Deleted Added
sdiff udiff text old ( 12723:530dc4bf1a00 ) new ( 12724:4f6fac3191d2 )
full compact
1/*
2 * Copyright (c) 2010-2018 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Erik Hallnor
42 * Dave Greene
43 * Nathan Binkert
44 * Steve Reinhardt
45 * Ron Dreslinski
46 * Andreas Sandberg
47 * Nikos Nikoleris
48 */
49
50/**
51 * @file
52 * Cache definitions.
53 */
54
55#include "mem/cache/cache.hh"
56
57#include <cassert>
58
59#include "base/compiler.hh"
60#include "base/logging.hh"
61#include "base/trace.hh"
62#include "base/types.hh"
63#include "debug/Cache.hh"
64#include "debug/CacheTags.hh"
65#include "debug/CacheVerbose.hh"
66#include "enums/Clusivity.hh"
67#include "mem/cache/blk.hh"
68#include "mem/cache/mshr.hh"
69#include "mem/cache/tags/base.hh"
70#include "mem/cache/write_queue_entry.hh"
71#include "mem/request.hh"
72#include "params/Cache.hh"
73
74Cache::Cache(const CacheParams *p)
75 : BaseCache(p, p->system->cacheLineSize()),
76 doFastWrites(true)
77{
78}
79
80void
81Cache::satisfyRequest(PacketPtr pkt, CacheBlk *blk,
82 bool deferred_response, bool pending_downgrade)
83{
84 BaseCache::satisfyRequest(pkt, blk);
85
86 if (pkt->isRead()) {
87 // determine if this read is from a (coherent) cache or not
88 if (pkt->fromCache()) {
89 assert(pkt->getSize() == blkSize);
90 // special handling for coherent block requests from
91 // upper-level caches
92 if (pkt->needsWritable()) {
93 // sanity check
94 assert(pkt->cmd == MemCmd::ReadExReq ||
95 pkt->cmd == MemCmd::SCUpgradeFailReq);
96 assert(!pkt->hasSharers());
97
98 // if we have a dirty copy, make sure the recipient
99 // keeps it marked dirty (in the modified state)
100 if (blk->isDirty()) {
101 pkt->setCacheResponding();
102 blk->status &= ~BlkDirty;
103 }
104 } else if (blk->isWritable() && !pending_downgrade &&
105 !pkt->hasSharers() &&
106 pkt->cmd != MemCmd::ReadCleanReq) {
107 // we can give the requester a writable copy on a read
108 // request if:
109 // - we have a writable copy at this level (& below)
110 // - we don't have a pending snoop from below
111 // signaling another read request
112 // - no other cache above has a copy (otherwise it
113 // would have set hasSharers flag when
114 // snooping the packet)
115 // - the read has explicitly asked for a clean
116 // copy of the line
117 if (blk->isDirty()) {
118 // special considerations if we're owner:
119 if (!deferred_response) {
120 // respond with the line in Modified state
121 // (cacheResponding set, hasSharers not set)
122 pkt->setCacheResponding();
123
124 // if this cache is mostly inclusive, we
125 // keep the block in the Exclusive state,
126 // and pass it upwards as Modified
127 // (writable and dirty), hence we have
128 // multiple caches, all on the same path
129 // towards memory, all considering the
130 // same block writable, but only one
131 // considering it Modified
132
133 // we get away with multiple caches (on
134 // the same path to memory) considering
135 // the block writeable as we always enter
136 // the cache hierarchy through a cache,
137 // and first snoop upwards in all other
138 // branches
139 blk->status &= ~BlkDirty;
140 } else {
141 // if we're responding after our own miss,
142 // there's a window where the recipient didn't
143 // know it was getting ownership and may not
144 // have responded to snoops correctly, so we
145 // have to respond with a shared line
146 pkt->setHasSharers();
147 }
148 }
149 } else {
150 // otherwise only respond with a shared copy
151 pkt->setHasSharers();
152 }
153 }
154 }
155}
156
157/////////////////////////////////////////////////////
158//
159// Access path: requests coming in from the CPU side
160//
161/////////////////////////////////////////////////////
162
163bool
164Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
165 PacketList &writebacks)
166{
167
168 if (pkt->req->isUncacheable()) {
169 assert(pkt->isRequest());
170
171 chatty_assert(!(isReadOnly && pkt->isWrite()),
172 "Should never see a write in a read-only cache %s\n",
173 name());
174
175 DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
176
177 // flush and invalidate any existing block
178 CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
179 if (old_blk && old_blk->isValid()) {
180 evictBlock(old_blk, writebacks);
181 }
182
183 blk = nullptr;
184 // lookupLatency is the latency in case the request is uncacheable.
185 lat = lookupLatency;
186 return false;
187 }
188
189 return BaseCache::access(pkt, blk, lat, writebacks);
190}
191
192void
193Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
194{
195 while (!writebacks.empty()) {
196 PacketPtr wbPkt = writebacks.front();
197 // We use forwardLatency here because we are copying writebacks to
198 // write buffer.
199
200 // Call isCachedAbove for Writebacks, CleanEvicts and
201 // WriteCleans to discover if the block is cached above.
202 if (isCachedAbove(wbPkt)) {
203 if (wbPkt->cmd == MemCmd::CleanEvict) {
204 // Delete CleanEvict because cached copies exist above. The
205 // packet destructor will delete the request object because
206 // this is a non-snoop request packet which does not require a
207 // response.
208 delete wbPkt;
209 } else if (wbPkt->cmd == MemCmd::WritebackClean) {
210 // clean writeback, do not send since the block is
211 // still cached above
212 assert(writebackClean);
213 delete wbPkt;
214 } else {
215 assert(wbPkt->cmd == MemCmd::WritebackDirty ||
216 wbPkt->cmd == MemCmd::WriteClean);
217 // Set BLOCK_CACHED flag in Writeback and send below, so that
218 // the Writeback does not reset the bit corresponding to this
219 // address in the snoop filter below.
220 wbPkt->setBlockCached();
221 allocateWriteBuffer(wbPkt, forward_time);
222 }
223 } else {
224 // If the block is not cached above, send packet below. Both
225 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
226 // reset the bit corresponding to this address in the snoop filter
227 // below.
228 allocateWriteBuffer(wbPkt, forward_time);
229 }
230 writebacks.pop_front();
231 }
232}
233
234void
235Cache::doWritebacksAtomic(PacketList& writebacks)
236{
237 while (!writebacks.empty()) {
238 PacketPtr wbPkt = writebacks.front();
239 // Call isCachedAbove for both Writebacks and CleanEvicts. If
240 // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
241 // and discard CleanEvicts.
242 if (isCachedAbove(wbPkt, false)) {
243 if (wbPkt->cmd == MemCmd::WritebackDirty ||
244 wbPkt->cmd == MemCmd::WriteClean) {
245 // Set BLOCK_CACHED flag in Writeback and send below,
246 // so that the Writeback does not reset the bit
247 // corresponding to this address in the snoop filter
248 // below. We can discard CleanEvicts because cached
249 // copies exist above. Atomic mode isCachedAbove
250 // modifies packet to set BLOCK_CACHED flag
251 memSidePort.sendAtomic(wbPkt);
252 }
253 } else {
254 // If the block is not cached above, send packet below. Both
255 // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
256 // reset the bit corresponding to this address in the snoop filter
257 // below.
258 memSidePort.sendAtomic(wbPkt);
259 }
260 writebacks.pop_front();
261 // In case of CleanEvicts, the packet destructor will delete the
262 // request object because this is a non-snoop request packet which
263 // does not require a response.
264 delete wbPkt;
265 }
266}
267
268
269void
270Cache::recvTimingSnoopResp(PacketPtr pkt)
271{
272 DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
273
274 assert(pkt->isResponse());
275 assert(!system->bypassCaches());
276
277 // determine if the response is from a snoop request we created
278 // (in which case it should be in the outstandingSnoop), or if we
279 // merely forwarded someone else's snoop request
280 const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
281 outstandingSnoop.end();
282
283 if (!forwardAsSnoop) {
284 // the packet came from this cache, so sink it here and do not
285 // forward it
286 assert(pkt->cmd == MemCmd::HardPFResp);
287
288 outstandingSnoop.erase(pkt->req);
289
290 DPRINTF(Cache, "Got prefetch response from above for addr "
291 "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
292 recvTimingResp(pkt);
293 return;
294 }
295
296 // forwardLatency is set here because there is a response from an
297 // upper level cache.
298 // To pay the delay that occurs if the packet comes from the bus,
299 // we charge also headerDelay.
300 Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
301 // Reset the timing of the packet.
302 pkt->headerDelay = pkt->payloadDelay = 0;
303 memSidePort.schedTimingSnoopResp(pkt, snoop_resp_time);
304}
305
306void
307Cache::promoteWholeLineWrites(PacketPtr pkt)
308{
309 // Cache line clearing instructions
310 if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
311 (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
312 pkt->cmd = MemCmd::WriteLineReq;
313 DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
314 }
315}
316
317void
318Cache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
319{
320 // should never be satisfying an uncacheable access as we
321 // flush and invalidate any existing block as part of the
322 // lookup
323 assert(!pkt->req->isUncacheable());
324
325 BaseCache::handleTimingReqHit(pkt, blk, request_time);
326}
327
328void
329Cache::handleTimingReqMiss(PacketPtr pkt, CacheBlk *blk, Tick forward_time,
330 Tick request_time)
331{
332 if (pkt->req->isUncacheable()) {
333 // ignore any existing MSHR if we are dealing with an
334 // uncacheable request
335
336 // should have flushed and have no valid block
337 assert(!blk || !blk->isValid());
338
339 mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
340
341 if (pkt->isWrite()) {
342 allocateWriteBuffer(pkt, forward_time);
343 } else {
344 assert(pkt->isRead());
345
346 // uncacheable accesses always allocate a new MSHR
347
348 // Here we are using forward_time, modelling the latency of
349 // a miss (outbound) just as forwardLatency, neglecting the
350 // lookupLatency component.
351 allocateMissBuffer(pkt, forward_time);
352 }
353
354 return;
355 }
356
357 Addr blk_addr = pkt->getBlockAddr(blkSize);
358
359 MSHR *mshr = mshrQueue.findMatch(blk_addr, pkt->isSecure());
360
361 // Software prefetch handling:
362 // To keep the core from waiting on data it won't look at
363 // anyway, send back a response with dummy data. Miss handling
364 // will continue asynchronously. Unfortunately, the core will
365 // insist upon freeing original Packet/Request, so we have to
366 // create a new pair with a different lifecycle. Note that this
367 // processing happens before any MSHR munging on the behalf of
368 // this request because this new Request will be the one stored
369 // into the MSHRs, not the original.
370 if (pkt->cmd.isSWPrefetch()) {
371 assert(pkt->needsResponse());
372 assert(pkt->req->hasPaddr());
373 assert(!pkt->req->isUncacheable());
374
375 // There's no reason to add a prefetch as an additional target
376 // to an existing MSHR. If an outstanding request is already
377 // in progress, there is nothing for the prefetch to do.
378 // If this is the case, we don't even create a request at all.
379 PacketPtr pf = nullptr;
380
381 if (!mshr) {
382 // copy the request and create a new SoftPFReq packet
383 RequestPtr req = new Request(pkt->req->getPaddr(),
384 pkt->req->getSize(),
385 pkt->req->getFlags(),
386 pkt->req->masterId());
387 pf = new Packet(req, pkt->cmd);
388 pf->allocate();
389 assert(pf->getAddr() == pkt->getAddr());
390 assert(pf->getSize() == pkt->getSize());
391 }
392
393 pkt->makeTimingResponse();
394
395 // request_time is used here, taking into account lat and the delay
396 // charged if the packet comes from the xbar.
397 cpuSidePort.schedTimingResp(pkt, request_time, true);
398
399 // If an outstanding request is in progress (we found an
400 // MSHR) this is set to null
401 pkt = pf;
402 }
403
404 BaseCache::handleTimingReqMiss(pkt, mshr, blk, forward_time, request_time);
405}
406
407void
408Cache::recvTimingReq(PacketPtr pkt)
409{
410 DPRINTF(CacheTags, "%s tags:\n%s\n", __func__, tags->print());
411
412 assert(pkt->isRequest());
413
414 // Just forward the packet if caches are disabled.
415 if (system->bypassCaches()) {
416 // @todo This should really enqueue the packet rather
417 bool M5_VAR_USED success = memSidePort.sendTimingReq(pkt);
418 assert(success);
419 return;
420 }
421
422 promoteWholeLineWrites(pkt);
423
424 if (pkt->cacheResponding()) {
425 // a cache above us (but not where the packet came from) is
426 // responding to the request, in other words it has the line
427 // in Modified or Owned state
428 DPRINTF(Cache, "Cache above responding to %s: not responding\n",
429 pkt->print());
430
431 // if the packet needs the block to be writable, and the cache
432 // that has promised to respond (setting the cache responding
433 // flag) is not providing writable (it is in Owned rather than
434 // the Modified state), we know that there may be other Shared
435 // copies in the system; go out and invalidate them all
436 assert(pkt->needsWritable() && !pkt->responderHadWritable());
437
438 // an upstream cache that had the line in Owned state
439 // (dirty, but not writable), is responding and thus
440 // transferring the dirty line from one branch of the
441 // cache hierarchy to another
442
443 // send out an express snoop and invalidate all other
444 // copies (snooping a packet that needs writable is the
445 // same as an invalidation), thus turning the Owned line
446 // into a Modified line, note that we don't invalidate the
447 // block in the current cache or any other cache on the
448 // path to memory
449
450 // create a downstream express snoop with cleared packet
451 // flags, there is no need to allocate any data as the
452 // packet is merely used to co-ordinate state transitions
453 Packet *snoop_pkt = new Packet(pkt, true, false);
454
455 // also reset the bus time that the original packet has
456 // not yet paid for
457 snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
458
459 // make this an instantaneous express snoop, and let the
460 // other caches in the system know that the another cache
461 // is responding, because we have found the authorative
462 // copy (Modified or Owned) that will supply the right
463 // data
464 snoop_pkt->setExpressSnoop();
465 snoop_pkt->setCacheResponding();
466
467 // this express snoop travels towards the memory, and at
468 // every crossbar it is snooped upwards thus reaching
469 // every cache in the system
470 bool M5_VAR_USED success = memSidePort.sendTimingReq(snoop_pkt);
471 // express snoops always succeed
472 assert(success);
473
474 // main memory will delete the snoop packet
475
476 // queue for deletion, as opposed to immediate deletion, as
477 // the sending cache is still relying on the packet
478 pendingDelete.reset(pkt);
479
480 // no need to take any further action in this particular cache
481 // as an upstram cache has already committed to responding,
482 // and we have already sent out any express snoops in the
483 // section above to ensure all other copies in the system are
484 // invalidated
485 return;
486 }
487
488 BaseCache::recvTimingReq(pkt);
489}
490
491PacketPtr
492Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk,
493 bool needsWritable) const
494{
495 // should never see evictions here
496 assert(!cpu_pkt->isEviction());
497
498 bool blkValid = blk && blk->isValid();
499
500 if (cpu_pkt->req->isUncacheable() ||
501 (!blkValid && cpu_pkt->isUpgrade()) ||
502 cpu_pkt->cmd == MemCmd::InvalidateReq || cpu_pkt->isClean()) {
503 // uncacheable requests and upgrades from upper-level caches
504 // that missed completely just go through as is
505 return nullptr;
506 }
507
508 assert(cpu_pkt->needsResponse());
509
510 MemCmd cmd;
511 // @TODO make useUpgrades a parameter.
512 // Note that ownership protocols require upgrade, otherwise a
513 // write miss on a shared owned block will generate a ReadExcl,
514 // which will clobber the owned copy.
515 const bool useUpgrades = true;
516 if (cpu_pkt->cmd == MemCmd::WriteLineReq) {
517 assert(!blkValid || !blk->isWritable());
518 // forward as invalidate to all other caches, this gives us
519 // the line in Exclusive state, and invalidates all other
520 // copies
521 cmd = MemCmd::InvalidateReq;
522 } else if (blkValid && useUpgrades) {
523 // only reason to be here is that blk is read only and we need
524 // it to be writable
525 assert(needsWritable);
526 assert(!blk->isWritable());
527 cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
528 } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
529 cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
530 // Even though this SC will fail, we still need to send out the
531 // request and get the data to supply it to other snoopers in the case
532 // where the determination the StoreCond fails is delayed due to
533 // all caches not being on the same local bus.
534 cmd = MemCmd::SCUpgradeFailReq;
535 } else {
536 // block is invalid
537
538 // If the request does not need a writable there are two cases
539 // where we need to ensure the response will not fetch the
540 // block in dirty state:
541 // * this cache is read only and it does not perform
542 // writebacks,
543 // * this cache is mostly exclusive and will not fill (since
544 // it does not fill it will have to writeback the dirty data
545 // immediately which generates uneccesary writebacks).
546 bool force_clean_rsp = isReadOnly || clusivity == Enums::mostly_excl;
547 cmd = needsWritable ? MemCmd::ReadExReq :
548 (force_clean_rsp ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
549 }
550 PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
551
552 // if there are upstream caches that have already marked the
553 // packet as having sharers (not passing writable), pass that info
554 // downstream
555 if (cpu_pkt->hasSharers() && !needsWritable) {
556 // note that cpu_pkt may have spent a considerable time in the
557 // MSHR queue and that the information could possibly be out
558 // of date, however, there is no harm in conservatively
559 // assuming the block has sharers
560 pkt->setHasSharers();
561 DPRINTF(Cache, "%s: passing hasSharers from %s to %s\n",
562 __func__, cpu_pkt->print(), pkt->print());
563 }
564
565 // the packet should be block aligned
566 assert(pkt->getAddr() == pkt->getBlockAddr(blkSize));
567
568 pkt->allocate();
569 DPRINTF(Cache, "%s: created %s from %s\n", __func__, pkt->print(),
570 cpu_pkt->print());
571 return pkt;
572}
573
574
575Cycles
576Cache::handleAtomicReqMiss(PacketPtr pkt, CacheBlk *blk,
577 PacketList &writebacks)
578{
579 // deal with the packets that go through the write path of
580 // the cache, i.e. any evictions and writes
581 if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean ||
582 (pkt->req->isUncacheable() && pkt->isWrite())) {
583 Cycles latency = ticksToCycles(memSidePort.sendAtomic(pkt));
584
585 // at this point, if the request was an uncacheable write
586 // request, it has been satisfied by a memory below and the
587 // packet carries the response back
588 assert(!(pkt->req->isUncacheable() && pkt->isWrite()) ||
589 pkt->isResponse());
590
591 return latency;
592 }
593
594 // only misses left
595
596 PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable());
597
598 bool is_forward = (bus_pkt == nullptr);
599
600 if (is_forward) {
601 // just forwarding the same request to the next level
602 // no local cache operation involved
603 bus_pkt = pkt;
604 }
605
606 DPRINTF(Cache, "%s: Sending an atomic %s\n", __func__,
607 bus_pkt->print());
608
609#if TRACING_ON
610 CacheBlk::State old_state = blk ? blk->status : 0;
611#endif
612
613 Cycles latency = ticksToCycles(memSidePort.sendAtomic(bus_pkt));
614
615 bool is_invalidate = bus_pkt->isInvalidate();
616
617 // We are now dealing with the response handling
618 DPRINTF(Cache, "%s: Receive response: %s in state %i\n", __func__,
619 bus_pkt->print(), old_state);
620
621 // If packet was a forward, the response (if any) is already
622 // in place in the bus_pkt == pkt structure, so we don't need
623 // to do anything. Otherwise, use the separate bus_pkt to
624 // generate response to pkt and then delete it.
625 if (!is_forward) {
626 if (pkt->needsResponse()) {
627 assert(bus_pkt->isResponse());
628 if (bus_pkt->isError()) {
629 pkt->makeAtomicResponse();
630 pkt->copyError(bus_pkt);
631 } else if (pkt->cmd == MemCmd::WriteLineReq) {
632 // note the use of pkt, not bus_pkt here.
633
634 // write-line request to the cache that promoted
635 // the write to a whole line
636 blk = handleFill(pkt, blk, writebacks,
637 allocOnFill(pkt->cmd));
638 assert(blk != NULL);
639 is_invalidate = false;
640 satisfyRequest(pkt, blk);
641 } else if (bus_pkt->isRead() ||
642 bus_pkt->cmd == MemCmd::UpgradeResp) {
643 // we're updating cache state to allow us to
644 // satisfy the upstream request from the cache
645 blk = handleFill(bus_pkt, blk, writebacks,
646 allocOnFill(pkt->cmd));
647 satisfyRequest(pkt, blk);
648 maintainClusivity(pkt->fromCache(), blk);
649 } else {
650 // we're satisfying the upstream request without
651 // modifying cache state, e.g., a write-through
652 pkt->makeAtomicResponse();
653 }
654 }
655 delete bus_pkt;
656 }
657
658 if (is_invalidate && blk && blk->isValid()) {
659 invalidateBlock(blk);
660 }
661
662 return latency;
663}
664
665Tick
666Cache::recvAtomic(PacketPtr pkt)
667{
668 // Forward the request if the system is in cache bypass mode.
669 if (system->bypassCaches())
670 return ticksToCycles(memSidePort.sendAtomic(pkt));
671
672 promoteWholeLineWrites(pkt);
673
674 return BaseCache::recvAtomic(pkt);
675}
676
677
678/////////////////////////////////////////////////////
679//
680// Response handling: responses from the memory side
681//
682/////////////////////////////////////////////////////
683
684
685void
686Cache::serviceMSHRTargets(MSHR *mshr, const PacketPtr pkt, CacheBlk *blk,
687 PacketList &writebacks)
688{
689 MSHR::Target *initial_tgt = mshr->getTarget();
690 // First offset for critical word first calculations
691 const int initial_offset = initial_tgt->pkt->getOffset(blkSize);
692
693 const bool is_error = pkt->isError();
694 bool is_fill = !mshr->isForward &&
695 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
696 // allow invalidation responses originating from write-line
697 // requests to be discarded
698 bool is_invalidate = pkt->isInvalidate();
699
700 MSHR::TargetList targets = mshr->extractServiceableTargets(pkt);
701 for (auto &target: targets) {
702 Packet *tgt_pkt = target.pkt;
703 switch (target.source) {
704 case MSHR::Target::FromCPU:
705 Tick completion_time;
706 // Here we charge on completion_time the delay of the xbar if the
707 // packet comes from it, charged on headerDelay.
708 completion_time = pkt->headerDelay;
709
710 // Software prefetch handling for cache closest to core
711 if (tgt_pkt->cmd.isSWPrefetch()) {
712 // a software prefetch would have already been ack'd
713 // immediately with dummy data so the core would be able to
714 // retire it. This request completes right here, so we
715 // deallocate it.
716 delete tgt_pkt->req;
717 delete tgt_pkt;
718 break; // skip response
719 }
720
721 // unlike the other packet flows, where data is found in other
722 // caches or memory and brought back, write-line requests always
723 // have the data right away, so the above check for "is fill?"
724 // cannot actually be determined until examining the stored MSHR
725 // state. We "catch up" with that logic here, which is duplicated
726 // from above.
727 if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
728 assert(!is_error);
729 // we got the block in a writable state, so promote
730 // any deferred targets if possible
731 mshr->promoteWritable();
732 // NB: we use the original packet here and not the response!
733 blk = handleFill(tgt_pkt, blk, writebacks,
734 targets.allocOnFill);
735 assert(blk);
736
737 // treat as a fill, and discard the invalidation
738 // response
739 is_fill = true;
740 is_invalidate = false;
741 }
742
743 if (is_fill) {
744 satisfyRequest(tgt_pkt, blk, true, mshr->hasPostDowngrade());
745
746 // How many bytes past the first request is this one
747 int transfer_offset =
748 tgt_pkt->getOffset(blkSize) - initial_offset;
749 if (transfer_offset < 0) {
750 transfer_offset += blkSize;
751 }
752
753 // If not critical word (offset) return payloadDelay.
754 // responseLatency is the latency of the return path
755 // from lower level caches/memory to an upper level cache or
756 // the core.
757 completion_time += clockEdge(responseLatency) +
758 (transfer_offset ? pkt->payloadDelay : 0);
759
760 assert(!tgt_pkt->req->isUncacheable());
761
762 assert(tgt_pkt->req->masterId() < system->maxMasters());
763 missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
764 completion_time - target.recvTime;
765 } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
766 // failed StoreCond upgrade
767 assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
768 tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
769 tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
770 // responseLatency is the latency of the return path
771 // from lower level caches/memory to an upper level cache or
772 // the core.
773 completion_time += clockEdge(responseLatency) +
774 pkt->payloadDelay;
775 tgt_pkt->req->setExtraData(0);
776 } else {
777 // We are about to send a response to a cache above
778 // that asked for an invalidation; we need to
779 // invalidate our copy immediately as the most
780 // up-to-date copy of the block will now be in the
781 // cache above. It will also prevent this cache from
782 // responding (if the block was previously dirty) to
783 // snoops as they should snoop the caches above where
784 // they will get the response from.
785 if (is_invalidate && blk && blk->isValid()) {
786 invalidateBlock(blk);
787 }
788 // not a cache fill, just forwarding response
789 // responseLatency is the latency of the return path
790 // from lower level cahces/memory to the core.
791 completion_time += clockEdge(responseLatency) +
792 pkt->payloadDelay;
793 if (pkt->isRead() && !is_error) {
794 // sanity check
795 assert(pkt->getAddr() == tgt_pkt->getAddr());
796 assert(pkt->getSize() >= tgt_pkt->getSize());
797
798 tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
799 }
800 }
801 tgt_pkt->makeTimingResponse();
802 // if this packet is an error copy that to the new packet
803 if (is_error)
804 tgt_pkt->copyError(pkt);
805 if (tgt_pkt->cmd == MemCmd::ReadResp &&
806 (is_invalidate || mshr->hasPostInvalidate())) {
807 // If intermediate cache got ReadRespWithInvalidate,
808 // propagate that. Response should not have
809 // isInvalidate() set otherwise.
810 tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
811 DPRINTF(Cache, "%s: updated cmd to %s\n", __func__,
812 tgt_pkt->print());
813 }
814 // Reset the bus additional time as it is now accounted for
815 tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
816 cpuSidePort.schedTimingResp(tgt_pkt, completion_time, true);
817 break;
818
819 case MSHR::Target::FromPrefetcher:
820 assert(tgt_pkt->cmd == MemCmd::HardPFReq);
821 if (blk)
822 blk->status |= BlkHWPrefetched;
823 delete tgt_pkt->req;
824 delete tgt_pkt;
825 break;
826
827 case MSHR::Target::FromSnoop:
828 // I don't believe that a snoop can be in an error state
829 assert(!is_error);
830 // response to snoop request
831 DPRINTF(Cache, "processing deferred snoop...\n");
832 // If the response is invalidating, a snooping target can
833 // be satisfied if it is also invalidating. If the reponse is, not
834 // only invalidating, but more specifically an InvalidateResp and
835 // the MSHR was created due to an InvalidateReq then a cache above
836 // is waiting to satisfy a WriteLineReq. In this case even an
837 // non-invalidating snoop is added as a target here since this is
838 // the ordering point. When the InvalidateResp reaches this cache,
839 // the snooping target will snoop further the cache above with the
840 // WriteLineReq.
841 assert(!is_invalidate || pkt->cmd == MemCmd::InvalidateResp ||
842 pkt->req->isCacheMaintenance() ||
843 mshr->hasPostInvalidate());
844 handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
845 break;
846
847 default:
848 panic("Illegal target->source enum %d\n", target.source);
849 }
850 }
851
852 maintainClusivity(targets.hasFromCache, blk);
853
854 if (blk && blk->isValid()) {
855 // an invalidate response stemming from a write line request
856 // should not invalidate the block, so check if the
857 // invalidation should be discarded
858 if (is_invalidate || mshr->hasPostInvalidate()) {
859 invalidateBlock(blk);
860 } else if (mshr->hasPostDowngrade()) {
861 blk->status &= ~BlkWritable;
862 }
863 }
864}
865
866PacketPtr
867Cache::evictBlock(CacheBlk *blk)
868{
869 PacketPtr pkt = (blk->isDirty() || writebackClean) ?
870 writebackBlk(blk) : cleanEvictBlk(blk);
871
872 invalidateBlock(blk);
873
874 return pkt;
875}
876
877void
878Cache::evictBlock(CacheBlk *blk, PacketList &writebacks)
879{
880 PacketPtr pkt = evictBlock(blk);
881 if (pkt) {
882 writebacks.push_back(pkt);
883 }
884}
885
886PacketPtr
887Cache::cleanEvictBlk(CacheBlk *blk)
888{
889 assert(!writebackClean);
890 assert(blk && blk->isValid() && !blk->isDirty());
891 // Creating a zero sized write, a message to the snoop filter
892 Request *req =
893 new Request(tags->regenerateBlkAddr(blk), blkSize, 0,
894 Request::wbMasterId);
895 if (blk->isSecure())
896 req->setFlags(Request::SECURE);
897
898 req->taskId(blk->task_id);
899
900 PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
901 pkt->allocate();
902 DPRINTF(Cache, "Create CleanEvict %s\n", pkt->print());
903
904 return pkt;
905}
906
907
908/////////////////////////////////////////////////////
909//
910// Snoop path: requests coming in from the memory side
911//
912/////////////////////////////////////////////////////
913
914void
915Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
916 bool already_copied, bool pending_inval)
917{
918 // sanity check
919 assert(req_pkt->isRequest());
920 assert(req_pkt->needsResponse());
921
922 DPRINTF(Cache, "%s: for %s\n", __func__, req_pkt->print());
923 // timing-mode snoop responses require a new packet, unless we
924 // already made a copy...
925 PacketPtr pkt = req_pkt;
926 if (!already_copied)
927 // do not clear flags, and allocate space for data if the
928 // packet needs it (the only packets that carry data are read
929 // responses)
930 pkt = new Packet(req_pkt, false, req_pkt->isRead());
931
932 assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
933 pkt->hasSharers());
934 pkt->makeTimingResponse();
935 if (pkt->isRead()) {
936 pkt->setDataFromBlock(blk_data, blkSize);
937 }
938 if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
939 // Assume we defer a response to a read from a far-away cache
940 // A, then later defer a ReadExcl from a cache B on the same
941 // bus as us. We'll assert cacheResponding in both cases, but
942 // in the latter case cacheResponding will keep the
943 // invalidation from reaching cache A. This special response
944 // tells cache A that it gets the block to satisfy its read,
945 // but must immediately invalidate it.
946 pkt->cmd = MemCmd::ReadRespWithInvalidate;
947 }
948 // Here we consider forward_time, paying for just forward latency and
949 // also charging the delay provided by the xbar.
950 // forward_time is used as send_time in next allocateWriteBuffer().
951 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
952 // Here we reset the timing of the packet.
953 pkt->headerDelay = pkt->payloadDelay = 0;
954 DPRINTF(CacheVerbose, "%s: created response: %s tick: %lu\n", __func__,
955 pkt->print(), forward_time);
956 memSidePort.schedTimingSnoopResp(pkt, forward_time, true);
957}
958
959uint32_t
960Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
961 bool is_deferred, bool pending_inval)
962{
963 DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
964 // deferred snoops can only happen in timing mode
965 assert(!(is_deferred && !is_timing));
966 // pending_inval only makes sense on deferred snoops
967 assert(!(pending_inval && !is_deferred));
968 assert(pkt->isRequest());
969
970 // the packet may get modified if we or a forwarded snooper
971 // responds in atomic mode, so remember a few things about the
972 // original packet up front
973 bool invalidate = pkt->isInvalidate();
974 bool M5_VAR_USED needs_writable = pkt->needsWritable();
975
976 // at the moment we could get an uncacheable write which does not
977 // have the invalidate flag, and we need a suitable way of dealing
978 // with this case
979 panic_if(invalidate && pkt->req->isUncacheable(),
980 "%s got an invalidating uncacheable snoop request %s",
981 name(), pkt->print());
982
983 uint32_t snoop_delay = 0;
984
985 if (forwardSnoops) {
986 // first propagate snoop upward to see if anyone above us wants to
987 // handle it. save & restore packet src since it will get
988 // rewritten to be relative to cpu-side bus (if any)
989 bool alreadyResponded = pkt->cacheResponding();
990 if (is_timing) {
991 // copy the packet so that we can clear any flags before
992 // forwarding it upwards, we also allocate data (passing
993 // the pointer along in case of static data), in case
994 // there is a snoop hit in upper levels
995 Packet snoopPkt(pkt, true, true);
996 snoopPkt.setExpressSnoop();
997 // the snoop packet does not need to wait any additional
998 // time
999 snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
1000 cpuSidePort.sendTimingSnoopReq(&snoopPkt);
1001
1002 // add the header delay (including crossbar and snoop
1003 // delays) of the upward snoop to the snoop delay for this
1004 // cache
1005 snoop_delay += snoopPkt.headerDelay;
1006
1007 if (snoopPkt.cacheResponding()) {
1008 // cache-to-cache response from some upper cache
1009 assert(!alreadyResponded);
1010 pkt->setCacheResponding();
1011 }
1012 // upstream cache has the block, or has an outstanding
1013 // MSHR, pass the flag on
1014 if (snoopPkt.hasSharers()) {
1015 pkt->setHasSharers();
1016 }
1017 // If this request is a prefetch or clean evict and an upper level
1018 // signals block present, make sure to propagate the block
1019 // presence to the requester.
1020 if (snoopPkt.isBlockCached()) {
1021 pkt->setBlockCached();
1022 }
1023 // If the request was satisfied by snooping the cache
1024 // above, mark the original packet as satisfied too.
1025 if (snoopPkt.satisfied()) {
1026 pkt->setSatisfied();
1027 }
1028 } else {
1029 cpuSidePort.sendAtomicSnoop(pkt);
1030 if (!alreadyResponded && pkt->cacheResponding()) {
1031 // cache-to-cache response from some upper cache:
1032 // forward response to original requester
1033 assert(pkt->isResponse());
1034 }
1035 }
1036 }
1037
1038 bool respond = false;
1039 bool blk_valid = blk && blk->isValid();
1040 if (pkt->isClean()) {
1041 if (blk_valid && blk->isDirty()) {
1042 DPRINTF(CacheVerbose, "%s: packet (snoop) %s found block: %s\n",
1043 __func__, pkt->print(), blk->print());
1044 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
1045 PacketList writebacks;
1046 writebacks.push_back(wb_pkt);
1047
1048 if (is_timing) {
1049 // anything that is merely forwarded pays for the forward
1050 // latency and the delay provided by the crossbar
1051 Tick forward_time = clockEdge(forwardLatency) +
1052 pkt->headerDelay;
1053 doWritebacks(writebacks, forward_time);
1054 } else {
1055 doWritebacksAtomic(writebacks);
1056 }
1057 pkt->setSatisfied();
1058 }
1059 } else if (!blk_valid) {
1060 DPRINTF(CacheVerbose, "%s: snoop miss for %s\n", __func__,
1061 pkt->print());
1062 if (is_deferred) {
1063 // we no longer have the block, and will not respond, but a
1064 // packet was allocated in MSHR::handleSnoop and we have
1065 // to delete it
1066 assert(pkt->needsResponse());
1067
1068 // we have passed the block to a cache upstream, that
1069 // cache should be responding
1070 assert(pkt->cacheResponding());
1071
1072 delete pkt;
1073 }
1074 return snoop_delay;
1075 } else {
1076 DPRINTF(Cache, "%s: snoop hit for %s, old state is %s\n", __func__,
1077 pkt->print(), blk->print());
1078
1079 // We may end up modifying both the block state and the packet (if
1080 // we respond in atomic mode), so just figure out what to do now
1081 // and then do it later. We respond to all snoops that need
1082 // responses provided we have the block in dirty state. The
1083 // invalidation itself is taken care of below. We don't respond to
1084 // cache maintenance operations as this is done by the destination
1085 // xbar.
1086 respond = blk->isDirty() && pkt->needsResponse();
1087
1088 chatty_assert(!(isReadOnly && blk->isDirty()), "Should never have "
1089 "a dirty block in a read-only cache %s\n", name());
1090 }
1091
1092 // Invalidate any prefetch's from below that would strip write permissions
1093 // MemCmd::HardPFReq is only observed by upstream caches. After missing
1094 // above and in it's own cache, a new MemCmd::ReadReq is created that
1095 // downstream caches observe.
1096 if (pkt->mustCheckAbove()) {
1097 DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s "
1098 "from lower cache\n", pkt->getAddr(), pkt->print());
1099 pkt->setBlockCached();
1100 return snoop_delay;
1101 }
1102
1103 if (pkt->isRead() && !invalidate) {
1104 // reading without requiring the line in a writable state
1105 assert(!needs_writable);
1106 pkt->setHasSharers();
1107
1108 // if the requesting packet is uncacheable, retain the line in
1109 // the current state, otherwhise unset the writable flag,
1110 // which means we go from Modified to Owned (and will respond
1111 // below), remain in Owned (and will respond below), from
1112 // Exclusive to Shared, or remain in Shared
1113 if (!pkt->req->isUncacheable())
1114 blk->status &= ~BlkWritable;
1115 DPRINTF(Cache, "new state is %s\n", blk->print());
1116 }
1117
1118 if (respond) {
1119 // prevent anyone else from responding, cache as well as
1120 // memory, and also prevent any memory from even seeing the
1121 // request
1122 pkt->setCacheResponding();
1123 if (!pkt->isClean() && blk->isWritable()) {
1124 // inform the cache hierarchy that this cache had the line
1125 // in the Modified state so that we avoid unnecessary
1126 // invalidations (see Packet::setResponderHadWritable)
1127 pkt->setResponderHadWritable();
1128
1129 // in the case of an uncacheable request there is no point
1130 // in setting the responderHadWritable flag, but since the
1131 // recipient does not care there is no harm in doing so
1132 } else {
1133 // if the packet has needsWritable set we invalidate our
1134 // copy below and all other copies will be invalidates
1135 // through express snoops, and if needsWritable is not set
1136 // we already called setHasSharers above
1137 }
1138
1139 // if we are returning a writable and dirty (Modified) line,
1140 // we should be invalidating the line
1141 panic_if(!invalidate && !pkt->hasSharers(),
1142 "%s is passing a Modified line through %s, "
1143 "but keeping the block", name(), pkt->print());
1144
1145 if (is_timing) {
1146 doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
1147 } else {
1148 pkt->makeAtomicResponse();
1149 // packets such as upgrades do not actually have any data
1150 // payload
1151 if (pkt->hasData())
1152 pkt->setDataFromBlock(blk->data, blkSize);
1153 }
1154 }
1155
1156 if (!respond && is_deferred) {
1157 assert(pkt->needsResponse());
1158
1159 // if we copied the deferred packet with the intention to
1160 // respond, but are not responding, then a cache above us must
1161 // be, and we can use this as the indication of whether this
1162 // is a packet where we created a copy of the request or not
1163 if (!pkt->cacheResponding()) {
1164 delete pkt->req;
1165 }
1166
1167 delete pkt;
1168 }
1169
1170 // Do this last in case it deallocates block data or something
1171 // like that
1172 if (blk_valid && invalidate) {
1173 invalidateBlock(blk);
1174 DPRINTF(Cache, "new state is %s\n", blk->print());
1175 }
1176
1177 return snoop_delay;
1178}
1179
1180
1181void
1182Cache::recvTimingSnoopReq(PacketPtr pkt)
1183{
1184 DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
1185
1186 // Snoops shouldn't happen when bypassing caches
1187 assert(!system->bypassCaches());
1188
1189 // no need to snoop requests that are not in range
1190 if (!inRange(pkt->getAddr())) {
1191 return;
1192 }
1193
1194 bool is_secure = pkt->isSecure();
1195 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
1196
1197 Addr blk_addr = pkt->getBlockAddr(blkSize);
1198 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
1199
1200 // Update the latency cost of the snoop so that the crossbar can
1201 // account for it. Do not overwrite what other neighbouring caches
1202 // have already done, rather take the maximum. The update is
1203 // tentative, for cases where we return before an upward snoop
1204 // happens below.
1205 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
1206 lookupLatency * clockPeriod());
1207
1208 // Inform request(Prefetch, CleanEvict or Writeback) from below of
1209 // MSHR hit, set setBlockCached.
1210 if (mshr && pkt->mustCheckAbove()) {
1211 DPRINTF(Cache, "Setting block cached for %s from lower cache on "
1212 "mshr hit\n", pkt->print());
1213 pkt->setBlockCached();
1214 return;
1215 }
1216
1217 // Bypass any existing cache maintenance requests if the request
1218 // has been satisfied already (i.e., the dirty block has been
1219 // found).
1220 if (mshr && pkt->req->isCacheMaintenance() && pkt->satisfied()) {
1221 return;
1222 }
1223
1224 // Let the MSHR itself track the snoop and decide whether we want
1225 // to go ahead and do the regular cache snoop
1226 if (mshr && mshr->handleSnoop(pkt, order++)) {
1227 DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
1228 "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
1229 mshr->print());
1230
1231 if (mshr->getNumTargets() > numTarget)
1232 warn("allocating bonus target for snoop"); //handle later
1233 return;
1234 }
1235
1236 //We also need to check the writeback buffers and handle those
1237 WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure);
1238 if (wb_entry) {
1239 DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
1240 pkt->getAddr(), is_secure ? "s" : "ns");
1241 // Expect to see only Writebacks and/or CleanEvicts here, both of
1242 // which should not be generated for uncacheable data.
1243 assert(!wb_entry->isUncacheable());
1244 // There should only be a single request responsible for generating
1245 // Writebacks/CleanEvicts.
1246 assert(wb_entry->getNumTargets() == 1);
1247 PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
1248 assert(wb_pkt->isEviction() || wb_pkt->cmd == MemCmd::WriteClean);
1249
1250 if (pkt->isEviction()) {
1251 // if the block is found in the write queue, set the BLOCK_CACHED
1252 // flag for Writeback/CleanEvict snoop. On return the snoop will
1253 // propagate the BLOCK_CACHED flag in Writeback packets and prevent
1254 // any CleanEvicts from travelling down the memory hierarchy.
1255 pkt->setBlockCached();
1256 DPRINTF(Cache, "%s: Squashing %s from lower cache on writequeue "
1257 "hit\n", __func__, pkt->print());
1258 return;
1259 }
1260
1261 // conceptually writebacks are no different to other blocks in
1262 // this cache, so the behaviour is modelled after handleSnoop,
1263 // the difference being that instead of querying the block
1264 // state to determine if it is dirty and writable, we use the
1265 // command and fields of the writeback packet
1266 bool respond = wb_pkt->cmd == MemCmd::WritebackDirty &&
1267 pkt->needsResponse();
1268 bool have_writable = !wb_pkt->hasSharers();
1269 bool invalidate = pkt->isInvalidate();
1270
1271 if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
1272 assert(!pkt->needsWritable());
1273 pkt->setHasSharers();
1274 wb_pkt->setHasSharers();
1275 }
1276
1277 if (respond) {
1278 pkt->setCacheResponding();
1279
1280 if (have_writable) {
1281 pkt->setResponderHadWritable();
1282 }
1283
1284 doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
1285 false, false);
1286 }
1287
1288 if (invalidate && wb_pkt->cmd != MemCmd::WriteClean) {
1289 // Invalidation trumps our writeback... discard here
1290 // Note: markInService will remove entry from writeback buffer.
1291 markInService(wb_entry);
1292 delete wb_pkt;
1293 }
1294 }
1295
1296 // If this was a shared writeback, there may still be
1297 // other shared copies above that require invalidation.
1298 // We could be more selective and return here if the
1299 // request is non-exclusive or if the writeback is
1300 // exclusive.
1301 uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
1302
1303 // Override what we did when we first saw the snoop, as we now
1304 // also have the cost of the upwards snoops to account for
1305 pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
1306 lookupLatency * clockPeriod());
1307}
1308
1309Tick
1310Cache::recvAtomicSnoop(PacketPtr pkt)
1311{
1312 // Snoops shouldn't happen when bypassing caches
1313 assert(!system->bypassCaches());
1314
1315 // no need to snoop requests that are not in range.
1316 if (!inRange(pkt->getAddr())) {
1317 return 0;
1318 }
1319
1320 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
1321 uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
1322 return snoop_delay + lookupLatency * clockPeriod();
1323}
1324
1325bool
1326Cache::isCachedAbove(PacketPtr pkt, bool is_timing)
1327{
1328 if (!forwardSnoops)
1329 return false;
1330 // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
1331 // Writeback snoops into upper level caches to check for copies of the
1332 // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
1333 // packet, the cache can inform the crossbar below of presence or absence
1334 // of the block.
1335 if (is_timing) {
1336 Packet snoop_pkt(pkt, true, false);
1337 snoop_pkt.setExpressSnoop();
1338 // Assert that packet is either Writeback or CleanEvict and not a
1339 // prefetch request because prefetch requests need an MSHR and may
1340 // generate a snoop response.
1341 assert(pkt->isEviction() || pkt->cmd == MemCmd::WriteClean);
1342 snoop_pkt.senderState = nullptr;
1343 cpuSidePort.sendTimingSnoopReq(&snoop_pkt);
1344 // Writeback/CleanEvict snoops do not generate a snoop response.
1345 assert(!(snoop_pkt.cacheResponding()));
1346 return snoop_pkt.isBlockCached();
1347 } else {
1348 cpuSidePort.sendAtomicSnoop(pkt);
1349 return pkt->isBlockCached();
1350 }
1351}
1352
1353bool
1354Cache::sendMSHRQueuePacket(MSHR* mshr)
1355{
1356 assert(mshr);
1357
1358 // use request from 1st target
1359 PacketPtr tgt_pkt = mshr->getTarget()->pkt;
1360
1361 if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
1362 DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
1363
1364 // we should never have hardware prefetches to allocated
1365 // blocks
1366 assert(!tags->findBlock(mshr->blkAddr, mshr->isSecure));
1367
1368 // We need to check the caches above us to verify that
1369 // they don't have a copy of this block in the dirty state
1370 // at the moment. Without this check we could get a stale
1371 // copy from memory that might get used in place of the
1372 // dirty one.
1373 Packet snoop_pkt(tgt_pkt, true, false);
1374 snoop_pkt.setExpressSnoop();
1375 // We are sending this packet upwards, but if it hits we will
1376 // get a snoop response that we end up treating just like a
1377 // normal response, hence it needs the MSHR as its sender
1378 // state
1379 snoop_pkt.senderState = mshr;
1380 cpuSidePort.sendTimingSnoopReq(&snoop_pkt);
1381
1382 // Check to see if the prefetch was squashed by an upper cache (to
1383 // prevent us from grabbing the line) or if a Check to see if a
1384 // writeback arrived between the time the prefetch was placed in
1385 // the MSHRs and when it was selected to be sent or if the
1386 // prefetch was squashed by an upper cache.
1387
1388 // It is important to check cacheResponding before
1389 // prefetchSquashed. If another cache has committed to
1390 // responding, it will be sending a dirty response which will
1391 // arrive at the MSHR allocated for this request. Checking the
1392 // prefetchSquash first may result in the MSHR being
1393 // prematurely deallocated.
1394 if (snoop_pkt.cacheResponding()) {
1395 auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req);
1396 assert(r.second);
1397
1398 // if we are getting a snoop response with no sharers it
1399 // will be allocated as Modified
1400 bool pending_modified_resp = !snoop_pkt.hasSharers();
1401 markInService(mshr, pending_modified_resp);
1402
1403 DPRINTF(Cache, "Upward snoop of prefetch for addr"
1404 " %#x (%s) hit\n",
1405 tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
1406 return false;
1407 }
1408
1409 if (snoop_pkt.isBlockCached()) {
1410 DPRINTF(Cache, "Block present, prefetch squashed by cache. "
1411 "Deallocating mshr target %#x.\n",
1412 mshr->blkAddr);
1413
1414 // Deallocate the mshr target
1415 if (mshrQueue.forceDeallocateTarget(mshr)) {
1416 // Clear block if this deallocation resulted freed an
1417 // mshr when all had previously been utilized
1418 clearBlocked(Blocked_NoMSHRs);
1419 }
1420
1421 // given that no response is expected, delete Request and Packet
1422 delete tgt_pkt->req;
1423 delete tgt_pkt;
1424
1425 return false;
1426 }
1427 }
1428
1429 return BaseCache::sendMSHRQueuePacket(mshr);
1430}
1431
1432Cache*
1433CacheParams::create()
1434{
1435 assert(tags);
1436 assert(replacement_policy);
1437
1438 return new Cache(this);
1439}