on the cache to provide the packets
2685 // from the MSHR queue or write queue
2686 assert(deferredPacketReadyTime() == MaxTick);
2687
2688 // check for request packets (requests & writebacks)
2689 QueueEntry* entry = cache.getNextQueueEntry();
2690
2691 if (!entry) {
2692 // can happen if e.g. we attempt a writeback and fail, but
2693 // before the retry, the writeback is eliminated because
2694 // we snoop another cache's ReadEx.
2695 } else {
2696 // let our snoop responses go first if there are responses to
2697 // the same addresses
2698 if (checkConflictingSnoop(entry->blkAddr)) {
2699 return;
2700 }
2701 waitingOnRetry = entry->sendPacket(cache);
2702 }
2703
2704 // if we succeeded and are not waiting for a retry, schedule the
2705 // next send considering when the next queue is ready, note that
2706 // snoop responses have their own packet queue and thus schedule
2707 // their own events
2708 if (!waitingOnRetry) {
2709 schedSendEvent(cache.nextQueueReadyTime());
2710 }
2711}
2712
2713Cache::
2714MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2715 const std::string &_label)
2716 : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2717 _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2718 _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2719{
2720}
2450
2451 mshr->isForward = (pkt == NULL);
2452
2453 if (mshr->isForward) {
2454 // not a cache block request, but a response is expected
2455 // make copy of current packet to forward, keep current
2456 // copy for response handling
2457 pkt = new Packet(tgt_pkt, false, true);
2458 assert(!pkt->isWrite());
2459 }
2460
2461 // play it safe and append (rather than set) the sender state,
2462 // as forwarded packets may already have existing state
2463 pkt->pushSenderState(mshr);
2464
2465 if (!memSidePort->sendTimingReq(pkt)) {
2466 // we are awaiting a retry, but we
2467 // delete the packet and will be creating a new packet
2468 // when we get the opportunity
2469 delete pkt;
2470
2471 // note that we have now masked any requestBus and
2472 // schedSendEvent (we will wait for a retry before
2473 // doing anything), and this is so even if we do not
2474 // care about this packet and might override it before
2475 // it gets retried
2476 return true;
2477 } else {
2478 // As part of the call to sendTimingReq the packet is
2479 // forwarded to all neighbouring caches (and any caches
2480 // above them) as a snoop. Thus at this point we know if
2481 // any of the neighbouring caches are responding, and if
2482 // so, we know it is dirty, and we can determine if it is
2483 // being passed as Modified, making our MSHR the ordering
2484 // point
2485 bool pending_modified_resp = !pkt->hasSharers() &&
2486 pkt->cacheResponding();
2487 markInService(mshr, pending_modified_resp);
2488 return false;
2489 }
2490}
2491
2492bool
2493Cache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
2494{
2495 assert(wq_entry);
2496
2497 // always a single target for write queue entries
2498 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
2499
2500 DPRINTF(Cache, "%s write %s for addr %#llx size %d\n", __func__,
2501 tgt_pkt->cmdString(), tgt_pkt->getAddr(),
2502 tgt_pkt->getSize());
2503
2504 PacketPtr pkt = nullptr;
2505 bool delete_pkt = false;
2506
2507 if (tgt_pkt->isEviction()) {
2508 assert(!wq_entry->isUncacheable());
2509 // no response expected, just forward packet as it is
2510 pkt = tgt_pkt;
2511 } else {
2512 // the only thing we deal with besides eviction commands
2513 // are uncacheable writes
2514 assert(tgt_pkt->req->isUncacheable() && tgt_pkt->isWrite());
2515 // not a cache block request, but a response is expected
2516 // make copy of current packet to forward, keep current
2517 // copy for response handling
2518 pkt = new Packet(tgt_pkt, false, true);
2519 pkt->setData(tgt_pkt->getConstPtr<uint8_t>());
2520 delete_pkt = true;
2521 }
2522
2523 pkt->pushSenderState(wq_entry);
2524
2525 if (!memSidePort->sendTimingReq(pkt)) {
2526 if (delete_pkt) {
2527 // we are awaiting a retry, but we
2528 // delete the packet and will be creating a new packet
2529 // when we get the opportunity
2530 delete pkt;
2531 }
2532 // note that we have now masked any requestBus and
2533 // schedSendEvent (we will wait for a retry before
2534 // doing anything), and this is so even if we do not
2535 // care about this packet and might override it before
2536 // it gets retried
2537 return true;
2538 } else {
2539 markInService(wq_entry);
2540 return false;
2541 }
2542}
2543
2544void
2545Cache::serialize(CheckpointOut &cp) const
2546{
2547 bool dirty(isDirty());
2548
2549 if (dirty) {
2550 warn("*** The cache still contains dirty data. ***\n");
2551 warn(" Make sure to drain the system using the correct flags.\n");
2552 warn(" This checkpoint will not restore correctly and dirty data in "
2553 "the cache will be lost!\n");
2554 }
2555
2556 // Since we don't checkpoint the data in the cache, any dirty data
2557 // will be lost when restoring from a checkpoint of a system that
2558 // wasn't drained properly. Flag the checkpoint as invalid if the
2559 // cache contains dirty data.
2560 bool bad_checkpoint(dirty);
2561 SERIALIZE_SCALAR(bad_checkpoint);
2562}
2563
2564void
2565Cache::unserialize(CheckpointIn &cp)
2566{
2567 bool bad_checkpoint;
2568 UNSERIALIZE_SCALAR(bad_checkpoint);
2569 if (bad_checkpoint) {
2570 fatal("Restoring from checkpoints with dirty caches is not supported "
2571 "in the classic memory system. Please remove any caches or "
2572 " drain them properly before taking checkpoints.\n");
2573 }
2574}
2575
2576///////////////
2577//
2578// CpuSidePort
2579//
2580///////////////
2581
2582AddrRangeList
2583Cache::CpuSidePort::getAddrRanges() const
2584{
2585 return cache->getAddrRanges();
2586}
2587
2588bool
2589Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2590{
2591 assert(!cache->system->bypassCaches());
2592
2593 bool success = false;
2594
2595 // always let express snoop packets through if even if blocked
2596 if (pkt->isExpressSnoop()) {
2597 // do not change the current retry state
2598 bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
2599 assert(bypass_success);
2600 return true;
2601 } else if (blocked || mustSendRetry) {
2602 // either already committed to send a retry, or blocked
2603 success = false;
2604 } else {
2605 // pass it on to the cache, and let the cache decide if we
2606 // have to retry or not
2607 success = cache->recvTimingReq(pkt);
2608 }
2609
2610 // remember if we have to retry
2611 mustSendRetry = !success;
2612 return success;
2613}
2614
2615Tick
2616Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2617{
2618 return cache->recvAtomic(pkt);
2619}
2620
2621void
2622Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2623{
2624 // functional request
2625 cache->functionalAccess(pkt, true);
2626}
2627
2628Cache::
2629CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2630 const std::string &_label)
2631 : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2632{
2633}
2634
2635Cache*
2636CacheParams::create()
2637{
2638 assert(tags);
2639
2640 return new Cache(this);
2641}
2642///////////////
2643//
2644// MemSidePort
2645//
2646///////////////
2647
2648bool
2649Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2650{
2651 cache->recvTimingResp(pkt);
2652 return true;
2653}
2654
2655// Express snooping requests to memside port
2656void
2657Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2658{
2659 // handle snooping requests
2660 cache->recvTimingSnoopReq(pkt);
2661}
2662
2663Tick
2664Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2665{
2666 return cache->recvAtomicSnoop(pkt);
2667}
2668
2669void
2670Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2671{
2672 // functional snoop (note that in contrast to atomic we don't have
2673 // a specific functionalSnoop method, as they have the same
2674 // behaviour regardless)
2675 cache->functionalAccess(pkt, false);
2676}
2677
2678void
2679Cache::CacheReqPacketQueue::sendDeferredPacket()
2680{
2681 // sanity check
2682 assert(!waitingOnRetry);
2683
2684 // there should never be any deferred request packets in the
2685 // queue, instead we resly on the cache to provide the packets
2686 // from the MSHR queue or write queue
2687 assert(deferredPacketReadyTime() == MaxTick);
2688
2689 // check for request packets (requests & writebacks)
2690 QueueEntry* entry = cache.getNextQueueEntry();
2691
2692 if (!entry) {
2693 // can happen if e.g. we attempt a writeback and fail, but
2694 // before the retry, the writeback is eliminated because
2695 // we snoop another cache's ReadEx.
2696 } else {
2697 // let our snoop responses go first if there are responses to
2698 // the same addresses
2699 if (checkConflictingSnoop(entry->blkAddr)) {
2700 return;
2701 }
2702 waitingOnRetry = entry->sendPacket(cache);
2703 }
2704
2705 // if we succeeded and are not waiting for a retry, schedule the
2706 // next send considering when the next queue is ready, note that
2707 // snoop responses have their own packet queue and thus schedule
2708 // their own events
2709 if (!waitingOnRetry) {
2710 schedSendEvent(cache.nextQueueReadyTime());
2711 }
2712}
2713
2714Cache::
2715MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2716 const std::string &_label)
2717 : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2718 _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2719 _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2720{
2721}