Deleted Added
sdiff udiff text old ( 12702:27cb33a96e0f ) new ( 12724:4f6fac3191d2 )
full compact
1/*
2 * Copyright (c) 2012-2013, 2015-2016 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Erik Hallnor
41 * Steve Reinhardt
42 * Ron Dreslinski
43 */
44
45/**
46 * @file
47 * Declares a basic cache interface BaseCache.
48 */
49
50#ifndef __MEM_CACHE_BASE_HH__
51#define __MEM_CACHE_BASE_HH__
52
53#include <algorithm>
54#include <list>
55#include <string>
56#include <vector>
57
58#include "base/logging.hh"
59#include "base/statistics.hh"
60#include "base/trace.hh"
61#include "base/types.hh"
62#include "debug/Cache.hh"
63#include "debug/CachePort.hh"
64#include "mem/cache/mshr_queue.hh"
65#include "mem/cache/write_queue.hh"
66#include "mem/mem_object.hh"
67#include "mem/packet.hh"
68#include "mem/qport.hh"
69#include "mem/request.hh"
70#include "params/BaseCache.hh"
71#include "sim/eventq.hh"
72#include "sim/full_system.hh"
73#include "sim/sim_exit.hh"
74#include "sim/system.hh"
75
76/**
77 * A basic cache interface. Implements some common functions for speed.
78 */
79class BaseCache : public MemObject
80{
81 protected:
82 /**
83 * Indexes to enumerate the MSHR queues.
84 */
85 enum MSHRQueueIndex {
86 MSHRQueue_MSHRs,
87 MSHRQueue_WriteBuffer
88 };
89
90 public:
91 /**
92 * Reasons for caches to be blocked.
93 */
94 enum BlockedCause {
95 Blocked_NoMSHRs = MSHRQueue_MSHRs,
96 Blocked_NoWBBuffers = MSHRQueue_WriteBuffer,
97 Blocked_NoTargets,
98 NUM_BLOCKED_CAUSES
99 };
100
101 protected:
102
103 /**
104 * A cache master port is used for the memory-side port of the
105 * cache, and in addition to the basic timing port that only sends
106 * response packets through a transmit list, it also offers the
107 * ability to schedule and send request packets (requests &
108 * writebacks). The send event is scheduled through schedSendEvent,
109 * and the sendDeferredPacket of the timing port is modified to
110 * consider both the transmit list and the requests from the MSHR.
111 */
112 class CacheMasterPort : public QueuedMasterPort
113 {
114
115 public:
116
117 /**
118 * Schedule a send of a request packet (from the MSHR). Note
119 * that we could already have a retry outstanding.
120 */
121 void schedSendEvent(Tick time)
122 {
123 DPRINTF(CachePort, "Scheduling send event at %llu\n", time);
124 reqQueue.schedSendEvent(time);
125 }
126
127 protected:
128
129 CacheMasterPort(const std::string &_name, BaseCache *_cache,
130 ReqPacketQueue &_reqQueue,
131 SnoopRespPacketQueue &_snoopRespQueue) :
132 QueuedMasterPort(_name, _cache, _reqQueue, _snoopRespQueue)
133 { }
134
135 /**
136 * Memory-side port always snoops.
137 *
138 * @return always true
139 */
140 virtual bool isSnooping() const { return true; }
141 };
142
143 /**
144 * A cache slave port is used for the CPU-side port of the cache,
145 * and it is basically a simple timing port that uses a transmit
146 * list for responses to the CPU (or connected master). In
147 * addition, it has the functionality to block the port for
148 * incoming requests. If blocked, the port will issue a retry once
149 * unblocked.
150 */
151 class CacheSlavePort : public QueuedSlavePort
152 {
153
154 public:
155
156 /** Do not accept any new requests. */
157 void setBlocked();
158
159 /** Return to normal operation and accept new requests. */
160 void clearBlocked();
161
162 bool isBlocked() const { return blocked; }
163
164 protected:
165
166 CacheSlavePort(const std::string &_name, BaseCache *_cache,
167 const std::string &_label);
168
169 /** A normal packet queue used to store responses. */
170 RespPacketQueue queue;
171
172 bool blocked;
173
174 bool mustSendRetry;
175
176 private:
177
178 void processSendRetry();
179
180 EventFunctionWrapper sendRetryEvent;
181
182 };
183
184 CacheSlavePort *cpuSidePort;
185 CacheMasterPort *memSidePort;
186
187 protected:
188
189 /** Miss status registers */
190 MSHRQueue mshrQueue;
191
192 /** Write/writeback buffer */
193 WriteQueue writeBuffer;
194
195 /**
196 * Mark a request as in service (sent downstream in the memory
197 * system), effectively making this MSHR the ordering point.
198 */
199 void markInService(MSHR *mshr, bool pending_modified_resp)
200 {
201 bool wasFull = mshrQueue.isFull();
202 mshrQueue.markInService(mshr, pending_modified_resp);
203
204 if (wasFull && !mshrQueue.isFull()) {
205 clearBlocked(Blocked_NoMSHRs);
206 }
207 }
208
209 void markInService(WriteQueueEntry *entry)
210 {
211 bool wasFull = writeBuffer.isFull();
212 writeBuffer.markInService(entry);
213
214 if (wasFull && !writeBuffer.isFull()) {
215 clearBlocked(Blocked_NoWBBuffers);
216 }
217 }
218
219 /**
220 * Determine if we should allocate on a fill or not.
221 *
222 * @param cmd Packet command being added as an MSHR target
223 *
224 * @return Whether we should allocate on a fill or not
225 */
226 virtual bool allocOnFill(MemCmd cmd) const = 0;
227
228 /**
229 * Write back dirty blocks in the cache using functional accesses.
230 */
231 virtual void memWriteback() override = 0;
232 /**
233 * Invalidates all blocks in the cache.
234 *
235 * @warn Dirty cache lines will not be written back to
236 * memory. Make sure to call functionalWriteback() first if you
237 * want the to write them to memory.
238 */
239 virtual void memInvalidate() override = 0;
240 /**
241 * Determine if there are any dirty blocks in the cache.
242 *
243 * \return true if at least one block is dirty, false otherwise.
244 */
245 virtual bool isDirty() const = 0;
246
247 /**
248 * Determine if an address is in the ranges covered by this
249 * cache. This is useful to filter snoops.
250 *
251 * @param addr Address to check against
252 *
253 * @return If the address in question is in range
254 */
255 bool inRange(Addr addr) const;
256
257 /** Block size of this cache */
258 const unsigned blkSize;
259
260 /**
261 * The latency of tag lookup of a cache. It occurs when there is
262 * an access to the cache.
263 */
264 const Cycles lookupLatency;
265
266 /**
267 * The latency of data access of a cache. It occurs when there is
268 * an access to the cache.
269 */
270 const Cycles dataLatency;
271
272 /**
273 * This is the forward latency of the cache. It occurs when there
274 * is a cache miss and a request is forwarded downstream, in
275 * particular an outbound miss.
276 */
277 const Cycles forwardLatency;
278
279 /** The latency to fill a cache block */
280 const Cycles fillLatency;
281
282 /**
283 * The latency of sending reponse to its upper level cache/core on
284 * a linefill. The responseLatency parameter captures this
285 * latency.
286 */
287 const Cycles responseLatency;
288
289 /** The number of targets for each MSHR. */
290 const int numTarget;
291
292 /** Do we forward snoops from mem side port through to cpu side port? */
293 bool forwardSnoops;
294
295 /**
296 * Is this cache read only, for example the instruction cache, or
297 * table-walker cache. A cache that is read only should never see
298 * any writes, and should never get any dirty data (and hence
299 * never have to do any writebacks).
300 */
301 const bool isReadOnly;
302
303 /**
304 * Bit vector of the blocking reasons for the access path.
305 * @sa #BlockedCause
306 */
307 uint8_t blocked;
308
309 /** Increasing order number assigned to each incoming request. */
310 uint64_t order;
311
312 /** Stores time the cache blocked for statistics. */
313 Cycles blockedCycle;
314
315 /** Pointer to the MSHR that has no targets. */
316 MSHR *noTargetMSHR;
317
318 /** The number of misses to trigger an exit event. */
319 Counter missCount;
320
321 /**
322 * The address range to which the cache responds on the CPU side.
323 * Normally this is all possible memory addresses. */
324 const AddrRangeList addrRanges;
325
326 public:
327 /** System we are currently operating in. */
328 System *system;
329
330 // Statistics
331 /**
332 * @addtogroup CacheStatistics
333 * @{
334 */
335
336 /** Number of hits per thread for each type of command.
337 @sa Packet::Command */
338 Stats::Vector hits[MemCmd::NUM_MEM_CMDS];
339 /** Number of hits for demand accesses. */
340 Stats::Formula demandHits;
341 /** Number of hit for all accesses. */
342 Stats::Formula overallHits;
343
344 /** Number of misses per thread for each type of command.
345 @sa Packet::Command */
346 Stats::Vector misses[MemCmd::NUM_MEM_CMDS];
347 /** Number of misses for demand accesses. */
348 Stats::Formula demandMisses;
349 /** Number of misses for all accesses. */
350 Stats::Formula overallMisses;
351
352 /**
353 * Total number of cycles per thread/command spent waiting for a miss.
354 * Used to calculate the average miss latency.
355 */
356 Stats::Vector missLatency[MemCmd::NUM_MEM_CMDS];
357 /** Total number of cycles spent waiting for demand misses. */
358 Stats::Formula demandMissLatency;
359 /** Total number of cycles spent waiting for all misses. */
360 Stats::Formula overallMissLatency;
361
362 /** The number of accesses per command and thread. */
363 Stats::Formula accesses[MemCmd::NUM_MEM_CMDS];
364 /** The number of demand accesses. */
365 Stats::Formula demandAccesses;
366 /** The number of overall accesses. */
367 Stats::Formula overallAccesses;
368
369 /** The miss rate per command and thread. */
370 Stats::Formula missRate[MemCmd::NUM_MEM_CMDS];
371 /** The miss rate of all demand accesses. */
372 Stats::Formula demandMissRate;
373 /** The miss rate for all accesses. */
374 Stats::Formula overallMissRate;
375
376 /** The average miss latency per command and thread. */
377 Stats::Formula avgMissLatency[MemCmd::NUM_MEM_CMDS];
378 /** The average miss latency for demand misses. */
379 Stats::Formula demandAvgMissLatency;
380 /** The average miss latency for all misses. */
381 Stats::Formula overallAvgMissLatency;
382
383 /** The total number of cycles blocked for each blocked cause. */
384 Stats::Vector blocked_cycles;
385 /** The number of times this cache blocked for each blocked cause. */
386 Stats::Vector blocked_causes;
387
388 /** The average number of cycles blocked for each blocked cause. */
389 Stats::Formula avg_blocked;
390
391 /** The number of times a HW-prefetched block is evicted w/o reference. */
392 Stats::Scalar unusedPrefetches;
393
394 /** Number of blocks written back per thread. */
395 Stats::Vector writebacks;
396
397 /** Number of misses that hit in the MSHRs per command and thread. */
398 Stats::Vector mshr_hits[MemCmd::NUM_MEM_CMDS];
399 /** Demand misses that hit in the MSHRs. */
400 Stats::Formula demandMshrHits;
401 /** Total number of misses that hit in the MSHRs. */
402 Stats::Formula overallMshrHits;
403
404 /** Number of misses that miss in the MSHRs, per command and thread. */
405 Stats::Vector mshr_misses[MemCmd::NUM_MEM_CMDS];
406 /** Demand misses that miss in the MSHRs. */
407 Stats::Formula demandMshrMisses;
408 /** Total number of misses that miss in the MSHRs. */
409 Stats::Formula overallMshrMisses;
410
411 /** Number of misses that miss in the MSHRs, per command and thread. */
412 Stats::Vector mshr_uncacheable[MemCmd::NUM_MEM_CMDS];
413 /** Total number of misses that miss in the MSHRs. */
414 Stats::Formula overallMshrUncacheable;
415
416 /** Total cycle latency of each MSHR miss, per command and thread. */
417 Stats::Vector mshr_miss_latency[MemCmd::NUM_MEM_CMDS];
418 /** Total cycle latency of demand MSHR misses. */
419 Stats::Formula demandMshrMissLatency;
420 /** Total cycle latency of overall MSHR misses. */
421 Stats::Formula overallMshrMissLatency;
422
423 /** Total cycle latency of each MSHR miss, per command and thread. */
424 Stats::Vector mshr_uncacheable_lat[MemCmd::NUM_MEM_CMDS];
425 /** Total cycle latency of overall MSHR misses. */
426 Stats::Formula overallMshrUncacheableLatency;
427
428#if 0
429 /** The total number of MSHR accesses per command and thread. */
430 Stats::Formula mshrAccesses[MemCmd::NUM_MEM_CMDS];
431 /** The total number of demand MSHR accesses. */
432 Stats::Formula demandMshrAccesses;
433 /** The total number of MSHR accesses. */
434 Stats::Formula overallMshrAccesses;
435#endif
436
437 /** The miss rate in the MSHRs pre command and thread. */
438 Stats::Formula mshrMissRate[MemCmd::NUM_MEM_CMDS];
439 /** The demand miss rate in the MSHRs. */
440 Stats::Formula demandMshrMissRate;
441 /** The overall miss rate in the MSHRs. */
442 Stats::Formula overallMshrMissRate;
443
444 /** The average latency of an MSHR miss, per command and thread. */
445 Stats::Formula avgMshrMissLatency[MemCmd::NUM_MEM_CMDS];
446 /** The average latency of a demand MSHR miss. */
447 Stats::Formula demandAvgMshrMissLatency;
448 /** The average overall latency of an MSHR miss. */
449 Stats::Formula overallAvgMshrMissLatency;
450
451 /** The average latency of an MSHR miss, per command and thread. */
452 Stats::Formula avgMshrUncacheableLatency[MemCmd::NUM_MEM_CMDS];
453 /** The average overall latency of an MSHR miss. */
454 Stats::Formula overallAvgMshrUncacheableLatency;
455
456 /** Number of replacements of valid blocks. */
457 Stats::Scalar replacements;
458
459 /**
460 * @}
461 */
462
463 /**
464 * Register stats for this object.
465 */
466 virtual void regStats() override;
467
468 public:
469 BaseCache(const BaseCacheParams *p, unsigned blk_size);
470 ~BaseCache() {}
471
472 virtual void init() override;
473
474 virtual BaseMasterPort &getMasterPort(const std::string &if_name,
475 PortID idx = InvalidPortID) override;
476 virtual BaseSlavePort &getSlavePort(const std::string &if_name,
477 PortID idx = InvalidPortID) override;
478
479 /**
480 * Query block size of a cache.
481 * @return The block size
482 */
483 unsigned
484 getBlockSize() const
485 {
486 return blkSize;
487 }
488
489 const AddrRangeList &getAddrRanges() const { return addrRanges; }
490
491 MSHR *allocateMissBuffer(PacketPtr pkt, Tick time, bool sched_send = true)
492 {
493 MSHR *mshr = mshrQueue.allocate(pkt->getBlockAddr(blkSize), blkSize,
494 pkt, time, order++,
495 allocOnFill(pkt->cmd));
496
497 if (mshrQueue.isFull()) {
498 setBlocked((BlockedCause)MSHRQueue_MSHRs);
499 }
500
501 if (sched_send) {
502 // schedule the send
503 schedMemSideSendEvent(time);
504 }
505
506 return mshr;
507 }
508
509 void allocateWriteBuffer(PacketPtr pkt, Tick time)
510 {
511 // should only see writes or clean evicts here
512 assert(pkt->isWrite() || pkt->cmd == MemCmd::CleanEvict);
513
514 Addr blk_addr = pkt->getBlockAddr(blkSize);
515
516 WriteQueueEntry *wq_entry =
517 writeBuffer.findMatch(blk_addr, pkt->isSecure());
518 if (wq_entry && !wq_entry->inService) {
519 DPRINTF(Cache, "Potential to merge writeback %s", pkt->print());
520 }
521
522 writeBuffer.allocate(blk_addr, blkSize, pkt, time, order++);
523
524 if (writeBuffer.isFull()) {
525 setBlocked((BlockedCause)MSHRQueue_WriteBuffer);
526 }
527
528 // schedule the send
529 schedMemSideSendEvent(time);
530 }
531
532 /**
533 * Returns true if the cache is blocked for accesses.
534 */
535 bool isBlocked() const
536 {
537 return blocked != 0;
538 }
539
540 /**
541 * Marks the access path of the cache as blocked for the given cause. This
542 * also sets the blocked flag in the slave interface.
543 * @param cause The reason for the cache blocking.
544 */
545 void setBlocked(BlockedCause cause)
546 {
547 uint8_t flag = 1 << cause;
548 if (blocked == 0) {
549 blocked_causes[cause]++;
550 blockedCycle = curCycle();
551 cpuSidePort->setBlocked();
552 }
553 blocked |= flag;
554 DPRINTF(Cache,"Blocking for cause %d, mask=%d\n", cause, blocked);
555 }
556
557 /**
558 * Marks the cache as unblocked for the given cause. This also clears the
559 * blocked flags in the appropriate interfaces.
560 * @param cause The newly unblocked cause.
561 * @warning Calling this function can cause a blocked request on the bus to
562 * access the cache. The cache must be in a state to handle that request.
563 */
564 void clearBlocked(BlockedCause cause)
565 {
566 uint8_t flag = 1 << cause;
567 blocked &= ~flag;
568 DPRINTF(Cache,"Unblocking for cause %d, mask=%d\n", cause, blocked);
569 if (blocked == 0) {
570 blocked_cycles[cause] += curCycle() - blockedCycle;
571 cpuSidePort->clearBlocked();
572 }
573 }
574
575 /**
576 * Schedule a send event for the memory-side port. If already
577 * scheduled, this may reschedule the event at an earlier
578 * time. When the specified time is reached, the port is free to
579 * send either a response, a request, or a prefetch request.
580 *
581 * @param time The time when to attempt sending a packet.
582 */
583 void schedMemSideSendEvent(Tick time)
584 {
585 memSidePort->schedSendEvent(time);
586 }
587
588 virtual bool inCache(Addr addr, bool is_secure) const = 0;
589
590 virtual bool inMissQueue(Addr addr, bool is_secure) const = 0;
591
592 void incMissCount(PacketPtr pkt)
593 {
594 assert(pkt->req->masterId() < system->maxMasters());
595 misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
596 pkt->req->incAccessDepth();
597 if (missCount) {
598 --missCount;
599 if (missCount == 0)
600 exitSimLoop("A cache reached the maximum miss count");
601 }
602 }
603 void incHitCount(PacketPtr pkt)
604 {
605 assert(pkt->req->masterId() < system->maxMasters());
606 hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
607
608 }
609
610};
611
612#endif //__MEM_CACHE_BASE_HH__