Deleted Added
sdiff udiff text old ( 12348:bef2d9d3c353 ) new ( 12349:47f454120200 )
full compact
1/*
2 * Copyright (c) 2010-2017 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 * Dave Greene
43 * Nathan Binkert
44 * Steve Reinhardt
45 * Ron Dreslinski
46 * Andreas Sandberg
47 */
48
49/**
50 * @file
51 * Cache definitions.
52 */
53
54#include "mem/cache/cache.hh"
55
56#include "base/logging.hh"
57#include "base/types.hh"
58#include "debug/Cache.hh"
59#include "debug/CachePort.hh"
60#include "debug/CacheTags.hh"
61#include "debug/CacheVerbose.hh"
62#include "mem/cache/blk.hh"
63#include "mem/cache/mshr.hh"
64#include "mem/cache/prefetch/base.hh"
65#include "sim/sim_exit.hh"
66
67Cache::Cache(const CacheParams *p)
68 : BaseCache(p, p->system->cacheLineSize()),
69 tags(p->tags),
70 prefetcher(p->prefetcher),
71 doFastWrites(true),
72 prefetchOnAccess(p->prefetch_on_access),
73 clusivity(p->clusivity),
74 writebackClean(p->writeback_clean),
75 tempBlockWriteback(nullptr),
76 writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
77 name(), false,
78 EventBase::Delayed_Writeback_Pri)
79{
80 tempBlock = new CacheBlk();
81 tempBlock->data = new uint8_t[blkSize];
82
83 cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
84 "CpuSidePort");
85 memSidePort = new MemSidePort(p->name + ".mem_side", this,
86 "MemSidePort");
87
88 tags->setCache(this);
89 if (prefetcher)
90 prefetcher->setCache(this);
91}
92
93Cache::~Cache()
94{
95 delete [] tempBlock->data;
96 delete tempBlock;
97
98 delete cpuSidePort;
99 delete memSidePort;
100}
101
102void
103Cache::regStats()
104{
105 BaseCache::regStats();
106}
107
108void
109Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
110{
111 assert(pkt->isRequest());
112
113 uint64_t overwrite_val;
114 bool overwrite_mem;
115 uint64_t condition_val64;
116 uint32_t condition_val32;
117
118 int offset = tags->extractBlkOffset(pkt->getAddr());
119 uint8_t *blk_data = blk->data + offset;
120
121 assert(sizeof(uint64_t) >= pkt->getSize());
122
123 overwrite_mem = true;
124 // keep a copy of our possible write value, and copy what is at the
125 // memory address into the packet
126 pkt->writeData((uint8_t *)&overwrite_val);
127 pkt->setData(blk_data);
128
129 if (pkt->req->isCondSwap()) {
130 if (pkt->getSize() == sizeof(uint64_t)) {
131 condition_val64 = pkt->req->getExtraData();
132 overwrite_mem = !std::memcmp(&condition_val64, blk_data,
133 sizeof(uint64_t));
134 } else if (pkt->getSize() == sizeof(uint32_t)) {
135 condition_val32 = (uint32_t)pkt->req->getExtraData();
136 overwrite_mem = !std::memcmp(&condition_val32, blk_data,
137 sizeof(uint32_t));
138 } else
139 panic("Invalid size for conditional read/write\n");
140 }
141
142 if (overwrite_mem) {
143 std::memcpy(blk_data, &overwrite_val, pkt->getSize());
144 blk->status |= BlkDirty;
145 }
146}
147
148
149void
150Cache::satisfyRequest(PacketPtr pkt, CacheBlk *blk,
151 bool deferred_response, bool pending_downgrade)
152{
153 assert(pkt->isRequest());
154
155 assert(blk && blk->isValid());
156 // Occasionally this is not true... if we are a lower-level cache
157 // satisfying a string of Read and ReadEx requests from
158 // upper-level caches, a Read will mark the block as shared but we
159 // can satisfy a following ReadEx anyway since we can rely on the
160 // Read requester(s) to have buffered the ReadEx snoop and to
161 // invalidate their blocks after receiving them.
162 // assert(!pkt->needsWritable() || blk->isWritable());
163 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
164
165 // Check RMW operations first since both isRead() and
166 // isWrite() will be true for them
167 if (pkt->cmd == MemCmd::SwapReq) {
168 cmpAndSwap(blk, pkt);
169 } else if (pkt->isWrite()) {
170 // we have the block in a writable state and can go ahead,
171 // note that the line may be also be considered writable in
172 // downstream caches along the path to memory, but always
173 // Exclusive, and never Modified
174 assert(blk->isWritable());
175 // Write or WriteLine at the first cache with block in writable state
176 if (blk->checkWrite(pkt)) {
177 pkt->writeDataToBlock(blk->data, blkSize);
178 }
179 // Always mark the line as dirty (and thus transition to the
180 // Modified state) even if we are a failed StoreCond so we
181 // supply data to any snoops that have appended themselves to
182 // this cache before knowing the store will fail.
183 blk->status |= BlkDirty;
184 DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
185 } else if (pkt->isRead()) {
186 if (pkt->isLLSC()) {
187 blk->trackLoadLocked(pkt);
188 }
189
190 // all read responses have a data payload
191 assert(pkt->hasRespData());
192 pkt->setDataFromBlock(blk->data, blkSize);
193
194 // determine if this read is from a (coherent) cache or not
195 if (pkt->fromCache()) {
196 assert(pkt->getSize() == blkSize);
197 // special handling for coherent block requests from
198 // upper-level caches
199 if (pkt->needsWritable()) {
200 // sanity check
201 assert(pkt->cmd == MemCmd::ReadExReq ||
202 pkt->cmd == MemCmd::SCUpgradeFailReq);
203 assert(!pkt->hasSharers());
204
205 // if we have a dirty copy, make sure the recipient
206 // keeps it marked dirty (in the modified state)
207 if (blk->isDirty()) {
208 pkt->setCacheResponding();
209 blk->status &= ~BlkDirty;
210 }
211 } else if (blk->isWritable() && !pending_downgrade &&
212 !pkt->hasSharers() &&
213 pkt->cmd != MemCmd::ReadCleanReq) {
214 // we can give the requester a writable copy on a read
215 // request if:
216 // - we have a writable copy at this level (& below)
217 // - we don't have a pending snoop from below
218 // signaling another read request
219 // - no other cache above has a copy (otherwise it
220 // would have set hasSharers flag when
221 // snooping the packet)
222 // - the read has explicitly asked for a clean
223 // copy of the line
224 if (blk->isDirty()) {
225 // special considerations if we're owner:
226 if (!deferred_response) {
227 // respond with the line in Modified state
228 // (cacheResponding set, hasSharers not set)
229 pkt->setCacheResponding();
230
231 // if this cache is mostly inclusive, we
232 // keep the block in the Exclusive state,
233 // and pass it upwards as Modified
234 // (writable and dirty), hence we have
235 // multiple caches, all on the same path
236 // towards memory, all considering the
237 // same block writable, but only one
238 // considering it Modified
239
240 // we get away with multiple caches (on
241 // the same path to memory) considering
242 // the block writeable as we always enter
243 // the cache hierarchy through a cache,
244 // and first snoop upwards in all other
245 // branches
246 blk->status &= ~BlkDirty;
247 } else {
248 // if we're responding after our own miss,
249 // there's a window where the recipient didn't
250 // know it was getting ownership and may not
251 // have responded to snoops correctly, so we
252 // have to respond with a shared line
253 pkt->setHasSharers();
254 }
255 }
256 } else {
257 // otherwise only respond with a shared copy
258 pkt->setHasSharers();
259 }
260 }
261 } else if (pkt->isUpgrade()) {
262 // sanity check
263 assert(!pkt->hasSharers());
264
265 if (blk->isDirty()) {
266 // we were in the Owned state, and a cache above us that
267 // has the line in Shared state needs to be made aware
268 // that the data it already has is in fact dirty
269 pkt->setCacheResponding();
270 blk->status &= ~BlkDirty;
271 }
272 } else {
273 assert(pkt->isInvalidate());
274 invalidateBlock(blk);
275 DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
276 pkt->print());
277 }
278}
279
280/////////////////////////////////////////////////////
281//
282// Access path: requests coming in from the CPU side
283//
284/////////////////////////////////////////////////////
285
286bool
287Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
288 PacketList &writebacks)
289{
290 // sanity check
291 assert(pkt->isRequest());
292
293 chatty_assert(!(isReadOnly && pkt->isWrite()),
294 "Should never see a write in a read-only cache %s\n",
295 name());
296
297 DPRINTF(CacheVerbose, "%s for %s\n", __func__, pkt->print());
298
299 if (pkt->req->isUncacheable()) {
300 DPRINTF(Cache, "uncacheable: %s\n", pkt->print());
301
302 // flush and invalidate any existing block
303 CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
304 if (old_blk && old_blk->isValid()) {
305 if (old_blk->isDirty() || writebackClean)
306 writebacks.push_back(writebackBlk(old_blk));
307 else
308 writebacks.push_back(cleanEvictBlk(old_blk));
309 invalidateBlock(old_blk);
310 }
311
312 blk = nullptr;
313 // lookupLatency is the latency in case the request is uncacheable.
314 lat = lookupLatency;
315 return false;
316 }
317
318 // Here lat is the value passed as parameter to accessBlock() function
319 // that can modify its value.
320 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat);
321
322 DPRINTF(Cache, "%s %s\n", pkt->print(),
323 blk ? "hit " + blk->print() : "miss");
324
325
326 if (pkt->isEviction()) {
327 // We check for presence of block in above caches before issuing
328 // Writeback or CleanEvict to write buffer. Therefore the only
329 // possible cases can be of a CleanEvict packet coming from above
330 // encountering a Writeback generated in this cache peer cache and
331 // waiting in the write buffer. Cases of upper level peer caches
332 // generating CleanEvict and Writeback or simply CleanEvict and
333 // CleanEvict almost simultaneously will be caught by snoops sent out
334 // by crossbar.
335 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
336 pkt->isSecure());
337 if (wb_entry) {
338 assert(wb_entry->getNumTargets() == 1);
339 PacketPtr wbPkt = wb_entry->getTarget()->pkt;
340 assert(wbPkt->isWriteback());
341
342 if (pkt->isCleanEviction()) {
343 // The CleanEvict and WritebackClean snoops into other
344 // peer caches of the same level while traversing the
345 // crossbar. If a copy of the block is found, the
346 // packet is deleted in the crossbar. Hence, none of
347 // the other upper level caches connected to this
348 // cache have the block, so we can clear the
349 // BLOCK_CACHED flag in the Writeback if set and
350 // discard the CleanEvict by returning true.
351 wbPkt->clearBlockCached();
352 return true;
353 } else {
354 assert(pkt->cmd == MemCmd::WritebackDirty);
355 // Dirty writeback from above trumps our clean
356 // writeback... discard here
357 // Note: markInService will remove entry from writeback buffer.
358 markInService(wb_entry);
359 delete wbPkt;
360 }
361 }
362 }
363
364 // Writeback handling is special case. We can write the block into
365 // the cache without having a writeable copy (or any copy at all).
366 if (pkt->isWriteback()) {
367 assert(blkSize == pkt->getSize());
368
369 // we could get a clean writeback while we are having
370 // outstanding accesses to a block, do the simple thing for
371 // now and drop the clean writeback so that we do not upset
372 // any ordering/decisions about ownership already taken
373 if (pkt->cmd == MemCmd::WritebackClean &&
374 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
375 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
376 "dropping\n", pkt->getAddr());
377 return true;
378 }
379
380 if (blk == nullptr) {
381 // need to do a replacement
382 blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
383 if (blk == nullptr) {
384 // no replaceable block available: give up, fwd to next level.
385 incMissCount(pkt);
386 return false;
387 }
388 tags->insertBlock(pkt, blk);
389
390 blk->status = (BlkValid | BlkReadable);
391 if (pkt->isSecure()) {
392 blk->status |= BlkSecure;
393 }
394 }
395 // only mark the block dirty if we got a writeback command,
396 // and leave it as is for a clean writeback
397 if (pkt->cmd == MemCmd::WritebackDirty) {
398 blk->status |= BlkDirty;
399 }
400 // if the packet does not have sharers, it is passing
401 // writable, and we got the writeback in Modified or Exclusive
402 // state, if not we are in the Owned or Shared state
403 if (!pkt->hasSharers()) {
404 blk->status |= BlkWritable;
405 }
406 // nothing else to do; writeback doesn't expect response
407 assert(!pkt->needsResponse());
408 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
409 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
410 incHitCount(pkt);
411 return true;
412 } else if (pkt->cmd == MemCmd::CleanEvict) {
413 if (blk != nullptr) {
414 // Found the block in the tags, need to stop CleanEvict from
415 // propagating further down the hierarchy. Returning true will
416 // treat the CleanEvict like a satisfied write request and delete
417 // it.
418 return true;
419 }
420 // We didn't find the block here, propagate the CleanEvict further
421 // down the memory hierarchy. Returning false will treat the CleanEvict
422 // like a Writeback which could not find a replaceable block so has to
423 // go to next level.
424 return false;
425 } else if (pkt->cmd == MemCmd::WriteClean) {
426 // WriteClean handling is a special case. We can allocate a
427 // block directly if it doesn't exist and we can update the
428 // block immediately. The WriteClean transfers the ownership
429 // of the block as well.
430 assert(blkSize == pkt->getSize());
431
432 if (!blk) {
433 if (pkt->writeThrough()) {
434 // if this is a write through packet, we don't try to
435 // allocate if the block is not present
436 return false;
437 } else {
438 // a writeback that misses needs to allocate a new block
439 blk = allocateBlock(pkt->getAddr(), pkt->isSecure(),
440 writebacks);
441 if (!blk) {
442 // no replaceable block available: give up, fwd to
443 // next level.
444 incMissCount(pkt);
445 return false;
446 }
447 tags->insertBlock(pkt, blk);
448
449 blk->status = (BlkValid | BlkReadable);
450 if (pkt->isSecure()) {
451 blk->status |= BlkSecure;
452 }
453 }
454 }
455
456 // at this point either this is a writeback or a write-through
457 // write clean operation and the block is already in this
458 // cache, we need to update the data and the block flags
459 assert(blk);
460 if (!pkt->writeThrough()) {
461 blk->status |= BlkDirty;
462 }
463 // nothing else to do; writeback doesn't expect response
464 assert(!pkt->needsResponse());
465 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
466 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
467
468 incHitCount(pkt);
469 // populate the time when the block will be ready to access.
470 blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
471 pkt->payloadDelay;
472 // if this a write-through packet it will be sent to cache
473 // below
474 return !pkt->writeThrough();
475 } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
476 blk->isReadable())) {
477 // OK to satisfy access
478 incHitCount(pkt);
479 satisfyRequest(pkt, blk);
480 maintainClusivity(pkt->fromCache(), blk);
481
482 return true;
483 }
484
485 // Can't satisfy access normally... either no block (blk == nullptr)
486 // or have block but need writable
487
488 incMissCount(pkt);
489
490 if (blk == nullptr && pkt->isLLSC() && pkt->isWrite()) {
491 // complete miss on store conditional... just give up now
492 pkt->req->setExtraData(0);
493 return true;
494 }
495
496 return false;
497}
498
499void
500Cache::maintainClusivity(bool from_cache, CacheBlk *blk)
501{
502 if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
503 clusivity == Enums::mostly_excl) {
504 // if we have responded to a cache, and our block is still
505 // valid, but not dirty, and this cache is mostly exclusive
506 // with respect to the cache above, drop the block
507 invalidateBlock(blk);
508 }
509}
510
511void
512Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
513{
514 while (!writebacks.empty()) {
515 PacketPtr wbPkt = writebacks.front();
516 // We use forwardLatency here because we are copying writebacks to
517 // write buffer.
518
519 // Call isCachedAbove for Writebacks, CleanEvicts and
520 // WriteCleans to discover if the block is cached above.
521 if (isCachedAbove(wbPkt)) {
522 if (wbPkt->cmd == MemCmd::CleanEvict) {
523 // Delete CleanEvict because cached copies exist above. The
524 // packet destructor will delete the request object because
525 // this is a non-snoop request packet which does not require a
526 // response.
527 delete wbPkt;
528 } else if (wbPkt->cmd == MemCmd::WritebackClean) {
529 // clean writeback, do not send since the block is
530 // still cached above
531 assert(writebackClean);
532 delete wbPkt;
533 } else {
534 assert(wbPkt->cmd == MemCmd::WritebackDirty ||
535 wbPkt->cmd == MemCmd::WriteClean);
536 // Set BLOCK_CACHED flag in Writeback and send below, so that
537 // the Writeback does not reset the bit corresponding to this
538 // address in the snoop filter below.
539 wbPkt->setBlockCached();
540 allocateWriteBuffer(wbPkt, forward_time);
541 }
542 } else {
543 // If the block is not cached above, send packet below. Both
544 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
545 // reset the bit corresponding to this address in the snoop filter
546 // below.
547 allocateWriteBuffer(wbPkt, forward_time);
548 }
549 writebacks.pop_front();
550 }
551}
552
553void
554Cache::doWritebacksAtomic(PacketList& writebacks)
555{
556 while (!writebacks.empty()) {
557 PacketPtr wbPkt = writebacks.front();
558 // Call isCachedAbove for both Writebacks and CleanEvicts. If
559 // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
560 // and discard CleanEvicts.
561 if (isCachedAbove(wbPkt, false)) {
562 if (wbPkt->cmd == MemCmd::WritebackDirty ||
563 wbPkt->cmd == MemCmd::WriteClean) {
564 // Set BLOCK_CACHED flag in Writeback and send below,
565 // so that the Writeback does not reset the bit
566 // corresponding to this address in the snoop filter
567 // below. We can discard CleanEvicts because cached
568 // copies exist above. Atomic mode isCachedAbove
569 // modifies packet to set BLOCK_CACHED flag
570 memSidePort->sendAtomic(wbPkt);
571 }
572 } else {
573 // If the block is not cached above, send packet below. Both
574 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
575 // reset the bit corresponding to this address in the snoop filter
576 // below.
577 memSidePort->sendAtomic(wbPkt);
578 }
579 writebacks.pop_front();
580 // In case of CleanEvicts, the packet destructor will delete the
581 // request object because this is a non-snoop request packet which
582 // does not require a response.
583 delete wbPkt;
584 }
585}
586
587
588void
589Cache::recvTimingSnoopResp(PacketPtr pkt)
590{
591 DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
592
593 assert(pkt->isResponse());
594 assert(!system->bypassCaches());
595
596 // determine if the response is from a snoop request we created
597 // (in which case it should be in the outstandingSnoop), or if we
598 // merely forwarded someone else's snoop request
599 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
600 outstandingSnoop.end();
601
602 if (!forwardAsSnoop) {
603 // the packet came from this cache, so sink it here and do not
604 // forward it
605 assert(pkt->cmd == MemCmd::HardPFResp);
606
607 outstandingSnoop.erase(pkt->req);
608
609 DPRINTF(Cache, "Got prefetch response from above for addr "
610 "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
611 recvTimingResp(pkt);
612 return;
613 }
614
615 // forwardLatency is set here because there is a response from an
616 // upper level cache.
617 // To pay the delay that occurs if the packet comes from the bus,
618 // we charge also headerDelay.
619 Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
620 // Reset the timing of the packet.
621 pkt->headerDelay = pkt->payloadDelay = 0;
622 memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
623}
624
625void
626Cache::promoteWholeLineWrites(PacketPtr pkt)
627{
628 // Cache line clearing instructions
629 if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
630 (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
631 pkt->cmd = MemCmd::WriteLineReq;
632 DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
633 }
634}
635
636bool
637Cache::recvTimingReq(PacketPtr pkt)
638{
639 DPRINTF(CacheTags, "%s tags:\n%s\n", __func__, tags->print());
640
641 assert(pkt->isRequest());
642
643 // Just forward the packet if caches are disabled.
644 if (system->bypassCaches()) {
645 // @todo This should really enqueue the packet rather
646 bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
647 assert(success);
648 return true;
649 }
650
651 promoteWholeLineWrites(pkt);
652
653 if (pkt->cacheResponding()) {
654 // a cache above us (but not where the packet came from) is
655 // responding to the request, in other words it has the line
656 // in Modified or Owned state
657 DPRINTF(Cache, "Cache above responding to %s: not responding\n",
658 pkt->print());
659
660 // if the packet needs the block to be writable, and the cache
661 // that has promised to respond (setting the cache responding
662 // flag) is not providing writable (it is in Owned rather than
663 // the Modified state), we know that there may be other Shared
664 // copies in the system; go out and invalidate them all
665 assert(pkt->needsWritable() && !pkt->responderHadWritable());
666
667 // an upstream cache that had the line in Owned state
668 // (dirty, but not writable), is responding and thus
669 // transferring the dirty line from one branch of the
670 // cache hierarchy to another
671
672 // send out an express snoop and invalidate all other
673 // copies (snooping a packet that needs writable is the
674 // same as an invalidation), thus turning the Owned line
675 // into a Modified line, note that we don't invalidate the
676 // block in the current cache or any other cache on the
677 // path to memory
678
679 // create a downstream express snoop with cleared packet
680 // flags, there is no need to allocate any data as the
681 // packet is merely used to co-ordinate state transitions
682 Packet *snoop_pkt = new Packet(pkt, true, false);
683
684 // also reset the bus time that the original packet has
685 // not yet paid for
686 snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
687
688 // make this an instantaneous express snoop, and let the
689 // other caches in the system know that the another cache
690 // is responding, because we have found the authorative
691 // copy (Modified or Owned) that will supply the right
692 // data
693 snoop_pkt->setExpressSnoop();
694 snoop_pkt->setCacheResponding();
695
696 // this express snoop travels towards the memory, and at
697 // every crossbar it is snooped upwards thus reaching
698 // every cache in the system
699 bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
700 // express snoops always succeed
701 assert(success);
702
703 // main memory will delete the snoop packet
704
705 // queue for deletion, as opposed to immediate deletion, as
706 // the sending cache is still relying on the packet
707 pendingDelete.reset(pkt);
708
709 // no need to take any further action in this particular cache
710 // as an upstram cache has already committed to responding,
711 // and we have already sent out any express snoops in the
712 // section above to ensure all other copies in the system are
713 // invalidated
714 return true;
715 }
716
717 // anything that is merely forwarded pays for the forward latency and
718 // the delay provided by the crossbar
719 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
720
721 // We use lookupLatency here because it is used to specify the latency
722 // to access.
723 Cycles lat = lookupLatency;
724 CacheBlk *blk = nullptr;
725 bool satisfied = false;
726 {
727 PacketList writebacks;
728 // Note that lat is passed by reference here. The function
729 // access() calls accessBlock() which can modify lat value.
730 satisfied = access(pkt, blk, lat, writebacks);
731
732 // copy writebacks to write buffer here to ensure they logically
733 // proceed anything happening below
734 doWritebacks(writebacks, forward_time);
735 }
736
737 // Here we charge the headerDelay that takes into account the latencies
738 // of the bus, if the packet comes from it.
739 // The latency charged it is just lat that is the value of lookupLatency
740 // modified by access() function, or if not just lookupLatency.
741 // In case of a hit we are neglecting response latency.
742 // In case of a miss we are neglecting forward latency.
743 Tick request_time = clockEdge(lat) + pkt->headerDelay;
744 // Here we reset the timing of the packet.
745 pkt->headerDelay = pkt->payloadDelay = 0;
746
747 // track time of availability of next prefetch, if any
748 Tick next_pf_time = MaxTick;
749
750 bool needsResponse = pkt->needsResponse();
751
752 if (satisfied) {
753 // should never be satisfying an uncacheable access as we
754 // flush and invalidate any existing block as part of the
755 // lookup
756 assert(!pkt->req->isUncacheable());
757
758 // hit (for all other request types)
759
760 if (prefetcher && (prefetchOnAccess ||
761 (blk && blk->wasPrefetched()))) {
762 if (blk)
763 blk->status &= ~BlkHWPrefetched;
764
765 // Don't notify on SWPrefetch
766 if (!pkt->cmd.isSWPrefetch())
767 next_pf_time = prefetcher->notify(pkt);
768 }
769
770 if (needsResponse) {
771 pkt->makeTimingResponse();
772 // @todo: Make someone pay for this
773 pkt->headerDelay = pkt->payloadDelay = 0;
774
775 // In this case we are considering request_time that takes
776 // into account the delay of the xbar, if any, and just
777 // lat, neglecting responseLatency, modelling hit latency
778 // just as lookupLatency or or the value of lat overriden
779 // by access(), that calls accessBlock() function.
780 cpuSidePort->schedTimingResp(pkt, request_time, true);
781 } else {
782 DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
783 pkt->print());
784
785 // queue the packet for deletion, as the sending cache is
786 // still relying on it; if the block is found in access(),
787 // CleanEvict and Writeback messages will be deleted
788 // here as well
789 pendingDelete.reset(pkt);
790 }
791 } else {
792 // miss
793
794 Addr blk_addr = pkt->getBlockAddr(blkSize);
795
796 // ignore any existing MSHR if we are dealing with an
797 // uncacheable request
798 MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
799 mshrQueue.findMatch(blk_addr, pkt->isSecure());
800
801 // Software prefetch handling:
802 // To keep the core from waiting on data it won't look at
803 // anyway, send back a response with dummy data. Miss handling
804 // will continue asynchronously. Unfortunately, the core will
805 // insist upon freeing original Packet/Request, so we have to
806 // create a new pair with a different lifecycle. Note that this
807 // processing happens before any MSHR munging on the behalf of
808 // this request because this new Request will be the one stored
809 // into the MSHRs, not the original.
810 if (pkt->cmd.isSWPrefetch()) {
811 assert(needsResponse);
812 assert(pkt->req->hasPaddr());
813 assert(!pkt->req->isUncacheable());
814
815 // There's no reason to add a prefetch as an additional target
816 // to an existing MSHR. If an outstanding request is already
817 // in progress, there is nothing for the prefetch to do.
818 // If this is the case, we don't even create a request at all.
819 PacketPtr pf = nullptr;
820
821 if (!mshr) {
822 // copy the request and create a new SoftPFReq packet
823 RequestPtr req = new Request(pkt->req->getPaddr(),
824 pkt->req->getSize(),
825 pkt->req->getFlags(),
826 pkt->req->masterId());
827 pf = new Packet(req, pkt->cmd);
828 pf->allocate();
829 assert(pf->getAddr() == pkt->getAddr());
830 assert(pf->getSize() == pkt->getSize());
831 }
832
833 pkt->makeTimingResponse();
834
835 // request_time is used here, taking into account lat and the delay
836 // charged if the packet comes from the xbar.
837 cpuSidePort->schedTimingResp(pkt, request_time, true);
838
839 // If an outstanding request is in progress (we found an
840 // MSHR) this is set to null
841 pkt = pf;
842 }
843
844 if (mshr) {
845 /// MSHR hit
846 /// @note writebacks will be checked in getNextMSHR()
847 /// for any conflicting requests to the same block
848
849 //@todo remove hw_pf here
850
851 // Coalesce unless it was a software prefetch (see above).
852 if (pkt) {
853 assert(!pkt->isWriteback());
854 // CleanEvicts corresponding to blocks which have
855 // outstanding requests in MSHRs are simply sunk here
856 if (pkt->cmd == MemCmd::CleanEvict) {
857 pendingDelete.reset(pkt);
858 } else {
859 DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
860 pkt->print());
861
862 assert(pkt->req->masterId() < system->maxMasters());
863 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
864 // We use forward_time here because it is the same
865 // considering new targets. We have multiple
866 // requests for the same address here. It
867 // specifies the latency to allocate an internal
868 // buffer and to schedule an event to the queued
869 // port and also takes into account the additional
870 // delay of the xbar.
871 mshr->allocateTarget(pkt, forward_time, order++,
872 allocOnFill(pkt->cmd));
873 if (mshr->getNumTargets() == numTarget) {
874 noTargetMSHR = mshr;
875 setBlocked(Blocked_NoTargets);
876 // need to be careful with this... if this mshr isn't
877 // ready yet (i.e. time > curTick()), we don't want to
878 // move it ahead of mshrs that are ready
879 // mshrQueue.moveToFront(mshr);
880 }
881 }
882 // We should call the prefetcher reguardless if the request is
883 // satisfied or not, reguardless if the request is in the MSHR
884 // or not. The request could be a ReadReq hit, but still not
885 // satisfied (potentially because of a prior write to the same
886 // cache line. So, even when not satisfied, tehre is an MSHR
887 // already allocated for this, we need to let the prefetcher
888 // know about the request
889 if (prefetcher) {
890 // Don't notify on SWPrefetch
891 if (!pkt->cmd.isSWPrefetch())
892 next_pf_time = prefetcher->notify(pkt);
893 }
894 }
895 } else {
896 // no MSHR
897 assert(pkt->req->masterId() < system->maxMasters());
898 if (pkt->req->isUncacheable()) {
899 mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
900 } else {
901 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
902 }
903
904 if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean ||
905 (pkt->req->isUncacheable() && pkt->isWrite())) {
906 // We use forward_time here because there is an
907 // uncached memory write, forwarded to WriteBuffer.
908 allocateWriteBuffer(pkt, forward_time);
909 } else {
910 if (blk && blk->isValid()) {
911 // should have flushed and have no valid block
912 assert(!pkt->req->isUncacheable());
913
914 // If we have a write miss to a valid block, we
915 // need to mark the block non-readable. Otherwise
916 // if we allow reads while there's an outstanding
917 // write miss, the read could return stale data
918 // out of the cache block... a more aggressive
919 // system could detect the overlap (if any) and
920 // forward data out of the MSHRs, but we don't do
921 // that yet. Note that we do need to leave the
922 // block valid so that it stays in the cache, in
923 // case we get an upgrade response (and hence no
924 // new data) when the write miss completes.
925 // As long as CPUs do proper store/load forwarding
926 // internally, and have a sufficiently weak memory
927 // model, this is probably unnecessary, but at some
928 // point it must have seemed like we needed it...
929 assert(pkt->needsWritable());
930 assert(!blk->isWritable());
931 blk->status &= ~BlkReadable;
932 }
933 // Here we are using forward_time, modelling the latency of
934 // a miss (outbound) just as forwardLatency, neglecting the
935 // lookupLatency component.
936 allocateMissBuffer(pkt, forward_time);
937 }
938
939 if (prefetcher) {
940 // Don't notify on SWPrefetch
941 if (!pkt->cmd.isSWPrefetch())
942 next_pf_time = prefetcher->notify(pkt);
943 }
944 }
945 }
946
947 if (next_pf_time != MaxTick)
948 schedMemSideSendEvent(next_pf_time);
949
950 return true;
951}
952
953PacketPtr
954Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk,
955 bool needsWritable) const
956{
957 // should never see evictions here
958 assert(!cpu_pkt->isEviction());
959
960 bool blkValid = blk && blk->isValid();
961
962 if (cpu_pkt->req->isUncacheable() ||
963 (!blkValid && cpu_pkt->isUpgrade()) ||
964 cpu_pkt->cmd == MemCmd::InvalidateReq) {
965 // uncacheable requests and upgrades from upper-level caches
966 // that missed completely just go through as is
967 return nullptr;
968 }
969
970 assert(cpu_pkt->needsResponse());
971
972 MemCmd cmd;
973 // @TODO make useUpgrades a parameter.
974 // Note that ownership protocols require upgrade, otherwise a
975 // write miss on a shared owned block will generate a ReadExcl,
976 // which will clobber the owned copy.
977 const bool useUpgrades = true;
978 if (cpu_pkt->cmd == MemCmd::WriteLineReq) {
979 assert(!blkValid || !blk->isWritable());
980 // forward as invalidate to all other caches, this gives us
981 // the line in Exclusive state, and invalidates all other
982 // copies
983 cmd = MemCmd::InvalidateReq;
984 } else if (blkValid && useUpgrades) {
985 // only reason to be here is that blk is read only and we need
986 // it to be writable
987 assert(needsWritable);
988 assert(!blk->isWritable());
989 cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
990 } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
991 cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
992 // Even though this SC will fail, we still need to send out the
993 // request and get the data to supply it to other snoopers in the case
994 // where the determination the StoreCond fails is delayed due to
995 // all caches not being on the same local bus.
996 cmd = MemCmd::SCUpgradeFailReq;
997 } else {
998 // block is invalid
999 cmd = needsWritable ? MemCmd::ReadExReq :
1000 (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
1001 }
1002 PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
1003
1004 // if there are upstream caches that have already marked the
1005 // packet as having sharers (not passing writable), pass that info
1006 // downstream
1007 if (cpu_pkt->hasSharers() && !needsWritable) {
1008 // note that cpu_pkt may have spent a considerable time in the
1009 // MSHR queue and that the information could possibly be out
1010 // of date, however, there is no harm in conservatively
1011 // assuming the block has sharers
1012 pkt->setHasSharers();
1013 DPRINTF(Cache, "%s: passing hasSharers from %s to %s\n",
1014 __func__, cpu_pkt->print(), pkt->print());
1015 }
1016
1017 // the packet should be block aligned
1018 assert(pkt->getAddr() == pkt->getBlockAddr(blkSize));
1019
1020 pkt->allocate();
1021 DPRINTF(Cache, "%s: created %s from %s\n", __func__, pkt->print(),
1022 cpu_pkt->print());
1023 return pkt;
1024}
1025
1026
1027Tick
1028Cache::recvAtomic(PacketPtr pkt)
1029{
1030 // We are in atomic mode so we pay just for lookupLatency here.
1031 Cycles lat = lookupLatency;
1032
1033 // Forward the request if the system is in cache bypass mode.
1034 if (system->bypassCaches())
1035 return ticksToCycles(memSidePort->sendAtomic(pkt));
1036
1037 promoteWholeLineWrites(pkt);
1038
1039 // follow the same flow as in recvTimingReq, and check if a cache
1040 // above us is responding
1041 if (pkt->cacheResponding()) {
1042 DPRINTF(Cache, "Cache above responding to %s: not responding\n",
1043 pkt->print());
1044
1045 // if a cache is responding, and it had the line in Owned
1046 // rather than Modified state, we need to invalidate any
1047 // copies that are not on the same path to memory
1048 assert(pkt->needsWritable() && !pkt->responderHadWritable());
1049 lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1050
1051 return lat * clockPeriod();
1052 }
1053
1054 // should assert here that there are no outstanding MSHRs or
1055 // writebacks... that would mean that someone used an atomic
1056 // access in timing mode
1057
1058 CacheBlk *blk = nullptr;
1059 PacketList writebacks;
1060 bool satisfied = access(pkt, blk, lat, writebacks);
1061
1062 // handle writebacks resulting from the access here to ensure they
1063 // logically proceed anything happening below
1064 doWritebacksAtomic(writebacks);
1065
1066 if (!satisfied) {
1067 // MISS
1068
1069 // deal with the packets that go through the write path of
1070 // the cache, i.e. any evictions and writes
1071 if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean ||
1072 (pkt->req->isUncacheable() && pkt->isWrite())) {
1073 lat += ticksToCycles(memSidePort->sendAtomic(pkt));
1074 return lat * clockPeriod();
1075 }
1076 // only misses left
1077
1078 PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable());
1079
1080 bool is_forward = (bus_pkt == nullptr);
1081
1082 if (is_forward) {
1083 // just forwarding the same request to the next level
1084 // no local cache operation involved
1085 bus_pkt = pkt;
1086 }
1087
1088 DPRINTF(Cache, "%s: Sending an atomic %s\n", __func__,
1089 bus_pkt->print());
1090
1091#if TRACING_ON
1092 CacheBlk::State old_state = blk ? blk->status : 0;
1093#endif
1094
1095 lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
1096
1097 bool is_invalidate = bus_pkt->isInvalidate();
1098
1099 // We are now dealing with the response handling
1100 DPRINTF(Cache, "%s: Receive response: %s in state %i\n", __func__,
1101 bus_pkt->print(), old_state);
1102
1103 // If packet was a forward, the response (if any) is already
1104 // in place in the bus_pkt == pkt structure, so we don't need
1105 // to do anything. Otherwise, use the separate bus_pkt to
1106 // generate response to pkt and then delete it.
1107 if (!is_forward) {
1108 if (pkt->needsResponse()) {
1109 assert(bus_pkt->isResponse());
1110 if (bus_pkt->isError()) {
1111 pkt->makeAtomicResponse();
1112 pkt->copyError(bus_pkt);
1113 } else if (pkt->cmd == MemCmd::WriteLineReq) {
1114 // note the use of pkt, not bus_pkt here.
1115
1116 // write-line request to the cache that promoted
1117 // the write to a whole line
1118 blk = handleFill(pkt, blk, writebacks,
1119 allocOnFill(pkt->cmd));
1120 assert(blk != NULL);
1121 is_invalidate = false;
1122 satisfyRequest(pkt, blk);
1123 } else if (bus_pkt->isRead() ||
1124 bus_pkt->cmd == MemCmd::UpgradeResp) {
1125 // we're updating cache state to allow us to
1126 // satisfy the upstream request from the cache
1127 blk = handleFill(bus_pkt, blk, writebacks,
1128 allocOnFill(pkt->cmd));
1129 satisfyRequest(pkt, blk);
1130 maintainClusivity(pkt->fromCache(), blk);
1131 } else {
1132 // we're satisfying the upstream request without
1133 // modifying cache state, e.g., a write-through
1134 pkt->makeAtomicResponse();
1135 }
1136 }
1137 delete bus_pkt;
1138 }
1139
1140 if (is_invalidate && blk && blk->isValid()) {
1141 invalidateBlock(blk);
1142 }
1143 }
1144
1145 // Note that we don't invoke the prefetcher at all in atomic mode.
1146 // It's not clear how to do it properly, particularly for
1147 // prefetchers that aggressively generate prefetch candidates and
1148 // rely on bandwidth contention to throttle them; these will tend
1149 // to pollute the cache in atomic mode since there is no bandwidth
1150 // contention. If we ever do want to enable prefetching in atomic
1151 // mode, though, this is the place to do it... see timingAccess()
1152 // for an example (though we'd want to issue the prefetch(es)
1153 // immediately rather than calling requestMemSideBus() as we do
1154 // there).
1155
1156 // do any writebacks resulting from the response handling
1157 doWritebacksAtomic(writebacks);
1158
1159 // if we used temp block, check to see if its valid and if so
1160 // clear it out, but only do so after the call to recvAtomic is
1161 // finished so that any downstream observers (such as a snoop
1162 // filter), first see the fill, and only then see the eviction
1163 if (blk == tempBlock && tempBlock->isValid()) {
1164 // the atomic CPU calls recvAtomic for fetch and load/store
1165 // sequentuially, and we may already have a tempBlock
1166 // writeback from the fetch that we have not yet sent
1167 if (tempBlockWriteback) {
1168 // if that is the case, write the prevoius one back, and
1169 // do not schedule any new event
1170 writebackTempBlockAtomic();
1171 } else {
1172 // the writeback/clean eviction happens after the call to
1173 // recvAtomic has finished (but before any successive
1174 // calls), so that the response handling from the fill is
1175 // allowed to happen first
1176 schedule(writebackTempBlockAtomicEvent, curTick());
1177 }
1178
1179 tempBlockWriteback = (blk->isDirty() || writebackClean) ?
1180 writebackBlk(blk) : cleanEvictBlk(blk);
1181 invalidateBlock(blk);
1182 }
1183
1184 if (pkt->needsResponse()) {
1185 pkt->makeAtomicResponse();
1186 }
1187
1188 return lat * clockPeriod();
1189}
1190
1191
1192void
1193Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
1194{
1195 if (system->bypassCaches()) {
1196 // Packets from the memory side are snoop request and
1197 // shouldn't happen in bypass mode.
1198 assert(fromCpuSide);
1199
1200 // The cache should be flushed if we are in cache bypass mode,
1201 // so we don't need to check if we need to update anything.
1202 memSidePort->sendFunctional(pkt);
1203 return;
1204 }
1205
1206 Addr blk_addr = pkt->getBlockAddr(blkSize);
1207 bool is_secure = pkt->isSecure();
1208 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1209 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1210
1211 pkt->pushLabel(name());
1212
1213 CacheBlkPrintWrapper cbpw(blk);
1214
1215 // Note that just because an L2/L3 has valid data doesn't mean an
1216 // L1 doesn't have a more up-to-date modified copy that still
1217 // needs to be found. As a result we always update the request if
1218 // we have it, but only declare it satisfied if we are the owner.
1219
1220 // see if we have data at all (owned or otherwise)
1221 bool have_data = blk && blk->isValid()
1222 && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
1223 blk->data);
1224
1225 // data we have is dirty if marked as such or if we have an
1226 // in-service MSHR that is pending a modified line
1227 bool have_dirty =
1228 have_data && (blk->isDirty() ||
1229 (mshr && mshr->inService && mshr->isPendingModified()));
1230
1231 bool done = have_dirty
1232 || cpuSidePort->checkFunctional(pkt)
1233 || mshrQueue.checkFunctional(pkt, blk_addr)
1234 || writeBuffer.checkFunctional(pkt, blk_addr)
1235 || memSidePort->checkFunctional(pkt);
1236
1237 DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(),
1238 (blk && blk->isValid()) ? "valid " : "",
1239 have_data ? "data " : "", done ? "done " : "");
1240
1241 // We're leaving the cache, so pop cache->name() label
1242 pkt->popLabel();
1243
1244 if (done) {
1245 pkt->makeResponse();
1246 } else {
1247 // if it came as a request from the CPU side then make sure it
1248 // continues towards the memory side
1249 if (fromCpuSide) {
1250 memSidePort->sendFunctional(pkt);
1251 } else if (cpuSidePort->isSnooping()) {
1252 // if it came from the memory side, it must be a snoop request
1253 // and we should only forward it if we are forwarding snoops
1254 cpuSidePort->sendFunctionalSnoop(pkt);
1255 }
1256 }
1257}
1258
1259
1260/////////////////////////////////////////////////////
1261//
1262// Response handling: responses from the memory side
1263//
1264/////////////////////////////////////////////////////
1265
1266
1267void
1268Cache::handleUncacheableWriteResp(PacketPtr pkt)
1269{
1270 Tick completion_time = clockEdge(responseLatency) +
1271 pkt->headerDelay + pkt->payloadDelay;
1272
1273 // Reset the bus additional time as it is now accounted for
1274 pkt->headerDelay = pkt->payloadDelay = 0;
1275
1276 cpuSidePort->schedTimingResp(pkt, completion_time, true);
1277}
1278
1279void
1280Cache::recvTimingResp(PacketPtr pkt)
1281{
1282 assert(pkt->isResponse());
1283
1284 // all header delay should be paid for by the crossbar, unless
1285 // this is a prefetch response from above
1286 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
1287 "%s saw a non-zero packet delay\n", name());
1288
1289 bool is_error = pkt->isError();
1290
1291 if (is_error) {
1292 DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
1293 pkt->print());
1294 }
1295
1296 DPRINTF(Cache, "%s: Handling response %s\n", __func__,
1297 pkt->print());
1298
1299 // if this is a write, we should be looking at an uncacheable
1300 // write
1301 if (pkt->isWrite()) {
1302 assert(pkt->req->isUncacheable());
1303 handleUncacheableWriteResp(pkt);
1304 return;
1305 }
1306
1307 // we have dealt with any (uncacheable) writes above, from here on
1308 // we know we are dealing with an MSHR due to a miss or a prefetch
1309 MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
1310 assert(mshr);
1311
1312 if (mshr == noTargetMSHR) {
1313 // we always clear at least one target
1314 clearBlocked(Blocked_NoTargets);
1315 noTargetMSHR = nullptr;
1316 }
1317
1318 // Initial target is used just for stats
1319 MSHR::Target *initial_tgt = mshr->getTarget();
1320 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
1321 Tick miss_latency = curTick() - initial_tgt->recvTime;
1322
1323 if (pkt->req->isUncacheable()) {
1324 assert(pkt->req->masterId() < system->maxMasters());
1325 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
1326 miss_latency;
1327 } else {
1328 assert(pkt->req->masterId() < system->maxMasters());
1329 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
1330 miss_latency;
1331 }
1332
1333 bool wasFull = mshrQueue.isFull();
1334
1335 PacketList writebacks;
1336
1337 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1338
1339 bool is_fill = !mshr->isForward &&
1340 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
1341
1342 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1343 const bool valid_blk = blk && blk->isValid();
1344 // If the response indicates that there are no sharers and we
1345 // either had the block already or the response is filling we can
1346 // promote our copy to writable
1347 if (!pkt->hasSharers() && (is_fill || valid_blk)) {
1348 mshr->promoteWritable();
1349 }
1350
1351 if (is_fill && !is_error) {
1352 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
1353 pkt->getAddr());
1354
1355 blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill());
1356 assert(blk != nullptr);
1357 }
1358
1359 // allow invalidation responses originating from write-line
1360 // requests to be discarded
1361 bool is_invalidate = pkt->isInvalidate();
1362
1363 // First offset for critical word first calculations
1364 int initial_offset = initial_tgt->pkt->getOffset(blkSize);
1365
1366 bool from_cache = false;
1367 MSHR::TargetList targets = mshr->extractServiceableTargets(pkt);
1368 for (auto &target: targets) {
1369 Packet *tgt_pkt = target.pkt;
1370 switch (target.source) {
1371 case MSHR::Target::FromCPU:
1372 Tick completion_time;
1373 // Here we charge on completion_time the delay of the xbar if the
1374 // packet comes from it, charged on headerDelay.
1375 completion_time = pkt->headerDelay;
1376
1377 // Software prefetch handling for cache closest to core
1378 if (tgt_pkt->cmd.isSWPrefetch()) {
1379 // a software prefetch would have already been ack'd
1380 // immediately with dummy data so the core would be able to
1381 // retire it. This request completes right here, so we
1382 // deallocate it.
1383 delete tgt_pkt->req;
1384 delete tgt_pkt;
1385 break; // skip response
1386 }
1387
1388 // keep track of whether we have responded to another
1389 // cache
1390 from_cache = from_cache || tgt_pkt->fromCache();
1391
1392 // unlike the other packet flows, where data is found in other
1393 // caches or memory and brought back, write-line requests always
1394 // have the data right away, so the above check for "is fill?"
1395 // cannot actually be determined until examining the stored MSHR
1396 // state. We "catch up" with that logic here, which is duplicated
1397 // from above.
1398 if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
1399 assert(!is_error);
1400 // we got the block in a writable state, so promote
1401 // any deferred targets if possible
1402 mshr->promoteWritable();
1403 // NB: we use the original packet here and not the response!
1404 blk = handleFill(tgt_pkt, blk, writebacks,
1405 targets.allocOnFill);
1406 assert(blk != nullptr);
1407
1408 // treat as a fill, and discard the invalidation
1409 // response
1410 is_fill = true;
1411 is_invalidate = false;
1412 }
1413
1414 if (is_fill) {
1415 satisfyRequest(tgt_pkt, blk, true, mshr->hasPostDowngrade());
1416
1417 // How many bytes past the first request is this one
1418 int transfer_offset =
1419 tgt_pkt->getOffset(blkSize) - initial_offset;
1420 if (transfer_offset < 0) {
1421 transfer_offset += blkSize;
1422 }
1423
1424 // If not critical word (offset) return payloadDelay.
1425 // responseLatency is the latency of the return path
1426 // from lower level caches/memory to an upper level cache or
1427 // the core.
1428 completion_time += clockEdge(responseLatency) +
1429 (transfer_offset ? pkt->payloadDelay : 0);
1430
1431 assert(!tgt_pkt->req->isUncacheable());
1432
1433 assert(tgt_pkt->req->masterId() < system->maxMasters());
1434 missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
1435 completion_time - target.recvTime;
1436 } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
1437 // failed StoreCond upgrade
1438 assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
1439 tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
1440 tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
1441 // responseLatency is the latency of the return path
1442 // from lower level caches/memory to an upper level cache or
1443 // the core.
1444 completion_time += clockEdge(responseLatency) +
1445 pkt->payloadDelay;
1446 tgt_pkt->req->setExtraData(0);
1447 } else {
1448 // We are about to send a response to a cache above
1449 // that asked for an invalidation; we need to
1450 // invalidate our copy immediately as the most
1451 // up-to-date copy of the block will now be in the
1452 // cache above. It will also prevent this cache from
1453 // responding (if the block was previously dirty) to
1454 // snoops as they should snoop the caches above where
1455 // they will get the response from.
1456 if (is_invalidate && blk && blk->isValid()) {
1457 invalidateBlock(blk);
1458 }
1459 // not a cache fill, just forwarding response
1460 // responseLatency is the latency of the return path
1461 // from lower level cahces/memory to the core.
1462 completion_time += clockEdge(responseLatency) +
1463 pkt->payloadDelay;
1464 if (pkt->isRead() && !is_error) {
1465 // sanity check
1466 assert(pkt->getAddr() == tgt_pkt->getAddr());
1467 assert(pkt->getSize() >= tgt_pkt->getSize());
1468
1469 tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
1470 }
1471 }
1472 tgt_pkt->makeTimingResponse();
1473 // if this packet is an error copy that to the new packet
1474 if (is_error)
1475 tgt_pkt->copyError(pkt);
1476 if (tgt_pkt->cmd == MemCmd::ReadResp &&
1477 (is_invalidate || mshr->hasPostInvalidate())) {
1478 // If intermediate cache got ReadRespWithInvalidate,
1479 // propagate that. Response should not have
1480 // isInvalidate() set otherwise.
1481 tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
1482 DPRINTF(Cache, "%s: updated cmd to %s\n", __func__,
1483 tgt_pkt->print());
1484 }
1485 // Reset the bus additional time as it is now accounted for
1486 tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
1487 cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
1488 break;
1489
1490 case MSHR::Target::FromPrefetcher:
1491 assert(tgt_pkt->cmd == MemCmd::HardPFReq);
1492 if (blk)
1493 blk->status |= BlkHWPrefetched;
1494 delete tgt_pkt->req;
1495 delete tgt_pkt;
1496 break;
1497
1498 case MSHR::Target::FromSnoop:
1499 // I don't believe that a snoop can be in an error state
1500 assert(!is_error);
1501 // response to snoop request
1502 DPRINTF(Cache, "processing deferred snoop...\n");
1503 // If the response is invalidating, a snooping target can
1504 // be satisfied if it is also invalidating. If the reponse is, not
1505 // only invalidating, but more specifically an InvalidateResp, the
1506 // MSHR was created due to an InvalidateReq and a cache above is
1507 // waiting to satisfy a WriteLineReq. In this case even an
1508 // non-invalidating snoop is added as a target here since this is
1509 // the ordering point. When the InvalidateResp reaches this cache,
1510 // the snooping target will snoop further the cache above with the
1511 // WriteLineReq.
1512 assert(!(is_invalidate &&
1513 pkt->cmd != MemCmd::InvalidateResp &&
1514 !mshr->hasPostInvalidate()));
1515 handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
1516 break;
1517
1518 default:
1519 panic("Illegal target->source enum %d\n", target.source);
1520 }
1521 }
1522
1523 maintainClusivity(from_cache, blk);
1524
1525 if (blk && blk->isValid()) {
1526 // an invalidate response stemming from a write line request
1527 // should not invalidate the block, so check if the
1528 // invalidation should be discarded
1529 if (is_invalidate || mshr->hasPostInvalidate()) {
1530 invalidateBlock(blk);
1531 } else if (mshr->hasPostDowngrade()) {
1532 blk->status &= ~BlkWritable;
1533 }
1534 }
1535
1536 if (mshr->promoteDeferredTargets()) {
1537 // avoid later read getting stale data while write miss is
1538 // outstanding.. see comment in timingAccess()
1539 if (blk) {
1540 blk->status &= ~BlkReadable;
1541 }
1542 mshrQueue.markPending(mshr);
1543 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
1544 } else {
1545 mshrQueue.deallocate(mshr);
1546 if (wasFull && !mshrQueue.isFull()) {
1547 clearBlocked(Blocked_NoMSHRs);
1548 }
1549
1550 // Request the bus for a prefetch if this deallocation freed enough
1551 // MSHRs for a prefetch to take place
1552 if (prefetcher && mshrQueue.canPrefetch()) {
1553 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
1554 clockEdge());
1555 if (next_pf_time != MaxTick)
1556 schedMemSideSendEvent(next_pf_time);
1557 }
1558 }
1559 // reset the xbar additional timinig as it is now accounted for
1560 pkt->headerDelay = pkt->payloadDelay = 0;
1561
1562 // copy writebacks to write buffer
1563 doWritebacks(writebacks, forward_time);
1564
1565 // if we used temp block, check to see if its valid and then clear it out
1566 if (blk == tempBlock && tempBlock->isValid()) {
1567 // We use forwardLatency here because we are copying
1568 // Writebacks/CleanEvicts to write buffer. It specifies the latency to
1569 // allocate an internal buffer and to schedule an event to the
1570 // queued port.
1571 if (blk->isDirty() || writebackClean) {
1572 PacketPtr wbPkt = writebackBlk(blk);
1573 allocateWriteBuffer(wbPkt, forward_time);
1574 // Set BLOCK_CACHED flag if cached above.
1575 if (isCachedAbove(wbPkt))
1576 wbPkt->setBlockCached();
1577 } else {
1578 PacketPtr wcPkt = cleanEvictBlk(blk);
1579 // Check to see if block is cached above. If not allocate
1580 // write buffer
1581 if (isCachedAbove(wcPkt))
1582 delete wcPkt;
1583 else
1584 allocateWriteBuffer(wcPkt, forward_time);
1585 }
1586 invalidateBlock(blk);
1587 }
1588
1589 DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
1590 delete pkt;
1591}
1592
1593PacketPtr
1594Cache::writebackBlk(CacheBlk *blk)
1595{
1596 chatty_assert(!isReadOnly || writebackClean,
1597 "Writeback from read-only cache");
1598 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1599
1600 writebacks[Request::wbMasterId]++;
1601
1602 Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set),
1603 blkSize, 0, Request::wbMasterId);
1604 if (blk->isSecure())
1605 req->setFlags(Request::SECURE);
1606
1607 req->taskId(blk->task_id);
1608 blk->task_id= ContextSwitchTaskId::Unknown;
1609 blk->tickInserted = curTick();
1610
1611 PacketPtr pkt =
1612 new Packet(req, blk->isDirty() ?
1613 MemCmd::WritebackDirty : MemCmd::WritebackClean);
1614
1615 DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1616 pkt->print(), blk->isWritable(), blk->isDirty());
1617
1618 if (blk->isWritable()) {
1619 // not asserting shared means we pass the block in modified
1620 // state, mark our own block non-writeable
1621 blk->status &= ~BlkWritable;
1622 } else {
1623 // we are in the Owned state, tell the receiver
1624 pkt->setHasSharers();
1625 }
1626
1627 // make sure the block is not marked dirty
1628 blk->status &= ~BlkDirty;
1629
1630 pkt->allocate();
1631 std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize);
1632
1633 return pkt;
1634}
1635
1636PacketPtr
1637Cache::writecleanBlk(CacheBlk *blk, Request::Flags dest)
1638{
1639 Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set),
1640 blkSize, 0, Request::wbMasterId);
1641 if (blk->isSecure()) {
1642 req->setFlags(Request::SECURE);
1643 }
1644 req->taskId(blk->task_id);
1645 blk->task_id = ContextSwitchTaskId::Unknown;
1646 PacketPtr pkt = new Packet(req, MemCmd::WriteClean);
1647 DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1648 blk->isWritable(), blk->isDirty());
1649 // make sure the block is not marked dirty
1650 blk->status &= ~BlkDirty;
1651 pkt->allocate();
1652 // We inform the cache below that the block has sharers in the
1653 // system as we retain our copy.
1654 pkt->setHasSharers();
1655 if (dest) {
1656 req->setFlags(dest);
1657 pkt->setWriteThrough();
1658 }
1659 std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize);
1660 return pkt;
1661}
1662
1663
1664PacketPtr
1665Cache::cleanEvictBlk(CacheBlk *blk)
1666{
1667 assert(!writebackClean);
1668 assert(blk && blk->isValid() && !blk->isDirty());
1669 // Creating a zero sized write, a message to the snoop filter
1670 Request *req =
1671 new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
1672 Request::wbMasterId);
1673 if (blk->isSecure())
1674 req->setFlags(Request::SECURE);
1675
1676 req->taskId(blk->task_id);
1677 blk->task_id = ContextSwitchTaskId::Unknown;
1678 blk->tickInserted = curTick();
1679
1680 PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
1681 pkt->allocate();
1682 DPRINTF(Cache, "Create CleanEvict %s\n", pkt->print());
1683
1684 return pkt;
1685}
1686
1687void
1688Cache::memWriteback()
1689{
1690 CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
1691 tags->forEachBlk(visitor);
1692}
1693
1694void
1695Cache::memInvalidate()
1696{
1697 CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
1698 tags->forEachBlk(visitor);
1699}
1700
1701bool
1702Cache::isDirty() const
1703{
1704 CacheBlkIsDirtyVisitor visitor;
1705 tags->forEachBlk(visitor);
1706
1707 return visitor.isDirty();
1708}
1709
1710bool
1711Cache::writebackVisitor(CacheBlk &blk)
1712{
1713 if (blk.isDirty()) {
1714 assert(blk.isValid());
1715
1716 Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
1717 blkSize, 0, Request::funcMasterId);
1718 request.taskId(blk.task_id);
1719 if (blk.isSecure()) {
1720 request.setFlags(Request::SECURE);
1721 }
1722
1723 Packet packet(&request, MemCmd::WriteReq);
1724 packet.dataStatic(blk.data);
1725
1726 memSidePort->sendFunctional(&packet);
1727
1728 blk.status &= ~BlkDirty;
1729 }
1730
1731 return true;
1732}
1733
1734bool
1735Cache::invalidateVisitor(CacheBlk &blk)
1736{
1737
1738 if (blk.isDirty())
1739 warn_once("Invalidating dirty cache lines. Expect things to break.\n");
1740
1741 if (blk.isValid()) {
1742 assert(!blk.isDirty());
1743 invalidateBlock(&blk);
1744 }
1745
1746 return true;
1747}
1748
1749CacheBlk*
1750Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
1751{
1752 CacheBlk *blk = tags->findVictim(addr);
1753
1754 // It is valid to return nullptr if there is no victim
1755 if (!blk)
1756 return nullptr;
1757
1758 if (blk->isValid()) {
1759 Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
1760 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1761 if (repl_mshr) {
1762 // must be an outstanding upgrade request
1763 // on a block we're about to replace...
1764 assert(!blk->isWritable() || blk->isDirty());
1765 assert(repl_mshr->needsWritable());
1766 // too hard to replace block with transient state
1767 // allocation failed, block not inserted
1768 return nullptr;
1769 } else {
1770 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1771 "(%s): %s\n", repl_addr, blk->isSecure() ? "s" : "ns",
1772 addr, is_secure ? "s" : "ns",
1773 blk->isDirty() ? "writeback" : "clean");
1774
1775 if (blk->wasPrefetched()) {
1776 unusedPrefetches++;
1777 }
1778 // Will send up Writeback/CleanEvict snoops via isCachedAbove
1779 // when pushing this writeback list into the write buffer.
1780 if (blk->isDirty() || writebackClean) {
1781 // Save writeback packet for handling by caller
1782 writebacks.push_back(writebackBlk(blk));
1783 } else {
1784 writebacks.push_back(cleanEvictBlk(blk));
1785 }
1786 }
1787 }
1788
1789 return blk;
1790}
1791
1792void
1793Cache::invalidateBlock(CacheBlk *blk)
1794{
1795 if (blk != tempBlock)
1796 tags->invalidate(blk);
1797 blk->invalidate();
1798}
1799
1800// Note that the reason we return a list of writebacks rather than
1801// inserting them directly in the write buffer is that this function
1802// is called by both atomic and timing-mode accesses, and in atomic
1803// mode we don't mess with the write buffer (we just perform the
1804// writebacks atomically once the original request is complete).
1805CacheBlk*
1806Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1807 bool allocate)
1808{
1809 assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1810 Addr addr = pkt->getAddr();
1811 bool is_secure = pkt->isSecure();
1812#if TRACING_ON
1813 CacheBlk::State old_state = blk ? blk->status : 0;
1814#endif
1815
1816 // When handling a fill, we should have no writes to this line.
1817 assert(addr == pkt->getBlockAddr(blkSize));
1818 assert(!writeBuffer.findMatch(addr, is_secure));
1819
1820 if (blk == nullptr) {
1821 // better have read new data...
1822 assert(pkt->hasData());
1823
1824 // only read responses and write-line requests have data;
1825 // note that we don't write the data here for write-line - that
1826 // happens in the subsequent call to satisfyRequest
1827 assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1828
1829 // need to do a replacement if allocating, otherwise we stick
1830 // with the temporary storage
1831 blk = allocate ? allocateBlock(addr, is_secure, writebacks) : nullptr;
1832
1833 if (blk == nullptr) {
1834 // No replaceable block or a mostly exclusive
1835 // cache... just use temporary storage to complete the
1836 // current request and then get rid of it
1837 assert(!tempBlock->isValid());
1838 blk = tempBlock;
1839 tempBlock->set = tags->extractSet(addr);
1840 tempBlock->tag = tags->extractTag(addr);
1841 // @todo: set security state as well...
1842 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1843 is_secure ? "s" : "ns");
1844 } else {
1845 tags->insertBlock(pkt, blk);
1846 }
1847
1848 // we should never be overwriting a valid block
1849 assert(!blk->isValid());
1850 } else {
1851 // existing block... probably an upgrade
1852 assert(blk->tag == tags->extractTag(addr));
1853 // either we're getting new data or the block should already be valid
1854 assert(pkt->hasData() || blk->isValid());
1855 // don't clear block status... if block is already dirty we
1856 // don't want to lose that
1857 }
1858
1859 if (is_secure)
1860 blk->status |= BlkSecure;
1861 blk->status |= BlkValid | BlkReadable;
1862
1863 // sanity check for whole-line writes, which should always be
1864 // marked as writable as part of the fill, and then later marked
1865 // dirty as part of satisfyRequest
1866 if (pkt->cmd == MemCmd::WriteLineReq) {
1867 assert(!pkt->hasSharers());
1868 }
1869
1870 // here we deal with setting the appropriate state of the line,
1871 // and we start by looking at the hasSharers flag, and ignore the
1872 // cacheResponding flag (normally signalling dirty data) if the
1873 // packet has sharers, thus the line is never allocated as Owned
1874 // (dirty but not writable), and always ends up being either
1875 // Shared, Exclusive or Modified, see Packet::setCacheResponding
1876 // for more details
1877 if (!pkt->hasSharers()) {
1878 // we could get a writable line from memory (rather than a
1879 // cache) even in a read-only cache, note that we set this bit
1880 // even for a read-only cache, possibly revisit this decision
1881 blk->status |= BlkWritable;
1882
1883 // check if we got this via cache-to-cache transfer (i.e., from a
1884 // cache that had the block in Modified or Owned state)
1885 if (pkt->cacheResponding()) {
1886 // we got the block in Modified state, and invalidated the
1887 // owners copy
1888 blk->status |= BlkDirty;
1889
1890 chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1891 "in read-only cache %s\n", name());
1892 }
1893 }
1894
1895 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1896 addr, is_secure ? "s" : "ns", old_state, blk->print());
1897
1898 // if we got new data, copy it in (checking for a read response
1899 // and a response that has data is the same in the end)
1900 if (pkt->isRead()) {
1901 // sanity checks
1902 assert(pkt->hasData());
1903 assert(pkt->getSize() == blkSize);
1904
1905 std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
1906 }
1907 // We pay for fillLatency here.
1908 blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1909 pkt->payloadDelay;
1910
1911 return blk;
1912}
1913
1914
1915/////////////////////////////////////////////////////
1916//
1917// Snoop path: requests coming in from the memory side
1918//
1919/////////////////////////////////////////////////////
1920
1921void
1922Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
1923 bool already_copied, bool pending_inval)
1924{
1925 // sanity check
1926 assert(req_pkt->isRequest());
1927 assert(req_pkt->needsResponse());
1928
1929 DPRINTF(Cache, "%s: for %s\n", __func__, req_pkt->print());
1930 // timing-mode snoop responses require a new packet, unless we
1931 // already made a copy...
1932 PacketPtr pkt = req_pkt;
1933 if (!already_copied)
1934 // do not clear flags, and allocate space for data if the
1935 // packet needs it (the only packets that carry data are read
1936 // responses)
1937 pkt = new Packet(req_pkt, false, req_pkt->isRead());
1938
1939 assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
1940 pkt->hasSharers());
1941 pkt->makeTimingResponse();
1942 if (pkt->isRead()) {
1943 pkt->setDataFromBlock(blk_data, blkSize);
1944 }
1945 if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
1946 // Assume we defer a response to a read from a far-away cache
1947 // A, then later defer a ReadExcl from a cache B on the same
1948 // bus as us. We'll assert cacheResponding in both cases, but
1949 // in the latter case cacheResponding will keep the
1950 // invalidation from reaching cache A. This special response
1951 // tells cache A that it gets the block to satisfy its read,
1952 // but must immediately invalidate it.
1953 pkt->cmd = MemCmd::ReadRespWithInvalidate;
1954 }
1955 // Here we consider forward_time, paying for just forward latency and
1956 // also charging the delay provided by the xbar.
1957 // forward_time is used as send_time in next allocateWriteBuffer().
1958 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
1959 // Here we reset the timing of the packet.
1960 pkt->headerDelay = pkt->payloadDelay = 0;
1961 DPRINTF(CacheVerbose, "%s: created response: %s tick: %lu\n", __func__,
1962 pkt->print(), forward_time);
1963 memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
1964}
1965
1966uint32_t
1967Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
1968 bool is_deferred, bool pending_inval)
1969{
1970 DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
1971 // deferred snoops can only happen in timing mode
1972 assert(!(is_deferred && !is_timing));
1973 // pending_inval only makes sense on deferred snoops
1974 assert(!(pending_inval && !is_deferred));
1975 assert(pkt->isRequest());
1976
1977 // the packet may get modified if we or a forwarded snooper
1978 // responds in atomic mode, so remember a few things about the
1979 // original packet up front
1980 bool invalidate = pkt->isInvalidate();
1981 bool M5_VAR_USED needs_writable = pkt->needsWritable();
1982
1983 // at the moment we could get an uncacheable write which does not
1984 // have the invalidate flag, and we need a suitable way of dealing
1985 // with this case
1986 panic_if(invalidate && pkt->req->isUncacheable(),
1987 "%s got an invalidating uncacheable snoop request %s",
1988 name(), pkt->print());
1989
1990 uint32_t snoop_delay = 0;
1991
1992 if (forwardSnoops) {
1993 // first propagate snoop upward to see if anyone above us wants to
1994 // handle it. save & restore packet src since it will get
1995 // rewritten to be relative to cpu-side bus (if any)
1996 bool alreadyResponded = pkt->cacheResponding();
1997 if (is_timing) {
1998 // copy the packet so that we can clear any flags before
1999 // forwarding it upwards, we also allocate data (passing
2000 // the pointer along in case of static data), in case
2001 // there is a snoop hit in upper levels
2002 Packet snoopPkt(pkt, true, true);
2003 snoopPkt.setExpressSnoop();
2004 // the snoop packet does not need to wait any additional
2005 // time
2006 snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
2007 cpuSidePort->sendTimingSnoopReq(&snoopPkt);
2008
2009 // add the header delay (including crossbar and snoop
2010 // delays) of the upward snoop to the snoop delay for this
2011 // cache
2012 snoop_delay += snoopPkt.headerDelay;
2013
2014 if (snoopPkt.cacheResponding()) {
2015 // cache-to-cache response from some upper cache
2016 assert(!alreadyResponded);
2017 pkt->setCacheResponding();
2018 }
2019 // upstream cache has the block, or has an outstanding
2020 // MSHR, pass the flag on
2021 if (snoopPkt.hasSharers()) {
2022 pkt->setHasSharers();
2023 }
2024 // If this request is a prefetch or clean evict and an upper level
2025 // signals block present, make sure to propagate the block
2026 // presence to the requester.
2027 if (snoopPkt.isBlockCached()) {
2028 pkt->setBlockCached();
2029 }
2030 } else {
2031 cpuSidePort->sendAtomicSnoop(pkt);
2032 if (!alreadyResponded && pkt->cacheResponding()) {
2033 // cache-to-cache response from some upper cache:
2034 // forward response to original requester
2035 assert(pkt->isResponse());
2036 }
2037 }
2038 }
2039
2040 if (!blk || !blk->isValid()) {
2041 DPRINTF(CacheVerbose, "%s: snoop miss for %s\n", __func__,
2042 pkt->print());
2043 if (is_deferred) {
2044 // we no longer have the block, and will not respond, but a
2045 // packet was allocated in MSHR::handleSnoop and we have
2046 // to delete it
2047 assert(pkt->needsResponse());
2048
2049 // we have passed the block to a cache upstream, that
2050 // cache should be responding
2051 assert(pkt->cacheResponding());
2052
2053 delete pkt;
2054 }
2055 return snoop_delay;
2056 } else {
2057 DPRINTF(Cache, "%s: snoop hit for %s, old state is %s\n", __func__,
2058 pkt->print(), blk->print());
2059 }
2060
2061 chatty_assert(!(isReadOnly && blk->isDirty()),
2062 "Should never have a dirty block in a read-only cache %s\n",
2063 name());
2064
2065 // We may end up modifying both the block state and the packet (if
2066 // we respond in atomic mode), so just figure out what to do now
2067 // and then do it later. We respond to all snoops that need
2068 // responses provided we have the block in dirty state. The
2069 // invalidation itself is taken care of below.
2070 bool respond = blk->isDirty() && pkt->needsResponse();
2071 bool have_writable = blk->isWritable();
2072
2073 // Invalidate any prefetch's from below that would strip write permissions
2074 // MemCmd::HardPFReq is only observed by upstream caches. After missing
2075 // above and in it's own cache, a new MemCmd::ReadReq is created that
2076 // downstream caches observe.
2077 if (pkt->mustCheckAbove()) {
2078 DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s "
2079 "from lower cache\n", pkt->getAddr(), pkt->print());
2080 pkt->setBlockCached();
2081 return snoop_delay;
2082 }
2083
2084 if (pkt->isRead() && !invalidate) {
2085 // reading without requiring the line in a writable state
2086 assert(!needs_writable);
2087 pkt->setHasSharers();
2088
2089 // if the requesting packet is uncacheable, retain the line in
2090 // the current state, otherwhise unset the writable flag,
2091 // which means we go from Modified to Owned (and will respond
2092 // below), remain in Owned (and will respond below), from
2093 // Exclusive to Shared, or remain in Shared
2094 if (!pkt->req->isUncacheable())
2095 blk->status &= ~BlkWritable;
2096 }
2097
2098 if (respond) {
2099 // prevent anyone else from responding, cache as well as
2100 // memory, and also prevent any memory from even seeing the
2101 // request
2102 pkt->setCacheResponding();
2103 if (have_writable) {
2104 // inform the cache hierarchy that this cache had the line
2105 // in the Modified state so that we avoid unnecessary
2106 // invalidations (see Packet::setResponderHadWritable)
2107 pkt->setResponderHadWritable();
2108
2109 // in the case of an uncacheable request there is no point
2110 // in setting the responderHadWritable flag, but since the
2111 // recipient does not care there is no harm in doing so
2112 } else {
2113 // if the packet has needsWritable set we invalidate our
2114 // copy below and all other copies will be invalidates
2115 // through express snoops, and if needsWritable is not set
2116 // we already called setHasSharers above
2117 }
2118
2119 // if we are returning a writable and dirty (Modified) line,
2120 // we should be invalidating the line
2121 panic_if(!invalidate && !pkt->hasSharers(),
2122 "%s is passing a Modified line through %s, "
2123 "but keeping the block", name(), pkt->print());
2124
2125 if (is_timing) {
2126 doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
2127 } else {
2128 pkt->makeAtomicResponse();
2129 // packets such as upgrades do not actually have any data
2130 // payload
2131 if (pkt->hasData())
2132 pkt->setDataFromBlock(blk->data, blkSize);
2133 }
2134 }
2135
2136 if (!respond && is_deferred) {
2137 assert(pkt->needsResponse());
2138
2139 // if we copied the deferred packet with the intention to
2140 // respond, but are not responding, then a cache above us must
2141 // be, and we can use this as the indication of whether this
2142 // is a packet where we created a copy of the request or not
2143 if (!pkt->cacheResponding()) {
2144 delete pkt->req;
2145 }
2146
2147 delete pkt;
2148 }
2149
2150 // Do this last in case it deallocates block data or something
2151 // like that
2152 if (invalidate) {
2153 invalidateBlock(blk);
2154 }
2155
2156 DPRINTF(Cache, "new state is %s\n", blk->print());
2157
2158 return snoop_delay;
2159}
2160
2161
2162void
2163Cache::recvTimingSnoopReq(PacketPtr pkt)
2164{
2165 DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
2166
2167 // Snoops shouldn't happen when bypassing caches
2168 assert(!system->bypassCaches());
2169
2170 // no need to snoop requests that are not in range
2171 if (!inRange(pkt->getAddr())) {
2172 return;
2173 }
2174
2175 bool is_secure = pkt->isSecure();
2176 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
2177
2178 Addr blk_addr = pkt->getBlockAddr(blkSize);
2179 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
2180
2181 // Update the latency cost of the snoop so that the crossbar can
2182 // account for it. Do not overwrite what other neighbouring caches
2183 // have already done, rather take the maximum. The update is
2184 // tentative, for cases where we return before an upward snoop
2185 // happens below.
2186 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
2187 lookupLatency * clockPeriod());
2188
2189 // Inform request(Prefetch, CleanEvict or Writeback) from below of
2190 // MSHR hit, set setBlockCached.
2191 if (mshr && pkt->mustCheckAbove()) {
2192 DPRINTF(Cache, "Setting block cached for %s from lower cache on "
2193 "mshr hit\n", pkt->print());
2194 pkt->setBlockCached();
2195 return;
2196 }
2197
2198 // Let the MSHR itself track the snoop and decide whether we want
2199 // to go ahead and do the regular cache snoop
2200 if (mshr && mshr->handleSnoop(pkt, order++)) {
2201 DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
2202 "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
2203 mshr->print());
2204
2205 if (mshr->getNumTargets() > numTarget)
2206 warn("allocating bonus target for snoop"); //handle later
2207 return;
2208 }
2209
2210 //We also need to check the writeback buffers and handle those
2211 WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure);
2212 if (wb_entry) {
2213 DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
2214 pkt->getAddr(), is_secure ? "s" : "ns");
2215 // Expect to see only Writebacks and/or CleanEvicts here, both of
2216 // which should not be generated for uncacheable data.
2217 assert(!wb_entry->isUncacheable());
2218 // There should only be a single request responsible for generating
2219 // Writebacks/CleanEvicts.
2220 assert(wb_entry->getNumTargets() == 1);
2221 PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
2222 assert(wb_pkt->isEviction() || wb_pkt->cmd == MemCmd::WriteClean);
2223
2224 if (pkt->isEviction()) {
2225 // if the block is found in the write queue, set the BLOCK_CACHED
2226 // flag for Writeback/CleanEvict snoop. On return the snoop will
2227 // propagate the BLOCK_CACHED flag in Writeback packets and prevent
2228 // any CleanEvicts from travelling down the memory hierarchy.
2229 pkt->setBlockCached();
2230 DPRINTF(Cache, "%s: Squashing %s from lower cache on writequeue "
2231 "hit\n", __func__, pkt->print());
2232 return;
2233 }
2234
2235 // conceptually writebacks are no different to other blocks in
2236 // this cache, so the behaviour is modelled after handleSnoop,
2237 // the difference being that instead of querying the block
2238 // state to determine if it is dirty and writable, we use the
2239 // command and fields of the writeback packet
2240 bool respond = wb_pkt->cmd == MemCmd::WritebackDirty &&
2241 pkt->needsResponse();
2242 bool have_writable = !wb_pkt->hasSharers();
2243 bool invalidate = pkt->isInvalidate();
2244
2245 if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
2246 assert(!pkt->needsWritable());
2247 pkt->setHasSharers();
2248 wb_pkt->setHasSharers();
2249 }
2250
2251 if (respond) {
2252 pkt->setCacheResponding();
2253
2254 if (have_writable) {
2255 pkt->setResponderHadWritable();
2256 }
2257
2258 doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
2259 false, false);
2260 }
2261
2262 if (invalidate) {
2263 // Invalidation trumps our writeback... discard here
2264 // Note: markInService will remove entry from writeback buffer.
2265 markInService(wb_entry);
2266 delete wb_pkt;
2267 }
2268 }
2269
2270 // If this was a shared writeback, there may still be
2271 // other shared copies above that require invalidation.
2272 // We could be more selective and return here if the
2273 // request is non-exclusive or if the writeback is
2274 // exclusive.
2275 uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
2276
2277 // Override what we did when we first saw the snoop, as we now
2278 // also have the cost of the upwards snoops to account for
2279 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
2280 lookupLatency * clockPeriod());
2281}
2282
2283bool
2284Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2285{
2286 // Express snoop responses from master to slave, e.g., from L1 to L2
2287 cache->recvTimingSnoopResp(pkt);
2288 return true;
2289}
2290
2291Tick
2292Cache::recvAtomicSnoop(PacketPtr pkt)
2293{
2294 // Snoops shouldn't happen when bypassing caches
2295 assert(!system->bypassCaches());
2296
2297 // no need to snoop requests that are not in range.
2298 if (!inRange(pkt->getAddr())) {
2299 return 0;
2300 }
2301
2302 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
2303 uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
2304 return snoop_delay + lookupLatency * clockPeriod();
2305}
2306
2307
2308QueueEntry*
2309Cache::getNextQueueEntry()
2310{
2311 // Check both MSHR queue and write buffer for potential requests,
2312 // note that null does not mean there is no request, it could
2313 // simply be that it is not ready
2314 MSHR *miss_mshr = mshrQueue.getNext();
2315 WriteQueueEntry *wq_entry = writeBuffer.getNext();
2316
2317 // If we got a write buffer request ready, first priority is a
2318 // full write buffer, otherwise we favour the miss requests
2319 if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
2320 // need to search MSHR queue for conflicting earlier miss.
2321 MSHR *conflict_mshr =
2322 mshrQueue.findPending(wq_entry->blkAddr,
2323 wq_entry->isSecure);
2324
2325 if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
2326 // Service misses in order until conflict is cleared.
2327 return conflict_mshr;
2328
2329 // @todo Note that we ignore the ready time of the conflict here
2330 }
2331
2332 // No conflicts; issue write
2333 return wq_entry;
2334 } else if (miss_mshr) {
2335 // need to check for conflicting earlier writeback
2336 WriteQueueEntry *conflict_mshr =
2337 writeBuffer.findPending(miss_mshr->blkAddr,
2338 miss_mshr->isSecure);
2339 if (conflict_mshr) {
2340 // not sure why we don't check order here... it was in the
2341 // original code but commented out.
2342
2343 // The only way this happens is if we are
2344 // doing a write and we didn't have permissions
2345 // then subsequently saw a writeback (owned got evicted)
2346 // We need to make sure to perform the writeback first
2347 // To preserve the dirty data, then we can issue the write
2348
2349 // should we return wq_entry here instead? I.e. do we
2350 // have to flush writes in order? I don't think so... not
2351 // for Alpha anyway. Maybe for x86?
2352 return conflict_mshr;
2353
2354 // @todo Note that we ignore the ready time of the conflict here
2355 }
2356
2357 // No conflicts; issue read
2358 return miss_mshr;
2359 }
2360
2361 // fall through... no pending requests. Try a prefetch.
2362 assert(!miss_mshr && !wq_entry);
2363 if (prefetcher && mshrQueue.canPrefetch()) {
2364 // If we have a miss queue slot, we can try a prefetch
2365 PacketPtr pkt = prefetcher->getPacket();
2366 if (pkt) {
2367 Addr pf_addr = pkt->getBlockAddr(blkSize);
2368 if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
2369 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
2370 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
2371 // Update statistic on number of prefetches issued
2372 // (hwpf_mshr_misses)
2373 assert(pkt->req->masterId() < system->maxMasters());
2374 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
2375
2376 // allocate an MSHR and return it, note
2377 // that we send the packet straight away, so do not
2378 // schedule the send
2379 return allocateMissBuffer(pkt, curTick(), false);
2380 } else {
2381 // free the request and packet
2382 delete pkt->req;
2383 delete pkt;
2384 }
2385 }
2386 }
2387
2388 return nullptr;
2389}
2390
2391bool
2392Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
2393{
2394 if (!forwardSnoops)
2395 return false;
2396 // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
2397 // Writeback snoops into upper level caches to check for copies of the
2398 // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
2399 // packet, the cache can inform the crossbar below of presence or absence
2400 // of the block.
2401 if (is_timing) {
2402 Packet snoop_pkt(pkt, true, false);
2403 snoop_pkt.setExpressSnoop();
2404 // Assert that packet is either Writeback or CleanEvict and not a
2405 // prefetch request because prefetch requests need an MSHR and may
2406 // generate a snoop response.
2407 assert(pkt->isEviction() || pkt->cmd == MemCmd::WriteClean);
2408 snoop_pkt.senderState = nullptr;
2409 cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2410 // Writeback/CleanEvict snoops do not generate a snoop response.
2411 assert(!(snoop_pkt.cacheResponding()));
2412 return snoop_pkt.isBlockCached();
2413 } else {
2414 cpuSidePort->sendAtomicSnoop(pkt);
2415 return pkt->isBlockCached();
2416 }
2417}
2418
2419Tick
2420Cache::nextQueueReadyTime() const
2421{
2422 Tick nextReady = std::min(mshrQueue.nextReadyTime(),
2423 writeBuffer.nextReadyTime());
2424
2425 // Don't signal prefetch ready time if no MSHRs available
2426 // Will signal once enoguh MSHRs are deallocated
2427 if (prefetcher && mshrQueue.canPrefetch()) {
2428 nextReady = std::min(nextReady,
2429 prefetcher->nextPrefetchReadyTime());
2430 }
2431
2432 return nextReady;
2433}
2434
2435bool
2436Cache::sendMSHRQueuePacket(MSHR* mshr)
2437{
2438 assert(mshr);
2439
2440 // use request from 1st target
2441 PacketPtr tgt_pkt = mshr->getTarget()->pkt;
2442
2443 DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
2444
2445 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
2446
2447 if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
2448 // we should never have hardware prefetches to allocated
2449 // blocks
2450 assert(blk == nullptr);
2451
2452 // We need to check the caches above us to verify that
2453 // they don't have a copy of this block in the dirty state
2454 // at the moment. Without this check we could get a stale
2455 // copy from memory that might get used in place of the
2456 // dirty one.
2457 Packet snoop_pkt(tgt_pkt, true, false);
2458 snoop_pkt.setExpressSnoop();
2459 // We are sending this packet upwards, but if it hits we will
2460 // get a snoop response that we end up treating just like a
2461 // normal response, hence it needs the MSHR as its sender
2462 // state
2463 snoop_pkt.senderState = mshr;
2464 cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
2465
2466 // Check to see if the prefetch was squashed by an upper cache (to
2467 // prevent us from grabbing the line) or if a Check to see if a
2468 // writeback arrived between the time the prefetch was placed in
2469 // the MSHRs and when it was selected to be sent or if the
2470 // prefetch was squashed by an upper cache.
2471
2472 // It is important to check cacheResponding before
2473 // prefetchSquashed. If another cache has committed to
2474 // responding, it will be sending a dirty response which will
2475 // arrive at the MSHR allocated for this request. Checking the
2476 // prefetchSquash first may result in the MSHR being
2477 // prematurely deallocated.
2478 if (snoop_pkt.cacheResponding()) {
2479 auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req);
2480 assert(r.second);
2481
2482 // if we are getting a snoop response with no sharers it
2483 // will be allocated as Modified
2484 bool pending_modified_resp = !snoop_pkt.hasSharers();
2485 markInService(mshr, pending_modified_resp);
2486
2487 DPRINTF(Cache, "Upward snoop of prefetch for addr"
2488 " %#x (%s) hit\n",
2489 tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
2490 return false;
2491 }
2492
2493 if (snoop_pkt.isBlockCached()) {
2494 DPRINTF(Cache, "Block present, prefetch squashed by cache. "
2495 "Deallocating mshr target %#x.\n",
2496 mshr->blkAddr);
2497
2498 // Deallocate the mshr target
2499 if (mshrQueue.forceDeallocateTarget(mshr)) {
2500 // Clear block if this deallocation resulted freed an
2501 // mshr when all had previously been utilized
2502 clearBlocked(Blocked_NoMSHRs);
2503 }
2504
2505 // given that no response is expected, delete Request and Packet
2506 delete tgt_pkt->req;
2507 delete tgt_pkt;
2508
2509 return false;
2510 }
2511 }
2512
2513 // either a prefetch that is not present upstream, or a normal
2514 // MSHR request, proceed to get the packet to send downstream
2515 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
2516
2517 mshr->isForward = (pkt == nullptr);
2518
2519 if (mshr->isForward) {
2520 // not a cache block request, but a response is expected
2521 // make copy of current packet to forward, keep current
2522 // copy for response handling
2523 pkt = new Packet(tgt_pkt, false, true);
2524 assert(!pkt->isWrite());
2525 }
2526
2527 // play it safe and append (rather than set) the sender state,
2528 // as forwarded packets may already have existing state
2529 pkt->pushSenderState(mshr);
2530
2531 if (!memSidePort->sendTimingReq(pkt)) {
2532 // we are awaiting a retry, but we
2533 // delete the packet and will be creating a new packet
2534 // when we get the opportunity
2535 delete pkt;
2536
2537 // note that we have now masked any requestBus and
2538 // schedSendEvent (we will wait for a retry before
2539 // doing anything), and this is so even if we do not
2540 // care about this packet and might override it before
2541 // it gets retried
2542 return true;
2543 } else {
2544 // As part of the call to sendTimingReq the packet is
2545 // forwarded to all neighbouring caches (and any caches
2546 // above them) as a snoop. Thus at this point we know if
2547 // any of the neighbouring caches are responding, and if
2548 // so, we know it is dirty, and we can determine if it is
2549 // being passed as Modified, making our MSHR the ordering
2550 // point
2551 bool pending_modified_resp = !pkt->hasSharers() &&
2552 pkt->cacheResponding();
2553 markInService(mshr, pending_modified_resp);
2554 return false;
2555 }
2556}
2557
2558bool
2559Cache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
2560{
2561 assert(wq_entry);
2562
2563 // always a single target for write queue entries
2564 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
2565
2566 DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
2567
2568 // forward as is, both for evictions and uncacheable writes
2569 if (!memSidePort->sendTimingReq(tgt_pkt)) {
2570 // note that we have now masked any requestBus and
2571 // schedSendEvent (we will wait for a retry before
2572 // doing anything), and this is so even if we do not
2573 // care about this packet and might override it before
2574 // it gets retried
2575 return true;
2576 } else {
2577 markInService(wq_entry);
2578 return false;
2579 }
2580}
2581
2582void
2583Cache::serialize(CheckpointOut &cp) const
2584{
2585 bool dirty(isDirty());
2586
2587 if (dirty) {
2588 warn("*** The cache still contains dirty data. ***\n");
2589 warn(" Make sure to drain the system using the correct flags.\n");
2590 warn(" This checkpoint will not restore correctly and dirty data "
2591 " in the cache will be lost!\n");
2592 }
2593
2594 // Since we don't checkpoint the data in the cache, any dirty data
2595 // will be lost when restoring from a checkpoint of a system that
2596 // wasn't drained properly. Flag the checkpoint as invalid if the
2597 // cache contains dirty data.
2598 bool bad_checkpoint(dirty);
2599 SERIALIZE_SCALAR(bad_checkpoint);
2600}
2601
2602void
2603Cache::unserialize(CheckpointIn &cp)
2604{
2605 bool bad_checkpoint;
2606 UNSERIALIZE_SCALAR(bad_checkpoint);
2607 if (bad_checkpoint) {
2608 fatal("Restoring from checkpoints with dirty caches is not supported "
2609 "in the classic memory system. Please remove any caches or "
2610 " drain them properly before taking checkpoints.\n");
2611 }
2612}
2613
2614///////////////
2615//
2616// CpuSidePort
2617//
2618///////////////
2619
2620AddrRangeList
2621Cache::CpuSidePort::getAddrRanges() const
2622{
2623 return cache->getAddrRanges();
2624}
2625
2626bool
2627Cache::CpuSidePort::tryTiming(PacketPtr pkt)
2628{
2629 assert(!cache->system->bypassCaches());
2630
2631 // always let express snoop packets through if even if blocked
2632 if (pkt->isExpressSnoop()) {
2633 return true;
2634 } else if (isBlocked() || mustSendRetry) {
2635 // either already committed to send a retry, or blocked
2636 mustSendRetry = true;
2637 return false;
2638 }
2639 mustSendRetry = false;
2640 return true;
2641}
2642
2643bool
2644Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2645{
2646 assert(!cache->system->bypassCaches());
2647
2648 // always let express snoop packets through if even if blocked
2649 if (pkt->isExpressSnoop()) {
2650 bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
2651 assert(bypass_success);
2652 return true;
2653 }
2654
2655 return tryTiming(pkt) && cache->recvTimingReq(pkt);
2656}
2657
2658Tick
2659Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
2660{
2661 return cache->recvAtomic(pkt);
2662}
2663
2664void
2665Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
2666{
2667 // functional request
2668 cache->functionalAccess(pkt, true);
2669}
2670
2671Cache::
2672CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
2673 const std::string &_label)
2674 : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
2675{
2676}
2677
2678Cache*
2679CacheParams::create()
2680{
2681 assert(tags);
2682
2683 return new Cache(this);
2684}
2685///////////////
2686//
2687// MemSidePort
2688//
2689///////////////
2690
2691bool
2692Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
2693{
2694 cache->recvTimingResp(pkt);
2695 return true;
2696}
2697
2698// Express snooping requests to memside port
2699void
2700Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2701{
2702 // handle snooping requests
2703 cache->recvTimingSnoopReq(pkt);
2704}
2705
2706Tick
2707Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2708{
2709 return cache->recvAtomicSnoop(pkt);
2710}
2711
2712void
2713Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2714{
2715 // functional snoop (note that in contrast to atomic we don't have
2716 // a specific functionalSnoop method, as they have the same
2717 // behaviour regardless)
2718 cache->functionalAccess(pkt, false);
2719}
2720
2721void
2722Cache::CacheReqPacketQueue::sendDeferredPacket()
2723{
2724 // sanity check
2725 assert(!waitingOnRetry);
2726
2727 // there should never be any deferred request packets in the
2728 // queue, instead we resly on the cache to provide the packets
2729 // from the MSHR queue or write queue
2730 assert(deferredPacketReadyTime() == MaxTick);
2731
2732 // check for request packets (requests & writebacks)
2733 QueueEntry* entry = cache.getNextQueueEntry();
2734
2735 if (!entry) {
2736 // can happen if e.g. we attempt a writeback and fail, but
2737 // before the retry, the writeback is eliminated because
2738 // we snoop another cache's ReadEx.
2739 } else {
2740 // let our snoop responses go first if there are responses to
2741 // the same addresses
2742 if (checkConflictingSnoop(entry->blkAddr)) {
2743 return;
2744 }
2745 waitingOnRetry = entry->sendPacket(cache);
2746 }
2747
2748 // if we succeeded and are not waiting for a retry, schedule the
2749 // next send considering when the next queue is ready, note that
2750 // snoop responses have their own packet queue and thus schedule
2751 // their own events
2752 if (!waitingOnRetry) {
2753 schedSendEvent(cache.nextQueueReadyTime());
2754 }
2755}
2756
2757Cache::
2758MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
2759 const std::string &_label)
2760 : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2761 _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2762 _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2763{
2764}