cache.cc (11197:f8fdd931e674) cache.cc (11199:929fd978ab4e)
1/*
2 * Copyright (c) 2010-2015 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 * Dave Greene
43 * Nathan Binkert
44 * Steve Reinhardt
45 * Ron Dreslinski
46 * Andreas Sandberg
47 */
48
49/**
50 * @file
51 * Cache definitions.
52 */
53
54#include "mem/cache/cache.hh"
55
56#include "base/misc.hh"
57#include "base/types.hh"
58#include "debug/Cache.hh"
59#include "debug/CachePort.hh"
60#include "debug/CacheTags.hh"
61#include "mem/cache/blk.hh"
62#include "mem/cache/mshr.hh"
63#include "mem/cache/prefetch/base.hh"
64#include "sim/sim_exit.hh"
65
66Cache::Cache(const CacheParams *p)
67 : BaseCache(p, p->system->cacheLineSize()),
68 tags(p->tags),
69 prefetcher(p->prefetcher),
70 doFastWrites(true),
71 prefetchOnAccess(p->prefetch_on_access),
72 clusivity(p->clusivity),
1/*
2 * Copyright (c) 2010-2015 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 * Dave Greene
43 * Nathan Binkert
44 * Steve Reinhardt
45 * Ron Dreslinski
46 * Andreas Sandberg
47 */
48
49/**
50 * @file
51 * Cache definitions.
52 */
53
54#include "mem/cache/cache.hh"
55
56#include "base/misc.hh"
57#include "base/types.hh"
58#include "debug/Cache.hh"
59#include "debug/CachePort.hh"
60#include "debug/CacheTags.hh"
61#include "mem/cache/blk.hh"
62#include "mem/cache/mshr.hh"
63#include "mem/cache/prefetch/base.hh"
64#include "sim/sim_exit.hh"
65
66Cache::Cache(const CacheParams *p)
67 : BaseCache(p, p->system->cacheLineSize()),
68 tags(p->tags),
69 prefetcher(p->prefetcher),
70 doFastWrites(true),
71 prefetchOnAccess(p->prefetch_on_access),
72 clusivity(p->clusivity),
73 writebackClean(p->writeback_clean),
73 tempBlockWriteback(nullptr),
74 writebackTempBlockAtomicEvent(this, false,
75 EventBase::Delayed_Writeback_Pri)
76{
77 tempBlock = new CacheBlk();
78 tempBlock->data = new uint8_t[blkSize];
79
80 cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
81 "CpuSidePort");
82 memSidePort = new MemSidePort(p->name + ".mem_side", this,
83 "MemSidePort");
84
85 tags->setCache(this);
86 if (prefetcher)
87 prefetcher->setCache(this);
88}
89
90Cache::~Cache()
91{
92 delete [] tempBlock->data;
93 delete tempBlock;
94
95 delete cpuSidePort;
96 delete memSidePort;
97}
98
99void
100Cache::regStats()
101{
102 BaseCache::regStats();
103}
104
105void
106Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
107{
108 assert(pkt->isRequest());
109
110 uint64_t overwrite_val;
111 bool overwrite_mem;
112 uint64_t condition_val64;
113 uint32_t condition_val32;
114
115 int offset = tags->extractBlkOffset(pkt->getAddr());
116 uint8_t *blk_data = blk->data + offset;
117
118 assert(sizeof(uint64_t) >= pkt->getSize());
119
120 overwrite_mem = true;
121 // keep a copy of our possible write value, and copy what is at the
122 // memory address into the packet
123 pkt->writeData((uint8_t *)&overwrite_val);
124 pkt->setData(blk_data);
125
126 if (pkt->req->isCondSwap()) {
127 if (pkt->getSize() == sizeof(uint64_t)) {
128 condition_val64 = pkt->req->getExtraData();
129 overwrite_mem = !std::memcmp(&condition_val64, blk_data,
130 sizeof(uint64_t));
131 } else if (pkt->getSize() == sizeof(uint32_t)) {
132 condition_val32 = (uint32_t)pkt->req->getExtraData();
133 overwrite_mem = !std::memcmp(&condition_val32, blk_data,
134 sizeof(uint32_t));
135 } else
136 panic("Invalid size for conditional read/write\n");
137 }
138
139 if (overwrite_mem) {
140 std::memcpy(blk_data, &overwrite_val, pkt->getSize());
141 blk->status |= BlkDirty;
142 }
143}
144
145
146void
147Cache::satisfyCpuSideRequest(PacketPtr pkt, CacheBlk *blk,
148 bool deferred_response, bool pending_downgrade)
149{
150 assert(pkt->isRequest());
151
152 assert(blk && blk->isValid());
153 // Occasionally this is not true... if we are a lower-level cache
154 // satisfying a string of Read and ReadEx requests from
155 // upper-level caches, a Read will mark the block as shared but we
156 // can satisfy a following ReadEx anyway since we can rely on the
157 // Read requester(s) to have buffered the ReadEx snoop and to
158 // invalidate their blocks after receiving them.
159 // assert(!pkt->needsExclusive() || blk->isWritable());
160 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
161
162 // Check RMW operations first since both isRead() and
163 // isWrite() will be true for them
164 if (pkt->cmd == MemCmd::SwapReq) {
165 cmpAndSwap(blk, pkt);
166 } else if (pkt->isWrite()) {
167 assert(blk->isWritable());
168 // Write or WriteLine at the first cache with block in Exclusive
169 if (blk->checkWrite(pkt)) {
170 pkt->writeDataToBlock(blk->data, blkSize);
171 }
172 // Always mark the line as dirty even if we are a failed
173 // StoreCond so we supply data to any snoops that have
174 // appended themselves to this cache before knowing the store
175 // will fail.
176 blk->status |= BlkDirty;
177 DPRINTF(Cache, "%s for %s addr %#llx size %d (write)\n", __func__,
178 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
179 } else if (pkt->isRead()) {
180 if (pkt->isLLSC()) {
181 blk->trackLoadLocked(pkt);
182 }
183 pkt->setDataFromBlock(blk->data, blkSize);
184 // determine if this read is from a (coherent) cache, or not
185 // by looking at the command type; we could potentially add a
186 // packet attribute such as 'FromCache' to make this check a
187 // bit cleaner
188 if (pkt->cmd == MemCmd::ReadExReq ||
189 pkt->cmd == MemCmd::ReadSharedReq ||
190 pkt->cmd == MemCmd::ReadCleanReq ||
191 pkt->cmd == MemCmd::SCUpgradeFailReq) {
192 assert(pkt->getSize() == blkSize);
193 // special handling for coherent block requests from
194 // upper-level caches
195 if (pkt->needsExclusive()) {
196 // sanity check
197 assert(pkt->cmd == MemCmd::ReadExReq ||
198 pkt->cmd == MemCmd::SCUpgradeFailReq);
199
200 // if we have a dirty copy, make sure the recipient
201 // keeps it marked dirty
202 if (blk->isDirty()) {
203 pkt->assertMemInhibit();
204 }
205 // on ReadExReq we give up our copy unconditionally,
206 // even if this cache is mostly inclusive, we may want
207 // to revisit this
208 invalidateBlock(blk);
209 } else if (blk->isWritable() && !pending_downgrade &&
210 !pkt->sharedAsserted() &&
211 pkt->cmd != MemCmd::ReadCleanReq) {
212 // we can give the requester an exclusive copy (by not
213 // asserting shared line) on a read request if:
214 // - we have an exclusive copy at this level (& below)
215 // - we don't have a pending snoop from below
216 // signaling another read request
217 // - no other cache above has a copy (otherwise it
218 // would have asseretd shared line on request)
219 // - we are not satisfying an instruction fetch (this
220 // prevents dirty data in the i-cache)
221
222 if (blk->isDirty()) {
223 // special considerations if we're owner:
224 if (!deferred_response) {
225 // if we are responding immediately and can
226 // signal that we're transferring ownership
227 // (inhibit set) along with exclusivity
228 // (shared not set), do so
229 pkt->assertMemInhibit();
230
231 // if this cache is mostly inclusive, we keep
232 // the block as writable (exclusive), and pass
233 // it upwards as writable and dirty
234 // (modified), hence we have multiple caches
235 // considering the same block writable,
236 // something that we get away with due to the
237 // fact that: 1) this cache has been
238 // considered the ordering points and
239 // responded to all snoops up till now, and 2)
240 // we always snoop upwards before consulting
241 // the local cache, both on a normal request
242 // (snooping done by the crossbar), and on a
243 // snoop
244 blk->status &= ~BlkDirty;
245
246 // if this cache is mostly exclusive with
247 // respect to the cache above, drop the block
248 if (clusivity == Enums::mostly_excl) {
249 invalidateBlock(blk);
250 }
251 } else {
252 // if we're responding after our own miss,
253 // there's a window where the recipient didn't
254 // know it was getting ownership and may not
255 // have responded to snoops correctly, so we
256 // can't pass off ownership *or* exclusivity
257 pkt->assertShared();
258 }
259 }
260 } else {
261 // otherwise only respond with a shared copy
262 pkt->assertShared();
263 }
264 }
265 } else {
266 // Upgrade or Invalidate, since we have it Exclusively (E or
267 // M), we ack then invalidate.
268 assert(pkt->isUpgrade() || pkt->isInvalidate());
269
270 // for invalidations we could be looking at the temp block
271 // (for upgrades we always allocate)
272 invalidateBlock(blk);
273 DPRINTF(Cache, "%s for %s addr %#llx size %d (invalidation)\n",
274 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
275 }
276}
277
278
279/////////////////////////////////////////////////////
280//
281// MSHR helper functions
282//
283/////////////////////////////////////////////////////
284
285
286void
287Cache::markInService(MSHR *mshr, bool pending_dirty_resp)
288{
289 markInServiceInternal(mshr, pending_dirty_resp);
290}
291
292/////////////////////////////////////////////////////
293//
294// Access path: requests coming in from the CPU side
295//
296/////////////////////////////////////////////////////
297
298bool
299Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
300 PacketList &writebacks)
301{
302 // sanity check
303 assert(pkt->isRequest());
304
305 chatty_assert(!(isReadOnly && pkt->isWrite()),
306 "Should never see a write in a read-only cache %s\n",
307 name());
308
309 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
310 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
311
312 if (pkt->req->isUncacheable()) {
313 DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(),
314 pkt->req->isInstFetch() ? " (ifetch)" : "",
315 pkt->getAddr());
316
317 // flush and invalidate any existing block
318 CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
319 if (old_blk && old_blk->isValid()) {
74 tempBlockWriteback(nullptr),
75 writebackTempBlockAtomicEvent(this, false,
76 EventBase::Delayed_Writeback_Pri)
77{
78 tempBlock = new CacheBlk();
79 tempBlock->data = new uint8_t[blkSize];
80
81 cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
82 "CpuSidePort");
83 memSidePort = new MemSidePort(p->name + ".mem_side", this,
84 "MemSidePort");
85
86 tags->setCache(this);
87 if (prefetcher)
88 prefetcher->setCache(this);
89}
90
91Cache::~Cache()
92{
93 delete [] tempBlock->data;
94 delete tempBlock;
95
96 delete cpuSidePort;
97 delete memSidePort;
98}
99
100void
101Cache::regStats()
102{
103 BaseCache::regStats();
104}
105
106void
107Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
108{
109 assert(pkt->isRequest());
110
111 uint64_t overwrite_val;
112 bool overwrite_mem;
113 uint64_t condition_val64;
114 uint32_t condition_val32;
115
116 int offset = tags->extractBlkOffset(pkt->getAddr());
117 uint8_t *blk_data = blk->data + offset;
118
119 assert(sizeof(uint64_t) >= pkt->getSize());
120
121 overwrite_mem = true;
122 // keep a copy of our possible write value, and copy what is at the
123 // memory address into the packet
124 pkt->writeData((uint8_t *)&overwrite_val);
125 pkt->setData(blk_data);
126
127 if (pkt->req->isCondSwap()) {
128 if (pkt->getSize() == sizeof(uint64_t)) {
129 condition_val64 = pkt->req->getExtraData();
130 overwrite_mem = !std::memcmp(&condition_val64, blk_data,
131 sizeof(uint64_t));
132 } else if (pkt->getSize() == sizeof(uint32_t)) {
133 condition_val32 = (uint32_t)pkt->req->getExtraData();
134 overwrite_mem = !std::memcmp(&condition_val32, blk_data,
135 sizeof(uint32_t));
136 } else
137 panic("Invalid size for conditional read/write\n");
138 }
139
140 if (overwrite_mem) {
141 std::memcpy(blk_data, &overwrite_val, pkt->getSize());
142 blk->status |= BlkDirty;
143 }
144}
145
146
147void
148Cache::satisfyCpuSideRequest(PacketPtr pkt, CacheBlk *blk,
149 bool deferred_response, bool pending_downgrade)
150{
151 assert(pkt->isRequest());
152
153 assert(blk && blk->isValid());
154 // Occasionally this is not true... if we are a lower-level cache
155 // satisfying a string of Read and ReadEx requests from
156 // upper-level caches, a Read will mark the block as shared but we
157 // can satisfy a following ReadEx anyway since we can rely on the
158 // Read requester(s) to have buffered the ReadEx snoop and to
159 // invalidate their blocks after receiving them.
160 // assert(!pkt->needsExclusive() || blk->isWritable());
161 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
162
163 // Check RMW operations first since both isRead() and
164 // isWrite() will be true for them
165 if (pkt->cmd == MemCmd::SwapReq) {
166 cmpAndSwap(blk, pkt);
167 } else if (pkt->isWrite()) {
168 assert(blk->isWritable());
169 // Write or WriteLine at the first cache with block in Exclusive
170 if (blk->checkWrite(pkt)) {
171 pkt->writeDataToBlock(blk->data, blkSize);
172 }
173 // Always mark the line as dirty even if we are a failed
174 // StoreCond so we supply data to any snoops that have
175 // appended themselves to this cache before knowing the store
176 // will fail.
177 blk->status |= BlkDirty;
178 DPRINTF(Cache, "%s for %s addr %#llx size %d (write)\n", __func__,
179 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
180 } else if (pkt->isRead()) {
181 if (pkt->isLLSC()) {
182 blk->trackLoadLocked(pkt);
183 }
184 pkt->setDataFromBlock(blk->data, blkSize);
185 // determine if this read is from a (coherent) cache, or not
186 // by looking at the command type; we could potentially add a
187 // packet attribute such as 'FromCache' to make this check a
188 // bit cleaner
189 if (pkt->cmd == MemCmd::ReadExReq ||
190 pkt->cmd == MemCmd::ReadSharedReq ||
191 pkt->cmd == MemCmd::ReadCleanReq ||
192 pkt->cmd == MemCmd::SCUpgradeFailReq) {
193 assert(pkt->getSize() == blkSize);
194 // special handling for coherent block requests from
195 // upper-level caches
196 if (pkt->needsExclusive()) {
197 // sanity check
198 assert(pkt->cmd == MemCmd::ReadExReq ||
199 pkt->cmd == MemCmd::SCUpgradeFailReq);
200
201 // if we have a dirty copy, make sure the recipient
202 // keeps it marked dirty
203 if (blk->isDirty()) {
204 pkt->assertMemInhibit();
205 }
206 // on ReadExReq we give up our copy unconditionally,
207 // even if this cache is mostly inclusive, we may want
208 // to revisit this
209 invalidateBlock(blk);
210 } else if (blk->isWritable() && !pending_downgrade &&
211 !pkt->sharedAsserted() &&
212 pkt->cmd != MemCmd::ReadCleanReq) {
213 // we can give the requester an exclusive copy (by not
214 // asserting shared line) on a read request if:
215 // - we have an exclusive copy at this level (& below)
216 // - we don't have a pending snoop from below
217 // signaling another read request
218 // - no other cache above has a copy (otherwise it
219 // would have asseretd shared line on request)
220 // - we are not satisfying an instruction fetch (this
221 // prevents dirty data in the i-cache)
222
223 if (blk->isDirty()) {
224 // special considerations if we're owner:
225 if (!deferred_response) {
226 // if we are responding immediately and can
227 // signal that we're transferring ownership
228 // (inhibit set) along with exclusivity
229 // (shared not set), do so
230 pkt->assertMemInhibit();
231
232 // if this cache is mostly inclusive, we keep
233 // the block as writable (exclusive), and pass
234 // it upwards as writable and dirty
235 // (modified), hence we have multiple caches
236 // considering the same block writable,
237 // something that we get away with due to the
238 // fact that: 1) this cache has been
239 // considered the ordering points and
240 // responded to all snoops up till now, and 2)
241 // we always snoop upwards before consulting
242 // the local cache, both on a normal request
243 // (snooping done by the crossbar), and on a
244 // snoop
245 blk->status &= ~BlkDirty;
246
247 // if this cache is mostly exclusive with
248 // respect to the cache above, drop the block
249 if (clusivity == Enums::mostly_excl) {
250 invalidateBlock(blk);
251 }
252 } else {
253 // if we're responding after our own miss,
254 // there's a window where the recipient didn't
255 // know it was getting ownership and may not
256 // have responded to snoops correctly, so we
257 // can't pass off ownership *or* exclusivity
258 pkt->assertShared();
259 }
260 }
261 } else {
262 // otherwise only respond with a shared copy
263 pkt->assertShared();
264 }
265 }
266 } else {
267 // Upgrade or Invalidate, since we have it Exclusively (E or
268 // M), we ack then invalidate.
269 assert(pkt->isUpgrade() || pkt->isInvalidate());
270
271 // for invalidations we could be looking at the temp block
272 // (for upgrades we always allocate)
273 invalidateBlock(blk);
274 DPRINTF(Cache, "%s for %s addr %#llx size %d (invalidation)\n",
275 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
276 }
277}
278
279
280/////////////////////////////////////////////////////
281//
282// MSHR helper functions
283//
284/////////////////////////////////////////////////////
285
286
287void
288Cache::markInService(MSHR *mshr, bool pending_dirty_resp)
289{
290 markInServiceInternal(mshr, pending_dirty_resp);
291}
292
293/////////////////////////////////////////////////////
294//
295// Access path: requests coming in from the CPU side
296//
297/////////////////////////////////////////////////////
298
299bool
300Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
301 PacketList &writebacks)
302{
303 // sanity check
304 assert(pkt->isRequest());
305
306 chatty_assert(!(isReadOnly && pkt->isWrite()),
307 "Should never see a write in a read-only cache %s\n",
308 name());
309
310 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
311 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
312
313 if (pkt->req->isUncacheable()) {
314 DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(),
315 pkt->req->isInstFetch() ? " (ifetch)" : "",
316 pkt->getAddr());
317
318 // flush and invalidate any existing block
319 CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
320 if (old_blk && old_blk->isValid()) {
320 if (old_blk->isDirty())
321 if (old_blk->isDirty() || writebackClean)
321 writebacks.push_back(writebackBlk(old_blk));
322 else
323 writebacks.push_back(cleanEvictBlk(old_blk));
324 tags->invalidate(old_blk);
325 old_blk->invalidate();
326 }
327
328 blk = NULL;
329 // lookupLatency is the latency in case the request is uncacheable.
330 lat = lookupLatency;
331 return false;
332 }
333
334 ContextID id = pkt->req->hasContextId() ?
335 pkt->req->contextId() : InvalidContextID;
336 // Here lat is the value passed as parameter to accessBlock() function
337 // that can modify its value.
338 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id);
339
340 DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(),
341 pkt->req->isInstFetch() ? " (ifetch)" : "",
342 pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns",
343 blk ? "hit " + blk->print() : "miss");
344
345
322 writebacks.push_back(writebackBlk(old_blk));
323 else
324 writebacks.push_back(cleanEvictBlk(old_blk));
325 tags->invalidate(old_blk);
326 old_blk->invalidate();
327 }
328
329 blk = NULL;
330 // lookupLatency is the latency in case the request is uncacheable.
331 lat = lookupLatency;
332 return false;
333 }
334
335 ContextID id = pkt->req->hasContextId() ?
336 pkt->req->contextId() : InvalidContextID;
337 // Here lat is the value passed as parameter to accessBlock() function
338 // that can modify its value.
339 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id);
340
341 DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(),
342 pkt->req->isInstFetch() ? " (ifetch)" : "",
343 pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns",
344 blk ? "hit " + blk->print() : "miss");
345
346
346 if (pkt->evictingBlock()) {
347 if (pkt->isEviction()) {
347 // We check for presence of block in above caches before issuing
348 // Writeback or CleanEvict to write buffer. Therefore the only
349 // possible cases can be of a CleanEvict packet coming from above
350 // encountering a Writeback generated in this cache peer cache and
351 // waiting in the write buffer. Cases of upper level peer caches
352 // generating CleanEvict and Writeback or simply CleanEvict and
353 // CleanEvict almost simultaneously will be caught by snoops sent out
354 // by crossbar.
355 std::vector<MSHR *> outgoing;
356 if (writeBuffer.findMatches(pkt->getAddr(), pkt->isSecure(),
357 outgoing)) {
358 assert(outgoing.size() == 1);
348 // We check for presence of block in above caches before issuing
349 // Writeback or CleanEvict to write buffer. Therefore the only
350 // possible cases can be of a CleanEvict packet coming from above
351 // encountering a Writeback generated in this cache peer cache and
352 // waiting in the write buffer. Cases of upper level peer caches
353 // generating CleanEvict and Writeback or simply CleanEvict and
354 // CleanEvict almost simultaneously will be caught by snoops sent out
355 // by crossbar.
356 std::vector<MSHR *> outgoing;
357 if (writeBuffer.findMatches(pkt->getAddr(), pkt->isSecure(),
358 outgoing)) {
359 assert(outgoing.size() == 1);
359 PacketPtr wbPkt = outgoing[0]->getTarget()->pkt;
360 assert(pkt->cmd == MemCmd::CleanEvict &&
361 wbPkt->cmd == MemCmd::Writeback);
362 // As the CleanEvict is coming from above, it would have snooped
363 // into other peer caches of the same level while traversing the
364 // crossbar. If a copy of the block had been found, the CleanEvict
365 // would have been deleted in the crossbar. Now that the
366 // CleanEvict is here we can be sure none of the other upper level
367 // caches connected to this cache have the block, so we can clear
368 // the BLOCK_CACHED flag in the Writeback if set and discard the
369 // CleanEvict by returning true.
370 wbPkt->clearBlockCached();
371 return true;
360 MSHR *wb_entry = outgoing[0];
361 assert(wb_entry->getNumTargets() == 1);
362 PacketPtr wbPkt = wb_entry->getTarget()->pkt;
363 assert(wbPkt->isWriteback());
364
365 if (pkt->isCleanEviction()) {
366 // The CleanEvict and WritebackClean snoops into other
367 // peer caches of the same level while traversing the
368 // crossbar. If a copy of the block is found, the
369 // packet is deleted in the crossbar. Hence, none of
370 // the other upper level caches connected to this
371 // cache have the block, so we can clear the
372 // BLOCK_CACHED flag in the Writeback if set and
373 // discard the CleanEvict by returning true.
374 wbPkt->clearBlockCached();
375 return true;
376 } else {
377 assert(pkt->cmd == MemCmd::WritebackDirty);
378 // Dirty writeback from above trumps our clean
379 // writeback... discard here
380 // Note: markInService will remove entry from writeback buffer.
381 markInService(wb_entry, false);
382 delete wbPkt;
383 }
372 }
373 }
374
375 // Writeback handling is special case. We can write the block into
376 // the cache without having a writeable copy (or any copy at all).
384 }
385 }
386
387 // Writeback handling is special case. We can write the block into
388 // the cache without having a writeable copy (or any copy at all).
377 if (pkt->cmd == MemCmd::Writeback) {
389 if (pkt->isWriteback()) {
378 assert(blkSize == pkt->getSize());
390 assert(blkSize == pkt->getSize());
391
392 // we could get a clean writeback while we are having
393 // outstanding accesses to a block, do the simple thing for
394 // now and drop the clean writeback so that we do not upset
395 // any ordering/decisions about ownership already taken
396 if (pkt->cmd == MemCmd::WritebackClean &&
397 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
398 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
399 "dropping\n", pkt->getAddr());
400 return true;
401 }
402
379 if (blk == NULL) {
380 // need to do a replacement
381 blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
382 if (blk == NULL) {
383 // no replaceable block available: give up, fwd to next level.
384 incMissCount(pkt);
385 return false;
386 }
387 tags->insertBlock(pkt, blk);
388
389 blk->status = (BlkValid | BlkReadable);
390 if (pkt->isSecure()) {
391 blk->status |= BlkSecure;
392 }
393 }
403 if (blk == NULL) {
404 // need to do a replacement
405 blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
406 if (blk == NULL) {
407 // no replaceable block available: give up, fwd to next level.
408 incMissCount(pkt);
409 return false;
410 }
411 tags->insertBlock(pkt, blk);
412
413 blk->status = (BlkValid | BlkReadable);
414 if (pkt->isSecure()) {
415 blk->status |= BlkSecure;
416 }
417 }
394 blk->status |= BlkDirty;
418 // only mark the block dirty if we got a writeback command,
419 // and leave it as is for a clean writeback
420 if (pkt->cmd == MemCmd::WritebackDirty) {
421 blk->status |= BlkDirty;
422 }
395 // if shared is not asserted we got the writeback in modified
396 // state, if it is asserted we are in the owned state
397 if (!pkt->sharedAsserted()) {
398 blk->status |= BlkWritable;
399 }
400 // nothing else to do; writeback doesn't expect response
401 assert(!pkt->needsResponse());
402 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
403 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
404 incHitCount(pkt);
405 return true;
406 } else if (pkt->cmd == MemCmd::CleanEvict) {
407 if (blk != NULL) {
408 // Found the block in the tags, need to stop CleanEvict from
409 // propagating further down the hierarchy. Returning true will
410 // treat the CleanEvict like a satisfied write request and delete
411 // it.
412 return true;
413 }
414 // We didn't find the block here, propagate the CleanEvict further
415 // down the memory hierarchy. Returning false will treat the CleanEvict
416 // like a Writeback which could not find a replaceable block so has to
417 // go to next level.
418 return false;
419 } else if ((blk != NULL) &&
420 (pkt->needsExclusive() ? blk->isWritable()
421 : blk->isReadable())) {
422 // OK to satisfy access
423 incHitCount(pkt);
424 satisfyCpuSideRequest(pkt, blk);
425 return true;
426 }
427
428 // Can't satisfy access normally... either no block (blk == NULL)
429 // or have block but need exclusive & only have shared.
430
431 incMissCount(pkt);
432
433 if (blk == NULL && pkt->isLLSC() && pkt->isWrite()) {
434 // complete miss on store conditional... just give up now
435 pkt->req->setExtraData(0);
436 return true;
437 }
438
439 return false;
440}
441
442
443class ForwardResponseRecord : public Packet::SenderState
444{
445 public:
446
447 ForwardResponseRecord() {}
448};
449
450void
451Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
452{
453 while (!writebacks.empty()) {
454 PacketPtr wbPkt = writebacks.front();
455 // We use forwardLatency here because we are copying writebacks to
456 // write buffer. Call isCachedAbove for both Writebacks and
457 // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag
458 // in Writebacks and discard CleanEvicts.
459 if (isCachedAbove(wbPkt)) {
460 if (wbPkt->cmd == MemCmd::CleanEvict) {
461 // Delete CleanEvict because cached copies exist above. The
462 // packet destructor will delete the request object because
463 // this is a non-snoop request packet which does not require a
464 // response.
465 delete wbPkt;
423 // if shared is not asserted we got the writeback in modified
424 // state, if it is asserted we are in the owned state
425 if (!pkt->sharedAsserted()) {
426 blk->status |= BlkWritable;
427 }
428 // nothing else to do; writeback doesn't expect response
429 assert(!pkt->needsResponse());
430 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
431 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
432 incHitCount(pkt);
433 return true;
434 } else if (pkt->cmd == MemCmd::CleanEvict) {
435 if (blk != NULL) {
436 // Found the block in the tags, need to stop CleanEvict from
437 // propagating further down the hierarchy. Returning true will
438 // treat the CleanEvict like a satisfied write request and delete
439 // it.
440 return true;
441 }
442 // We didn't find the block here, propagate the CleanEvict further
443 // down the memory hierarchy. Returning false will treat the CleanEvict
444 // like a Writeback which could not find a replaceable block so has to
445 // go to next level.
446 return false;
447 } else if ((blk != NULL) &&
448 (pkt->needsExclusive() ? blk->isWritable()
449 : blk->isReadable())) {
450 // OK to satisfy access
451 incHitCount(pkt);
452 satisfyCpuSideRequest(pkt, blk);
453 return true;
454 }
455
456 // Can't satisfy access normally... either no block (blk == NULL)
457 // or have block but need exclusive & only have shared.
458
459 incMissCount(pkt);
460
461 if (blk == NULL && pkt->isLLSC() && pkt->isWrite()) {
462 // complete miss on store conditional... just give up now
463 pkt->req->setExtraData(0);
464 return true;
465 }
466
467 return false;
468}
469
470
471class ForwardResponseRecord : public Packet::SenderState
472{
473 public:
474
475 ForwardResponseRecord() {}
476};
477
478void
479Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
480{
481 while (!writebacks.empty()) {
482 PacketPtr wbPkt = writebacks.front();
483 // We use forwardLatency here because we are copying writebacks to
484 // write buffer. Call isCachedAbove for both Writebacks and
485 // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag
486 // in Writebacks and discard CleanEvicts.
487 if (isCachedAbove(wbPkt)) {
488 if (wbPkt->cmd == MemCmd::CleanEvict) {
489 // Delete CleanEvict because cached copies exist above. The
490 // packet destructor will delete the request object because
491 // this is a non-snoop request packet which does not require a
492 // response.
493 delete wbPkt;
494 } else if (wbPkt->cmd == MemCmd::WritebackClean) {
495 // clean writeback, do not send since the block is
496 // still cached above
497 assert(writebackClean);
498 delete wbPkt;
466 } else {
499 } else {
500 assert(wbPkt->cmd == MemCmd::WritebackDirty);
467 // Set BLOCK_CACHED flag in Writeback and send below, so that
468 // the Writeback does not reset the bit corresponding to this
469 // address in the snoop filter below.
470 wbPkt->setBlockCached();
471 allocateWriteBuffer(wbPkt, forward_time);
472 }
473 } else {
474 // If the block is not cached above, send packet below. Both
475 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
476 // reset the bit corresponding to this address in the snoop filter
477 // below.
478 allocateWriteBuffer(wbPkt, forward_time);
479 }
480 writebacks.pop_front();
481 }
482}
483
484void
485Cache::doWritebacksAtomic(PacketList& writebacks)
486{
487 while (!writebacks.empty()) {
488 PacketPtr wbPkt = writebacks.front();
489 // Call isCachedAbove for both Writebacks and CleanEvicts. If
490 // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
491 // and discard CleanEvicts.
492 if (isCachedAbove(wbPkt, false)) {
501 // Set BLOCK_CACHED flag in Writeback and send below, so that
502 // the Writeback does not reset the bit corresponding to this
503 // address in the snoop filter below.
504 wbPkt->setBlockCached();
505 allocateWriteBuffer(wbPkt, forward_time);
506 }
507 } else {
508 // If the block is not cached above, send packet below. Both
509 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
510 // reset the bit corresponding to this address in the snoop filter
511 // below.
512 allocateWriteBuffer(wbPkt, forward_time);
513 }
514 writebacks.pop_front();
515 }
516}
517
518void
519Cache::doWritebacksAtomic(PacketList& writebacks)
520{
521 while (!writebacks.empty()) {
522 PacketPtr wbPkt = writebacks.front();
523 // Call isCachedAbove for both Writebacks and CleanEvicts. If
524 // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
525 // and discard CleanEvicts.
526 if (isCachedAbove(wbPkt, false)) {
493 if (wbPkt->cmd == MemCmd::Writeback) {
527 if (wbPkt->cmd == MemCmd::WritebackDirty) {
494 // Set BLOCK_CACHED flag in Writeback and send below,
495 // so that the Writeback does not reset the bit
496 // corresponding to this address in the snoop filter
497 // below. We can discard CleanEvicts because cached
498 // copies exist above. Atomic mode isCachedAbove
499 // modifies packet to set BLOCK_CACHED flag
500 memSidePort->sendAtomic(wbPkt);
501 }
502 } else {
503 // If the block is not cached above, send packet below. Both
504 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
505 // reset the bit corresponding to this address in the snoop filter
506 // below.
507 memSidePort->sendAtomic(wbPkt);
508 }
509 writebacks.pop_front();
510 // In case of CleanEvicts, the packet destructor will delete the
511 // request object because this is a non-snoop request packet which
512 // does not require a response.
513 delete wbPkt;
514 }
515}
516
517
518void
519Cache::recvTimingSnoopResp(PacketPtr pkt)
520{
521 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
522 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
523
524 assert(pkt->isResponse());
525
526 // must be cache-to-cache response from upper to lower level
527 ForwardResponseRecord *rec =
528 dynamic_cast<ForwardResponseRecord *>(pkt->senderState);
529 assert(!system->bypassCaches());
530
531 if (rec == NULL) {
532 // @todo What guarantee do we have that this HardPFResp is
533 // actually for this cache, and not a cache closer to the
534 // memory?
535 assert(pkt->cmd == MemCmd::HardPFResp);
536 // Check if it's a prefetch response and handle it. We shouldn't
537 // get any other kinds of responses without FRRs.
538 DPRINTF(Cache, "Got prefetch response from above for addr %#llx (%s)\n",
539 pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
540 recvTimingResp(pkt);
541 return;
542 }
543
544 pkt->popSenderState();
545 delete rec;
546 // forwardLatency is set here because there is a response from an
547 // upper level cache.
548 // To pay the delay that occurs if the packet comes from the bus,
549 // we charge also headerDelay.
550 Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
551 // Reset the timing of the packet.
552 pkt->headerDelay = pkt->payloadDelay = 0;
553 memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
554}
555
556void
557Cache::promoteWholeLineWrites(PacketPtr pkt)
558{
559 // Cache line clearing instructions
560 if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
561 (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
562 pkt->cmd = MemCmd::WriteLineReq;
563 DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
564 }
565}
566
567bool
568Cache::recvTimingReq(PacketPtr pkt)
569{
570 DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print());
571
572 assert(pkt->isRequest());
573
574 // Just forward the packet if caches are disabled.
575 if (system->bypassCaches()) {
576 // @todo This should really enqueue the packet rather
577 bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
578 assert(success);
579 return true;
580 }
581
582 promoteWholeLineWrites(pkt);
583
584 if (pkt->memInhibitAsserted()) {
585 // a cache above us (but not where the packet came from) is
586 // responding to the request
587 DPRINTF(Cache, "mem inhibited on addr %#llx (%s): not responding\n",
588 pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
589
590 // if the packet needs exclusive, and the cache that has
591 // promised to respond (setting the inhibit flag) is not
592 // providing exclusive (it is in O vs M state), we know that
593 // there may be other shared copies in the system; go out and
594 // invalidate them all
595 if (pkt->needsExclusive() && !pkt->isSupplyExclusive()) {
596 // create a downstream express snoop with cleared packet
597 // flags, there is no need to allocate any data as the
598 // packet is merely used to co-ordinate state transitions
599 Packet *snoop_pkt = new Packet(pkt, true, false);
600
601 // also reset the bus time that the original packet has
602 // not yet paid for
603 snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
604
605 // make this an instantaneous express snoop, and let the
606 // other caches in the system know that the packet is
607 // inhibited, because we have found the authorative copy
608 // (O) that will supply the right data
609 snoop_pkt->setExpressSnoop();
610 snoop_pkt->assertMemInhibit();
611
612 // this express snoop travels towards the memory, and at
613 // every crossbar it is snooped upwards thus reaching
614 // every cache in the system
615 bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
616 // express snoops always succeed
617 assert(success);
618
619 // main memory will delete the packet
620 }
621
622 // queue for deletion, as the sending cache is still relying
623 // on the packet
624 pendingDelete.reset(pkt);
625
626 // no need to take any action in this particular cache as the
627 // caches along the path to memory are allowed to keep lines
628 // in a shared state, and a cache above us already committed
629 // to responding
630 return true;
631 }
632
633 // anything that is merely forwarded pays for the forward latency and
634 // the delay provided by the crossbar
635 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
636
637 // We use lookupLatency here because it is used to specify the latency
638 // to access.
639 Cycles lat = lookupLatency;
640 CacheBlk *blk = NULL;
641 bool satisfied = false;
642 {
643 PacketList writebacks;
644 // Note that lat is passed by reference here. The function
645 // access() calls accessBlock() which can modify lat value.
646 satisfied = access(pkt, blk, lat, writebacks);
647
648 // copy writebacks to write buffer here to ensure they logically
649 // proceed anything happening below
650 doWritebacks(writebacks, forward_time);
651 }
652
653 // Here we charge the headerDelay that takes into account the latencies
654 // of the bus, if the packet comes from it.
655 // The latency charged it is just lat that is the value of lookupLatency
656 // modified by access() function, or if not just lookupLatency.
657 // In case of a hit we are neglecting response latency.
658 // In case of a miss we are neglecting forward latency.
659 Tick request_time = clockEdge(lat) + pkt->headerDelay;
660 // Here we reset the timing of the packet.
661 pkt->headerDelay = pkt->payloadDelay = 0;
662
663 // track time of availability of next prefetch, if any
664 Tick next_pf_time = MaxTick;
665
666 bool needsResponse = pkt->needsResponse();
667
668 if (satisfied) {
669 // should never be satisfying an uncacheable access as we
670 // flush and invalidate any existing block as part of the
671 // lookup
672 assert(!pkt->req->isUncacheable());
673
674 // hit (for all other request types)
675
676 if (prefetcher && (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
677 if (blk)
678 blk->status &= ~BlkHWPrefetched;
679
680 // Don't notify on SWPrefetch
681 if (!pkt->cmd.isSWPrefetch())
682 next_pf_time = prefetcher->notify(pkt);
683 }
684
685 if (needsResponse) {
686 pkt->makeTimingResponse();
687 // @todo: Make someone pay for this
688 pkt->headerDelay = pkt->payloadDelay = 0;
689
690 // In this case we are considering request_time that takes
691 // into account the delay of the xbar, if any, and just
692 // lat, neglecting responseLatency, modelling hit latency
693 // just as lookupLatency or or the value of lat overriden
694 // by access(), that calls accessBlock() function.
695 cpuSidePort->schedTimingResp(pkt, request_time, true);
696 } else {
528 // Set BLOCK_CACHED flag in Writeback and send below,
529 // so that the Writeback does not reset the bit
530 // corresponding to this address in the snoop filter
531 // below. We can discard CleanEvicts because cached
532 // copies exist above. Atomic mode isCachedAbove
533 // modifies packet to set BLOCK_CACHED flag
534 memSidePort->sendAtomic(wbPkt);
535 }
536 } else {
537 // If the block is not cached above, send packet below. Both
538 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
539 // reset the bit corresponding to this address in the snoop filter
540 // below.
541 memSidePort->sendAtomic(wbPkt);
542 }
543 writebacks.pop_front();
544 // In case of CleanEvicts, the packet destructor will delete the
545 // request object because this is a non-snoop request packet which
546 // does not require a response.
547 delete wbPkt;
548 }
549}
550
551
552void
553Cache::recvTimingSnoopResp(PacketPtr pkt)
554{
555 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
556 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
557
558 assert(pkt->isResponse());
559
560 // must be cache-to-cache response from upper to lower level
561 ForwardResponseRecord *rec =
562 dynamic_cast<ForwardResponseRecord *>(pkt->senderState);
563 assert(!system->bypassCaches());
564
565 if (rec == NULL) {
566 // @todo What guarantee do we have that this HardPFResp is
567 // actually for this cache, and not a cache closer to the
568 // memory?
569 assert(pkt->cmd == MemCmd::HardPFResp);
570 // Check if it's a prefetch response and handle it. We shouldn't
571 // get any other kinds of responses without FRRs.
572 DPRINTF(Cache, "Got prefetch response from above for addr %#llx (%s)\n",
573 pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
574 recvTimingResp(pkt);
575 return;
576 }
577
578 pkt->popSenderState();
579 delete rec;
580 // forwardLatency is set here because there is a response from an
581 // upper level cache.
582 // To pay the delay that occurs if the packet comes from the bus,
583 // we charge also headerDelay.
584 Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
585 // Reset the timing of the packet.
586 pkt->headerDelay = pkt->payloadDelay = 0;
587 memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
588}
589
590void
591Cache::promoteWholeLineWrites(PacketPtr pkt)
592{
593 // Cache line clearing instructions
594 if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
595 (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
596 pkt->cmd = MemCmd::WriteLineReq;
597 DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
598 }
599}
600
601bool
602Cache::recvTimingReq(PacketPtr pkt)
603{
604 DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print());
605
606 assert(pkt->isRequest());
607
608 // Just forward the packet if caches are disabled.
609 if (system->bypassCaches()) {
610 // @todo This should really enqueue the packet rather
611 bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
612 assert(success);
613 return true;
614 }
615
616 promoteWholeLineWrites(pkt);
617
618 if (pkt->memInhibitAsserted()) {
619 // a cache above us (but not where the packet came from) is
620 // responding to the request
621 DPRINTF(Cache, "mem inhibited on addr %#llx (%s): not responding\n",
622 pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
623
624 // if the packet needs exclusive, and the cache that has
625 // promised to respond (setting the inhibit flag) is not
626 // providing exclusive (it is in O vs M state), we know that
627 // there may be other shared copies in the system; go out and
628 // invalidate them all
629 if (pkt->needsExclusive() && !pkt->isSupplyExclusive()) {
630 // create a downstream express snoop with cleared packet
631 // flags, there is no need to allocate any data as the
632 // packet is merely used to co-ordinate state transitions
633 Packet *snoop_pkt = new Packet(pkt, true, false);
634
635 // also reset the bus time that the original packet has
636 // not yet paid for
637 snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
638
639 // make this an instantaneous express snoop, and let the
640 // other caches in the system know that the packet is
641 // inhibited, because we have found the authorative copy
642 // (O) that will supply the right data
643 snoop_pkt->setExpressSnoop();
644 snoop_pkt->assertMemInhibit();
645
646 // this express snoop travels towards the memory, and at
647 // every crossbar it is snooped upwards thus reaching
648 // every cache in the system
649 bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
650 // express snoops always succeed
651 assert(success);
652
653 // main memory will delete the packet
654 }
655
656 // queue for deletion, as the sending cache is still relying
657 // on the packet
658 pendingDelete.reset(pkt);
659
660 // no need to take any action in this particular cache as the
661 // caches along the path to memory are allowed to keep lines
662 // in a shared state, and a cache above us already committed
663 // to responding
664 return true;
665 }
666
667 // anything that is merely forwarded pays for the forward latency and
668 // the delay provided by the crossbar
669 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
670
671 // We use lookupLatency here because it is used to specify the latency
672 // to access.
673 Cycles lat = lookupLatency;
674 CacheBlk *blk = NULL;
675 bool satisfied = false;
676 {
677 PacketList writebacks;
678 // Note that lat is passed by reference here. The function
679 // access() calls accessBlock() which can modify lat value.
680 satisfied = access(pkt, blk, lat, writebacks);
681
682 // copy writebacks to write buffer here to ensure they logically
683 // proceed anything happening below
684 doWritebacks(writebacks, forward_time);
685 }
686
687 // Here we charge the headerDelay that takes into account the latencies
688 // of the bus, if the packet comes from it.
689 // The latency charged it is just lat that is the value of lookupLatency
690 // modified by access() function, or if not just lookupLatency.
691 // In case of a hit we are neglecting response latency.
692 // In case of a miss we are neglecting forward latency.
693 Tick request_time = clockEdge(lat) + pkt->headerDelay;
694 // Here we reset the timing of the packet.
695 pkt->headerDelay = pkt->payloadDelay = 0;
696
697 // track time of availability of next prefetch, if any
698 Tick next_pf_time = MaxTick;
699
700 bool needsResponse = pkt->needsResponse();
701
702 if (satisfied) {
703 // should never be satisfying an uncacheable access as we
704 // flush and invalidate any existing block as part of the
705 // lookup
706 assert(!pkt->req->isUncacheable());
707
708 // hit (for all other request types)
709
710 if (prefetcher && (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
711 if (blk)
712 blk->status &= ~BlkHWPrefetched;
713
714 // Don't notify on SWPrefetch
715 if (!pkt->cmd.isSWPrefetch())
716 next_pf_time = prefetcher->notify(pkt);
717 }
718
719 if (needsResponse) {
720 pkt->makeTimingResponse();
721 // @todo: Make someone pay for this
722 pkt->headerDelay = pkt->payloadDelay = 0;
723
724 // In this case we are considering request_time that takes
725 // into account the delay of the xbar, if any, and just
726 // lat, neglecting responseLatency, modelling hit latency
727 // just as lookupLatency or or the value of lat overriden
728 // by access(), that calls accessBlock() function.
729 cpuSidePort->schedTimingResp(pkt, request_time, true);
730 } else {
731 DPRINTF(Cache, "%s satisfied %s addr %#llx, no response needed\n",
732 __func__, pkt->cmdString(), pkt->getAddr(),
733 pkt->getSize());
734
697 // queue the packet for deletion, as the sending cache is
698 // still relying on it; if the block is found in access(),
699 // CleanEvict and Writeback messages will be deleted
700 // here as well
701 pendingDelete.reset(pkt);
702 }
703 } else {
704 // miss
705
706 Addr blk_addr = blockAlign(pkt->getAddr());
707
708 // ignore any existing MSHR if we are dealing with an
709 // uncacheable request
710 MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
711 mshrQueue.findMatch(blk_addr, pkt->isSecure());
712
713 // Software prefetch handling:
714 // To keep the core from waiting on data it won't look at
715 // anyway, send back a response with dummy data. Miss handling
716 // will continue asynchronously. Unfortunately, the core will
717 // insist upon freeing original Packet/Request, so we have to
718 // create a new pair with a different lifecycle. Note that this
719 // processing happens before any MSHR munging on the behalf of
720 // this request because this new Request will be the one stored
721 // into the MSHRs, not the original.
722 if (pkt->cmd.isSWPrefetch()) {
723 assert(needsResponse);
724 assert(pkt->req->hasPaddr());
725 assert(!pkt->req->isUncacheable());
726
727 // There's no reason to add a prefetch as an additional target
728 // to an existing MSHR. If an outstanding request is already
729 // in progress, there is nothing for the prefetch to do.
730 // If this is the case, we don't even create a request at all.
731 PacketPtr pf = nullptr;
732
733 if (!mshr) {
734 // copy the request and create a new SoftPFReq packet
735 RequestPtr req = new Request(pkt->req->getPaddr(),
736 pkt->req->getSize(),
737 pkt->req->getFlags(),
738 pkt->req->masterId());
739 pf = new Packet(req, pkt->cmd);
740 pf->allocate();
741 assert(pf->getAddr() == pkt->getAddr());
742 assert(pf->getSize() == pkt->getSize());
743 }
744
745 pkt->makeTimingResponse();
746 // for debugging, set all the bits in the response data
747 // (also keeps valgrind from complaining when debugging settings
748 // print out instruction results)
749 std::memset(pkt->getPtr<uint8_t>(), 0xFF, pkt->getSize());
750 // request_time is used here, taking into account lat and the delay
751 // charged if the packet comes from the xbar.
752 cpuSidePort->schedTimingResp(pkt, request_time, true);
753
754 // If an outstanding request is in progress (we found an
755 // MSHR) this is set to null
756 pkt = pf;
757 }
758
759 if (mshr) {
760 /// MSHR hit
761 /// @note writebacks will be checked in getNextMSHR()
762 /// for any conflicting requests to the same block
763
764 //@todo remove hw_pf here
765
766 // Coalesce unless it was a software prefetch (see above).
767 if (pkt) {
735 // queue the packet for deletion, as the sending cache is
736 // still relying on it; if the block is found in access(),
737 // CleanEvict and Writeback messages will be deleted
738 // here as well
739 pendingDelete.reset(pkt);
740 }
741 } else {
742 // miss
743
744 Addr blk_addr = blockAlign(pkt->getAddr());
745
746 // ignore any existing MSHR if we are dealing with an
747 // uncacheable request
748 MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
749 mshrQueue.findMatch(blk_addr, pkt->isSecure());
750
751 // Software prefetch handling:
752 // To keep the core from waiting on data it won't look at
753 // anyway, send back a response with dummy data. Miss handling
754 // will continue asynchronously. Unfortunately, the core will
755 // insist upon freeing original Packet/Request, so we have to
756 // create a new pair with a different lifecycle. Note that this
757 // processing happens before any MSHR munging on the behalf of
758 // this request because this new Request will be the one stored
759 // into the MSHRs, not the original.
760 if (pkt->cmd.isSWPrefetch()) {
761 assert(needsResponse);
762 assert(pkt->req->hasPaddr());
763 assert(!pkt->req->isUncacheable());
764
765 // There's no reason to add a prefetch as an additional target
766 // to an existing MSHR. If an outstanding request is already
767 // in progress, there is nothing for the prefetch to do.
768 // If this is the case, we don't even create a request at all.
769 PacketPtr pf = nullptr;
770
771 if (!mshr) {
772 // copy the request and create a new SoftPFReq packet
773 RequestPtr req = new Request(pkt->req->getPaddr(),
774 pkt->req->getSize(),
775 pkt->req->getFlags(),
776 pkt->req->masterId());
777 pf = new Packet(req, pkt->cmd);
778 pf->allocate();
779 assert(pf->getAddr() == pkt->getAddr());
780 assert(pf->getSize() == pkt->getSize());
781 }
782
783 pkt->makeTimingResponse();
784 // for debugging, set all the bits in the response data
785 // (also keeps valgrind from complaining when debugging settings
786 // print out instruction results)
787 std::memset(pkt->getPtr<uint8_t>(), 0xFF, pkt->getSize());
788 // request_time is used here, taking into account lat and the delay
789 // charged if the packet comes from the xbar.
790 cpuSidePort->schedTimingResp(pkt, request_time, true);
791
792 // If an outstanding request is in progress (we found an
793 // MSHR) this is set to null
794 pkt = pf;
795 }
796
797 if (mshr) {
798 /// MSHR hit
799 /// @note writebacks will be checked in getNextMSHR()
800 /// for any conflicting requests to the same block
801
802 //@todo remove hw_pf here
803
804 // Coalesce unless it was a software prefetch (see above).
805 if (pkt) {
768 assert(pkt->cmd != MemCmd::Writeback);
769 // CleanEvicts corresponding to blocks which have outstanding
770 // requests in MSHRs can be deleted here.
806 assert(!pkt->isWriteback());
807 // CleanEvicts corresponding to blocks which have
808 // outstanding requests in MSHRs are simply sunk here
771 if (pkt->cmd == MemCmd::CleanEvict) {
772 pendingDelete.reset(pkt);
773 } else {
774 DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx size %d\n",
775 __func__, pkt->cmdString(), pkt->getAddr(),
776 pkt->getSize());
777
778 assert(pkt->req->masterId() < system->maxMasters());
779 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
780 if (mshr->threadNum != 0/*pkt->req->threadId()*/) {
781 mshr->threadNum = -1;
782 }
783 // We use forward_time here because it is the same
784 // considering new targets. We have multiple
785 // requests for the same address here. It
786 // specifies the latency to allocate an internal
787 // buffer and to schedule an event to the queued
788 // port and also takes into account the additional
789 // delay of the xbar.
790 mshr->allocateTarget(pkt, forward_time, order++,
791 allocOnFill(pkt->cmd));
792 if (mshr->getNumTargets() == numTarget) {
793 noTargetMSHR = mshr;
794 setBlocked(Blocked_NoTargets);
795 // need to be careful with this... if this mshr isn't
796 // ready yet (i.e. time > curTick()), we don't want to
797 // move it ahead of mshrs that are ready
798 // mshrQueue.moveToFront(mshr);
799 }
800 }
801 // We should call the prefetcher reguardless if the request is
802 // satisfied or not, reguardless if the request is in the MSHR or
803 // not. The request could be a ReadReq hit, but still not
804 // satisfied (potentially because of a prior write to the same
805 // cache line. So, even when not satisfied, tehre is an MSHR
806 // already allocated for this, we need to let the prefetcher know
807 // about the request
808 if (prefetcher) {
809 // Don't notify on SWPrefetch
810 if (!pkt->cmd.isSWPrefetch())
811 next_pf_time = prefetcher->notify(pkt);
812 }
813 }
814 } else {
815 // no MSHR
816 assert(pkt->req->masterId() < system->maxMasters());
817 if (pkt->req->isUncacheable()) {
818 mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
819 } else {
820 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
821 }
822
809 if (pkt->cmd == MemCmd::CleanEvict) {
810 pendingDelete.reset(pkt);
811 } else {
812 DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx size %d\n",
813 __func__, pkt->cmdString(), pkt->getAddr(),
814 pkt->getSize());
815
816 assert(pkt->req->masterId() < system->maxMasters());
817 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
818 if (mshr->threadNum != 0/*pkt->req->threadId()*/) {
819 mshr->threadNum = -1;
820 }
821 // We use forward_time here because it is the same
822 // considering new targets. We have multiple
823 // requests for the same address here. It
824 // specifies the latency to allocate an internal
825 // buffer and to schedule an event to the queued
826 // port and also takes into account the additional
827 // delay of the xbar.
828 mshr->allocateTarget(pkt, forward_time, order++,
829 allocOnFill(pkt->cmd));
830 if (mshr->getNumTargets() == numTarget) {
831 noTargetMSHR = mshr;
832 setBlocked(Blocked_NoTargets);
833 // need to be careful with this... if this mshr isn't
834 // ready yet (i.e. time > curTick()), we don't want to
835 // move it ahead of mshrs that are ready
836 // mshrQueue.moveToFront(mshr);
837 }
838 }
839 // We should call the prefetcher reguardless if the request is
840 // satisfied or not, reguardless if the request is in the MSHR or
841 // not. The request could be a ReadReq hit, but still not
842 // satisfied (potentially because of a prior write to the same
843 // cache line. So, even when not satisfied, tehre is an MSHR
844 // already allocated for this, we need to let the prefetcher know
845 // about the request
846 if (prefetcher) {
847 // Don't notify on SWPrefetch
848 if (!pkt->cmd.isSWPrefetch())
849 next_pf_time = prefetcher->notify(pkt);
850 }
851 }
852 } else {
853 // no MSHR
854 assert(pkt->req->masterId() < system->maxMasters());
855 if (pkt->req->isUncacheable()) {
856 mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
857 } else {
858 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
859 }
860
823 if (pkt->evictingBlock() ||
861 if (pkt->isEviction() ||
824 (pkt->req->isUncacheable() && pkt->isWrite())) {
825 // We use forward_time here because there is an
826 // uncached memory write, forwarded to WriteBuffer.
827 allocateWriteBuffer(pkt, forward_time);
828 } else {
829 if (blk && blk->isValid()) {
830 // should have flushed and have no valid block
831 assert(!pkt->req->isUncacheable());
832
833 // If we have a write miss to a valid block, we
834 // need to mark the block non-readable. Otherwise
835 // if we allow reads while there's an outstanding
836 // write miss, the read could return stale data
837 // out of the cache block... a more aggressive
838 // system could detect the overlap (if any) and
839 // forward data out of the MSHRs, but we don't do
840 // that yet. Note that we do need to leave the
841 // block valid so that it stays in the cache, in
842 // case we get an upgrade response (and hence no
843 // new data) when the write miss completes.
844 // As long as CPUs do proper store/load forwarding
845 // internally, and have a sufficiently weak memory
846 // model, this is probably unnecessary, but at some
847 // point it must have seemed like we needed it...
848 assert(pkt->needsExclusive());
849 assert(!blk->isWritable());
850 blk->status &= ~BlkReadable;
851 }
852 // Here we are using forward_time, modelling the latency of
853 // a miss (outbound) just as forwardLatency, neglecting the
854 // lookupLatency component.
855 allocateMissBuffer(pkt, forward_time);
856 }
857
858 if (prefetcher) {
859 // Don't notify on SWPrefetch
860 if (!pkt->cmd.isSWPrefetch())
861 next_pf_time = prefetcher->notify(pkt);
862 }
863 }
864 }
865
866 if (next_pf_time != MaxTick)
867 schedMemSideSendEvent(next_pf_time);
868
869 return true;
870}
871
872
873// See comment in cache.hh.
874PacketPtr
875Cache::getBusPacket(PacketPtr cpu_pkt, CacheBlk *blk,
876 bool needsExclusive) const
877{
878 bool blkValid = blk && blk->isValid();
879
880 if (cpu_pkt->req->isUncacheable()) {
881 // note that at the point we see the uncacheable request we
882 // flush any block, but there could be an outstanding MSHR,
883 // and the cache could have filled again before we actually
884 // send out the forwarded uncacheable request (blk could thus
885 // be non-null)
886 return NULL;
887 }
888
889 if (!blkValid &&
890 (cpu_pkt->isUpgrade() ||
862 (pkt->req->isUncacheable() && pkt->isWrite())) {
863 // We use forward_time here because there is an
864 // uncached memory write, forwarded to WriteBuffer.
865 allocateWriteBuffer(pkt, forward_time);
866 } else {
867 if (blk && blk->isValid()) {
868 // should have flushed and have no valid block
869 assert(!pkt->req->isUncacheable());
870
871 // If we have a write miss to a valid block, we
872 // need to mark the block non-readable. Otherwise
873 // if we allow reads while there's an outstanding
874 // write miss, the read could return stale data
875 // out of the cache block... a more aggressive
876 // system could detect the overlap (if any) and
877 // forward data out of the MSHRs, but we don't do
878 // that yet. Note that we do need to leave the
879 // block valid so that it stays in the cache, in
880 // case we get an upgrade response (and hence no
881 // new data) when the write miss completes.
882 // As long as CPUs do proper store/load forwarding
883 // internally, and have a sufficiently weak memory
884 // model, this is probably unnecessary, but at some
885 // point it must have seemed like we needed it...
886 assert(pkt->needsExclusive());
887 assert(!blk->isWritable());
888 blk->status &= ~BlkReadable;
889 }
890 // Here we are using forward_time, modelling the latency of
891 // a miss (outbound) just as forwardLatency, neglecting the
892 // lookupLatency component.
893 allocateMissBuffer(pkt, forward_time);
894 }
895
896 if (prefetcher) {
897 // Don't notify on SWPrefetch
898 if (!pkt->cmd.isSWPrefetch())
899 next_pf_time = prefetcher->notify(pkt);
900 }
901 }
902 }
903
904 if (next_pf_time != MaxTick)
905 schedMemSideSendEvent(next_pf_time);
906
907 return true;
908}
909
910
911// See comment in cache.hh.
912PacketPtr
913Cache::getBusPacket(PacketPtr cpu_pkt, CacheBlk *blk,
914 bool needsExclusive) const
915{
916 bool blkValid = blk && blk->isValid();
917
918 if (cpu_pkt->req->isUncacheable()) {
919 // note that at the point we see the uncacheable request we
920 // flush any block, but there could be an outstanding MSHR,
921 // and the cache could have filled again before we actually
922 // send out the forwarded uncacheable request (blk could thus
923 // be non-null)
924 return NULL;
925 }
926
927 if (!blkValid &&
928 (cpu_pkt->isUpgrade() ||
891 cpu_pkt->evictingBlock())) {
929 cpu_pkt->isEviction())) {
892 // Writebacks that weren't allocated in access() and upgrades
893 // from upper-level caches that missed completely just go
894 // through.
895 return NULL;
896 }
897
898 assert(cpu_pkt->needsResponse());
899
900 MemCmd cmd;
901 // @TODO make useUpgrades a parameter.
902 // Note that ownership protocols require upgrade, otherwise a
903 // write miss on a shared owned block will generate a ReadExcl,
904 // which will clobber the owned copy.
905 const bool useUpgrades = true;
906 if (blkValid && useUpgrades) {
907 // only reason to be here is that blk is shared
908 // (read-only) and we need exclusive
909 assert(needsExclusive);
910 assert(!blk->isWritable());
911 cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
912 } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
913 cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
914 // Even though this SC will fail, we still need to send out the
915 // request and get the data to supply it to other snoopers in the case
916 // where the determination the StoreCond fails is delayed due to
917 // all caches not being on the same local bus.
918 cmd = MemCmd::SCUpgradeFailReq;
919 } else if (cpu_pkt->cmd == MemCmd::WriteLineReq) {
920 // forward as invalidate to all other caches, this gives us
921 // the line in exclusive state, and invalidates all other
922 // copies
923 cmd = MemCmd::InvalidateReq;
924 } else {
925 // block is invalid
926 cmd = needsExclusive ? MemCmd::ReadExReq :
927 (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
928 }
929 PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
930
931 // if there are sharers in the upper levels, pass that info downstream
932 if (cpu_pkt->sharedAsserted()) {
933 // note that cpu_pkt may have spent a considerable time in the
934 // MSHR queue and that the information could possibly be out
935 // of date, however, there is no harm in conservatively
936 // assuming the block is shared
937 pkt->assertShared();
938 DPRINTF(Cache, "%s passing shared from %s to %s addr %#llx size %d\n",
939 __func__, cpu_pkt->cmdString(), pkt->cmdString(),
940 pkt->getAddr(), pkt->getSize());
941 }
942
943 // the packet should be block aligned
944 assert(pkt->getAddr() == blockAlign(pkt->getAddr()));
945
946 pkt->allocate();
947 DPRINTF(Cache, "%s created %s from %s for addr %#llx size %d\n",
948 __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(),
949 pkt->getSize());
950 return pkt;
951}
952
953
954Tick
955Cache::recvAtomic(PacketPtr pkt)
956{
957 // We are in atomic mode so we pay just for lookupLatency here.
958 Cycles lat = lookupLatency;
959 // @TODO: make this a parameter
960 bool last_level_cache = false;
961
962 // Forward the request if the system is in cache bypass mode.
963 if (system->bypassCaches())
964 return ticksToCycles(memSidePort->sendAtomic(pkt));
965
966 promoteWholeLineWrites(pkt);
967
968 if (pkt->memInhibitAsserted()) {
969 // have to invalidate ourselves and any lower caches even if
970 // upper cache will be responding
971 if (pkt->isInvalidate()) {
972 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
973 if (blk && blk->isValid()) {
974 tags->invalidate(blk);
975 blk->invalidate();
976 DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx (%s):"
977 " invalidating\n",
978 pkt->cmdString(), pkt->getAddr(),
979 pkt->isSecure() ? "s" : "ns");
980 }
981 if (!last_level_cache) {
982 DPRINTF(Cache, "forwarding mem-inhibited %s on %#llx (%s)\n",
983 pkt->cmdString(), pkt->getAddr(),
984 pkt->isSecure() ? "s" : "ns");
985 lat += ticksToCycles(memSidePort->sendAtomic(pkt));
986 }
987 } else {
988 DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx: not responding\n",
989 pkt->cmdString(), pkt->getAddr());
990 }
991
992 return lat * clockPeriod();
993 }
994
995 // should assert here that there are no outstanding MSHRs or
996 // writebacks... that would mean that someone used an atomic
997 // access in timing mode
998
999 CacheBlk *blk = NULL;
1000 PacketList writebacks;
1001 bool satisfied = access(pkt, blk, lat, writebacks);
1002
1003 // handle writebacks resulting from the access here to ensure they
1004 // logically proceed anything happening below
1005 doWritebacksAtomic(writebacks);
1006
1007 if (!satisfied) {
1008 // MISS
1009
1010 PacketPtr bus_pkt = getBusPacket(pkt, blk, pkt->needsExclusive());
1011
1012 bool is_forward = (bus_pkt == NULL);
1013
1014 if (is_forward) {
1015 // just forwarding the same request to the next level
1016 // no local cache operation involved
1017 bus_pkt = pkt;
1018 }
1019
1020 DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n",
1021 bus_pkt->cmdString(), bus_pkt->getAddr(),
1022 bus_pkt->isSecure() ? "s" : "ns");
1023
1024#if TRACING_ON
1025 CacheBlk::State old_state = blk ? blk->status : 0;
1026#endif
1027
1028 lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1029
1030 // We are now dealing with the response handling
1031 DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in state %i\n",
1032 bus_pkt->cmdString(), bus_pkt->getAddr(),
1033 bus_pkt->isSecure() ? "s" : "ns",
1034 old_state);
1035
1036 // If packet was a forward, the response (if any) is already
1037 // in place in the bus_pkt == pkt structure, so we don't need
1038 // to do anything. Otherwise, use the separate bus_pkt to
1039 // generate response to pkt and then delete it.
1040 if (!is_forward) {
1041 if (pkt->needsResponse()) {
1042 assert(bus_pkt->isResponse());
1043 if (bus_pkt->isError()) {
1044 pkt->makeAtomicResponse();
1045 pkt->copyError(bus_pkt);
1046 } else if (pkt->cmd == MemCmd::InvalidateReq) {
1047 if (blk) {
1048 // invalidate response to a cache that received
1049 // an invalidate request
1050 satisfyCpuSideRequest(pkt, blk);
1051 }
1052 } else if (pkt->cmd == MemCmd::WriteLineReq) {
1053 // note the use of pkt, not bus_pkt here.
1054
1055 // write-line request to the cache that promoted
1056 // the write to a whole line
1057 blk = handleFill(pkt, blk, writebacks,
1058 allocOnFill(pkt->cmd));
1059 satisfyCpuSideRequest(pkt, blk);
1060 } else if (bus_pkt->isRead() ||
1061 bus_pkt->cmd == MemCmd::UpgradeResp) {
1062 // we're updating cache state to allow us to
1063 // satisfy the upstream request from the cache
1064 blk = handleFill(bus_pkt, blk, writebacks,
1065 allocOnFill(pkt->cmd));
1066 satisfyCpuSideRequest(pkt, blk);
1067 } else {
1068 // we're satisfying the upstream request without
1069 // modifying cache state, e.g., a write-through
1070 pkt->makeAtomicResponse();
1071 }
1072 }
1073 delete bus_pkt;
1074 }
1075 }
1076
1077 // Note that we don't invoke the prefetcher at all in atomic mode.
1078 // It's not clear how to do it properly, particularly for
1079 // prefetchers that aggressively generate prefetch candidates and
1080 // rely on bandwidth contention to throttle them; these will tend
1081 // to pollute the cache in atomic mode since there is no bandwidth
1082 // contention. If we ever do want to enable prefetching in atomic
1083 // mode, though, this is the place to do it... see timingAccess()
1084 // for an example (though we'd want to issue the prefetch(es)
1085 // immediately rather than calling requestMemSideBus() as we do
1086 // there).
1087
1088 // do any writebacks resulting from the response handling
1089 doWritebacksAtomic(writebacks);
1090
1091 // if we used temp block, check to see if its valid and if so
1092 // clear it out, but only do so after the call to recvAtomic is
1093 // finished so that any downstream observers (such as a snoop
1094 // filter), first see the fill, and only then see the eviction
1095 if (blk == tempBlock && tempBlock->isValid()) {
1096 // the atomic CPU calls recvAtomic for fetch and load/store
1097 // sequentuially, and we may already have a tempBlock
1098 // writeback from the fetch that we have not yet sent
1099 if (tempBlockWriteback) {
1100 // if that is the case, write the prevoius one back, and
1101 // do not schedule any new event
1102 writebackTempBlockAtomic();
1103 } else {
1104 // the writeback/clean eviction happens after the call to
1105 // recvAtomic has finished (but before any successive
1106 // calls), so that the response handling from the fill is
1107 // allowed to happen first
1108 schedule(writebackTempBlockAtomicEvent, curTick());
1109 }
1110
930 // Writebacks that weren't allocated in access() and upgrades
931 // from upper-level caches that missed completely just go
932 // through.
933 return NULL;
934 }
935
936 assert(cpu_pkt->needsResponse());
937
938 MemCmd cmd;
939 // @TODO make useUpgrades a parameter.
940 // Note that ownership protocols require upgrade, otherwise a
941 // write miss on a shared owned block will generate a ReadExcl,
942 // which will clobber the owned copy.
943 const bool useUpgrades = true;
944 if (blkValid && useUpgrades) {
945 // only reason to be here is that blk is shared
946 // (read-only) and we need exclusive
947 assert(needsExclusive);
948 assert(!blk->isWritable());
949 cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
950 } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
951 cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
952 // Even though this SC will fail, we still need to send out the
953 // request and get the data to supply it to other snoopers in the case
954 // where the determination the StoreCond fails is delayed due to
955 // all caches not being on the same local bus.
956 cmd = MemCmd::SCUpgradeFailReq;
957 } else if (cpu_pkt->cmd == MemCmd::WriteLineReq) {
958 // forward as invalidate to all other caches, this gives us
959 // the line in exclusive state, and invalidates all other
960 // copies
961 cmd = MemCmd::InvalidateReq;
962 } else {
963 // block is invalid
964 cmd = needsExclusive ? MemCmd::ReadExReq :
965 (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
966 }
967 PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
968
969 // if there are sharers in the upper levels, pass that info downstream
970 if (cpu_pkt->sharedAsserted()) {
971 // note that cpu_pkt may have spent a considerable time in the
972 // MSHR queue and that the information could possibly be out
973 // of date, however, there is no harm in conservatively
974 // assuming the block is shared
975 pkt->assertShared();
976 DPRINTF(Cache, "%s passing shared from %s to %s addr %#llx size %d\n",
977 __func__, cpu_pkt->cmdString(), pkt->cmdString(),
978 pkt->getAddr(), pkt->getSize());
979 }
980
981 // the packet should be block aligned
982 assert(pkt->getAddr() == blockAlign(pkt->getAddr()));
983
984 pkt->allocate();
985 DPRINTF(Cache, "%s created %s from %s for addr %#llx size %d\n",
986 __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(),
987 pkt->getSize());
988 return pkt;
989}
990
991
992Tick
993Cache::recvAtomic(PacketPtr pkt)
994{
995 // We are in atomic mode so we pay just for lookupLatency here.
996 Cycles lat = lookupLatency;
997 // @TODO: make this a parameter
998 bool last_level_cache = false;
999
1000 // Forward the request if the system is in cache bypass mode.
1001 if (system->bypassCaches())
1002 return ticksToCycles(memSidePort->sendAtomic(pkt));
1003
1004 promoteWholeLineWrites(pkt);
1005
1006 if (pkt->memInhibitAsserted()) {
1007 // have to invalidate ourselves and any lower caches even if
1008 // upper cache will be responding
1009 if (pkt->isInvalidate()) {
1010 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1011 if (blk && blk->isValid()) {
1012 tags->invalidate(blk);
1013 blk->invalidate();
1014 DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx (%s):"
1015 " invalidating\n",
1016 pkt->cmdString(), pkt->getAddr(),
1017 pkt->isSecure() ? "s" : "ns");
1018 }
1019 if (!last_level_cache) {
1020 DPRINTF(Cache, "forwarding mem-inhibited %s on %#llx (%s)\n",
1021 pkt->cmdString(), pkt->getAddr(),
1022 pkt->isSecure() ? "s" : "ns");
1023 lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1024 }
1025 } else {
1026 DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx: not responding\n",
1027 pkt->cmdString(), pkt->getAddr());
1028 }
1029
1030 return lat * clockPeriod();
1031 }
1032
1033 // should assert here that there are no outstanding MSHRs or
1034 // writebacks... that would mean that someone used an atomic
1035 // access in timing mode
1036
1037 CacheBlk *blk = NULL;
1038 PacketList writebacks;
1039 bool satisfied = access(pkt, blk, lat, writebacks);
1040
1041 // handle writebacks resulting from the access here to ensure they
1042 // logically proceed anything happening below
1043 doWritebacksAtomic(writebacks);
1044
1045 if (!satisfied) {
1046 // MISS
1047
1048 PacketPtr bus_pkt = getBusPacket(pkt, blk, pkt->needsExclusive());
1049
1050 bool is_forward = (bus_pkt == NULL);
1051
1052 if (is_forward) {
1053 // just forwarding the same request to the next level
1054 // no local cache operation involved
1055 bus_pkt = pkt;
1056 }
1057
1058 DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n",
1059 bus_pkt->cmdString(), bus_pkt->getAddr(),
1060 bus_pkt->isSecure() ? "s" : "ns");
1061
1062#if TRACING_ON
1063 CacheBlk::State old_state = blk ? blk->status : 0;
1064#endif
1065
1066 lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1067
1068 // We are now dealing with the response handling
1069 DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in state %i\n",
1070 bus_pkt->cmdString(), bus_pkt->getAddr(),
1071 bus_pkt->isSecure() ? "s" : "ns",
1072 old_state);
1073
1074 // If packet was a forward, the response (if any) is already
1075 // in place in the bus_pkt == pkt structure, so we don't need
1076 // to do anything. Otherwise, use the separate bus_pkt to
1077 // generate response to pkt and then delete it.
1078 if (!is_forward) {
1079 if (pkt->needsResponse()) {
1080 assert(bus_pkt->isResponse());
1081 if (bus_pkt->isError()) {
1082 pkt->makeAtomicResponse();
1083 pkt->copyError(bus_pkt);
1084 } else if (pkt->cmd == MemCmd::InvalidateReq) {
1085 if (blk) {
1086 // invalidate response to a cache that received
1087 // an invalidate request
1088 satisfyCpuSideRequest(pkt, blk);
1089 }
1090 } else if (pkt->cmd == MemCmd::WriteLineReq) {
1091 // note the use of pkt, not bus_pkt here.
1092
1093 // write-line request to the cache that promoted
1094 // the write to a whole line
1095 blk = handleFill(pkt, blk, writebacks,
1096 allocOnFill(pkt->cmd));
1097 satisfyCpuSideRequest(pkt, blk);
1098 } else if (bus_pkt->isRead() ||
1099 bus_pkt->cmd == MemCmd::UpgradeResp) {
1100 // we're updating cache state to allow us to
1101 // satisfy the upstream request from the cache
1102 blk = handleFill(bus_pkt, blk, writebacks,
1103 allocOnFill(pkt->cmd));
1104 satisfyCpuSideRequest(pkt, blk);
1105 } else {
1106 // we're satisfying the upstream request without
1107 // modifying cache state, e.g., a write-through
1108 pkt->makeAtomicResponse();
1109 }
1110 }
1111 delete bus_pkt;
1112 }
1113 }
1114
1115 // Note that we don't invoke the prefetcher at all in atomic mode.
1116 // It's not clear how to do it properly, particularly for
1117 // prefetchers that aggressively generate prefetch candidates and
1118 // rely on bandwidth contention to throttle them; these will tend
1119 // to pollute the cache in atomic mode since there is no bandwidth
1120 // contention. If we ever do want to enable prefetching in atomic
1121 // mode, though, this is the place to do it... see timingAccess()
1122 // for an example (though we'd want to issue the prefetch(es)
1123 // immediately rather than calling requestMemSideBus() as we do
1124 // there).
1125
1126 // do any writebacks resulting from the response handling
1127 doWritebacksAtomic(writebacks);
1128
1129 // if we used temp block, check to see if its valid and if so
1130 // clear it out, but only do so after the call to recvAtomic is
1131 // finished so that any downstream observers (such as a snoop
1132 // filter), first see the fill, and only then see the eviction
1133 if (blk == tempBlock && tempBlock->isValid()) {
1134 // the atomic CPU calls recvAtomic for fetch and load/store
1135 // sequentuially, and we may already have a tempBlock
1136 // writeback from the fetch that we have not yet sent
1137 if (tempBlockWriteback) {
1138 // if that is the case, write the prevoius one back, and
1139 // do not schedule any new event
1140 writebackTempBlockAtomic();
1141 } else {
1142 // the writeback/clean eviction happens after the call to
1143 // recvAtomic has finished (but before any successive
1144 // calls), so that the response handling from the fill is
1145 // allowed to happen first
1146 schedule(writebackTempBlockAtomicEvent, curTick());
1147 }
1148
1111 tempBlockWriteback = blk->isDirty() ? writebackBlk(blk) :
1112 cleanEvictBlk(blk);
1149 tempBlockWriteback = (blk->isDirty() || writebackClean) ?
1150 writebackBlk(blk) : cleanEvictBlk(blk);
1113 blk->invalidate();
1114 }
1115
1116 if (pkt->needsResponse()) {
1117 pkt->makeAtomicResponse();
1118 }
1119
1120 return lat * clockPeriod();
1121}
1122
1123
1124void
1125Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1126{
1127 if (system->bypassCaches()) {
1128 // Packets from the memory side are snoop request and
1129 // shouldn't happen in bypass mode.
1130 assert(fromCpuSide);
1131
1132 // The cache should be flushed if we are in cache bypass mode,
1133 // so we don't need to check if we need to update anything.
1134 memSidePort->sendFunctional(pkt);
1135 return;
1136 }
1137
1138 Addr blk_addr = blockAlign(pkt->getAddr());
1139 bool is_secure = pkt->isSecure();
1140 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1141 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1142
1143 pkt->pushLabel(name());
1144
1145 CacheBlkPrintWrapper cbpw(blk);
1146
1147 // Note that just because an L2/L3 has valid data doesn't mean an
1148 // L1 doesn't have a more up-to-date modified copy that still
1149 // needs to be found. As a result we always update the request if
1150 // we have it, but only declare it satisfied if we are the owner.
1151
1152 // see if we have data at all (owned or otherwise)
1153 bool have_data = blk && blk->isValid()
1154 && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1155 blk->data);
1156
1157 // data we have is dirty if marked as such or if valid & ownership
1158 // pending due to outstanding UpgradeReq
1159 bool have_dirty =
1160 have_data && (blk->isDirty() ||
1161 (mshr && mshr->inService && mshr->isPendingDirty()));
1162
1163 bool done = have_dirty
1164 || cpuSidePort->checkFunctional(pkt)
1165 || mshrQueue.checkFunctional(pkt, blk_addr)
1166 || writeBuffer.checkFunctional(pkt, blk_addr)
1167 || memSidePort->checkFunctional(pkt);
1168
1169 DPRINTF(Cache, "functional %s %#llx (%s) %s%s%s\n",
1170 pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns",
1171 (blk && blk->isValid()) ? "valid " : "",
1172 have_data ? "data " : "", done ? "done " : "");
1173
1174 // We're leaving the cache, so pop cache->name() label
1175 pkt->popLabel();
1176
1177 if (done) {
1178 pkt->makeResponse();
1179 } else {
1180 // if it came as a request from the CPU side then make sure it
1181 // continues towards the memory side
1182 if (fromCpuSide) {
1183 memSidePort->sendFunctional(pkt);
1184 } else if (forwardSnoops && cpuSidePort->isSnooping()) {
1185 // if it came from the memory side, it must be a snoop request
1186 // and we should only forward it if we are forwarding snoops
1187 cpuSidePort->sendFunctionalSnoop(pkt);
1188 }
1189 }
1190}
1191
1192
1193/////////////////////////////////////////////////////
1194//
1195// Response handling: responses from the memory side
1196//
1197/////////////////////////////////////////////////////
1198
1199
1200void
1201Cache::recvTimingResp(PacketPtr pkt)
1202{
1203 assert(pkt->isResponse());
1204
1205 // all header delay should be paid for by the crossbar, unless
1206 // this is a prefetch response from above
1207 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1208 "%s saw a non-zero packet delay\n", name());
1209
1210 MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
1211 bool is_error = pkt->isError();
1212
1213 assert(mshr);
1214
1215 if (is_error) {
1216 DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), "
1217 "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns",
1218 pkt->cmdString());
1219 }
1220
1221 DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n",
1222 pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1223 pkt->isSecure() ? "s" : "ns");
1224
1225 MSHRQueue *mq = mshr->queue;
1226 bool wasFull = mq->isFull();
1227
1228 if (mshr == noTargetMSHR) {
1229 // we always clear at least one target
1230 clearBlocked(Blocked_NoTargets);
1231 noTargetMSHR = NULL;
1232 }
1233
1234 // Initial target is used just for stats
1235 MSHR::Target *initial_tgt = mshr->getTarget();
1236 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1237 Tick miss_latency = curTick() - initial_tgt->recvTime;
1238 PacketList writebacks;
1239 // We need forward_time here because we have a call of
1240 // allocateWriteBuffer() that need this parameter to specify the
1241 // time to request the bus. In this case we use forward latency
1242 // because there is a writeback. We pay also here for headerDelay
1243 // that is charged of bus latencies if the packet comes from the
1244 // bus.
1245 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1246
1247 if (pkt->req->isUncacheable()) {
1248 assert(pkt->req->masterId() < system->maxMasters());
1249 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1250 miss_latency;
1251 } else {
1252 assert(pkt->req->masterId() < system->maxMasters());
1253 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1254 miss_latency;
1255 }
1256
1257 // upgrade deferred targets if we got exclusive
1258 if (!pkt->sharedAsserted()) {
1259 mshr->promoteExclusive();
1260 }
1261
1262 bool is_fill = !mshr->isForward &&
1263 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1264
1265 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1266
1267 if (is_fill && !is_error) {
1268 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1269 pkt->getAddr());
1270
1271 blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill);
1272 assert(blk != NULL);
1273 }
1274
1275 // allow invalidation responses originating from write-line
1276 // requests to be discarded
1277 bool is_invalidate = pkt->isInvalidate();
1278
1279 // First offset for critical word first calculations
1280 int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1281
1282 while (mshr->hasTargets()) {
1283 MSHR::Target *target = mshr->getTarget();
1284 Packet *tgt_pkt = target->pkt;
1285
1286 switch (target->source) {
1287 case MSHR::Target::FromCPU:
1288 Tick completion_time;
1289 // Here we charge on completion_time the delay of the xbar if the
1290 // packet comes from it, charged on headerDelay.
1291 completion_time = pkt->headerDelay;
1292
1293 // Software prefetch handling for cache closest to core
1294 if (tgt_pkt->cmd.isSWPrefetch()) {
1295 // a software prefetch would have already been ack'd immediately
1296 // with dummy data so the core would be able to retire it.
1297 // this request completes right here, so we deallocate it.
1298 delete tgt_pkt->req;
1299 delete tgt_pkt;
1300 break; // skip response
1301 }
1302
1303 // unlike the other packet flows, where data is found in other
1304 // caches or memory and brought back, write-line requests always
1305 // have the data right away, so the above check for "is fill?"
1306 // cannot actually be determined until examining the stored MSHR
1307 // state. We "catch up" with that logic here, which is duplicated
1308 // from above.
1309 if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1310 assert(!is_error);
1311 // we got the block in exclusive state, so promote any
1312 // deferred targets if possible
1313 mshr->promoteExclusive();
1314 // NB: we use the original packet here and not the response!
1315 blk = handleFill(tgt_pkt, blk, writebacks, mshr->allocOnFill);
1316 assert(blk != NULL);
1317
1318 // treat as a fill, and discard the invalidation
1319 // response
1320 is_fill = true;
1321 is_invalidate = false;
1322 }
1323
1324 if (is_fill) {
1325 satisfyCpuSideRequest(tgt_pkt, blk,
1326 true, mshr->hasPostDowngrade());
1327
1328 // How many bytes past the first request is this one
1329 int transfer_offset =
1330 tgt_pkt->getOffset(blkSize) - initial_offset;
1331 if (transfer_offset < 0) {
1332 transfer_offset += blkSize;
1333 }
1334
1335 // If not critical word (offset) return payloadDelay.
1336 // responseLatency is the latency of the return path
1337 // from lower level caches/memory to an upper level cache or
1338 // the core.
1339 completion_time += clockEdge(responseLatency) +
1340 (transfer_offset ? pkt->payloadDelay : 0);
1341
1342 assert(!tgt_pkt->req->isUncacheable());
1343
1344 assert(tgt_pkt->req->masterId() < system->maxMasters());
1345 missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1346 completion_time - target->recvTime;
1347 } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1348 // failed StoreCond upgrade
1349 assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1350 tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1351 tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1352 // responseLatency is the latency of the return path
1353 // from lower level caches/memory to an upper level cache or
1354 // the core.
1355 completion_time += clockEdge(responseLatency) +
1356 pkt->payloadDelay;
1357 tgt_pkt->req->setExtraData(0);
1358 } else {
1359 // not a cache fill, just forwarding response
1360 // responseLatency is the latency of the return path
1361 // from lower level cahces/memory to the core.
1362 completion_time += clockEdge(responseLatency) +
1363 pkt->payloadDelay;
1364 if (pkt->isRead() && !is_error) {
1365 // sanity check
1366 assert(pkt->getAddr() == tgt_pkt->getAddr());
1367 assert(pkt->getSize() >= tgt_pkt->getSize());
1368
1369 tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1370 }
1371 }
1372 tgt_pkt->makeTimingResponse();
1373 // if this packet is an error copy that to the new packet
1374 if (is_error)
1375 tgt_pkt->copyError(pkt);
1376 if (tgt_pkt->cmd == MemCmd::ReadResp &&
1377 (is_invalidate || mshr->hasPostInvalidate())) {
1378 // If intermediate cache got ReadRespWithInvalidate,
1379 // propagate that. Response should not have
1380 // isInvalidate() set otherwise.
1381 tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1382 DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n",
1383 __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr());
1384 }
1385 // Reset the bus additional time as it is now accounted for
1386 tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1387 cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
1388 break;
1389
1390 case MSHR::Target::FromPrefetcher:
1391 assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1392 if (blk)
1393 blk->status |= BlkHWPrefetched;
1394 delete tgt_pkt->req;
1395 delete tgt_pkt;
1396 break;
1397
1398 case MSHR::Target::FromSnoop:
1399 // I don't believe that a snoop can be in an error state
1400 assert(!is_error);
1401 // response to snoop request
1402 DPRINTF(Cache, "processing deferred snoop...\n");
1403 assert(!(is_invalidate && !mshr->hasPostInvalidate()));
1404 handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1405 break;
1406
1407 default:
1408 panic("Illegal target->source enum %d\n", target->source);
1409 }
1410
1411 mshr->popTarget();
1412 }
1413
1414 if (blk && blk->isValid()) {
1415 // an invalidate response stemming from a write line request
1416 // should not invalidate the block, so check if the
1417 // invalidation should be discarded
1418 if (is_invalidate || mshr->hasPostInvalidate()) {
1419 invalidateBlock(blk);
1420 } else if (mshr->hasPostDowngrade()) {
1421 blk->status &= ~BlkWritable;
1422 }
1423 }
1424
1425 if (mshr->promoteDeferredTargets()) {
1426 // avoid later read getting stale data while write miss is
1427 // outstanding.. see comment in timingAccess()
1428 if (blk) {
1429 blk->status &= ~BlkReadable;
1430 }
1431 mq = mshr->queue;
1432 mq->markPending(mshr);
1433 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1434 } else {
1435 mq->deallocate(mshr);
1436 if (wasFull && !mq->isFull()) {
1437 clearBlocked((BlockedCause)mq->index);
1438 }
1439
1440 // Request the bus for a prefetch if this deallocation freed enough
1441 // MSHRs for a prefetch to take place
1442 if (prefetcher && mq == &mshrQueue && mshrQueue.canPrefetch()) {
1443 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1444 clockEdge());
1445 if (next_pf_time != MaxTick)
1446 schedMemSideSendEvent(next_pf_time);
1447 }
1448 }
1449 // reset the xbar additional timinig as it is now accounted for
1450 pkt->headerDelay = pkt->payloadDelay = 0;
1451
1452 // copy writebacks to write buffer
1453 doWritebacks(writebacks, forward_time);
1454
1455 // if we used temp block, check to see if its valid and then clear it out
1456 if (blk == tempBlock && tempBlock->isValid()) {
1457 // We use forwardLatency here because we are copying
1458 // Writebacks/CleanEvicts to write buffer. It specifies the latency to
1459 // allocate an internal buffer and to schedule an event to the
1460 // queued port.
1151 blk->invalidate();
1152 }
1153
1154 if (pkt->needsResponse()) {
1155 pkt->makeAtomicResponse();
1156 }
1157
1158 return lat * clockPeriod();
1159}
1160
1161
1162void
1163Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1164{
1165 if (system->bypassCaches()) {
1166 // Packets from the memory side are snoop request and
1167 // shouldn't happen in bypass mode.
1168 assert(fromCpuSide);
1169
1170 // The cache should be flushed if we are in cache bypass mode,
1171 // so we don't need to check if we need to update anything.
1172 memSidePort->sendFunctional(pkt);
1173 return;
1174 }
1175
1176 Addr blk_addr = blockAlign(pkt->getAddr());
1177 bool is_secure = pkt->isSecure();
1178 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1179 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1180
1181 pkt->pushLabel(name());
1182
1183 CacheBlkPrintWrapper cbpw(blk);
1184
1185 // Note that just because an L2/L3 has valid data doesn't mean an
1186 // L1 doesn't have a more up-to-date modified copy that still
1187 // needs to be found. As a result we always update the request if
1188 // we have it, but only declare it satisfied if we are the owner.
1189
1190 // see if we have data at all (owned or otherwise)
1191 bool have_data = blk && blk->isValid()
1192 && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1193 blk->data);
1194
1195 // data we have is dirty if marked as such or if valid & ownership
1196 // pending due to outstanding UpgradeReq
1197 bool have_dirty =
1198 have_data && (blk->isDirty() ||
1199 (mshr && mshr->inService && mshr->isPendingDirty()));
1200
1201 bool done = have_dirty
1202 || cpuSidePort->checkFunctional(pkt)
1203 || mshrQueue.checkFunctional(pkt, blk_addr)
1204 || writeBuffer.checkFunctional(pkt, blk_addr)
1205 || memSidePort->checkFunctional(pkt);
1206
1207 DPRINTF(Cache, "functional %s %#llx (%s) %s%s%s\n",
1208 pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns",
1209 (blk && blk->isValid()) ? "valid " : "",
1210 have_data ? "data " : "", done ? "done " : "");
1211
1212 // We're leaving the cache, so pop cache->name() label
1213 pkt->popLabel();
1214
1215 if (done) {
1216 pkt->makeResponse();
1217 } else {
1218 // if it came as a request from the CPU side then make sure it
1219 // continues towards the memory side
1220 if (fromCpuSide) {
1221 memSidePort->sendFunctional(pkt);
1222 } else if (forwardSnoops && cpuSidePort->isSnooping()) {
1223 // if it came from the memory side, it must be a snoop request
1224 // and we should only forward it if we are forwarding snoops
1225 cpuSidePort->sendFunctionalSnoop(pkt);
1226 }
1227 }
1228}
1229
1230
1231/////////////////////////////////////////////////////
1232//
1233// Response handling: responses from the memory side
1234//
1235/////////////////////////////////////////////////////
1236
1237
1238void
1239Cache::recvTimingResp(PacketPtr pkt)
1240{
1241 assert(pkt->isResponse());
1242
1243 // all header delay should be paid for by the crossbar, unless
1244 // this is a prefetch response from above
1245 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1246 "%s saw a non-zero packet delay\n", name());
1247
1248 MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
1249 bool is_error = pkt->isError();
1250
1251 assert(mshr);
1252
1253 if (is_error) {
1254 DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), "
1255 "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns",
1256 pkt->cmdString());
1257 }
1258
1259 DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n",
1260 pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1261 pkt->isSecure() ? "s" : "ns");
1262
1263 MSHRQueue *mq = mshr->queue;
1264 bool wasFull = mq->isFull();
1265
1266 if (mshr == noTargetMSHR) {
1267 // we always clear at least one target
1268 clearBlocked(Blocked_NoTargets);
1269 noTargetMSHR = NULL;
1270 }
1271
1272 // Initial target is used just for stats
1273 MSHR::Target *initial_tgt = mshr->getTarget();
1274 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1275 Tick miss_latency = curTick() - initial_tgt->recvTime;
1276 PacketList writebacks;
1277 // We need forward_time here because we have a call of
1278 // allocateWriteBuffer() that need this parameter to specify the
1279 // time to request the bus. In this case we use forward latency
1280 // because there is a writeback. We pay also here for headerDelay
1281 // that is charged of bus latencies if the packet comes from the
1282 // bus.
1283 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1284
1285 if (pkt->req->isUncacheable()) {
1286 assert(pkt->req->masterId() < system->maxMasters());
1287 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1288 miss_latency;
1289 } else {
1290 assert(pkt->req->masterId() < system->maxMasters());
1291 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1292 miss_latency;
1293 }
1294
1295 // upgrade deferred targets if we got exclusive
1296 if (!pkt->sharedAsserted()) {
1297 mshr->promoteExclusive();
1298 }
1299
1300 bool is_fill = !mshr->isForward &&
1301 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1302
1303 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1304
1305 if (is_fill && !is_error) {
1306 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1307 pkt->getAddr());
1308
1309 blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill);
1310 assert(blk != NULL);
1311 }
1312
1313 // allow invalidation responses originating from write-line
1314 // requests to be discarded
1315 bool is_invalidate = pkt->isInvalidate();
1316
1317 // First offset for critical word first calculations
1318 int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1319
1320 while (mshr->hasTargets()) {
1321 MSHR::Target *target = mshr->getTarget();
1322 Packet *tgt_pkt = target->pkt;
1323
1324 switch (target->source) {
1325 case MSHR::Target::FromCPU:
1326 Tick completion_time;
1327 // Here we charge on completion_time the delay of the xbar if the
1328 // packet comes from it, charged on headerDelay.
1329 completion_time = pkt->headerDelay;
1330
1331 // Software prefetch handling for cache closest to core
1332 if (tgt_pkt->cmd.isSWPrefetch()) {
1333 // a software prefetch would have already been ack'd immediately
1334 // with dummy data so the core would be able to retire it.
1335 // this request completes right here, so we deallocate it.
1336 delete tgt_pkt->req;
1337 delete tgt_pkt;
1338 break; // skip response
1339 }
1340
1341 // unlike the other packet flows, where data is found in other
1342 // caches or memory and brought back, write-line requests always
1343 // have the data right away, so the above check for "is fill?"
1344 // cannot actually be determined until examining the stored MSHR
1345 // state. We "catch up" with that logic here, which is duplicated
1346 // from above.
1347 if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1348 assert(!is_error);
1349 // we got the block in exclusive state, so promote any
1350 // deferred targets if possible
1351 mshr->promoteExclusive();
1352 // NB: we use the original packet here and not the response!
1353 blk = handleFill(tgt_pkt, blk, writebacks, mshr->allocOnFill);
1354 assert(blk != NULL);
1355
1356 // treat as a fill, and discard the invalidation
1357 // response
1358 is_fill = true;
1359 is_invalidate = false;
1360 }
1361
1362 if (is_fill) {
1363 satisfyCpuSideRequest(tgt_pkt, blk,
1364 true, mshr->hasPostDowngrade());
1365
1366 // How many bytes past the first request is this one
1367 int transfer_offset =
1368 tgt_pkt->getOffset(blkSize) - initial_offset;
1369 if (transfer_offset < 0) {
1370 transfer_offset += blkSize;
1371 }
1372
1373 // If not critical word (offset) return payloadDelay.
1374 // responseLatency is the latency of the return path
1375 // from lower level caches/memory to an upper level cache or
1376 // the core.
1377 completion_time += clockEdge(responseLatency) +
1378 (transfer_offset ? pkt->payloadDelay : 0);
1379
1380 assert(!tgt_pkt->req->isUncacheable());
1381
1382 assert(tgt_pkt->req->masterId() < system->maxMasters());
1383 missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1384 completion_time - target->recvTime;
1385 } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1386 // failed StoreCond upgrade
1387 assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1388 tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1389 tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1390 // responseLatency is the latency of the return path
1391 // from lower level caches/memory to an upper level cache or
1392 // the core.
1393 completion_time += clockEdge(responseLatency) +
1394 pkt->payloadDelay;
1395 tgt_pkt->req->setExtraData(0);
1396 } else {
1397 // not a cache fill, just forwarding response
1398 // responseLatency is the latency of the return path
1399 // from lower level cahces/memory to the core.
1400 completion_time += clockEdge(responseLatency) +
1401 pkt->payloadDelay;
1402 if (pkt->isRead() && !is_error) {
1403 // sanity check
1404 assert(pkt->getAddr() == tgt_pkt->getAddr());
1405 assert(pkt->getSize() >= tgt_pkt->getSize());
1406
1407 tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1408 }
1409 }
1410 tgt_pkt->makeTimingResponse();
1411 // if this packet is an error copy that to the new packet
1412 if (is_error)
1413 tgt_pkt->copyError(pkt);
1414 if (tgt_pkt->cmd == MemCmd::ReadResp &&
1415 (is_invalidate || mshr->hasPostInvalidate())) {
1416 // If intermediate cache got ReadRespWithInvalidate,
1417 // propagate that. Response should not have
1418 // isInvalidate() set otherwise.
1419 tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1420 DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n",
1421 __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr());
1422 }
1423 // Reset the bus additional time as it is now accounted for
1424 tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1425 cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
1426 break;
1427
1428 case MSHR::Target::FromPrefetcher:
1429 assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1430 if (blk)
1431 blk->status |= BlkHWPrefetched;
1432 delete tgt_pkt->req;
1433 delete tgt_pkt;
1434 break;
1435
1436 case MSHR::Target::FromSnoop:
1437 // I don't believe that a snoop can be in an error state
1438 assert(!is_error);
1439 // response to snoop request
1440 DPRINTF(Cache, "processing deferred snoop...\n");
1441 assert(!(is_invalidate && !mshr->hasPostInvalidate()));
1442 handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1443 break;
1444
1445 default:
1446 panic("Illegal target->source enum %d\n", target->source);
1447 }
1448
1449 mshr->popTarget();
1450 }
1451
1452 if (blk && blk->isValid()) {
1453 // an invalidate response stemming from a write line request
1454 // should not invalidate the block, so check if the
1455 // invalidation should be discarded
1456 if (is_invalidate || mshr->hasPostInvalidate()) {
1457 invalidateBlock(blk);
1458 } else if (mshr->hasPostDowngrade()) {
1459 blk->status &= ~BlkWritable;
1460 }
1461 }
1462
1463 if (mshr->promoteDeferredTargets()) {
1464 // avoid later read getting stale data while write miss is
1465 // outstanding.. see comment in timingAccess()
1466 if (blk) {
1467 blk->status &= ~BlkReadable;
1468 }
1469 mq = mshr->queue;
1470 mq->markPending(mshr);
1471 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1472 } else {
1473 mq->deallocate(mshr);
1474 if (wasFull && !mq->isFull()) {
1475 clearBlocked((BlockedCause)mq->index);
1476 }
1477
1478 // Request the bus for a prefetch if this deallocation freed enough
1479 // MSHRs for a prefetch to take place
1480 if (prefetcher && mq == &mshrQueue && mshrQueue.canPrefetch()) {
1481 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1482 clockEdge());
1483 if (next_pf_time != MaxTick)
1484 schedMemSideSendEvent(next_pf_time);
1485 }
1486 }
1487 // reset the xbar additional timinig as it is now accounted for
1488 pkt->headerDelay = pkt->payloadDelay = 0;
1489
1490 // copy writebacks to write buffer
1491 doWritebacks(writebacks, forward_time);
1492
1493 // if we used temp block, check to see if its valid and then clear it out
1494 if (blk == tempBlock && tempBlock->isValid()) {
1495 // We use forwardLatency here because we are copying
1496 // Writebacks/CleanEvicts to write buffer. It specifies the latency to
1497 // allocate an internal buffer and to schedule an event to the
1498 // queued port.
1461 if (blk->isDirty()) {
1499 if (blk->isDirty() || writebackClean) {
1462 PacketPtr wbPkt = writebackBlk(blk);
1463 allocateWriteBuffer(wbPkt, forward_time);
1464 // Set BLOCK_CACHED flag if cached above.
1465 if (isCachedAbove(wbPkt))
1466 wbPkt->setBlockCached();
1467 } else {
1468 PacketPtr wcPkt = cleanEvictBlk(blk);
1469 // Check to see if block is cached above. If not allocate
1470 // write buffer
1471 if (isCachedAbove(wcPkt))
1472 delete wcPkt;
1473 else
1474 allocateWriteBuffer(wcPkt, forward_time);
1475 }
1476 blk->invalidate();
1477 }
1478
1479 DPRINTF(Cache, "Leaving %s with %s for addr %#llx\n", __func__,
1480 pkt->cmdString(), pkt->getAddr());
1481 delete pkt;
1482}
1483
1484PacketPtr
1485Cache::writebackBlk(CacheBlk *blk)
1486{
1500 PacketPtr wbPkt = writebackBlk(blk);
1501 allocateWriteBuffer(wbPkt, forward_time);
1502 // Set BLOCK_CACHED flag if cached above.
1503 if (isCachedAbove(wbPkt))
1504 wbPkt->setBlockCached();
1505 } else {
1506 PacketPtr wcPkt = cleanEvictBlk(blk);
1507 // Check to see if block is cached above. If not allocate
1508 // write buffer
1509 if (isCachedAbove(wcPkt))
1510 delete wcPkt;
1511 else
1512 allocateWriteBuffer(wcPkt, forward_time);
1513 }
1514 blk->invalidate();
1515 }
1516
1517 DPRINTF(Cache, "Leaving %s with %s for addr %#llx\n", __func__,
1518 pkt->cmdString(), pkt->getAddr());
1519 delete pkt;
1520}
1521
1522PacketPtr
1523Cache::writebackBlk(CacheBlk *blk)
1524{
1487 chatty_assert(!isReadOnly, "Writeback from read-only cache");
1488 assert(blk && blk->isValid() && blk->isDirty());
1525 chatty_assert(!isReadOnly || writebackClean,
1526 "Writeback from read-only cache");
1527 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1489
1490 writebacks[Request::wbMasterId]++;
1491
1528
1529 writebacks[Request::wbMasterId]++;
1530
1492 Request *writebackReq =
1493 new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1494 Request::wbMasterId);
1531 Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set),
1532 blkSize, 0, Request::wbMasterId);
1495 if (blk->isSecure())
1533 if (blk->isSecure())
1496 writebackReq->setFlags(Request::SECURE);
1534 req->setFlags(Request::SECURE);
1497
1535
1498 writebackReq->taskId(blk->task_id);
1536 req->taskId(blk->task_id);
1499 blk->task_id= ContextSwitchTaskId::Unknown;
1500 blk->tickInserted = curTick();
1501
1537 blk->task_id= ContextSwitchTaskId::Unknown;
1538 blk->tickInserted = curTick();
1539
1502 PacketPtr writeback = new Packet(writebackReq, MemCmd::Writeback);
1540 PacketPtr pkt =
1541 new Packet(req, blk->isDirty() ?
1542 MemCmd::WritebackDirty : MemCmd::WritebackClean);
1543
1544 DPRINTF(Cache, "Create Writeback %#llx writable: %d, dirty: %d\n",
1545 pkt->getAddr(), blk->isWritable(), blk->isDirty());
1546
1503 if (blk->isWritable()) {
1504 // not asserting shared means we pass the block in modified
1505 // state, mark our own block non-writeable
1506 blk->status &= ~BlkWritable;
1507 } else {
1508 // we are in the owned state, tell the receiver
1547 if (blk->isWritable()) {
1548 // not asserting shared means we pass the block in modified
1549 // state, mark our own block non-writeable
1550 blk->status &= ~BlkWritable;
1551 } else {
1552 // we are in the owned state, tell the receiver
1509 writeback->assertShared();
1553 pkt->assertShared();
1510 }
1511
1554 }
1555
1512 writeback->allocate();
1513 std::memcpy(writeback->getPtr<uint8_t>(), blk->data, blkSize);
1514
1556 // make sure the block is not marked dirty
1515 blk->status &= ~BlkDirty;
1557 blk->status &= ~BlkDirty;
1516 return writeback;
1558
1559 pkt->allocate();
1560 std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize);
1561
1562 return pkt;
1517}
1518
1519PacketPtr
1520Cache::cleanEvictBlk(CacheBlk *blk)
1521{
1563}
1564
1565PacketPtr
1566Cache::cleanEvictBlk(CacheBlk *blk)
1567{
1568 assert(!writebackClean);
1522 assert(blk && blk->isValid() && !blk->isDirty());
1523 // Creating a zero sized write, a message to the snoop filter
1524 Request *req =
1525 new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1526 Request::wbMasterId);
1527 if (blk->isSecure())
1528 req->setFlags(Request::SECURE);
1529
1530 req->taskId(blk->task_id);
1531 blk->task_id = ContextSwitchTaskId::Unknown;
1532 blk->tickInserted = curTick();
1533
1534 PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1535 pkt->allocate();
1536 DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(),
1537 pkt->req->isInstFetch() ? " (ifetch)" : "",
1538 pkt->getAddr());
1539
1540 return pkt;
1541}
1542
1543void
1544Cache::memWriteback()
1545{
1546 CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1547 tags->forEachBlk(visitor);
1548}
1549
1550void
1551Cache::memInvalidate()
1552{
1553 CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1554 tags->forEachBlk(visitor);
1555}
1556
1557bool
1558Cache::isDirty() const
1559{
1560 CacheBlkIsDirtyVisitor visitor;
1561 tags->forEachBlk(visitor);
1562
1563 return visitor.isDirty();
1564}
1565
1566bool
1567Cache::writebackVisitor(CacheBlk &blk)
1568{
1569 if (blk.isDirty()) {
1570 assert(blk.isValid());
1571
1572 Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
1573 blkSize, 0, Request::funcMasterId);
1574 request.taskId(blk.task_id);
1575
1576 Packet packet(&request, MemCmd::WriteReq);
1577 packet.dataStatic(blk.data);
1578
1579 memSidePort->sendFunctional(&packet);
1580
1581 blk.status &= ~BlkDirty;
1582 }
1583
1584 return true;
1585}
1586
1587bool
1588Cache::invalidateVisitor(CacheBlk &blk)
1589{
1590
1591 if (blk.isDirty())
1592 warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1593
1594 if (blk.isValid()) {
1595 assert(!blk.isDirty());
1596 tags->invalidate(&blk);
1597 blk.invalidate();
1598 }
1599
1600 return true;
1601}
1602
1603CacheBlk*
1604Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1605{
1606 CacheBlk *blk = tags->findVictim(addr);
1607
1608 // It is valid to return NULL if there is no victim
1609 if (!blk)
1610 return nullptr;
1611
1612 if (blk->isValid()) {
1613 Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
1614 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1615 if (repl_mshr) {
1616 // must be an outstanding upgrade request
1617 // on a block we're about to replace...
1618 assert(!blk->isWritable() || blk->isDirty());
1619 assert(repl_mshr->needsExclusive());
1620 // too hard to replace block with transient state
1621 // allocation failed, block not inserted
1622 return NULL;
1623 } else {
1624 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx (%s): %s\n",
1625 repl_addr, blk->isSecure() ? "s" : "ns",
1626 addr, is_secure ? "s" : "ns",
1627 blk->isDirty() ? "writeback" : "clean");
1628
1629 // Will send up Writeback/CleanEvict snoops via isCachedAbove
1630 // when pushing this writeback list into the write buffer.
1569 assert(blk && blk->isValid() && !blk->isDirty());
1570 // Creating a zero sized write, a message to the snoop filter
1571 Request *req =
1572 new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1573 Request::wbMasterId);
1574 if (blk->isSecure())
1575 req->setFlags(Request::SECURE);
1576
1577 req->taskId(blk->task_id);
1578 blk->task_id = ContextSwitchTaskId::Unknown;
1579 blk->tickInserted = curTick();
1580
1581 PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1582 pkt->allocate();
1583 DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(),
1584 pkt->req->isInstFetch() ? " (ifetch)" : "",
1585 pkt->getAddr());
1586
1587 return pkt;
1588}
1589
1590void
1591Cache::memWriteback()
1592{
1593 CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1594 tags->forEachBlk(visitor);
1595}
1596
1597void
1598Cache::memInvalidate()
1599{
1600 CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1601 tags->forEachBlk(visitor);
1602}
1603
1604bool
1605Cache::isDirty() const
1606{
1607 CacheBlkIsDirtyVisitor visitor;
1608 tags->forEachBlk(visitor);
1609
1610 return visitor.isDirty();
1611}
1612
1613bool
1614Cache::writebackVisitor(CacheBlk &blk)
1615{
1616 if (blk.isDirty()) {
1617 assert(blk.isValid());
1618
1619 Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
1620 blkSize, 0, Request::funcMasterId);
1621 request.taskId(blk.task_id);
1622
1623 Packet packet(&request, MemCmd::WriteReq);
1624 packet.dataStatic(blk.data);
1625
1626 memSidePort->sendFunctional(&packet);
1627
1628 blk.status &= ~BlkDirty;
1629 }
1630
1631 return true;
1632}
1633
1634bool
1635Cache::invalidateVisitor(CacheBlk &blk)
1636{
1637
1638 if (blk.isDirty())
1639 warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1640
1641 if (blk.isValid()) {
1642 assert(!blk.isDirty());
1643 tags->invalidate(&blk);
1644 blk.invalidate();
1645 }
1646
1647 return true;
1648}
1649
1650CacheBlk*
1651Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1652{
1653 CacheBlk *blk = tags->findVictim(addr);
1654
1655 // It is valid to return NULL if there is no victim
1656 if (!blk)
1657 return nullptr;
1658
1659 if (blk->isValid()) {
1660 Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
1661 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1662 if (repl_mshr) {
1663 // must be an outstanding upgrade request
1664 // on a block we're about to replace...
1665 assert(!blk->isWritable() || blk->isDirty());
1666 assert(repl_mshr->needsExclusive());
1667 // too hard to replace block with transient state
1668 // allocation failed, block not inserted
1669 return NULL;
1670 } else {
1671 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx (%s): %s\n",
1672 repl_addr, blk->isSecure() ? "s" : "ns",
1673 addr, is_secure ? "s" : "ns",
1674 blk->isDirty() ? "writeback" : "clean");
1675
1676 // Will send up Writeback/CleanEvict snoops via isCachedAbove
1677 // when pushing this writeback list into the write buffer.
1631 if (blk->isDirty()) {
1678 if (blk->isDirty() || writebackClean) {
1632 // Save writeback packet for handling by caller
1633 writebacks.push_back(writebackBlk(blk));
1634 } else {
1635 writebacks.push_back(cleanEvictBlk(blk));
1636 }
1637 }
1638 }
1639
1640 return blk;
1641}
1642
1643void
1644Cache::invalidateBlock(CacheBlk *blk)
1645{
1646 if (blk != tempBlock)
1647 tags->invalidate(blk);
1648 blk->invalidate();
1649}
1650
1651// Note that the reason we return a list of writebacks rather than
1652// inserting them directly in the write buffer is that this function
1653// is called by both atomic and timing-mode accesses, and in atomic
1654// mode we don't mess with the write buffer (we just perform the
1655// writebacks atomically once the original request is complete).
1656CacheBlk*
1657Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1658 bool allocate)
1659{
1660 assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1661 Addr addr = pkt->getAddr();
1662 bool is_secure = pkt->isSecure();
1663#if TRACING_ON
1664 CacheBlk::State old_state = blk ? blk->status : 0;
1665#endif
1666
1667 // When handling a fill, discard any CleanEvicts for the
1668 // same address in write buffer.
1669 Addr M5_VAR_USED blk_addr = blockAlign(pkt->getAddr());
1670 std::vector<MSHR *> M5_VAR_USED wbs;
1671 assert (!writeBuffer.findMatches(blk_addr, is_secure, wbs));
1672
1673 if (blk == NULL) {
1674 // better have read new data...
1675 assert(pkt->hasData());
1676
1677 // only read responses and write-line requests have data;
1678 // note that we don't write the data here for write-line - that
1679 // happens in the subsequent satisfyCpuSideRequest.
1680 assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1681
1682 // need to do a replacement if allocating, otherwise we stick
1683 // with the temporary storage
1684 blk = allocate ? allocateBlock(addr, is_secure, writebacks) : NULL;
1685
1686 if (blk == NULL) {
1687 // No replaceable block or a mostly exclusive
1688 // cache... just use temporary storage to complete the
1689 // current request and then get rid of it
1690 assert(!tempBlock->isValid());
1691 blk = tempBlock;
1692 tempBlock->set = tags->extractSet(addr);
1693 tempBlock->tag = tags->extractTag(addr);
1694 // @todo: set security state as well...
1695 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1696 is_secure ? "s" : "ns");
1697 } else {
1698 tags->insertBlock(pkt, blk);
1699 }
1700
1701 // we should never be overwriting a valid block
1702 assert(!blk->isValid());
1703 } else {
1704 // existing block... probably an upgrade
1705 assert(blk->tag == tags->extractTag(addr));
1706 // either we're getting new data or the block should already be valid
1707 assert(pkt->hasData() || blk->isValid());
1708 // don't clear block status... if block is already dirty we
1709 // don't want to lose that
1710 }
1711
1712 if (is_secure)
1713 blk->status |= BlkSecure;
1714 blk->status |= BlkValid | BlkReadable;
1715
1716 // sanity check for whole-line writes, which should always be
1717 // marked as writable as part of the fill, and then later marked
1718 // dirty as part of satisfyCpuSideRequest
1719 if (pkt->cmd == MemCmd::WriteLineReq) {
1720 assert(!pkt->sharedAsserted());
1721 // at the moment other caches do not respond to the
1722 // invalidation requests corresponding to a whole-line write
1723 assert(!pkt->memInhibitAsserted());
1724 }
1725
1726 if (!pkt->sharedAsserted()) {
1727 // we could get non-shared responses from memory (rather than
1728 // a cache) even in a read-only cache, note that we set this
1729 // bit even for a read-only cache as we use it to represent
1730 // the exclusive state
1731 blk->status |= BlkWritable;
1732
1733 // If we got this via cache-to-cache transfer (i.e., from a
1734 // cache that was an owner) and took away that owner's copy,
1735 // then we need to write it back. Normally this happens
1736 // anyway as a side effect of getting a copy to write it, but
1737 // there are cases (such as failed store conditionals or
1738 // compare-and-swaps) where we'll demand an exclusive copy but
1739 // end up not writing it.
1740 if (pkt->memInhibitAsserted()) {
1741 blk->status |= BlkDirty;
1742
1743 chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1744 "in read-only cache %s\n", name());
1745 }
1746 }
1747
1748 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1749 addr, is_secure ? "s" : "ns", old_state, blk->print());
1750
1751 // if we got new data, copy it in (checking for a read response
1752 // and a response that has data is the same in the end)
1753 if (pkt->isRead()) {
1754 // sanity checks
1755 assert(pkt->hasData());
1756 assert(pkt->getSize() == blkSize);
1757
1758 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
1759 }
1760 // We pay for fillLatency here.
1761 blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1762 pkt->payloadDelay;
1763
1764 return blk;
1765}
1766
1767
1768/////////////////////////////////////////////////////
1769//
1770// Snoop path: requests coming in from the memory side
1771//
1772/////////////////////////////////////////////////////
1773
1774void
1775Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1776 bool already_copied, bool pending_inval)
1777{
1778 // sanity check
1779 assert(req_pkt->isRequest());
1780 assert(req_pkt->needsResponse());
1781
1782 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1783 req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize());
1784 // timing-mode snoop responses require a new packet, unless we
1785 // already made a copy...
1786 PacketPtr pkt = req_pkt;
1787 if (!already_copied)
1788 // do not clear flags, and allocate space for data if the
1789 // packet needs it (the only packets that carry data are read
1790 // responses)
1791 pkt = new Packet(req_pkt, false, req_pkt->isRead());
1792
1793 assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
1794 pkt->sharedAsserted());
1795 pkt->makeTimingResponse();
1796 if (pkt->isRead()) {
1797 pkt->setDataFromBlock(blk_data, blkSize);
1798 }
1799 if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
1800 // Assume we defer a response to a read from a far-away cache
1801 // A, then later defer a ReadExcl from a cache B on the same
1802 // bus as us. We'll assert MemInhibit in both cases, but in
1803 // the latter case MemInhibit will keep the invalidation from
1804 // reaching cache A. This special response tells cache A that
1805 // it gets the block to satisfy its read, but must immediately
1806 // invalidate it.
1807 pkt->cmd = MemCmd::ReadRespWithInvalidate;
1808 }
1809 // Here we consider forward_time, paying for just forward latency and
1810 // also charging the delay provided by the xbar.
1811 // forward_time is used as send_time in next allocateWriteBuffer().
1812 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1813 // Here we reset the timing of the packet.
1814 pkt->headerDelay = pkt->payloadDelay = 0;
1815 DPRINTF(Cache, "%s created response: %s addr %#llx size %d tick: %lu\n",
1816 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1817 forward_time);
1818 memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
1819}
1820
1821uint32_t
1822Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
1823 bool is_deferred, bool pending_inval)
1824{
1825 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1826 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1827 // deferred snoops can only happen in timing mode
1828 assert(!(is_deferred && !is_timing));
1829 // pending_inval only makes sense on deferred snoops
1830 assert(!(pending_inval && !is_deferred));
1831 assert(pkt->isRequest());
1832
1833 // the packet may get modified if we or a forwarded snooper
1834 // responds in atomic mode, so remember a few things about the
1835 // original packet up front
1836 bool invalidate = pkt->isInvalidate();
1837 bool M5_VAR_USED needs_exclusive = pkt->needsExclusive();
1838
1839 uint32_t snoop_delay = 0;
1840
1841 if (forwardSnoops) {
1842 // first propagate snoop upward to see if anyone above us wants to
1843 // handle it. save & restore packet src since it will get
1844 // rewritten to be relative to cpu-side bus (if any)
1845 bool alreadyResponded = pkt->memInhibitAsserted();
1846 if (is_timing) {
1847 // copy the packet so that we can clear any flags before
1848 // forwarding it upwards, we also allocate data (passing
1849 // the pointer along in case of static data), in case
1850 // there is a snoop hit in upper levels
1851 Packet snoopPkt(pkt, true, true);
1852 snoopPkt.setExpressSnoop();
1853 snoopPkt.pushSenderState(new ForwardResponseRecord());
1854 // the snoop packet does not need to wait any additional
1855 // time
1856 snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
1857 cpuSidePort->sendTimingSnoopReq(&snoopPkt);
1858
1859 // add the header delay (including crossbar and snoop
1860 // delays) of the upward snoop to the snoop delay for this
1861 // cache
1862 snoop_delay += snoopPkt.headerDelay;
1863
1864 if (snoopPkt.memInhibitAsserted()) {
1865 // cache-to-cache response from some upper cache
1866 assert(!alreadyResponded);
1867 pkt->assertMemInhibit();
1868 } else {
1869 // no cache (or anyone else for that matter) will
1870 // respond, so delete the ForwardResponseRecord here
1871 delete snoopPkt.popSenderState();
1872 }
1873 if (snoopPkt.sharedAsserted()) {
1874 pkt->assertShared();
1875 }
1876 // If this request is a prefetch or clean evict and an upper level
1877 // signals block present, make sure to propagate the block
1878 // presence to the requester.
1879 if (snoopPkt.isBlockCached()) {
1880 pkt->setBlockCached();
1881 }
1882 } else {
1883 cpuSidePort->sendAtomicSnoop(pkt);
1884 if (!alreadyResponded && pkt->memInhibitAsserted()) {
1885 // cache-to-cache response from some upper cache:
1886 // forward response to original requester
1887 assert(pkt->isResponse());
1888 }
1889 }
1890 }
1891
1892 if (!blk || !blk->isValid()) {
1893 DPRINTF(Cache, "%s snoop miss for %s addr %#llx size %d\n",
1894 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1895 return snoop_delay;
1896 } else {
1897 DPRINTF(Cache, "%s snoop hit for %s for addr %#llx size %d, "
1898 "old state is %s\n", __func__, pkt->cmdString(),
1899 pkt->getAddr(), pkt->getSize(), blk->print());
1900 }
1901
1902 chatty_assert(!(isReadOnly && blk->isDirty()),
1903 "Should never have a dirty block in a read-only cache %s\n",
1904 name());
1905
1906 // We may end up modifying both the block state and the packet (if
1907 // we respond in atomic mode), so just figure out what to do now
1908 // and then do it later. If we find dirty data while snooping for
1909 // an invalidate, we don't need to send a response. The
1910 // invalidation itself is taken care of below.
1911 bool respond = blk->isDirty() && pkt->needsResponse() &&
1912 pkt->cmd != MemCmd::InvalidateReq;
1913 bool have_exclusive = blk->isWritable();
1914
1915 // Invalidate any prefetch's from below that would strip write permissions
1916 // MemCmd::HardPFReq is only observed by upstream caches. After missing
1917 // above and in it's own cache, a new MemCmd::ReadReq is created that
1918 // downstream caches observe.
1919 if (pkt->mustCheckAbove()) {
1920 DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s from"
1921 " lower cache\n", pkt->getAddr(), pkt->cmdString());
1922 pkt->setBlockCached();
1923 return snoop_delay;
1924 }
1925
1926 if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
1927 // reading non-exclusive shared data, note that we retain
1928 // the block in owned state if it is dirty, with the response
1929 // taken care of below, and otherwhise simply downgrade to
1930 // shared
1931 assert(!needs_exclusive);
1932 pkt->assertShared();
1933 blk->status &= ~BlkWritable;
1934 }
1935
1936 if (respond) {
1937 // prevent anyone else from responding, cache as well as
1938 // memory, and also prevent any memory from even seeing the
1939 // request (with current inhibited semantics), note that this
1940 // applies both to reads and writes and that for writes it
1941 // works thanks to the fact that we still have dirty data and
1942 // will write it back at a later point
1943 assert(!pkt->memInhibitAsserted());
1944 pkt->assertMemInhibit();
1945 if (have_exclusive) {
1946 // in the case of an uncacheable request there is no point
1947 // in setting the exclusive flag, but since the recipient
1948 // does not care there is no harm in doing so, in any case
1949 // it is just a hint
1950 pkt->setSupplyExclusive();
1951 }
1952 if (is_timing) {
1953 doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
1954 } else {
1955 pkt->makeAtomicResponse();
1956 pkt->setDataFromBlock(blk->data, blkSize);
1957 }
1958 }
1959
1960 if (!respond && is_timing && is_deferred) {
1961 // if it's a deferred timing snoop then we've made a copy of
1962 // both the request and the packet, and so if we're not using
1963 // those copies to respond and delete them here
1964 DPRINTF(Cache, "Deleting pkt %p and request %p for cmd %s addr: %p\n",
1965 pkt, pkt->req, pkt->cmdString(), pkt->getAddr());
1966
1967 // the packets needs a response (just not from us), so we also
1968 // need to delete the request and not rely on the packet
1969 // destructor
1970 assert(pkt->needsResponse());
1971 delete pkt->req;
1972 delete pkt;
1973 }
1974
1975 // Do this last in case it deallocates block data or something
1976 // like that
1977 if (invalidate) {
1978 invalidateBlock(blk);
1979 }
1980
1981 DPRINTF(Cache, "new state is %s\n", blk->print());
1982
1983 return snoop_delay;
1984}
1985
1986
1987void
1988Cache::recvTimingSnoopReq(PacketPtr pkt)
1989{
1990 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1991 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1992
1993 // Snoops shouldn't happen when bypassing caches
1994 assert(!system->bypassCaches());
1995
1996 // no need to snoop requests that are not in range
1997 if (!inRange(pkt->getAddr())) {
1998 return;
1999 }
2000
2001 bool is_secure = pkt->isSecure();
2002 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
2003
2004 Addr blk_addr = blockAlign(pkt->getAddr());
2005 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
2006
2007 // Update the latency cost of the snoop so that the crossbar can
2008 // account for it. Do not overwrite what other neighbouring caches
2009 // have already done, rather take the maximum. The update is
2010 // tentative, for cases where we return before an upward snoop
2011 // happens below.
2012 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
2013 lookupLatency * clockPeriod());
2014
2015 // Inform request(Prefetch, CleanEvict or Writeback) from below of
2016 // MSHR hit, set setBlockCached.
2017 if (mshr && pkt->mustCheckAbove()) {
2018 DPRINTF(Cache, "Setting block cached for %s from"
2019 "lower cache on mshr hit %#x\n",
2020 pkt->cmdString(), pkt->getAddr());
2021 pkt->setBlockCached();
2022 return;
2023 }
2024
2025 // Let the MSHR itself track the snoop and decide whether we want
2026 // to go ahead and do the regular cache snoop
2027 if (mshr && mshr->handleSnoop(pkt, order++)) {
2028 DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
2029 "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
2030 mshr->print());
2031
2032 if (mshr->getNumTargets() > numTarget)
2033 warn("allocating bonus target for snoop"); //handle later
2034 return;
2035 }
2036
2037 //We also need to check the writeback buffers and handle those
2038 std::vector<MSHR *> writebacks;
2039 if (writeBuffer.findMatches(blk_addr, is_secure, writebacks)) {
2040 DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
2041 pkt->getAddr(), is_secure ? "s" : "ns");
2042
2043 // Look through writebacks for any cachable writes.
2044 // We should only ever find a single match
2045 assert(writebacks.size() == 1);
2046 MSHR *wb_entry = writebacks[0];
2047 // Expect to see only Writebacks and/or CleanEvicts here, both of
2048 // which should not be generated for uncacheable data.
2049 assert(!wb_entry->isUncacheable());
2050 // There should only be a single request responsible for generating
2051 // Writebacks/CleanEvicts.
2052 assert(wb_entry->getNumTargets() == 1);
2053 PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
1679 // Save writeback packet for handling by caller
1680 writebacks.push_back(writebackBlk(blk));
1681 } else {
1682 writebacks.push_back(cleanEvictBlk(blk));
1683 }
1684 }
1685 }
1686
1687 return blk;
1688}
1689
1690void
1691Cache::invalidateBlock(CacheBlk *blk)
1692{
1693 if (blk != tempBlock)
1694 tags->invalidate(blk);
1695 blk->invalidate();
1696}
1697
1698// Note that the reason we return a list of writebacks rather than
1699// inserting them directly in the write buffer is that this function
1700// is called by both atomic and timing-mode accesses, and in atomic
1701// mode we don't mess with the write buffer (we just perform the
1702// writebacks atomically once the original request is complete).
1703CacheBlk*
1704Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1705 bool allocate)
1706{
1707 assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1708 Addr addr = pkt->getAddr();
1709 bool is_secure = pkt->isSecure();
1710#if TRACING_ON
1711 CacheBlk::State old_state = blk ? blk->status : 0;
1712#endif
1713
1714 // When handling a fill, discard any CleanEvicts for the
1715 // same address in write buffer.
1716 Addr M5_VAR_USED blk_addr = blockAlign(pkt->getAddr());
1717 std::vector<MSHR *> M5_VAR_USED wbs;
1718 assert (!writeBuffer.findMatches(blk_addr, is_secure, wbs));
1719
1720 if (blk == NULL) {
1721 // better have read new data...
1722 assert(pkt->hasData());
1723
1724 // only read responses and write-line requests have data;
1725 // note that we don't write the data here for write-line - that
1726 // happens in the subsequent satisfyCpuSideRequest.
1727 assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1728
1729 // need to do a replacement if allocating, otherwise we stick
1730 // with the temporary storage
1731 blk = allocate ? allocateBlock(addr, is_secure, writebacks) : NULL;
1732
1733 if (blk == NULL) {
1734 // No replaceable block or a mostly exclusive
1735 // cache... just use temporary storage to complete the
1736 // current request and then get rid of it
1737 assert(!tempBlock->isValid());
1738 blk = tempBlock;
1739 tempBlock->set = tags->extractSet(addr);
1740 tempBlock->tag = tags->extractTag(addr);
1741 // @todo: set security state as well...
1742 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1743 is_secure ? "s" : "ns");
1744 } else {
1745 tags->insertBlock(pkt, blk);
1746 }
1747
1748 // we should never be overwriting a valid block
1749 assert(!blk->isValid());
1750 } else {
1751 // existing block... probably an upgrade
1752 assert(blk->tag == tags->extractTag(addr));
1753 // either we're getting new data or the block should already be valid
1754 assert(pkt->hasData() || blk->isValid());
1755 // don't clear block status... if block is already dirty we
1756 // don't want to lose that
1757 }
1758
1759 if (is_secure)
1760 blk->status |= BlkSecure;
1761 blk->status |= BlkValid | BlkReadable;
1762
1763 // sanity check for whole-line writes, which should always be
1764 // marked as writable as part of the fill, and then later marked
1765 // dirty as part of satisfyCpuSideRequest
1766 if (pkt->cmd == MemCmd::WriteLineReq) {
1767 assert(!pkt->sharedAsserted());
1768 // at the moment other caches do not respond to the
1769 // invalidation requests corresponding to a whole-line write
1770 assert(!pkt->memInhibitAsserted());
1771 }
1772
1773 if (!pkt->sharedAsserted()) {
1774 // we could get non-shared responses from memory (rather than
1775 // a cache) even in a read-only cache, note that we set this
1776 // bit even for a read-only cache as we use it to represent
1777 // the exclusive state
1778 blk->status |= BlkWritable;
1779
1780 // If we got this via cache-to-cache transfer (i.e., from a
1781 // cache that was an owner) and took away that owner's copy,
1782 // then we need to write it back. Normally this happens
1783 // anyway as a side effect of getting a copy to write it, but
1784 // there are cases (such as failed store conditionals or
1785 // compare-and-swaps) where we'll demand an exclusive copy but
1786 // end up not writing it.
1787 if (pkt->memInhibitAsserted()) {
1788 blk->status |= BlkDirty;
1789
1790 chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1791 "in read-only cache %s\n", name());
1792 }
1793 }
1794
1795 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1796 addr, is_secure ? "s" : "ns", old_state, blk->print());
1797
1798 // if we got new data, copy it in (checking for a read response
1799 // and a response that has data is the same in the end)
1800 if (pkt->isRead()) {
1801 // sanity checks
1802 assert(pkt->hasData());
1803 assert(pkt->getSize() == blkSize);
1804
1805 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
1806 }
1807 // We pay for fillLatency here.
1808 blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1809 pkt->payloadDelay;
1810
1811 return blk;
1812}
1813
1814
1815/////////////////////////////////////////////////////
1816//
1817// Snoop path: requests coming in from the memory side
1818//
1819/////////////////////////////////////////////////////
1820
1821void
1822Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1823 bool already_copied, bool pending_inval)
1824{
1825 // sanity check
1826 assert(req_pkt->isRequest());
1827 assert(req_pkt->needsResponse());
1828
1829 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1830 req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize());
1831 // timing-mode snoop responses require a new packet, unless we
1832 // already made a copy...
1833 PacketPtr pkt = req_pkt;
1834 if (!already_copied)
1835 // do not clear flags, and allocate space for data if the
1836 // packet needs it (the only packets that carry data are read
1837 // responses)
1838 pkt = new Packet(req_pkt, false, req_pkt->isRead());
1839
1840 assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
1841 pkt->sharedAsserted());
1842 pkt->makeTimingResponse();
1843 if (pkt->isRead()) {
1844 pkt->setDataFromBlock(blk_data, blkSize);
1845 }
1846 if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
1847 // Assume we defer a response to a read from a far-away cache
1848 // A, then later defer a ReadExcl from a cache B on the same
1849 // bus as us. We'll assert MemInhibit in both cases, but in
1850 // the latter case MemInhibit will keep the invalidation from
1851 // reaching cache A. This special response tells cache A that
1852 // it gets the block to satisfy its read, but must immediately
1853 // invalidate it.
1854 pkt->cmd = MemCmd::ReadRespWithInvalidate;
1855 }
1856 // Here we consider forward_time, paying for just forward latency and
1857 // also charging the delay provided by the xbar.
1858 // forward_time is used as send_time in next allocateWriteBuffer().
1859 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1860 // Here we reset the timing of the packet.
1861 pkt->headerDelay = pkt->payloadDelay = 0;
1862 DPRINTF(Cache, "%s created response: %s addr %#llx size %d tick: %lu\n",
1863 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
1864 forward_time);
1865 memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
1866}
1867
1868uint32_t
1869Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
1870 bool is_deferred, bool pending_inval)
1871{
1872 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
1873 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1874 // deferred snoops can only happen in timing mode
1875 assert(!(is_deferred && !is_timing));
1876 // pending_inval only makes sense on deferred snoops
1877 assert(!(pending_inval && !is_deferred));
1878 assert(pkt->isRequest());
1879
1880 // the packet may get modified if we or a forwarded snooper
1881 // responds in atomic mode, so remember a few things about the
1882 // original packet up front
1883 bool invalidate = pkt->isInvalidate();
1884 bool M5_VAR_USED needs_exclusive = pkt->needsExclusive();
1885
1886 uint32_t snoop_delay = 0;
1887
1888 if (forwardSnoops) {
1889 // first propagate snoop upward to see if anyone above us wants to
1890 // handle it. save & restore packet src since it will get
1891 // rewritten to be relative to cpu-side bus (if any)
1892 bool alreadyResponded = pkt->memInhibitAsserted();
1893 if (is_timing) {
1894 // copy the packet so that we can clear any flags before
1895 // forwarding it upwards, we also allocate data (passing
1896 // the pointer along in case of static data), in case
1897 // there is a snoop hit in upper levels
1898 Packet snoopPkt(pkt, true, true);
1899 snoopPkt.setExpressSnoop();
1900 snoopPkt.pushSenderState(new ForwardResponseRecord());
1901 // the snoop packet does not need to wait any additional
1902 // time
1903 snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
1904 cpuSidePort->sendTimingSnoopReq(&snoopPkt);
1905
1906 // add the header delay (including crossbar and snoop
1907 // delays) of the upward snoop to the snoop delay for this
1908 // cache
1909 snoop_delay += snoopPkt.headerDelay;
1910
1911 if (snoopPkt.memInhibitAsserted()) {
1912 // cache-to-cache response from some upper cache
1913 assert(!alreadyResponded);
1914 pkt->assertMemInhibit();
1915 } else {
1916 // no cache (or anyone else for that matter) will
1917 // respond, so delete the ForwardResponseRecord here
1918 delete snoopPkt.popSenderState();
1919 }
1920 if (snoopPkt.sharedAsserted()) {
1921 pkt->assertShared();
1922 }
1923 // If this request is a prefetch or clean evict and an upper level
1924 // signals block present, make sure to propagate the block
1925 // presence to the requester.
1926 if (snoopPkt.isBlockCached()) {
1927 pkt->setBlockCached();
1928 }
1929 } else {
1930 cpuSidePort->sendAtomicSnoop(pkt);
1931 if (!alreadyResponded && pkt->memInhibitAsserted()) {
1932 // cache-to-cache response from some upper cache:
1933 // forward response to original requester
1934 assert(pkt->isResponse());
1935 }
1936 }
1937 }
1938
1939 if (!blk || !blk->isValid()) {
1940 DPRINTF(Cache, "%s snoop miss for %s addr %#llx size %d\n",
1941 __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
1942 return snoop_delay;
1943 } else {
1944 DPRINTF(Cache, "%s snoop hit for %s for addr %#llx size %d, "
1945 "old state is %s\n", __func__, pkt->cmdString(),
1946 pkt->getAddr(), pkt->getSize(), blk->print());
1947 }
1948
1949 chatty_assert(!(isReadOnly && blk->isDirty()),
1950 "Should never have a dirty block in a read-only cache %s\n",
1951 name());
1952
1953 // We may end up modifying both the block state and the packet (if
1954 // we respond in atomic mode), so just figure out what to do now
1955 // and then do it later. If we find dirty data while snooping for
1956 // an invalidate, we don't need to send a response. The
1957 // invalidation itself is taken care of below.
1958 bool respond = blk->isDirty() && pkt->needsResponse() &&
1959 pkt->cmd != MemCmd::InvalidateReq;
1960 bool have_exclusive = blk->isWritable();
1961
1962 // Invalidate any prefetch's from below that would strip write permissions
1963 // MemCmd::HardPFReq is only observed by upstream caches. After missing
1964 // above and in it's own cache, a new MemCmd::ReadReq is created that
1965 // downstream caches observe.
1966 if (pkt->mustCheckAbove()) {
1967 DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s from"
1968 " lower cache\n", pkt->getAddr(), pkt->cmdString());
1969 pkt->setBlockCached();
1970 return snoop_delay;
1971 }
1972
1973 if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
1974 // reading non-exclusive shared data, note that we retain
1975 // the block in owned state if it is dirty, with the response
1976 // taken care of below, and otherwhise simply downgrade to
1977 // shared
1978 assert(!needs_exclusive);
1979 pkt->assertShared();
1980 blk->status &= ~BlkWritable;
1981 }
1982
1983 if (respond) {
1984 // prevent anyone else from responding, cache as well as
1985 // memory, and also prevent any memory from even seeing the
1986 // request (with current inhibited semantics), note that this
1987 // applies both to reads and writes and that for writes it
1988 // works thanks to the fact that we still have dirty data and
1989 // will write it back at a later point
1990 assert(!pkt->memInhibitAsserted());
1991 pkt->assertMemInhibit();
1992 if (have_exclusive) {
1993 // in the case of an uncacheable request there is no point
1994 // in setting the exclusive flag, but since the recipient
1995 // does not care there is no harm in doing so, in any case
1996 // it is just a hint
1997 pkt->setSupplyExclusive();
1998 }
1999 if (is_timing) {
2000 doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
2001 } else {
2002 pkt->makeAtomicResponse();
2003 pkt->setDataFromBlock(blk->data, blkSize);
2004 }
2005 }
2006
2007 if (!respond && is_timing && is_deferred) {
2008 // if it's a deferred timing snoop then we've made a copy of
2009 // both the request and the packet, and so if we're not using
2010 // those copies to respond and delete them here
2011 DPRINTF(Cache, "Deleting pkt %p and request %p for cmd %s addr: %p\n",
2012 pkt, pkt->req, pkt->cmdString(), pkt->getAddr());
2013
2014 // the packets needs a response (just not from us), so we also
2015 // need to delete the request and not rely on the packet
2016 // destructor
2017 assert(pkt->needsResponse());
2018 delete pkt->req;
2019 delete pkt;
2020 }
2021
2022 // Do this last in case it deallocates block data or something
2023 // like that
2024 if (invalidate) {
2025 invalidateBlock(blk);
2026 }
2027
2028 DPRINTF(Cache, "new state is %s\n", blk->print());
2029
2030 return snoop_delay;
2031}
2032
2033
2034void
2035Cache::recvTimingSnoopReq(PacketPtr pkt)
2036{
2037 DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
2038 pkt->cmdString(), pkt->getAddr(), pkt->getSize());
2039
2040 // Snoops shouldn't happen when bypassing caches
2041 assert(!system->bypassCaches());
2042
2043 // no need to snoop requests that are not in range
2044 if (!inRange(pkt->getAddr())) {
2045 return;
2046 }
2047
2048 bool is_secure = pkt->isSecure();
2049 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
2050
2051 Addr blk_addr = blockAlign(pkt->getAddr());
2052 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
2053
2054 // Update the latency cost of the snoop so that the crossbar can
2055 // account for it. Do not overwrite what other neighbouring caches
2056 // have already done, rather take the maximum. The update is
2057 // tentative, for cases where we return before an upward snoop
2058 // happens below.
2059 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
2060 lookupLatency * clockPeriod());
2061
2062 // Inform request(Prefetch, CleanEvict or Writeback) from below of
2063 // MSHR hit, set setBlockCached.
2064 if (mshr && pkt->mustCheckAbove()) {
2065 DPRINTF(Cache, "Setting block cached for %s from"
2066 "lower cache on mshr hit %#x\n",
2067 pkt->cmdString(), pkt->getAddr());
2068 pkt->setBlockCached();
2069 return;
2070 }
2071
2072 // Let the MSHR itself track the snoop and decide whether we want
2073 // to go ahead and do the regular cache snoop
2074 if (mshr && mshr->handleSnoop(pkt, order++)) {
2075 DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
2076 "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
2077 mshr->print());
2078
2079 if (mshr->getNumTargets() > numTarget)
2080 warn("allocating bonus target for snoop"); //handle later
2081 return;
2082 }
2083
2084 //We also need to check the writeback buffers and handle those
2085 std::vector<MSHR *> writebacks;
2086 if (writeBuffer.findMatches(blk_addr, is_secure, writebacks)) {
2087 DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
2088 pkt->getAddr(), is_secure ? "s" : "ns");
2089
2090 // Look through writebacks for any cachable writes.
2091 // We should only ever find a single match
2092 assert(writebacks.size() == 1);
2093 MSHR *wb_entry = writebacks[0];
2094 // Expect to see only Writebacks and/or CleanEvicts here, both of
2095 // which should not be generated for uncacheable data.
2096 assert(!wb_entry->isUncacheable());
2097 // There should only be a single request responsible for generating
2098 // Writebacks/CleanEvicts.
2099 assert(wb_entry->getNumTargets() == 1);
2100 PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
2054 assert(wb_pkt->evictingBlock());
2101 assert(wb_pkt->isEviction());
2055
2102
2056 if (pkt->evictingBlock()) {
2103 if (pkt->isEviction()) {
2057 // if the block is found in the write queue, set the BLOCK_CACHED
2058 // flag for Writeback/CleanEvict snoop. On return the snoop will
2059 // propagate the BLOCK_CACHED flag in Writeback packets and prevent
2060 // any CleanEvicts from travelling down the memory hierarchy.
2061 pkt->setBlockCached();
2062 DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit"
2063 " %#x\n", pkt->cmdString(), pkt->getAddr());
2064 return;
2065 }
2066
2104 // if the block is found in the write queue, set the BLOCK_CACHED
2105 // flag for Writeback/CleanEvict snoop. On return the snoop will
2106 // propagate the BLOCK_CACHED flag in Writeback packets and prevent
2107 // any CleanEvicts from travelling down the memory hierarchy.
2108 pkt->setBlockCached();
2109 DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit"
2110 " %#x\n", pkt->cmdString(), pkt->getAddr());
2111 return;
2112 }
2113
2067 if (wb_pkt->cmd == MemCmd::Writeback) {
2114 if (wb_pkt->cmd == MemCmd::WritebackDirty) {
2068 assert(!pkt->memInhibitAsserted());
2069 pkt->assertMemInhibit();
2070 if (!pkt->needsExclusive()) {
2071 pkt->assertShared();
2072 // the writeback is no longer passing exclusivity (the
2073 // receiving cache should consider the block owned
2074 // rather than modified)
2075 wb_pkt->assertShared();
2076 } else {
2077 // if we're not asserting the shared line, we need to
2078 // invalidate our copy. we'll do that below as long as
2079 // the packet's invalidate flag is set...
2080 assert(pkt->isInvalidate());
2081 }
2082 doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2083 false, false);
2084 } else {
2115 assert(!pkt->memInhibitAsserted());
2116 pkt->assertMemInhibit();
2117 if (!pkt->needsExclusive()) {
2118 pkt->assertShared();
2119 // the writeback is no longer passing exclusivity (the
2120 // receiving cache should consider the block owned
2121 // rather than modified)
2122 wb_pkt->assertShared();
2123 } else {
2124 // if we're not asserting the shared line, we need to
2125 // invalidate our copy. we'll do that below as long as
2126 // the packet's invalidate flag is set...
2127 assert(pkt->isInvalidate());
2128 }
2129 doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2130 false, false);
2131 } else {
2085 assert(wb_pkt->cmd == MemCmd::CleanEvict);
2132 // on hitting a clean writeback we play it safe and do not
2133 // provide a response, the block may be dirty somewhere
2134 // else
2135 assert(wb_pkt->isCleanEviction());
2086 // The cache technically holds the block until the
2136 // The cache technically holds the block until the
2087 // corresponding CleanEvict message reaches the crossbar
2137 // corresponding message reaches the crossbar
2088 // below. Therefore when a snoop encounters a CleanEvict
2138 // below. Therefore when a snoop encounters a CleanEvict
2089 // message we must set assertShared (just like when it
2090 // encounters a Writeback) to avoid the snoop filter
2091 // prematurely clearing the holder bit in the crossbar
2092 // below
2093 if (!pkt->needsExclusive())
2139 // or WritebackClean message we must set assertShared
2140 // (just like when it encounters a Writeback) to avoid the
2141 // snoop filter prematurely clearing the holder bit in the
2142 // crossbar below
2143 if (!pkt->needsExclusive()) {
2094 pkt->assertShared();
2144 pkt->assertShared();
2095 else
2145 // the writeback is no longer passing exclusivity (the
2146 // receiving cache should consider the block owned
2147 // rather than modified)
2148 wb_pkt->assertShared();
2149 } else {
2096 assert(pkt->isInvalidate());
2150 assert(pkt->isInvalidate());
2151 }
2097 }
2098
2099 if (pkt->isInvalidate()) {
2100 // Invalidation trumps our writeback... discard here
2101 // Note: markInService will remove entry from writeback buffer.
2102 markInService(wb_entry, false);
2103 delete wb_pkt;
2104 }
2105 }
2106
2107 // If this was a shared writeback, there may still be
2108 // other shared copies above that require invalidation.
2109 // We could be more selective and return here if the
2110 // request is non-exclusive or if the writeback is
2111 // exclusive.
2112 uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2113
2114 // Override what we did when we first saw the snoop, as we now
2115 // also have the cost of the upwards snoops to account for
2116 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2117 lookupLatency * clockPeriod());
2118}
2119
2120bool
2121Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2122{
2123 // Express snoop responses from master to slave, e.g., from L1 to L2
2124 cache->recvTimingSnoopResp(pkt);
2125 return true;
2126}
2127
2128Tick
2129Cache::recvAtomicSnoop(PacketPtr pkt)
2130{
2131 // Snoops shouldn't happen when bypassing caches
2132 assert(!system->bypassCaches());
2133
2134 // no need to snoop requests that are not in range.
2135 if (!inRange(pkt->getAddr())) {
2136 return 0;
2137 }
2138
2139 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2140 uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2141 return snoop_delay + lookupLatency * clockPeriod();
2142}
2143
2144
2145MSHR *
2146Cache::getNextMSHR()
2147{
2148 // Check both MSHR queue and write buffer for potential requests,
2149 // note that null does not mean there is no request, it could
2150 // simply be that it is not ready
2151 MSHR *miss_mshr = mshrQueue.getNextMSHR();
2152 MSHR *write_mshr = writeBuffer.getNextMSHR();
2153
2154 // If we got a write buffer request ready, first priority is a
2155 // full write buffer, otherwhise we favour the miss requests
2156 if (write_mshr &&
2157 ((writeBuffer.isFull() && writeBuffer.inServiceEntries == 0) ||
2158 !miss_mshr)) {
2159 // need to search MSHR queue for conflicting earlier miss.
2160 MSHR *conflict_mshr =
2161 mshrQueue.findPending(write_mshr->blkAddr,
2162 write_mshr->isSecure);
2163
2164 if (conflict_mshr && conflict_mshr->order < write_mshr->order) {
2165 // Service misses in order until conflict is cleared.
2166 return conflict_mshr;
2167
2168 // @todo Note that we ignore the ready time of the conflict here
2169 }
2170
2171 // No conflicts; issue write
2172 return write_mshr;
2173 } else if (miss_mshr) {
2174 // need to check for conflicting earlier writeback
2175 MSHR *conflict_mshr =
2176 writeBuffer.findPending(miss_mshr->blkAddr,
2177 miss_mshr->isSecure);
2178 if (conflict_mshr) {
2179 // not sure why we don't check order here... it was in the
2180 // original code but commented out.
2181
2182 // The only way this happens is if we are
2183 // doing a write and we didn't have permissions
2184 // then subsequently saw a writeback (owned got evicted)
2185 // We need to make sure to perform the writeback first
2186 // To preserve the dirty data, then we can issue the write
2187
2188 // should we return write_mshr here instead? I.e. do we
2189 // have to flush writes in order? I don't think so... not
2190 // for Alpha anyway. Maybe for x86?
2191 return conflict_mshr;
2192
2193 // @todo Note that we ignore the ready time of the conflict here
2194 }
2195
2196 // No conflicts; issue read
2197 return miss_mshr;
2198 }
2199
2200 // fall through... no pending requests. Try a prefetch.
2201 assert(!miss_mshr && !write_mshr);
2202 if (prefetcher && mshrQueue.canPrefetch()) {
2203 // If we have a miss queue slot, we can try a prefetch
2204 PacketPtr pkt = prefetcher->getPacket();
2205 if (pkt) {
2206 Addr pf_addr = blockAlign(pkt->getAddr());
2207 if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2208 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2209 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2210 // Update statistic on number of prefetches issued
2211 // (hwpf_mshr_misses)
2212 assert(pkt->req->masterId() < system->maxMasters());
2213 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2214
2215 // allocate an MSHR and return it, note
2216 // that we send the packet straight away, so do not
2217 // schedule the send
2218 return allocateMissBuffer(pkt, curTick(), false);
2219 } else {
2220 // free the request and packet
2221 delete pkt->req;
2222 delete pkt;
2223 }
2224 }
2225 }
2226
2227 return NULL;
2228}
2229
2230bool
2231Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
2232{
2233 if (!forwardSnoops)
2234 return false;
2235 // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2236 // Writeback snoops into upper level caches to check for copies of the
2237 // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2238 // packet, the cache can inform the crossbar below of presence or absence
2239 // of the block.
2240 if (is_timing) {
2241 Packet snoop_pkt(pkt, true, false);
2242 snoop_pkt.setExpressSnoop();
2243 // Assert that packet is either Writeback or CleanEvict and not a
2244 // prefetch request because prefetch requests need an MSHR and may
2245 // generate a snoop response.
2152 }
2153
2154 if (pkt->isInvalidate()) {
2155 // Invalidation trumps our writeback... discard here
2156 // Note: markInService will remove entry from writeback buffer.
2157 markInService(wb_entry, false);
2158 delete wb_pkt;
2159 }
2160 }
2161
2162 // If this was a shared writeback, there may still be
2163 // other shared copies above that require invalidation.
2164 // We could be more selective and return here if the
2165 // request is non-exclusive or if the writeback is
2166 // exclusive.
2167 uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2168
2169 // Override what we did when we first saw the snoop, as we now
2170 // also have the cost of the upwards snoops to account for
2171 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2172 lookupLatency * clockPeriod());
2173}
2174
2175bool
2176Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2177{
2178 // Express snoop responses from master to slave, e.g., from L1 to L2
2179 cache->recvTimingSnoopResp(pkt);
2180 return true;
2181}
2182
2183Tick
2184Cache::recvAtomicSnoop(PacketPtr pkt)
2185{
2186 // Snoops shouldn't happen when bypassing caches
2187 assert(!system->bypassCaches());
2188
2189 // no need to snoop requests that are not in range.
2190 if (!inRange(pkt->getAddr())) {
2191 return 0;
2192 }
2193
2194 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2195 uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2196 return snoop_delay + lookupLatency * clockPeriod();
2197}
2198
2199
2200MSHR *
2201Cache::getNextMSHR()
2202{
2203 // Check both MSHR queue and write buffer for potential requests,
2204 // note that null does not mean there is no request, it could
2205 // simply be that it is not ready
2206 MSHR *miss_mshr = mshrQueue.getNextMSHR();
2207 MSHR *write_mshr = writeBuffer.getNextMSHR();
2208
2209 // If we got a write buffer request ready, first priority is a
2210 // full write buffer, otherwhise we favour the miss requests
2211 if (write_mshr &&
2212 ((writeBuffer.isFull() && writeBuffer.inServiceEntries == 0) ||
2213 !miss_mshr)) {
2214 // need to search MSHR queue for conflicting earlier miss.
2215 MSHR *conflict_mshr =
2216 mshrQueue.findPending(write_mshr->blkAddr,
2217 write_mshr->isSecure);
2218
2219 if (conflict_mshr && conflict_mshr->order < write_mshr->order) {
2220 // Service misses in order until conflict is cleared.
2221 return conflict_mshr;
2222
2223 // @todo Note that we ignore the ready time of the conflict here
2224 }
2225
2226 // No conflicts; issue write
2227 return write_mshr;
2228 } else if (miss_mshr) {
2229 // need to check for conflicting earlier writeback
2230 MSHR *conflict_mshr =
2231 writeBuffer.findPending(miss_mshr->blkAddr,
2232 miss_mshr->isSecure);
2233 if (conflict_mshr) {
2234 // not sure why we don't check order here... it was in the
2235 // original code but commented out.
2236
2237 // The only way this happens is if we are
2238 // doing a write and we didn't have permissions
2239 // then subsequently saw a writeback (owned got evicted)
2240 // We need to make sure to perform the writeback first
2241 // To preserve the dirty data, then we can issue the write
2242
2243 // should we return write_mshr here instead? I.e. do we
2244 // have to flush writes in order? I don't think so... not
2245 // for Alpha anyway. Maybe for x86?
2246 return conflict_mshr;
2247
2248 // @todo Note that we ignore the ready time of the conflict here
2249 }
2250
2251 // No conflicts; issue read
2252 return miss_mshr;
2253 }
2254
2255 // fall through... no pending requests. Try a prefetch.
2256 assert(!miss_mshr && !write_mshr);
2257 if (prefetcher && mshrQueue.canPrefetch()) {
2258 // If we have a miss queue slot, we can try a prefetch
2259 PacketPtr pkt = prefetcher->getPacket();
2260 if (pkt) {
2261 Addr pf_addr = blockAlign(pkt->getAddr());
2262 if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2263 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2264 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2265 // Update statistic on number of prefetches issued
2266 // (hwpf_mshr_misses)
2267 assert(pkt->req->masterId() < system->maxMasters());
2268 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2269
2270 // allocate an MSHR and return it, note
2271 // that we send the packet straight away, so do not
2272 // schedule the send
2273 return allocateMissBuffer(pkt, curTick(), false);
2274 } else {
2275 // free the request and packet
2276 delete pkt->req;
2277 delete pkt;
2278 }
2279 }
2280 }
2281
2282 return NULL;
2283}
2284
2285bool
2286Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
2287{
2288 if (!forwardSnoops)
2289 return false;
2290 // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2291 // Writeback snoops into upper level caches to check for copies of the
2292 // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2293 // packet, the cache can inform the crossbar below of presence or absence
2294 // of the block.
2295 if (is_timing) {
2296 Packet snoop_pkt(pkt, true, false);
2297 snoop_pkt.setExpressSnoop();
2298 // Assert that packet is either Writeback or CleanEvict and not a
2299 // prefetch request because prefetch requests need an MSHR and may
2300 // generate a snoop response.
2246 assert(pkt->evictingBlock());
2301 assert(pkt->isEviction());
2247 snoop_pkt.senderState = NULL;
2248 cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2249 // Writeback/CleanEvict snoops do not generate a snoop response.
2250 assert(!(snoop_pkt.memInhibitAsserted()));
2251 return snoop_pkt.isBlockCached();
2252 } else {
2253 cpuSidePort->sendAtomicSnoop(pkt);
2254 return pkt->isBlockCached();
2255 }
2256}
2257
2258PacketPtr
2259Cache::getTimingPacket()
2260{
2261 MSHR *mshr = getNextMSHR();
2262
2263 if (mshr == NULL) {
2264 return NULL;
2265 }
2266
2267 // use request from 1st target
2268 PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2269 PacketPtr pkt = NULL;
2270
2271 DPRINTF(CachePort, "%s %s for addr %#llx size %d\n", __func__,
2272 tgt_pkt->cmdString(), tgt_pkt->getAddr(), tgt_pkt->getSize());
2273
2274 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2275
2276 if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2277 // We need to check the caches above us to verify that
2278 // they don't have a copy of this block in the dirty state
2279 // at the moment. Without this check we could get a stale
2280 // copy from memory that might get used in place of the
2281 // dirty one.
2282 Packet snoop_pkt(tgt_pkt, true, false);
2283 snoop_pkt.setExpressSnoop();
2284 snoop_pkt.senderState = mshr;
2285 cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2286
2287 // Check to see if the prefetch was squashed by an upper cache (to
2288 // prevent us from grabbing the line) or if a Check to see if a
2289 // writeback arrived between the time the prefetch was placed in
2290 // the MSHRs and when it was selected to be sent or if the
2291 // prefetch was squashed by an upper cache.
2292
2293 // It is important to check memInhibitAsserted before
2294 // prefetchSquashed. If another cache has asserted MEM_INGIBIT, it
2295 // will be sending a response which will arrive at the MSHR
2296 // allocated ofr this request. Checking the prefetchSquash first
2297 // may result in the MSHR being prematurely deallocated.
2298
2299 if (snoop_pkt.memInhibitAsserted()) {
2300 // If we are getting a non-shared response it is dirty
2301 bool pending_dirty_resp = !snoop_pkt.sharedAsserted();
2302 markInService(mshr, pending_dirty_resp);
2303 DPRINTF(Cache, "Upward snoop of prefetch for addr"
2304 " %#x (%s) hit\n",
2305 tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2306 return NULL;
2307 }
2308
2309 if (snoop_pkt.isBlockCached() || blk != NULL) {
2310 DPRINTF(Cache, "Block present, prefetch squashed by cache. "
2311 "Deallocating mshr target %#x.\n",
2312 mshr->blkAddr);
2313
2314 // Deallocate the mshr target
2302 snoop_pkt.senderState = NULL;
2303 cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2304 // Writeback/CleanEvict snoops do not generate a snoop response.
2305 assert(!(snoop_pkt.memInhibitAsserted()));
2306 return snoop_pkt.isBlockCached();
2307 } else {
2308 cpuSidePort->sendAtomicSnoop(pkt);
2309 return pkt->isBlockCached();
2310 }
2311}
2312
2313PacketPtr
2314Cache::getTimingPacket()
2315{
2316 MSHR *mshr = getNextMSHR();
2317
2318 if (mshr == NULL) {
2319 return NULL;
2320 }
2321
2322 // use request from 1st target
2323 PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2324 PacketPtr pkt = NULL;
2325
2326 DPRINTF(CachePort, "%s %s for addr %#llx size %d\n", __func__,
2327 tgt_pkt->cmdString(), tgt_pkt->getAddr(), tgt_pkt->getSize());
2328
2329 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2330
2331 if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2332 // We need to check the caches above us to verify that
2333 // they don't have a copy of this block in the dirty state
2334 // at the moment. Without this check we could get a stale
2335 // copy from memory that might get used in place of the
2336 // dirty one.
2337 Packet snoop_pkt(tgt_pkt, true, false);
2338 snoop_pkt.setExpressSnoop();
2339 snoop_pkt.senderState = mshr;
2340 cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2341
2342 // Check to see if the prefetch was squashed by an upper cache (to
2343 // prevent us from grabbing the line) or if a Check to see if a
2344 // writeback arrived between the time the prefetch was placed in
2345 // the MSHRs and when it was selected to be sent or if the
2346 // prefetch was squashed by an upper cache.
2347
2348 // It is important to check memInhibitAsserted before
2349 // prefetchSquashed. If another cache has asserted MEM_INGIBIT, it
2350 // will be sending a response which will arrive at the MSHR
2351 // allocated ofr this request. Checking the prefetchSquash first
2352 // may result in the MSHR being prematurely deallocated.
2353
2354 if (snoop_pkt.memInhibitAsserted()) {
2355 // If we are getting a non-shared response it is dirty
2356 bool pending_dirty_resp = !snoop_pkt.sharedAsserted();
2357 markInService(mshr, pending_dirty_resp);
2358 DPRINTF(Cache, "Upward snoop of prefetch for addr"
2359 " %#x (%s) hit\n",
2360 tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2361 return NULL;
2362 }
2363
2364 if (snoop_pkt.isBlockCached() || blk != NULL) {
2365 DPRINTF(Cache, "Block present, prefetch squashed by cache. "
2366 "Deallocating mshr target %#x.\n",
2367 mshr->blkAddr);
2368
2369 // Deallocate the mshr target
2315 if (tgt_pkt->cmd != MemCmd::Writeback) {
2370 if (!tgt_pkt->isWriteback()) {
2316 if (mshr->queue->forceDeallocateTarget(mshr)) {
2317 // Clear block if this deallocation resulted freed an
2318 // mshr when all had previously been utilized
2319 clearBlocked((BlockedCause)(mshr->queue->index));
2320 }
2321 return NULL;
2322 } else {
2323 // If this is a Writeback, and the snoops indicate that the blk
2324 // is cached above, set the BLOCK_CACHED flag in the Writeback
2325 // packet, so that it does not reset the bits corresponding to
2326 // this block in the snoop filter below.
2327 tgt_pkt->setBlockCached();
2328 }
2329 }
2330 }
2331
2332 if (mshr->isForwardNoResponse()) {
2333 // no response expected, just forward packet as it is
2334 assert(tags->findBlock(mshr->blkAddr, mshr->isSecure) == NULL);
2335 pkt = tgt_pkt;
2336 } else {
2337 pkt = getBusPacket(tgt_pkt, blk, mshr->needsExclusive());
2338
2339 mshr->isForward = (pkt == NULL);
2340
2341 if (mshr->isForward) {
2342 // not a cache block request, but a response is expected
2343 // make copy of current packet to forward, keep current
2344 // copy for response handling
2345 pkt = new Packet(tgt_pkt, false, true);
2346 if (pkt->isWrite()) {
2347 pkt->setData(tgt_pkt->getConstPtr<uint8_t>());
2348 }
2349 }
2350 }
2351
2352 assert(pkt != NULL);
2353 pkt->senderState = mshr;
2354 return pkt;
2355}
2356
2357
2358Tick
2359Cache::nextMSHRReadyTime() const
2360{
2361 Tick nextReady = std::min(mshrQueue.nextMSHRReadyTime(),
2362 writeBuffer.nextMSHRReadyTime());
2363
2364 // Don't signal prefetch ready time if no MSHRs available
2365 // Will signal once enoguh MSHRs are deallocated
2366 if (prefetcher && mshrQueue.canPrefetch()) {
2367 nextReady = std::min(nextReady,
2368 prefetcher->nextPrefetchReadyTime());
2369 }
2370
2371 return nextReady;
2372}
2373
2374void
2375Cache::serialize(CheckpointOut &cp) const
2376{
2377 bool dirty(isDirty());
2378
2379 if (dirty) {
2380 warn("*** The cache still contains dirty data. ***\n");
2381 warn(" Make sure to drain the system using the correct flags.\n");
2382 warn(" This checkpoint will not restore correctly and dirty data in "
2383 "the cache will be lost!\n");
2384 }
2385
2386 // Since we don't checkpoint the data in the cache, any dirty data
2387 // will be lost when restoring from a checkpoint of a system that
2388 // wasn't drained properly. Flag the checkpoint as invalid if the
2389 // cache contains dirty data.
2390 bool bad_checkpoint(dirty);
2391 SERIALIZE_SCALAR(bad_checkpoint);
2392}
2393
2394void
2395Cache::unserialize(CheckpointIn &cp)
2396{
2397 bool bad_checkpoint;
2398 UNSERIALIZE_SCALAR(bad_checkpoint);
2399 if (bad_checkpoint) {
2400 fatal("Restoring from checkpoints with dirty caches is not supported "
2401 "in the classic memory system. Please remove any caches or "
2402 " drain them properly before taking checkpoints.\n");
2403 }
2404}
2405
2406///////////////
2407//
2408// CpuSidePort
2409//
2410///////////////
2411
2412AddrRangeList
2413Cache::CpuSidePort::getAddrRanges() const
2414{
2415 return cache->getAddrRanges();
2416}
2417
2418bool
2419Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2420{
2421 assert(!cache->system->bypassCaches());
2422
2423 bool success = false;
2424
2425 // always let inhibited requests through, even if blocked,
2426 // ultimately we should check if this is an express snoop, but at
2427 // the moment that flag is only set in the cache itself
2428 if (pkt->memInhibitAsserted()) {
2429 // do not change the current retry state
2430 bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
2431 assert(bypass_success);
2432 return true;
2433 } else if (blocked || mustSendRetry) {
2434 // either already committed to send a retry, or blocked
2435 success = false;
2436 } else {
2437 // pass it on to the cache, and let the cache decide if we
2438 // have to retry or not
2439 success = cache->recvTimingReq(pkt);
2440 }
2441
2442 // remember if we have to retry
2443 mustSendRetry = !success;
2444 return success;
2445}
2446
2447Tick
2448Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2449{
2450 return cache->recvAtomic(pkt);
2451}
2452
2453void
2454Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2455{
2456 // functional request
2457 cache->functionalAccess(pkt, true);
2458}
2459
2460Cache::
2461CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2462 const std::string &_label)
2463 : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2464{
2465}
2466
2467Cache*
2468CacheParams::create()
2469{
2470 assert(tags);
2471
2472 return new Cache(this);
2473}
2474///////////////
2475//
2476// MemSidePort
2477//
2478///////////////
2479
2480bool
2481Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2482{
2483 cache->recvTimingResp(pkt);
2484 return true;
2485}
2486
2487// Express snooping requests to memside port
2488void
2489Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2490{
2491 // handle snooping requests
2492 cache->recvTimingSnoopReq(pkt);
2493}
2494
2495Tick
2496Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2497{
2498 return cache->recvAtomicSnoop(pkt);
2499}
2500
2501void
2502Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2503{
2504 // functional snoop (note that in contrast to atomic we don't have
2505 // a specific functionalSnoop method, as they have the same
2506 // behaviour regardless)
2507 cache->functionalAccess(pkt, false);
2508}
2509
2510void
2511Cache::CacheReqPacketQueue::sendDeferredPacket()
2512{
2513 // sanity check
2514 assert(!waitingOnRetry);
2515
2516 // there should never be any deferred request packets in the
2517 // queue, instead we resly on the cache to provide the packets
2518 // from the MSHR queue or write queue
2519 assert(deferredPacketReadyTime() == MaxTick);
2520
2521 // check for request packets (requests & writebacks)
2522 PacketPtr pkt = cache.getTimingPacket();
2523 if (pkt == NULL) {
2524 // can happen if e.g. we attempt a writeback and fail, but
2525 // before the retry, the writeback is eliminated because
2526 // we snoop another cache's ReadEx.
2527 } else {
2528 MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
2529 // in most cases getTimingPacket allocates a new packet, and
2530 // we must delete it unless it is successfully sent
2531 bool delete_pkt = !mshr->isForwardNoResponse();
2532
2533 // let our snoop responses go first if there are responses to
2534 // the same addresses we are about to writeback, note that
2535 // this creates a dependency between requests and snoop
2536 // responses, but that should not be a problem since there is
2537 // a chain already and the key is that the snoop responses can
2538 // sink unconditionally
2539 if (snoopRespQueue.hasAddr(pkt->getAddr())) {
2540 DPRINTF(CachePort, "Waiting for snoop response to be sent\n");
2541 Tick when = snoopRespQueue.deferredPacketReadyTime();
2542 schedSendEvent(when);
2543
2544 if (delete_pkt)
2545 delete pkt;
2546
2547 return;
2548 }
2549
2550
2551 waitingOnRetry = !masterPort.sendTimingReq(pkt);
2552
2553 if (waitingOnRetry) {
2554 DPRINTF(CachePort, "now waiting on a retry\n");
2555 if (delete_pkt) {
2556 // we are awaiting a retry, but we
2557 // delete the packet and will be creating a new packet
2558 // when we get the opportunity
2559 delete pkt;
2560 }
2561 // note that we have now masked any requestBus and
2562 // schedSendEvent (we will wait for a retry before
2563 // doing anything), and this is so even if we do not
2564 // care about this packet and might override it before
2565 // it gets retried
2566 } else {
2567 // As part of the call to sendTimingReq the packet is
2568 // forwarded to all neighbouring caches (and any
2569 // caches above them) as a snoop. The packet is also
2570 // sent to any potential cache below as the
2571 // interconnect is not allowed to buffer the
2572 // packet. Thus at this point we know if any of the
2573 // neighbouring, or the downstream cache is
2574 // responding, and if so, if it is with a dirty line
2575 // or not.
2576 bool pending_dirty_resp = !pkt->sharedAsserted() &&
2577 pkt->memInhibitAsserted();
2578
2579 cache.markInService(mshr, pending_dirty_resp);
2580 }
2581 }
2582
2583 // if we succeeded and are not waiting for a retry, schedule the
2584 // next send considering when the next MSHR is ready, note that
2585 // snoop responses have their own packet queue and thus schedule
2586 // their own events
2587 if (!waitingOnRetry) {
2588 schedSendEvent(cache.nextMSHRReadyTime());
2589 }
2590}
2591
2592Cache::
2593MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2594 const std::string &_label)
2595 : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2596 _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2597 _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2598{
2599}
2371 if (mshr->queue->forceDeallocateTarget(mshr)) {
2372 // Clear block if this deallocation resulted freed an
2373 // mshr when all had previously been utilized
2374 clearBlocked((BlockedCause)(mshr->queue->index));
2375 }
2376 return NULL;
2377 } else {
2378 // If this is a Writeback, and the snoops indicate that the blk
2379 // is cached above, set the BLOCK_CACHED flag in the Writeback
2380 // packet, so that it does not reset the bits corresponding to
2381 // this block in the snoop filter below.
2382 tgt_pkt->setBlockCached();
2383 }
2384 }
2385 }
2386
2387 if (mshr->isForwardNoResponse()) {
2388 // no response expected, just forward packet as it is
2389 assert(tags->findBlock(mshr->blkAddr, mshr->isSecure) == NULL);
2390 pkt = tgt_pkt;
2391 } else {
2392 pkt = getBusPacket(tgt_pkt, blk, mshr->needsExclusive());
2393
2394 mshr->isForward = (pkt == NULL);
2395
2396 if (mshr->isForward) {
2397 // not a cache block request, but a response is expected
2398 // make copy of current packet to forward, keep current
2399 // copy for response handling
2400 pkt = new Packet(tgt_pkt, false, true);
2401 if (pkt->isWrite()) {
2402 pkt->setData(tgt_pkt->getConstPtr<uint8_t>());
2403 }
2404 }
2405 }
2406
2407 assert(pkt != NULL);
2408 pkt->senderState = mshr;
2409 return pkt;
2410}
2411
2412
2413Tick
2414Cache::nextMSHRReadyTime() const
2415{
2416 Tick nextReady = std::min(mshrQueue.nextMSHRReadyTime(),
2417 writeBuffer.nextMSHRReadyTime());
2418
2419 // Don't signal prefetch ready time if no MSHRs available
2420 // Will signal once enoguh MSHRs are deallocated
2421 if (prefetcher && mshrQueue.canPrefetch()) {
2422 nextReady = std::min(nextReady,
2423 prefetcher->nextPrefetchReadyTime());
2424 }
2425
2426 return nextReady;
2427}
2428
2429void
2430Cache::serialize(CheckpointOut &cp) const
2431{
2432 bool dirty(isDirty());
2433
2434 if (dirty) {
2435 warn("*** The cache still contains dirty data. ***\n");
2436 warn(" Make sure to drain the system using the correct flags.\n");
2437 warn(" This checkpoint will not restore correctly and dirty data in "
2438 "the cache will be lost!\n");
2439 }
2440
2441 // Since we don't checkpoint the data in the cache, any dirty data
2442 // will be lost when restoring from a checkpoint of a system that
2443 // wasn't drained properly. Flag the checkpoint as invalid if the
2444 // cache contains dirty data.
2445 bool bad_checkpoint(dirty);
2446 SERIALIZE_SCALAR(bad_checkpoint);
2447}
2448
2449void
2450Cache::unserialize(CheckpointIn &cp)
2451{
2452 bool bad_checkpoint;
2453 UNSERIALIZE_SCALAR(bad_checkpoint);
2454 if (bad_checkpoint) {
2455 fatal("Restoring from checkpoints with dirty caches is not supported "
2456 "in the classic memory system. Please remove any caches or "
2457 " drain them properly before taking checkpoints.\n");
2458 }
2459}
2460
2461///////////////
2462//
2463// CpuSidePort
2464//
2465///////////////
2466
2467AddrRangeList
2468Cache::CpuSidePort::getAddrRanges() const
2469{
2470 return cache->getAddrRanges();
2471}
2472
2473bool
2474Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2475{
2476 assert(!cache->system->bypassCaches());
2477
2478 bool success = false;
2479
2480 // always let inhibited requests through, even if blocked,
2481 // ultimately we should check if this is an express snoop, but at
2482 // the moment that flag is only set in the cache itself
2483 if (pkt->memInhibitAsserted()) {
2484 // do not change the current retry state
2485 bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
2486 assert(bypass_success);
2487 return true;
2488 } else if (blocked || mustSendRetry) {
2489 // either already committed to send a retry, or blocked
2490 success = false;
2491 } else {
2492 // pass it on to the cache, and let the cache decide if we
2493 // have to retry or not
2494 success = cache->recvTimingReq(pkt);
2495 }
2496
2497 // remember if we have to retry
2498 mustSendRetry = !success;
2499 return success;
2500}
2501
2502Tick
2503Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2504{
2505 return cache->recvAtomic(pkt);
2506}
2507
2508void
2509Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2510{
2511 // functional request
2512 cache->functionalAccess(pkt, true);
2513}
2514
2515Cache::
2516CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2517 const std::string &_label)
2518 : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2519{
2520}
2521
2522Cache*
2523CacheParams::create()
2524{
2525 assert(tags);
2526
2527 return new Cache(this);
2528}
2529///////////////
2530//
2531// MemSidePort
2532//
2533///////////////
2534
2535bool
2536Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2537{
2538 cache->recvTimingResp(pkt);
2539 return true;
2540}
2541
2542// Express snooping requests to memside port
2543void
2544Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2545{
2546 // handle snooping requests
2547 cache->recvTimingSnoopReq(pkt);
2548}
2549
2550Tick
2551Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2552{
2553 return cache->recvAtomicSnoop(pkt);
2554}
2555
2556void
2557Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2558{
2559 // functional snoop (note that in contrast to atomic we don't have
2560 // a specific functionalSnoop method, as they have the same
2561 // behaviour regardless)
2562 cache->functionalAccess(pkt, false);
2563}
2564
2565void
2566Cache::CacheReqPacketQueue::sendDeferredPacket()
2567{
2568 // sanity check
2569 assert(!waitingOnRetry);
2570
2571 // there should never be any deferred request packets in the
2572 // queue, instead we resly on the cache to provide the packets
2573 // from the MSHR queue or write queue
2574 assert(deferredPacketReadyTime() == MaxTick);
2575
2576 // check for request packets (requests & writebacks)
2577 PacketPtr pkt = cache.getTimingPacket();
2578 if (pkt == NULL) {
2579 // can happen if e.g. we attempt a writeback and fail, but
2580 // before the retry, the writeback is eliminated because
2581 // we snoop another cache's ReadEx.
2582 } else {
2583 MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
2584 // in most cases getTimingPacket allocates a new packet, and
2585 // we must delete it unless it is successfully sent
2586 bool delete_pkt = !mshr->isForwardNoResponse();
2587
2588 // let our snoop responses go first if there are responses to
2589 // the same addresses we are about to writeback, note that
2590 // this creates a dependency between requests and snoop
2591 // responses, but that should not be a problem since there is
2592 // a chain already and the key is that the snoop responses can
2593 // sink unconditionally
2594 if (snoopRespQueue.hasAddr(pkt->getAddr())) {
2595 DPRINTF(CachePort, "Waiting for snoop response to be sent\n");
2596 Tick when = snoopRespQueue.deferredPacketReadyTime();
2597 schedSendEvent(when);
2598
2599 if (delete_pkt)
2600 delete pkt;
2601
2602 return;
2603 }
2604
2605
2606 waitingOnRetry = !masterPort.sendTimingReq(pkt);
2607
2608 if (waitingOnRetry) {
2609 DPRINTF(CachePort, "now waiting on a retry\n");
2610 if (delete_pkt) {
2611 // we are awaiting a retry, but we
2612 // delete the packet and will be creating a new packet
2613 // when we get the opportunity
2614 delete pkt;
2615 }
2616 // note that we have now masked any requestBus and
2617 // schedSendEvent (we will wait for a retry before
2618 // doing anything), and this is so even if we do not
2619 // care about this packet and might override it before
2620 // it gets retried
2621 } else {
2622 // As part of the call to sendTimingReq the packet is
2623 // forwarded to all neighbouring caches (and any
2624 // caches above them) as a snoop. The packet is also
2625 // sent to any potential cache below as the
2626 // interconnect is not allowed to buffer the
2627 // packet. Thus at this point we know if any of the
2628 // neighbouring, or the downstream cache is
2629 // responding, and if so, if it is with a dirty line
2630 // or not.
2631 bool pending_dirty_resp = !pkt->sharedAsserted() &&
2632 pkt->memInhibitAsserted();
2633
2634 cache.markInService(mshr, pending_dirty_resp);
2635 }
2636 }
2637
2638 // if we succeeded and are not waiting for a retry, schedule the
2639 // next send considering when the next MSHR is ready, note that
2640 // snoop responses have their own packet queue and thus schedule
2641 // their own events
2642 if (!waitingOnRetry) {
2643 schedSendEvent(cache.nextMSHRReadyTime());
2644 }
2645}
2646
2647Cache::
2648MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2649 const std::string &_label)
2650 : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2651 _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2652 _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2653{
2654}