Deleted Added
sdiff udiff text old ( 13350:247e4108a5e8 ) new ( 13352:75647326f19b )
full compact
1/*
2 * Copyright (c) 2012-2013, 2015-2016, 2018 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Erik Hallnor
41 * Steve Reinhardt
42 * Ron Dreslinski
43 * Andreas Hansson
44 * Nikos Nikoleris
45 */
46
47/**
48 * @file
49 * Declares a basic cache interface BaseCache.
50 */
51
52#ifndef __MEM_CACHE_BASE_HH__
53#define __MEM_CACHE_BASE_HH__
54
55#include <cassert>
56#include <cstdint>
57#include <string>
58
59#include "base/addr_range.hh"
60#include "base/statistics.hh"
61#include "base/trace.hh"
62#include "base/types.hh"
63#include "debug/Cache.hh"
64#include "debug/CachePort.hh"
65#include "enums/Clusivity.hh"
66#include "mem/cache/cache_blk.hh"
67#include "mem/cache/mshr_queue.hh"
68#include "mem/cache/tags/base.hh"
69#include "mem/cache/write_queue.hh"
70#include "mem/cache/write_queue_entry.hh"
71#include "mem/mem_object.hh"
72#include "mem/packet.hh"
73#include "mem/packet_queue.hh"
74#include "mem/qport.hh"
75#include "mem/request.hh"
76#include "sim/eventq.hh"
77#include "sim/serialize.hh"
78#include "sim/sim_exit.hh"
79#include "sim/system.hh"
80
81class BaseMasterPort;
82class BasePrefetcher;
83class BaseSlavePort;
84class MSHR;
85class MasterPort;
86class QueueEntry;
87struct BaseCacheParams;
88
89/**
90 * A basic cache interface. Implements some common functions for speed.
91 */
92class BaseCache : public MemObject
93{
94 protected:
95 /**
96 * Indexes to enumerate the MSHR queues.
97 */
98 enum MSHRQueueIndex {
99 MSHRQueue_MSHRs,
100 MSHRQueue_WriteBuffer
101 };
102
103 public:
104 /**
105 * Reasons for caches to be blocked.
106 */
107 enum BlockedCause {
108 Blocked_NoMSHRs = MSHRQueue_MSHRs,
109 Blocked_NoWBBuffers = MSHRQueue_WriteBuffer,
110 Blocked_NoTargets,
111 NUM_BLOCKED_CAUSES
112 };
113
114 protected:
115
116 /**
117 * A cache master port is used for the memory-side port of the
118 * cache, and in addition to the basic timing port that only sends
119 * response packets through a transmit list, it also offers the
120 * ability to schedule and send request packets (requests &
121 * writebacks). The send event is scheduled through schedSendEvent,
122 * and the sendDeferredPacket of the timing port is modified to
123 * consider both the transmit list and the requests from the MSHR.
124 */
125 class CacheMasterPort : public QueuedMasterPort
126 {
127
128 public:
129
130 /**
131 * Schedule a send of a request packet (from the MSHR). Note
132 * that we could already have a retry outstanding.
133 */
134 void schedSendEvent(Tick time)
135 {
136 DPRINTF(CachePort, "Scheduling send event at %llu\n", time);
137 reqQueue.schedSendEvent(time);
138 }
139
140 protected:
141
142 CacheMasterPort(const std::string &_name, BaseCache *_cache,
143 ReqPacketQueue &_reqQueue,
144 SnoopRespPacketQueue &_snoopRespQueue) :
145 QueuedMasterPort(_name, _cache, _reqQueue, _snoopRespQueue)
146 { }
147
148 /**
149 * Memory-side port always snoops.
150 *
151 * @return always true
152 */
153 virtual bool isSnooping() const { return true; }
154 };
155
156 /**
157 * Override the default behaviour of sendDeferredPacket to enable
158 * the memory-side cache port to also send requests based on the
159 * current MSHR status. This queue has a pointer to our specific
160 * cache implementation and is used by the MemSidePort.
161 */
162 class CacheReqPacketQueue : public ReqPacketQueue
163 {
164
165 protected:
166
167 BaseCache &cache;
168 SnoopRespPacketQueue &snoopRespQueue;
169
170 public:
171
172 CacheReqPacketQueue(BaseCache &cache, MasterPort &port,
173 SnoopRespPacketQueue &snoop_resp_queue,
174 const std::string &label) :
175 ReqPacketQueue(cache, port, label), cache(cache),
176 snoopRespQueue(snoop_resp_queue) { }
177
178 /**
179 * Override the normal sendDeferredPacket and do not only
180 * consider the transmit list (used for responses), but also
181 * requests.
182 */
183 virtual void sendDeferredPacket();
184
185 /**
186 * Check if there is a conflicting snoop response about to be
187 * send out, and if so simply stall any requests, and schedule
188 * a send event at the same time as the next snoop response is
189 * being sent out.
190 */
191 bool checkConflictingSnoop(Addr addr)
192 {
193 if (snoopRespQueue.hasAddr(addr)) {
194 DPRINTF(CachePort, "Waiting for snoop response to be "
195 "sent\n");
196 Tick when = snoopRespQueue.deferredPacketReadyTime();
197 schedSendEvent(when);
198 return true;
199 }
200 return false;
201 }
202 };
203
204
205 /**
206 * The memory-side port extends the base cache master port with
207 * access functions for functional, atomic and timing snoops.
208 */
209 class MemSidePort : public CacheMasterPort
210 {
211 private:
212
213 /** The cache-specific queue. */
214 CacheReqPacketQueue _reqQueue;
215
216 SnoopRespPacketQueue _snoopRespQueue;
217
218 // a pointer to our specific cache implementation
219 BaseCache *cache;
220
221 protected:
222
223 virtual void recvTimingSnoopReq(PacketPtr pkt);
224
225 virtual bool recvTimingResp(PacketPtr pkt);
226
227 virtual Tick recvAtomicSnoop(PacketPtr pkt);
228
229 virtual void recvFunctionalSnoop(PacketPtr pkt);
230
231 public:
232
233 MemSidePort(const std::string &_name, BaseCache *_cache,
234 const std::string &_label);
235 };
236
237 /**
238 * A cache slave port is used for the CPU-side port of the cache,
239 * and it is basically a simple timing port that uses a transmit
240 * list for responses to the CPU (or connected master). In
241 * addition, it has the functionality to block the port for
242 * incoming requests. If blocked, the port will issue a retry once
243 * unblocked.
244 */
245 class CacheSlavePort : public QueuedSlavePort
246 {
247
248 public:
249
250 /** Do not accept any new requests. */
251 void setBlocked();
252
253 /** Return to normal operation and accept new requests. */
254 void clearBlocked();
255
256 bool isBlocked() const { return blocked; }
257
258 protected:
259
260 CacheSlavePort(const std::string &_name, BaseCache *_cache,
261 const std::string &_label);
262
263 /** A normal packet queue used to store responses. */
264 RespPacketQueue queue;
265
266 bool blocked;
267
268 bool mustSendRetry;
269
270 private:
271
272 void processSendRetry();
273
274 EventFunctionWrapper sendRetryEvent;
275
276 };
277
278 /**
279 * The CPU-side port extends the base cache slave port with access
280 * functions for functional, atomic and timing requests.
281 */
282 class CpuSidePort : public CacheSlavePort
283 {
284 private:
285
286 // a pointer to our specific cache implementation
287 BaseCache *cache;
288
289 protected:
290 virtual bool recvTimingSnoopResp(PacketPtr pkt) override;
291
292 virtual bool tryTiming(PacketPtr pkt) override;
293
294 virtual bool recvTimingReq(PacketPtr pkt) override;
295
296 virtual Tick recvAtomic(PacketPtr pkt) override;
297
298 virtual void recvFunctional(PacketPtr pkt) override;
299
300 virtual AddrRangeList getAddrRanges() const override;
301
302 public:
303
304 CpuSidePort(const std::string &_name, BaseCache *_cache,
305 const std::string &_label);
306
307 };
308
309 CpuSidePort cpuSidePort;
310 MemSidePort memSidePort;
311
312 protected:
313
314 /** Miss status registers */
315 MSHRQueue mshrQueue;
316
317 /** Write/writeback buffer */
318 WriteQueue writeBuffer;
319
320 /** Tag and data Storage */
321 BaseTags *tags;
322
323 /** Prefetcher */
324 BasePrefetcher *prefetcher;
325
326 /**
327 * Notify the prefetcher on every access, not just misses.
328 */
329 const bool prefetchOnAccess;
330
331 /**
332 * Temporary cache block for occasional transitory use. We use
333 * the tempBlock to fill when allocation fails (e.g., when there
334 * is an outstanding request that accesses the victim block) or
335 * when we want to avoid allocation (e.g., exclusive caches)
336 */
337 TempCacheBlk *tempBlock;
338
339 /**
340 * Upstream caches need this packet until true is returned, so
341 * hold it for deletion until a subsequent call
342 */
343 std::unique_ptr<Packet> pendingDelete;
344
345 /**
346 * Mark a request as in service (sent downstream in the memory
347 * system), effectively making this MSHR the ordering point.
348 */
349 void markInService(MSHR *mshr, bool pending_modified_resp)
350 {
351 bool wasFull = mshrQueue.isFull();
352 mshrQueue.markInService(mshr, pending_modified_resp);
353
354 if (wasFull && !mshrQueue.isFull()) {
355 clearBlocked(Blocked_NoMSHRs);
356 }
357 }
358
359 void markInService(WriteQueueEntry *entry)
360 {
361 bool wasFull = writeBuffer.isFull();
362 writeBuffer.markInService(entry);
363
364 if (wasFull && !writeBuffer.isFull()) {
365 clearBlocked(Blocked_NoWBBuffers);
366 }
367 }
368
369 /**
370 * Determine whether we should allocate on a fill or not. If this
371 * cache is mostly inclusive with regards to the upstream cache(s)
372 * we always allocate (for any non-forwarded and cacheable
373 * requests). In the case of a mostly exclusive cache, we allocate
374 * on fill if the packet did not come from a cache, thus if we:
375 * are dealing with a whole-line write (the latter behaves much
376 * like a writeback), the original target packet came from a
377 * non-caching source, or if we are performing a prefetch or LLSC.
378 *
379 * @param cmd Command of the incoming requesting packet
380 * @return Whether we should allocate on the fill
381 */
382 inline bool allocOnFill(MemCmd cmd) const
383 {
384 return clusivity == Enums::mostly_incl ||
385 cmd == MemCmd::WriteLineReq ||
386 cmd == MemCmd::ReadReq ||
387 cmd == MemCmd::WriteReq ||
388 cmd.isPrefetch() ||
389 cmd.isLLSC();
390 }
391
392 /**
393 * Regenerate block address using tags.
394 * Block address regeneration depends on whether we're using a temporary
395 * block or not.
396 *
397 * @param blk The block to regenerate address.
398 * @return The block's address.
399 */
400 Addr regenerateBlkAddr(CacheBlk* blk);
401
402 /**
403 * Does all the processing necessary to perform the provided request.
404 * @param pkt The memory request to perform.
405 * @param blk The cache block to be updated.
406 * @param lat The latency of the access.
407 * @param writebacks List for any writebacks that need to be performed.
408 * @return Boolean indicating whether the request was satisfied.
409 */
410 virtual bool access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
411 PacketList &writebacks);
412
413 /*
414 * Handle a timing request that hit in the cache
415 *
416 * @param ptk The request packet
417 * @param blk The referenced block
418 * @param request_time The tick at which the block lookup is compete
419 */
420 virtual void handleTimingReqHit(PacketPtr pkt, CacheBlk *blk,
421 Tick request_time);
422
423 /*
424 * Handle a timing request that missed in the cache
425 *
426 * Implementation specific handling for different cache
427 * implementations
428 *
429 * @param ptk The request packet
430 * @param blk The referenced block
431 * @param forward_time The tick at which we can process dependent requests
432 * @param request_time The tick at which the block lookup is compete
433 */
434 virtual void handleTimingReqMiss(PacketPtr pkt, CacheBlk *blk,
435 Tick forward_time,
436 Tick request_time) = 0;
437
438 /*
439 * Handle a timing request that missed in the cache
440 *
441 * Common functionality across different cache implementations
442 *
443 * @param ptk The request packet
444 * @param blk The referenced block
445 * @param mshr Any existing mshr for the referenced cache block
446 * @param forward_time The tick at which we can process dependent requests
447 * @param request_time The tick at which the block lookup is compete
448 */
449 void handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
450 Tick forward_time, Tick request_time);
451
452 /**
453 * Performs the access specified by the request.
454 * @param pkt The request to perform.
455 */
456 virtual void recvTimingReq(PacketPtr pkt);
457
458 /**
459 * Handling the special case of uncacheable write responses to
460 * make recvTimingResp less cluttered.
461 */
462 void handleUncacheableWriteResp(PacketPtr pkt);
463
464 /**
465 * Service non-deferred MSHR targets using the received response
466 *
467 * Iterates through the list of targets that can be serviced with
468 * the current response. Any writebacks that need to performed
469 * must be appended to the writebacks parameter.
470 *
471 * @param mshr The MSHR that corresponds to the reponse
472 * @param pkt The response packet
473 * @param blk The reference block
474 * @param writebacks List of writebacks that need to be performed
475 */
476 virtual void serviceMSHRTargets(MSHR *mshr, const PacketPtr pkt,
477 CacheBlk *blk, PacketList& writebacks) = 0;
478
479 /**
480 * Handles a response (cache line fill/write ack) from the bus.
481 * @param pkt The response packet
482 */
483 virtual void recvTimingResp(PacketPtr pkt);
484
485 /**
486 * Snoops bus transactions to maintain coherence.
487 * @param pkt The current bus transaction.
488 */
489 virtual void recvTimingSnoopReq(PacketPtr pkt) = 0;
490
491 /**
492 * Handle a snoop response.
493 * @param pkt Snoop response packet
494 */
495 virtual void recvTimingSnoopResp(PacketPtr pkt) = 0;
496
497 /**
498 * Handle a request in atomic mode that missed in this cache
499 *
500 * Creates a downstream request, sends it to the memory below and
501 * handles the response. As we are in atomic mode all operations
502 * are performed immediately.
503 *
504 * @param pkt The packet with the requests
505 * @param blk The referenced block
506 * @param writebacks A list with packets for any performed writebacks
507 * @return Cycles for handling the request
508 */
509 virtual Cycles handleAtomicReqMiss(PacketPtr pkt, CacheBlk *&blk,
510 PacketList &writebacks) = 0;
511
512 /**
513 * Performs the access specified by the request.
514 * @param pkt The request to perform.
515 * @return The number of ticks required for the access.
516 */
517 virtual Tick recvAtomic(PacketPtr pkt);
518
519 /**
520 * Snoop for the provided request in the cache and return the estimated
521 * time taken.
522 * @param pkt The memory request to snoop
523 * @return The number of ticks required for the snoop.
524 */
525 virtual Tick recvAtomicSnoop(PacketPtr pkt) = 0;
526
527 /**
528 * Performs the access specified by the request.
529 *
530 * @param pkt The request to perform.
531 * @param fromCpuSide from the CPU side port or the memory side port
532 */
533 virtual void functionalAccess(PacketPtr pkt, bool from_cpu_side);
534
535 /**
536 * Handle doing the Compare and Swap function for SPARC.
537 */
538 void cmpAndSwap(CacheBlk *blk, PacketPtr pkt);
539
540 /**
541 * Return the next queue entry to service, either a pending miss
542 * from the MSHR queue, a buffered write from the write buffer, or
543 * something from the prefetcher. This function is responsible
544 * for prioritizing among those sources on the fly.
545 */
546 QueueEntry* getNextQueueEntry();
547
548 /**
549 * Insert writebacks into the write buffer
550 */
551 virtual void doWritebacks(PacketList& writebacks, Tick forward_time) = 0;
552
553 /**
554 * Send writebacks down the memory hierarchy in atomic mode
555 */
556 virtual void doWritebacksAtomic(PacketList& writebacks) = 0;
557
558 /**
559 * Create an appropriate downstream bus request packet.
560 *
561 * Creates a new packet with the request to be send to the memory
562 * below, or nullptr if the current request in cpu_pkt should just
563 * be forwarded on.
564 *
565 * @param cpu_pkt The miss packet that needs to be satisfied.
566 * @param blk The referenced block, can be nullptr.
567 * @param needs_writable Indicates that the block must be writable
568 * even if the request in cpu_pkt doesn't indicate that.
569 * @param is_whole_line_write True if there are writes for the
570 * whole line
571 * @return A packet send to the memory below
572 */
573 virtual PacketPtr createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk,
574 bool needs_writable,
575 bool is_whole_line_write) const = 0;
576
577 /**
578 * Determine if clean lines should be written back or not. In
579 * cases where a downstream cache is mostly inclusive we likely
580 * want it to act as a victim cache also for lines that have not
581 * been modified. Hence, we cannot simply drop the line (or send a
582 * clean evict), but rather need to send the actual data.
583 */
584 const bool writebackClean;
585
586 /**
587 * Writebacks from the tempBlock, resulting on the response path
588 * in atomic mode, must happen after the call to recvAtomic has
589 * finished (for the right ordering of the packets). We therefore
590 * need to hold on to the packets, and have a method and an event
591 * to send them.
592 */
593 PacketPtr tempBlockWriteback;
594
595 /**
596 * Send the outstanding tempBlock writeback. To be called after
597 * recvAtomic finishes in cases where the block we filled is in
598 * fact the tempBlock, and now needs to be written back.
599 */
600 void writebackTempBlockAtomic() {
601 assert(tempBlockWriteback != nullptr);
602 PacketList writebacks{tempBlockWriteback};
603 doWritebacksAtomic(writebacks);
604 tempBlockWriteback = nullptr;
605 }
606
607 /**
608 * An event to writeback the tempBlock after recvAtomic
609 * finishes. To avoid other calls to recvAtomic getting in
610 * between, we create this event with a higher priority.
611 */
612 EventFunctionWrapper writebackTempBlockAtomicEvent;
613
614 /**
615 * Perform any necessary updates to the block and perform any data
616 * exchange between the packet and the block. The flags of the
617 * packet are also set accordingly.
618 *
619 * @param pkt Request packet from upstream that hit a block
620 * @param blk Cache block that the packet hit
621 * @param deferred_response Whether this request originally missed
622 * @param pending_downgrade Whether the writable flag is to be removed
623 */
624 virtual void satisfyRequest(PacketPtr pkt, CacheBlk *blk,
625 bool deferred_response = false,
626 bool pending_downgrade = false);
627
628 /**
629 * Maintain the clusivity of this cache by potentially
630 * invalidating a block. This method works in conjunction with
631 * satisfyRequest, but is separate to allow us to handle all MSHR
632 * targets before potentially dropping a block.
633 *
634 * @param from_cache Whether we have dealt with a packet from a cache
635 * @param blk The block that should potentially be dropped
636 */
637 void maintainClusivity(bool from_cache, CacheBlk *blk);
638
639 /**
640 * Handle a fill operation caused by a received packet.
641 *
642 * Populates a cache block and handles all outstanding requests for the
643 * satisfied fill request. This version takes two memory requests. One
644 * contains the fill data, the other is an optional target to satisfy.
645 * Note that the reason we return a list of writebacks rather than
646 * inserting them directly in the write buffer is that this function
647 * is called by both atomic and timing-mode accesses, and in atomic
648 * mode we don't mess with the write buffer (we just perform the
649 * writebacks atomically once the original request is complete).
650 *
651 * @param pkt The memory request with the fill data.
652 * @param blk The cache block if it already exists.
653 * @param writebacks List for any writebacks that need to be performed.
654 * @param allocate Whether to allocate a block or use the temp block
655 * @return Pointer to the new cache block.
656 */
657 CacheBlk *handleFill(PacketPtr pkt, CacheBlk *blk,
658 PacketList &writebacks, bool allocate);
659
660 /**
661 * Allocate a new block and perform any necessary writebacks
662 *
663 * Find a victim block and if necessary prepare writebacks for any
664 * existing data. May return nullptr if there are no replaceable
665 * blocks. If a replaceable block is found, it inserts the new block in
666 * its place. The new block, however, is not set as valid yet.
667 *
668 * @param pkt Packet holding the address to update
669 * @param writebacks A list of writeback packets for the evicted blocks
670 * @return the allocated block
671 */
672 CacheBlk *allocateBlock(const PacketPtr pkt, PacketList &writebacks);
673 /**
674 * Evict a cache block.
675 *
676 * Performs a writeback if necesssary and invalidates the block
677 *
678 * @param blk Block to invalidate
679 * @return A packet with the writeback, can be nullptr
680 */
681 M5_NODISCARD virtual PacketPtr evictBlock(CacheBlk *blk) = 0;
682
683 /**
684 * Evict a cache block.
685 *
686 * Performs a writeback if necesssary and invalidates the block
687 *
688 * @param blk Block to invalidate
689 * @param writebacks Return a list of packets with writebacks
690 */
691 virtual void evictBlock(CacheBlk *blk, PacketList &writebacks) = 0;
692
693 /**
694 * Invalidate a cache block.
695 *
696 * @param blk Block to invalidate
697 */
698 void invalidateBlock(CacheBlk *blk);
699
700 /**
701 * Create a writeback request for the given block.
702 *
703 * @param blk The block to writeback.
704 * @return The writeback request for the block.
705 */
706 PacketPtr writebackBlk(CacheBlk *blk);
707
708 /**
709 * Create a writeclean request for the given block.
710 *
711 * Creates a request that writes the block to the cache below
712 * without evicting the block from the current cache.
713 *
714 * @param blk The block to write clean.
715 * @param dest The destination of the write clean operation.
716 * @param id Use the given packet id for the write clean operation.
717 * @return The generated write clean packet.
718 */
719 PacketPtr writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id);
720
721 /**
722 * Write back dirty blocks in the cache using functional accesses.
723 */
724 virtual void memWriteback() override;
725
726 /**
727 * Invalidates all blocks in the cache.
728 *
729 * @warn Dirty cache lines will not be written back to
730 * memory. Make sure to call functionalWriteback() first if you
731 * want the to write them to memory.
732 */
733 virtual void memInvalidate() override;
734
735 /**
736 * Determine if there are any dirty blocks in the cache.
737 *
738 * @return true if at least one block is dirty, false otherwise.
739 */
740 bool isDirty() const;
741
742 /**
743 * Determine if an address is in the ranges covered by this
744 * cache. This is useful to filter snoops.
745 *
746 * @param addr Address to check against
747 *
748 * @return If the address in question is in range
749 */
750 bool inRange(Addr addr) const;
751
752 /**
753 * Find next request ready time from among possible sources.
754 */
755 Tick nextQueueReadyTime() const;
756
757 /** Block size of this cache */
758 const unsigned blkSize;
759
760 /**
761 * The latency of tag lookup of a cache. It occurs when there is
762 * an access to the cache.
763 */
764 const Cycles lookupLatency;
765
766 /**
767 * The latency of data access of a cache. It occurs when there is
768 * an access to the cache.
769 */
770 const Cycles dataLatency;
771
772 /**
773 * This is the forward latency of the cache. It occurs when there
774 * is a cache miss and a request is forwarded downstream, in
775 * particular an outbound miss.
776 */
777 const Cycles forwardLatency;
778
779 /** The latency to fill a cache block */
780 const Cycles fillLatency;
781
782 /**
783 * The latency of sending reponse to its upper level cache/core on
784 * a linefill. The responseLatency parameter captures this
785 * latency.
786 */
787 const Cycles responseLatency;
788
789 /** The number of targets for each MSHR. */
790 const int numTarget;
791
792 /** Do we forward snoops from mem side port through to cpu side port? */
793 bool forwardSnoops;
794
795 /**
796 * Clusivity with respect to the upstream cache, determining if we
797 * fill into both this cache and the cache above on a miss. Note
798 * that we currently do not support strict clusivity policies.
799 */
800 const Enums::Clusivity clusivity;
801
802 /**
803 * Is this cache read only, for example the instruction cache, or
804 * table-walker cache. A cache that is read only should never see
805 * any writes, and should never get any dirty data (and hence
806 * never have to do any writebacks).
807 */
808 const bool isReadOnly;
809
810 /**
811 * Bit vector of the blocking reasons for the access path.
812 * @sa #BlockedCause
813 */
814 uint8_t blocked;
815
816 /** Increasing order number assigned to each incoming request. */
817 uint64_t order;
818
819 /** Stores time the cache blocked for statistics. */
820 Cycles blockedCycle;
821
822 /** Pointer to the MSHR that has no targets. */
823 MSHR *noTargetMSHR;
824
825 /** The number of misses to trigger an exit event. */
826 Counter missCount;
827
828 /**
829 * The address range to which the cache responds on the CPU side.
830 * Normally this is all possible memory addresses. */
831 const AddrRangeList addrRanges;
832
833 public:
834 /** System we are currently operating in. */
835 System *system;
836
837 // Statistics
838 /**
839 * @addtogroup CacheStatistics
840 * @{
841 */
842
843 /** Number of hits per thread for each type of command.
844 @sa Packet::Command */
845 Stats::Vector hits[MemCmd::NUM_MEM_CMDS];
846 /** Number of hits for demand accesses. */
847 Stats::Formula demandHits;
848 /** Number of hit for all accesses. */
849 Stats::Formula overallHits;
850
851 /** Number of misses per thread for each type of command.
852 @sa Packet::Command */
853 Stats::Vector misses[MemCmd::NUM_MEM_CMDS];
854 /** Number of misses for demand accesses. */
855 Stats::Formula demandMisses;
856 /** Number of misses for all accesses. */
857 Stats::Formula overallMisses;
858
859 /**
860 * Total number of cycles per thread/command spent waiting for a miss.
861 * Used to calculate the average miss latency.
862 */
863 Stats::Vector missLatency[MemCmd::NUM_MEM_CMDS];
864 /** Total number of cycles spent waiting for demand misses. */
865 Stats::Formula demandMissLatency;
866 /** Total number of cycles spent waiting for all misses. */
867 Stats::Formula overallMissLatency;
868
869 /** The number of accesses per command and thread. */
870 Stats::Formula accesses[MemCmd::NUM_MEM_CMDS];
871 /** The number of demand accesses. */
872 Stats::Formula demandAccesses;
873 /** The number of overall accesses. */
874 Stats::Formula overallAccesses;
875
876 /** The miss rate per command and thread. */
877 Stats::Formula missRate[MemCmd::NUM_MEM_CMDS];
878 /** The miss rate of all demand accesses. */
879 Stats::Formula demandMissRate;
880 /** The miss rate for all accesses. */
881 Stats::Formula overallMissRate;
882
883 /** The average miss latency per command and thread. */
884 Stats::Formula avgMissLatency[MemCmd::NUM_MEM_CMDS];
885 /** The average miss latency for demand misses. */
886 Stats::Formula demandAvgMissLatency;
887 /** The average miss latency for all misses. */
888 Stats::Formula overallAvgMissLatency;
889
890 /** The total number of cycles blocked for each blocked cause. */
891 Stats::Vector blocked_cycles;
892 /** The number of times this cache blocked for each blocked cause. */
893 Stats::Vector blocked_causes;
894
895 /** The average number of cycles blocked for each blocked cause. */
896 Stats::Formula avg_blocked;
897
898 /** The number of times a HW-prefetched block is evicted w/o reference. */
899 Stats::Scalar unusedPrefetches;
900
901 /** Number of blocks written back per thread. */
902 Stats::Vector writebacks;
903
904 /** Number of misses that hit in the MSHRs per command and thread. */
905 Stats::Vector mshr_hits[MemCmd::NUM_MEM_CMDS];
906 /** Demand misses that hit in the MSHRs. */
907 Stats::Formula demandMshrHits;
908 /** Total number of misses that hit in the MSHRs. */
909 Stats::Formula overallMshrHits;
910
911 /** Number of misses that miss in the MSHRs, per command and thread. */
912 Stats::Vector mshr_misses[MemCmd::NUM_MEM_CMDS];
913 /** Demand misses that miss in the MSHRs. */
914 Stats::Formula demandMshrMisses;
915 /** Total number of misses that miss in the MSHRs. */
916 Stats::Formula overallMshrMisses;
917
918 /** Number of misses that miss in the MSHRs, per command and thread. */
919 Stats::Vector mshr_uncacheable[MemCmd::NUM_MEM_CMDS];
920 /** Total number of misses that miss in the MSHRs. */
921 Stats::Formula overallMshrUncacheable;
922
923 /** Total cycle latency of each MSHR miss, per command and thread. */
924 Stats::Vector mshr_miss_latency[MemCmd::NUM_MEM_CMDS];
925 /** Total cycle latency of demand MSHR misses. */
926 Stats::Formula demandMshrMissLatency;
927 /** Total cycle latency of overall MSHR misses. */
928 Stats::Formula overallMshrMissLatency;
929
930 /** Total cycle latency of each MSHR miss, per command and thread. */
931 Stats::Vector mshr_uncacheable_lat[MemCmd::NUM_MEM_CMDS];
932 /** Total cycle latency of overall MSHR misses. */
933 Stats::Formula overallMshrUncacheableLatency;
934
935#if 0
936 /** The total number of MSHR accesses per command and thread. */
937 Stats::Formula mshrAccesses[MemCmd::NUM_MEM_CMDS];
938 /** The total number of demand MSHR accesses. */
939 Stats::Formula demandMshrAccesses;
940 /** The total number of MSHR accesses. */
941 Stats::Formula overallMshrAccesses;
942#endif
943
944 /** The miss rate in the MSHRs pre command and thread. */
945 Stats::Formula mshrMissRate[MemCmd::NUM_MEM_CMDS];
946 /** The demand miss rate in the MSHRs. */
947 Stats::Formula demandMshrMissRate;
948 /** The overall miss rate in the MSHRs. */
949 Stats::Formula overallMshrMissRate;
950
951 /** The average latency of an MSHR miss, per command and thread. */
952 Stats::Formula avgMshrMissLatency[MemCmd::NUM_MEM_CMDS];
953 /** The average latency of a demand MSHR miss. */
954 Stats::Formula demandAvgMshrMissLatency;
955 /** The average overall latency of an MSHR miss. */
956 Stats::Formula overallAvgMshrMissLatency;
957
958 /** The average latency of an MSHR miss, per command and thread. */
959 Stats::Formula avgMshrUncacheableLatency[MemCmd::NUM_MEM_CMDS];
960 /** The average overall latency of an MSHR miss. */
961 Stats::Formula overallAvgMshrUncacheableLatency;
962
963 /** Number of replacements of valid blocks. */
964 Stats::Scalar replacements;
965
966 /**
967 * @}
968 */
969
970 /**
971 * Register stats for this object.
972 */
973 void regStats() override;
974
975 public:
976 BaseCache(const BaseCacheParams *p, unsigned blk_size);
977 ~BaseCache();
978
979 void init() override;
980
981 BaseMasterPort &getMasterPort(const std::string &if_name,
982 PortID idx = InvalidPortID) override;
983 BaseSlavePort &getSlavePort(const std::string &if_name,
984 PortID idx = InvalidPortID) override;
985
986 /**
987 * Query block size of a cache.
988 * @return The block size
989 */
990 unsigned
991 getBlockSize() const
992 {
993 return blkSize;
994 }
995
996 const AddrRangeList &getAddrRanges() const { return addrRanges; }
997
998 MSHR *allocateMissBuffer(PacketPtr pkt, Tick time, bool sched_send = true)
999 {
1000 MSHR *mshr = mshrQueue.allocate(pkt->getBlockAddr(blkSize), blkSize,
1001 pkt, time, order++,
1002 allocOnFill(pkt->cmd));
1003
1004 if (mshrQueue.isFull()) {
1005 setBlocked((BlockedCause)MSHRQueue_MSHRs);
1006 }
1007
1008 if (sched_send) {
1009 // schedule the send
1010 schedMemSideSendEvent(time);
1011 }
1012
1013 return mshr;
1014 }
1015
1016 void allocateWriteBuffer(PacketPtr pkt, Tick time)
1017 {
1018 // should only see writes or clean evicts here
1019 assert(pkt->isWrite() || pkt->cmd == MemCmd::CleanEvict);
1020
1021 Addr blk_addr = pkt->getBlockAddr(blkSize);
1022
1023 WriteQueueEntry *wq_entry =
1024 writeBuffer.findMatch(blk_addr, pkt->isSecure());
1025 if (wq_entry && !wq_entry->inService) {
1026 DPRINTF(Cache, "Potential to merge writeback %s", pkt->print());
1027 }
1028
1029 writeBuffer.allocate(blk_addr, blkSize, pkt, time, order++);
1030
1031 if (writeBuffer.isFull()) {
1032 setBlocked((BlockedCause)MSHRQueue_WriteBuffer);
1033 }
1034
1035 // schedule the send
1036 schedMemSideSendEvent(time);
1037 }
1038
1039 /**
1040 * Returns true if the cache is blocked for accesses.
1041 */
1042 bool isBlocked() const
1043 {
1044 return blocked != 0;
1045 }
1046
1047 /**
1048 * Marks the access path of the cache as blocked for the given cause. This
1049 * also sets the blocked flag in the slave interface.
1050 * @param cause The reason for the cache blocking.
1051 */
1052 void setBlocked(BlockedCause cause)
1053 {
1054 uint8_t flag = 1 << cause;
1055 if (blocked == 0) {
1056 blocked_causes[cause]++;
1057 blockedCycle = curCycle();
1058 cpuSidePort.setBlocked();
1059 }
1060 blocked |= flag;
1061 DPRINTF(Cache,"Blocking for cause %d, mask=%d\n", cause, blocked);
1062 }
1063
1064 /**
1065 * Marks the cache as unblocked for the given cause. This also clears the
1066 * blocked flags in the appropriate interfaces.
1067 * @param cause The newly unblocked cause.
1068 * @warning Calling this function can cause a blocked request on the bus to
1069 * access the cache. The cache must be in a state to handle that request.
1070 */
1071 void clearBlocked(BlockedCause cause)
1072 {
1073 uint8_t flag = 1 << cause;
1074 blocked &= ~flag;
1075 DPRINTF(Cache,"Unblocking for cause %d, mask=%d\n", cause, blocked);
1076 if (blocked == 0) {
1077 blocked_cycles[cause] += curCycle() - blockedCycle;
1078 cpuSidePort.clearBlocked();
1079 }
1080 }
1081
1082 /**
1083 * Schedule a send event for the memory-side port. If already
1084 * scheduled, this may reschedule the event at an earlier
1085 * time. When the specified time is reached, the port is free to
1086 * send either a response, a request, or a prefetch request.
1087 *
1088 * @param time The time when to attempt sending a packet.
1089 */
1090 void schedMemSideSendEvent(Tick time)
1091 {
1092 memSidePort.schedSendEvent(time);
1093 }
1094
1095 bool inCache(Addr addr, bool is_secure) const {
1096 return tags->findBlock(addr, is_secure);
1097 }
1098
1099 bool inMissQueue(Addr addr, bool is_secure) const {
1100 return mshrQueue.findMatch(addr, is_secure);
1101 }
1102
1103 void incMissCount(PacketPtr pkt)
1104 {
1105 assert(pkt->req->masterId() < system->maxMasters());
1106 misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
1107 pkt->req->incAccessDepth();
1108 if (missCount) {
1109 --missCount;
1110 if (missCount == 0)
1111 exitSimLoop("A cache reached the maximum miss count");
1112 }
1113 }
1114 void incHitCount(PacketPtr pkt)
1115 {
1116 assert(pkt->req->masterId() < system->maxMasters());
1117 hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
1118
1119 }
1120
1121 /**
1122 * Cache block visitor that writes back dirty cache blocks using
1123 * functional writes.
1124 */
1125 void writebackVisitor(CacheBlk &blk);
1126
1127 /**
1128 * Cache block visitor that invalidates all blocks in the cache.
1129 *
1130 * @warn Dirty cache lines will not be written back to memory.
1131 */
1132 void invalidateVisitor(CacheBlk &blk);
1133
1134 /**
1135 * Take an MSHR, turn it into a suitable downstream packet, and
1136 * send it out. This construct allows a queue entry to choose a suitable
1137 * approach based on its type.
1138 *
1139 * @param mshr The MSHR to turn into a packet and send
1140 * @return True if the port is waiting for a retry
1141 */
1142 virtual bool sendMSHRQueuePacket(MSHR* mshr);
1143
1144 /**
1145 * Similar to sendMSHR, but for a write-queue entry
1146 * instead. Create the packet, and send it, and if successful also
1147 * mark the entry in service.
1148 *
1149 * @param wq_entry The write-queue entry to turn into a packet and send
1150 * @return True if the port is waiting for a retry
1151 */
1152 bool sendWriteQueuePacket(WriteQueueEntry* wq_entry);
1153
1154 /**
1155 * Serialize the state of the caches
1156 *
1157 * We currently don't support checkpointing cache state, so this panics.
1158 */
1159 void serialize(CheckpointOut &cp) const override;
1160 void unserialize(CheckpointIn &cp) override;
1161
1162};
1163
1164#endif //__MEM_CACHE_BASE_HH__