base.cc (13932:24f825a9a080) base.cc (13941:2c19da00ef9c)
1/*
2 * Copyright (c) 2012-2013, 2018-2019 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Erik Hallnor
41 * Nikos Nikoleris
42 */
43
44/**
45 * @file
46 * Definition of BaseCache functions.
47 */
48
49#include "mem/cache/base.hh"
50
51#include "base/compiler.hh"
52#include "base/logging.hh"
53#include "debug/Cache.hh"
54#include "debug/CachePort.hh"
55#include "debug/CacheRepl.hh"
56#include "debug/CacheVerbose.hh"
57#include "mem/cache/mshr.hh"
58#include "mem/cache/prefetch/base.hh"
59#include "mem/cache/queue_entry.hh"
60#include "params/BaseCache.hh"
61#include "params/WriteAllocator.hh"
62#include "sim/core.hh"
63
64class BaseMasterPort;
65class BaseSlavePort;
66
67using namespace std;
68
69BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name,
70 BaseCache *_cache,
71 const std::string &_label)
72 : QueuedSlavePort(_name, _cache, queue),
73 queue(*_cache, *this, true, _label),
74 blocked(false), mustSendRetry(false),
75 sendRetryEvent([this]{ processSendRetry(); }, _name)
76{
77}
78
79BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
80 : ClockedObject(p),
81 cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"),
82 memSidePort(p->name + ".mem_side", this, "MemSidePort"),
83 mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below
84 writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below
85 tags(p->tags),
86 prefetcher(p->prefetcher),
87 writeAllocator(p->write_allocator),
88 writebackClean(p->writeback_clean),
89 tempBlockWriteback(nullptr),
90 writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
91 name(), false,
92 EventBase::Delayed_Writeback_Pri),
93 blkSize(blk_size),
94 lookupLatency(p->tag_latency),
95 dataLatency(p->data_latency),
96 forwardLatency(p->tag_latency),
97 fillLatency(p->data_latency),
98 responseLatency(p->response_latency),
99 sequentialAccess(p->sequential_access),
100 numTarget(p->tgts_per_mshr),
101 forwardSnoops(true),
102 clusivity(p->clusivity),
103 isReadOnly(p->is_read_only),
104 blocked(0),
105 order(0),
106 noTargetMSHR(nullptr),
107 missCount(p->max_miss_count),
108 addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()),
109 system(p->system)
110{
111 // the MSHR queue has no reserve entries as we check the MSHR
112 // queue on every single allocation, whereas the write queue has
113 // as many reserve entries as we have MSHRs, since every MSHR may
114 // eventually require a writeback, and we do not check the write
115 // buffer before committing to an MSHR
116
117 // forward snoops is overridden in init() once we can query
118 // whether the connected master is actually snooping or not
119
120 tempBlock = new TempCacheBlk(blkSize);
121
122 tags->tagsInit();
123 if (prefetcher)
124 prefetcher->setCache(this);
125}
126
127BaseCache::~BaseCache()
128{
129 delete tempBlock;
130}
131
132void
133BaseCache::CacheSlavePort::setBlocked()
134{
135 assert(!blocked);
136 DPRINTF(CachePort, "Port is blocking new requests\n");
137 blocked = true;
138 // if we already scheduled a retry in this cycle, but it has not yet
139 // happened, cancel it
140 if (sendRetryEvent.scheduled()) {
141 owner.deschedule(sendRetryEvent);
142 DPRINTF(CachePort, "Port descheduled retry\n");
143 mustSendRetry = true;
144 }
145}
146
147void
148BaseCache::CacheSlavePort::clearBlocked()
149{
150 assert(blocked);
151 DPRINTF(CachePort, "Port is accepting new requests\n");
152 blocked = false;
153 if (mustSendRetry) {
154 // @TODO: need to find a better time (next cycle?)
155 owner.schedule(sendRetryEvent, curTick() + 1);
156 }
157}
158
159void
160BaseCache::CacheSlavePort::processSendRetry()
161{
162 DPRINTF(CachePort, "Port is sending retry\n");
163
164 // reset the flag and call retry
165 mustSendRetry = false;
166 sendRetryReq();
167}
168
169Addr
170BaseCache::regenerateBlkAddr(CacheBlk* blk)
171{
172 if (blk != tempBlock) {
173 return tags->regenerateBlkAddr(blk);
174 } else {
175 return tempBlock->getAddr();
176 }
177}
178
179void
180BaseCache::init()
181{
182 if (!cpuSidePort.isConnected() || !memSidePort.isConnected())
183 fatal("Cache ports on %s are not connected\n", name());
184 cpuSidePort.sendRangeChange();
185 forwardSnoops = cpuSidePort.isSnooping();
186}
187
188Port &
189BaseCache::getPort(const std::string &if_name, PortID idx)
190{
191 if (if_name == "mem_side") {
192 return memSidePort;
193 } else if (if_name == "cpu_side") {
194 return cpuSidePort;
195 } else {
196 return ClockedObject::getPort(if_name, idx);
197 }
198}
199
200bool
201BaseCache::inRange(Addr addr) const
202{
203 for (const auto& r : addrRanges) {
204 if (r.contains(addr)) {
205 return true;
206 }
207 }
208 return false;
209}
210
211void
212BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
213{
214 if (pkt->needsResponse()) {
215 // These delays should have been consumed by now
216 assert(pkt->headerDelay == 0);
217 assert(pkt->payloadDelay == 0);
218
219 pkt->makeTimingResponse();
220
221 // In this case we are considering request_time that takes
222 // into account the delay of the xbar, if any, and just
223 // lat, neglecting responseLatency, modelling hit latency
224 // just as the value of lat overriden by access(), which calls
225 // the calculateAccessLatency() function.
226 cpuSidePort.schedTimingResp(pkt, request_time);
227 } else {
228 DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
229 pkt->print());
230
231 // queue the packet for deletion, as the sending cache is
232 // still relying on it; if the block is found in access(),
233 // CleanEvict and Writeback messages will be deleted
234 // here as well
235 pendingDelete.reset(pkt);
236 }
237}
238
239void
240BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
241 Tick forward_time, Tick request_time)
242{
243 if (writeAllocator &&
244 pkt && pkt->isWrite() && !pkt->req->isUncacheable()) {
245 writeAllocator->updateMode(pkt->getAddr(), pkt->getSize(),
246 pkt->getBlockAddr(blkSize));
247 }
248
249 if (mshr) {
250 /// MSHR hit
251 /// @note writebacks will be checked in getNextMSHR()
252 /// for any conflicting requests to the same block
253
254 //@todo remove hw_pf here
255
256 // Coalesce unless it was a software prefetch (see above).
257 if (pkt) {
258 assert(!pkt->isWriteback());
259 // CleanEvicts corresponding to blocks which have
260 // outstanding requests in MSHRs are simply sunk here
261 if (pkt->cmd == MemCmd::CleanEvict) {
262 pendingDelete.reset(pkt);
263 } else if (pkt->cmd == MemCmd::WriteClean) {
264 // A WriteClean should never coalesce with any
265 // outstanding cache maintenance requests.
266
267 // We use forward_time here because there is an
268 // uncached memory write, forwarded to WriteBuffer.
269 allocateWriteBuffer(pkt, forward_time);
270 } else {
271 DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
272 pkt->print());
273
274 assert(pkt->req->masterId() < system->maxMasters());
275 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
276
277 // We use forward_time here because it is the same
278 // considering new targets. We have multiple
279 // requests for the same address here. It
280 // specifies the latency to allocate an internal
281 // buffer and to schedule an event to the queued
282 // port and also takes into account the additional
283 // delay of the xbar.
284 mshr->allocateTarget(pkt, forward_time, order++,
285 allocOnFill(pkt->cmd));
286 if (mshr->getNumTargets() == numTarget) {
287 noTargetMSHR = mshr;
288 setBlocked(Blocked_NoTargets);
289 // need to be careful with this... if this mshr isn't
290 // ready yet (i.e. time > curTick()), we don't want to
291 // move it ahead of mshrs that are ready
292 // mshrQueue.moveToFront(mshr);
293 }
294 }
295 }
296 } else {
297 // no MSHR
298 assert(pkt->req->masterId() < system->maxMasters());
299 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
300
301 if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) {
302 // We use forward_time here because there is an
303 // writeback or writeclean, forwarded to WriteBuffer.
304 allocateWriteBuffer(pkt, forward_time);
305 } else {
306 if (blk && blk->isValid()) {
307 // If we have a write miss to a valid block, we
308 // need to mark the block non-readable. Otherwise
309 // if we allow reads while there's an outstanding
310 // write miss, the read could return stale data
311 // out of the cache block... a more aggressive
312 // system could detect the overlap (if any) and
313 // forward data out of the MSHRs, but we don't do
314 // that yet. Note that we do need to leave the
315 // block valid so that it stays in the cache, in
316 // case we get an upgrade response (and hence no
317 // new data) when the write miss completes.
318 // As long as CPUs do proper store/load forwarding
319 // internally, and have a sufficiently weak memory
320 // model, this is probably unnecessary, but at some
321 // point it must have seemed like we needed it...
322 assert((pkt->needsWritable() && !blk->isWritable()) ||
323 pkt->req->isCacheMaintenance());
324 blk->status &= ~BlkReadable;
325 }
326 // Here we are using forward_time, modelling the latency of
327 // a miss (outbound) just as forwardLatency, neglecting the
328 // lookupLatency component.
329 allocateMissBuffer(pkt, forward_time);
330 }
331 }
332}
333
334void
335BaseCache::recvTimingReq(PacketPtr pkt)
336{
337 // anything that is merely forwarded pays for the forward latency and
338 // the delay provided by the crossbar
339 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
340
341 Cycles lat;
342 CacheBlk *blk = nullptr;
343 bool satisfied = false;
344 {
345 PacketList writebacks;
346 // Note that lat is passed by reference here. The function
347 // access() will set the lat value.
348 satisfied = access(pkt, blk, lat, writebacks);
349
350 // After the evicted blocks are selected, they must be forwarded
351 // to the write buffer to ensure they logically precede anything
352 // happening below
353 doWritebacks(writebacks, clockEdge(lat + forwardLatency));
354 }
355
356 // Here we charge the headerDelay that takes into account the latencies
357 // of the bus, if the packet comes from it.
358 // The latency charged is just the value set by the access() function.
359 // In case of a hit we are neglecting response latency.
360 // In case of a miss we are neglecting forward latency.
361 Tick request_time = clockEdge(lat);
362 // Here we reset the timing of the packet.
363 pkt->headerDelay = pkt->payloadDelay = 0;
364
365 if (satisfied) {
366 // notify before anything else as later handleTimingReqHit might turn
367 // the packet in a response
368 ppHit->notify(pkt);
369
370 if (prefetcher && blk && blk->wasPrefetched()) {
371 blk->status &= ~BlkHWPrefetched;
372 }
373
374 handleTimingReqHit(pkt, blk, request_time);
375 } else {
376 handleTimingReqMiss(pkt, blk, forward_time, request_time);
377
378 ppMiss->notify(pkt);
379 }
380
381 if (prefetcher) {
382 // track time of availability of next prefetch, if any
383 Tick next_pf_time = prefetcher->nextPrefetchReadyTime();
384 if (next_pf_time != MaxTick) {
385 schedMemSideSendEvent(next_pf_time);
386 }
387 }
388}
389
390void
391BaseCache::handleUncacheableWriteResp(PacketPtr pkt)
392{
393 Tick completion_time = clockEdge(responseLatency) +
394 pkt->headerDelay + pkt->payloadDelay;
395
396 // Reset the bus additional time as it is now accounted for
397 pkt->headerDelay = pkt->payloadDelay = 0;
398
399 cpuSidePort.schedTimingResp(pkt, completion_time);
400}
401
402void
403BaseCache::recvTimingResp(PacketPtr pkt)
404{
405 assert(pkt->isResponse());
406
407 // all header delay should be paid for by the crossbar, unless
408 // this is a prefetch response from above
409 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
410 "%s saw a non-zero packet delay\n", name());
411
412 const bool is_error = pkt->isError();
413
414 if (is_error) {
415 DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
416 pkt->print());
417 }
418
419 DPRINTF(Cache, "%s: Handling response %s\n", __func__,
420 pkt->print());
421
422 // if this is a write, we should be looking at an uncacheable
423 // write
424 if (pkt->isWrite()) {
425 assert(pkt->req->isUncacheable());
426 handleUncacheableWriteResp(pkt);
427 return;
428 }
429
430 // we have dealt with any (uncacheable) writes above, from here on
431 // we know we are dealing with an MSHR due to a miss or a prefetch
432 MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
433 assert(mshr);
434
435 if (mshr == noTargetMSHR) {
436 // we always clear at least one target
437 clearBlocked(Blocked_NoTargets);
438 noTargetMSHR = nullptr;
439 }
440
441 // Initial target is used just for stats
442 QueueEntry::Target *initial_tgt = mshr->getTarget();
443 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
444 Tick miss_latency = curTick() - initial_tgt->recvTime;
445
446 if (pkt->req->isUncacheable()) {
447 assert(pkt->req->masterId() < system->maxMasters());
448 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
449 miss_latency;
450 } else {
451 assert(pkt->req->masterId() < system->maxMasters());
452 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
453 miss_latency;
454 }
455
456 PacketList writebacks;
457
458 bool is_fill = !mshr->isForward &&
459 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp ||
460 mshr->wasWholeLineWrite);
461
462 // make sure that if the mshr was due to a whole line write then
463 // the response is an invalidation
464 assert(!mshr->wasWholeLineWrite || pkt->isInvalidate());
465
466 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
467
468 if (is_fill && !is_error) {
469 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
470 pkt->getAddr());
471
472 const bool allocate = (writeAllocator && mshr->wasWholeLineWrite) ?
473 writeAllocator->allocate() : mshr->allocOnFill();
474 blk = handleFill(pkt, blk, writebacks, allocate);
475 assert(blk != nullptr);
476 ppFill->notify(pkt);
477 }
478
479 if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
480 // The block was marked not readable while there was a pending
481 // cache maintenance operation, restore its flag.
482 blk->status |= BlkReadable;
483
484 // This was a cache clean operation (without invalidate)
485 // and we have a copy of the block already. Since there
486 // is no invalidation, we can promote targets that don't
487 // require a writable copy
488 mshr->promoteReadable();
489 }
490
491 if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
492 // If at this point the referenced block is writable and the
493 // response is not a cache invalidate, we promote targets that
494 // were deferred as we couldn't guarrantee a writable copy
495 mshr->promoteWritable();
496 }
497
498 serviceMSHRTargets(mshr, pkt, blk);
499
500 if (mshr->promoteDeferredTargets()) {
501 // avoid later read getting stale data while write miss is
502 // outstanding.. see comment in timingAccess()
503 if (blk) {
504 blk->status &= ~BlkReadable;
505 }
506 mshrQueue.markPending(mshr);
507 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
508 } else {
509 // while we deallocate an mshr from the queue we still have to
510 // check the isFull condition before and after as we might
511 // have been using the reserved entries already
512 const bool was_full = mshrQueue.isFull();
513 mshrQueue.deallocate(mshr);
514 if (was_full && !mshrQueue.isFull()) {
515 clearBlocked(Blocked_NoMSHRs);
516 }
517
518 // Request the bus for a prefetch if this deallocation freed enough
519 // MSHRs for a prefetch to take place
520 if (prefetcher && mshrQueue.canPrefetch()) {
521 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
522 clockEdge());
523 if (next_pf_time != MaxTick)
524 schedMemSideSendEvent(next_pf_time);
525 }
526 }
527
528 // if we used temp block, check to see if its valid and then clear it out
529 if (blk == tempBlock && tempBlock->isValid()) {
530 evictBlock(blk, writebacks);
531 }
532
533 const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
534 // copy writebacks to write buffer
535 doWritebacks(writebacks, forward_time);
536
537 DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
538 delete pkt;
539}
540
541
542Tick
543BaseCache::recvAtomic(PacketPtr pkt)
544{
545 // should assert here that there are no outstanding MSHRs or
546 // writebacks... that would mean that someone used an atomic
547 // access in timing mode
548
549 // We use lookupLatency here because it is used to specify the latency
550 // to access.
551 Cycles lat = lookupLatency;
552
553 CacheBlk *blk = nullptr;
554 PacketList writebacks;
555 bool satisfied = access(pkt, blk, lat, writebacks);
556
557 if (pkt->isClean() && blk && blk->isDirty()) {
558 // A cache clean opearation is looking for a dirty
559 // block. If a dirty block is encountered a WriteClean
560 // will update any copies to the path to the memory
561 // until the point of reference.
562 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
563 __func__, pkt->print(), blk->print());
564 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
565 writebacks.push_back(wb_pkt);
566 pkt->setSatisfied();
567 }
568
569 // handle writebacks resulting from the access here to ensure they
570 // logically precede anything happening below
571 doWritebacksAtomic(writebacks);
572 assert(writebacks.empty());
573
574 if (!satisfied) {
575 lat += handleAtomicReqMiss(pkt, blk, writebacks);
576 }
577
578 // Note that we don't invoke the prefetcher at all in atomic mode.
579 // It's not clear how to do it properly, particularly for
580 // prefetchers that aggressively generate prefetch candidates and
581 // rely on bandwidth contention to throttle them; these will tend
582 // to pollute the cache in atomic mode since there is no bandwidth
583 // contention. If we ever do want to enable prefetching in atomic
584 // mode, though, this is the place to do it... see timingAccess()
585 // for an example (though we'd want to issue the prefetch(es)
586 // immediately rather than calling requestMemSideBus() as we do
587 // there).
588
589 // do any writebacks resulting from the response handling
590 doWritebacksAtomic(writebacks);
591
592 // if we used temp block, check to see if its valid and if so
593 // clear it out, but only do so after the call to recvAtomic is
594 // finished so that any downstream observers (such as a snoop
595 // filter), first see the fill, and only then see the eviction
596 if (blk == tempBlock && tempBlock->isValid()) {
597 // the atomic CPU calls recvAtomic for fetch and load/store
598 // sequentuially, and we may already have a tempBlock
599 // writeback from the fetch that we have not yet sent
600 if (tempBlockWriteback) {
601 // if that is the case, write the prevoius one back, and
602 // do not schedule any new event
603 writebackTempBlockAtomic();
604 } else {
605 // the writeback/clean eviction happens after the call to
606 // recvAtomic has finished (but before any successive
607 // calls), so that the response handling from the fill is
608 // allowed to happen first
609 schedule(writebackTempBlockAtomicEvent, curTick());
610 }
611
612 tempBlockWriteback = evictBlock(blk);
613 }
614
615 if (pkt->needsResponse()) {
616 pkt->makeAtomicResponse();
617 }
618
619 return lat * clockPeriod();
620}
621
622void
623BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side)
624{
625 Addr blk_addr = pkt->getBlockAddr(blkSize);
626 bool is_secure = pkt->isSecure();
627 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
628 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
629
630 pkt->pushLabel(name());
631
632 CacheBlkPrintWrapper cbpw(blk);
633
634 // Note that just because an L2/L3 has valid data doesn't mean an
635 // L1 doesn't have a more up-to-date modified copy that still
636 // needs to be found. As a result we always update the request if
637 // we have it, but only declare it satisfied if we are the owner.
638
639 // see if we have data at all (owned or otherwise)
640 bool have_data = blk && blk->isValid()
641 && pkt->trySatisfyFunctional(&cbpw, blk_addr, is_secure, blkSize,
642 blk->data);
643
644 // data we have is dirty if marked as such or if we have an
645 // in-service MSHR that is pending a modified line
646 bool have_dirty =
647 have_data && (blk->isDirty() ||
648 (mshr && mshr->inService && mshr->isPendingModified()));
649
650 bool done = have_dirty ||
651 cpuSidePort.trySatisfyFunctional(pkt) ||
652 mshrQueue.trySatisfyFunctional(pkt) ||
653 writeBuffer.trySatisfyFunctional(pkt) ||
654 memSidePort.trySatisfyFunctional(pkt);
655
656 DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(),
657 (blk && blk->isValid()) ? "valid " : "",
658 have_data ? "data " : "", done ? "done " : "");
659
660 // We're leaving the cache, so pop cache->name() label
661 pkt->popLabel();
662
663 if (done) {
664 pkt->makeResponse();
665 } else {
666 // if it came as a request from the CPU side then make sure it
667 // continues towards the memory side
668 if (from_cpu_side) {
669 memSidePort.sendFunctional(pkt);
670 } else if (cpuSidePort.isSnooping()) {
671 // if it came from the memory side, it must be a snoop request
672 // and we should only forward it if we are forwarding snoops
673 cpuSidePort.sendFunctionalSnoop(pkt);
674 }
675 }
676}
677
678
679void
680BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
681{
682 assert(pkt->isRequest());
683
684 uint64_t overwrite_val;
685 bool overwrite_mem;
686 uint64_t condition_val64;
687 uint32_t condition_val32;
688
689 int offset = pkt->getOffset(blkSize);
690 uint8_t *blk_data = blk->data + offset;
691
692 assert(sizeof(uint64_t) >= pkt->getSize());
693
694 overwrite_mem = true;
695 // keep a copy of our possible write value, and copy what is at the
696 // memory address into the packet
697 pkt->writeData((uint8_t *)&overwrite_val);
698 pkt->setData(blk_data);
699
700 if (pkt->req->isCondSwap()) {
701 if (pkt->getSize() == sizeof(uint64_t)) {
702 condition_val64 = pkt->req->getExtraData();
703 overwrite_mem = !std::memcmp(&condition_val64, blk_data,
704 sizeof(uint64_t));
705 } else if (pkt->getSize() == sizeof(uint32_t)) {
706 condition_val32 = (uint32_t)pkt->req->getExtraData();
707 overwrite_mem = !std::memcmp(&condition_val32, blk_data,
708 sizeof(uint32_t));
709 } else
710 panic("Invalid size for conditional read/write\n");
711 }
712
713 if (overwrite_mem) {
714 std::memcpy(blk_data, &overwrite_val, pkt->getSize());
715 blk->status |= BlkDirty;
716 }
717}
718
719QueueEntry*
720BaseCache::getNextQueueEntry()
721{
722 // Check both MSHR queue and write buffer for potential requests,
723 // note that null does not mean there is no request, it could
724 // simply be that it is not ready
725 MSHR *miss_mshr = mshrQueue.getNext();
726 WriteQueueEntry *wq_entry = writeBuffer.getNext();
727
728 // If we got a write buffer request ready, first priority is a
729 // full write buffer, otherwise we favour the miss requests
730 if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
731 // need to search MSHR queue for conflicting earlier miss.
732 MSHR *conflict_mshr = mshrQueue.findPending(wq_entry);
733
734 if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
735 // Service misses in order until conflict is cleared.
736 return conflict_mshr;
737
738 // @todo Note that we ignore the ready time of the conflict here
739 }
740
741 // No conflicts; issue write
742 return wq_entry;
743 } else if (miss_mshr) {
744 // need to check for conflicting earlier writeback
745 WriteQueueEntry *conflict_mshr = writeBuffer.findPending(miss_mshr);
746 if (conflict_mshr) {
747 // not sure why we don't check order here... it was in the
748 // original code but commented out.
749
750 // The only way this happens is if we are
751 // doing a write and we didn't have permissions
752 // then subsequently saw a writeback (owned got evicted)
753 // We need to make sure to perform the writeback first
754 // To preserve the dirty data, then we can issue the write
755
756 // should we return wq_entry here instead? I.e. do we
757 // have to flush writes in order? I don't think so... not
758 // for Alpha anyway. Maybe for x86?
759 return conflict_mshr;
760
761 // @todo Note that we ignore the ready time of the conflict here
762 }
763
764 // No conflicts; issue read
765 return miss_mshr;
766 }
767
768 // fall through... no pending requests. Try a prefetch.
769 assert(!miss_mshr && !wq_entry);
770 if (prefetcher && mshrQueue.canPrefetch()) {
771 // If we have a miss queue slot, we can try a prefetch
772 PacketPtr pkt = prefetcher->getPacket();
773 if (pkt) {
774 Addr pf_addr = pkt->getBlockAddr(blkSize);
775 if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
776 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
777 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
778 // Update statistic on number of prefetches issued
779 // (hwpf_mshr_misses)
780 assert(pkt->req->masterId() < system->maxMasters());
781 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
782
783 // allocate an MSHR and return it, note
784 // that we send the packet straight away, so do not
785 // schedule the send
786 return allocateMissBuffer(pkt, curTick(), false);
787 } else {
788 // free the request and packet
789 delete pkt;
790 }
791 }
792 }
793
794 return nullptr;
795}
796
797void
798BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool)
799{
800 assert(pkt->isRequest());
801
802 assert(blk && blk->isValid());
803 // Occasionally this is not true... if we are a lower-level cache
804 // satisfying a string of Read and ReadEx requests from
805 // upper-level caches, a Read will mark the block as shared but we
806 // can satisfy a following ReadEx anyway since we can rely on the
807 // Read requester(s) to have buffered the ReadEx snoop and to
808 // invalidate their blocks after receiving them.
809 // assert(!pkt->needsWritable() || blk->isWritable());
810 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
811
812 // Check RMW operations first since both isRead() and
813 // isWrite() will be true for them
814 if (pkt->cmd == MemCmd::SwapReq) {
815 if (pkt->isAtomicOp()) {
816 // extract data from cache and save it into the data field in
817 // the packet as a return value from this atomic op
818 int offset = tags->extractBlkOffset(pkt->getAddr());
819 uint8_t *blk_data = blk->data + offset;
820 pkt->setData(blk_data);
821
822 // execute AMO operation
823 (*(pkt->getAtomicOp()))(blk_data);
824
825 // set block status to dirty
826 blk->status |= BlkDirty;
827 } else {
828 cmpAndSwap(blk, pkt);
829 }
830 } else if (pkt->isWrite()) {
831 // we have the block in a writable state and can go ahead,
832 // note that the line may be also be considered writable in
833 // downstream caches along the path to memory, but always
834 // Exclusive, and never Modified
835 assert(blk->isWritable());
836 // Write or WriteLine at the first cache with block in writable state
837 if (blk->checkWrite(pkt)) {
838 pkt->writeDataToBlock(blk->data, blkSize);
839 }
840 // Always mark the line as dirty (and thus transition to the
841 // Modified state) even if we are a failed StoreCond so we
842 // supply data to any snoops that have appended themselves to
843 // this cache before knowing the store will fail.
844 blk->status |= BlkDirty;
845 DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
846 } else if (pkt->isRead()) {
847 if (pkt->isLLSC()) {
848 blk->trackLoadLocked(pkt);
849 }
850
851 // all read responses have a data payload
852 assert(pkt->hasRespData());
853 pkt->setDataFromBlock(blk->data, blkSize);
854 } else if (pkt->isUpgrade()) {
855 // sanity check
856 assert(!pkt->hasSharers());
857
858 if (blk->isDirty()) {
859 // we were in the Owned state, and a cache above us that
860 // has the line in Shared state needs to be made aware
861 // that the data it already has is in fact dirty
862 pkt->setCacheResponding();
863 blk->status &= ~BlkDirty;
864 }
865 } else if (pkt->isClean()) {
866 blk->status &= ~BlkDirty;
867 } else {
868 assert(pkt->isInvalidate());
869 invalidateBlock(blk);
870 DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
871 pkt->print());
872 }
873}
874
875/////////////////////////////////////////////////////
876//
877// Access path: requests coming in from the CPU side
878//
879/////////////////////////////////////////////////////
880Cycles
881BaseCache::calculateTagOnlyLatency(const uint32_t delay,
882 const Cycles lookup_lat) const
883{
884 // A tag-only access has to wait for the packet to arrive in order to
885 // perform the tag lookup.
886 return ticksToCycles(delay) + lookup_lat;
887}
888
889Cycles
890BaseCache::calculateAccessLatency(const CacheBlk* blk, const uint32_t delay,
891 const Cycles lookup_lat) const
892{
893 Cycles lat(0);
894
895 if (blk != nullptr) {
896 // As soon as the access arrives, for sequential accesses first access
897 // tags, then the data entry. In the case of parallel accesses the
898 // latency is dictated by the slowest of tag and data latencies.
899 if (sequentialAccess) {
900 lat = ticksToCycles(delay) + lookup_lat + dataLatency;
901 } else {
902 lat = ticksToCycles(delay) + std::max(lookup_lat, dataLatency);
903 }
904
905 // Check if the block to be accessed is available. If not, apply the
906 // access latency on top of when the block is ready to be accessed.
907 const Tick tick = curTick() + delay;
908 const Tick when_ready = blk->getWhenReady();
909 if (when_ready > tick &&
910 ticksToCycles(when_ready - tick) > lat) {
911 lat += ticksToCycles(when_ready - tick);
912 }
913 } else {
914 // In case of a miss, we neglect the data access in a parallel
915 // configuration (i.e., the data access will be stopped as soon as
916 // we find out it is a miss), and use the tag-only latency.
917 lat = calculateTagOnlyLatency(delay, lookup_lat);
918 }
919
920 return lat;
921}
922
923bool
924BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
925 PacketList &writebacks)
926{
927 // sanity check
928 assert(pkt->isRequest());
929
930 chatty_assert(!(isReadOnly && pkt->isWrite()),
931 "Should never see a write in a read-only cache %s\n",
932 name());
933
934 // Access block in the tags
935 Cycles tag_latency(0);
936 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), tag_latency);
937
938 DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(),
939 blk ? "hit " + blk->print() : "miss");
940
941 if (pkt->req->isCacheMaintenance()) {
942 // A cache maintenance operation is always forwarded to the
943 // memory below even if the block is found in dirty state.
944
945 // We defer any changes to the state of the block until we
946 // create and mark as in service the mshr for the downstream
947 // packet.
948
949 // Calculate access latency on top of when the packet arrives. This
950 // takes into account the bus delay.
951 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
952
953 return false;
954 }
955
956 if (pkt->isEviction()) {
957 // We check for presence of block in above caches before issuing
958 // Writeback or CleanEvict to write buffer. Therefore the only
959 // possible cases can be of a CleanEvict packet coming from above
960 // encountering a Writeback generated in this cache peer cache and
961 // waiting in the write buffer. Cases of upper level peer caches
962 // generating CleanEvict and Writeback or simply CleanEvict and
963 // CleanEvict almost simultaneously will be caught by snoops sent out
964 // by crossbar.
965 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
966 pkt->isSecure());
967 if (wb_entry) {
968 assert(wb_entry->getNumTargets() == 1);
969 PacketPtr wbPkt = wb_entry->getTarget()->pkt;
970 assert(wbPkt->isWriteback());
971
972 if (pkt->isCleanEviction()) {
973 // The CleanEvict and WritebackClean snoops into other
974 // peer caches of the same level while traversing the
975 // crossbar. If a copy of the block is found, the
976 // packet is deleted in the crossbar. Hence, none of
977 // the other upper level caches connected to this
978 // cache have the block, so we can clear the
979 // BLOCK_CACHED flag in the Writeback if set and
980 // discard the CleanEvict by returning true.
981 wbPkt->clearBlockCached();
982
983 // A clean evict does not need to access the data array
984 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
985
986 return true;
987 } else {
988 assert(pkt->cmd == MemCmd::WritebackDirty);
989 // Dirty writeback from above trumps our clean
990 // writeback... discard here
991 // Note: markInService will remove entry from writeback buffer.
992 markInService(wb_entry);
993 delete wbPkt;
994 }
995 }
996 }
997
998 // Writeback handling is special case. We can write the block into
999 // the cache without having a writeable copy (or any copy at all).
1000 if (pkt->isWriteback()) {
1001 assert(blkSize == pkt->getSize());
1002
1003 // we could get a clean writeback while we are having
1004 // outstanding accesses to a block, do the simple thing for
1005 // now and drop the clean writeback so that we do not upset
1006 // any ordering/decisions about ownership already taken
1007 if (pkt->cmd == MemCmd::WritebackClean &&
1008 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
1009 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
1010 "dropping\n", pkt->getAddr());
1011
1012 // A writeback searches for the block, then writes the data.
1013 // As the writeback is being dropped, the data is not touched,
1014 // and we just had to wait for the time to find a match in the
1015 // MSHR. As of now assume a mshr queue search takes as long as
1016 // a tag lookup for simplicity.
1017 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1018
1019 return true;
1020 }
1021
1022 if (!blk) {
1023 // need to do a replacement
1024 blk = allocateBlock(pkt, writebacks);
1025 if (!blk) {
1026 // no replaceable block available: give up, fwd to next level.
1027 incMissCount(pkt);
1028
1029 // A writeback searches for the block, then writes the data.
1030 // As the block could not be found, it was a tag-only access.
1031 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1032
1033 return false;
1034 }
1035
1036 blk->status |= BlkReadable;
1037 }
1038 // only mark the block dirty if we got a writeback command,
1039 // and leave it as is for a clean writeback
1040 if (pkt->cmd == MemCmd::WritebackDirty) {
1041 // TODO: the coherent cache can assert(!blk->isDirty());
1042 blk->status |= BlkDirty;
1043 }
1044 // if the packet does not have sharers, it is passing
1045 // writable, and we got the writeback in Modified or Exclusive
1046 // state, if not we are in the Owned or Shared state
1047 if (!pkt->hasSharers()) {
1048 blk->status |= BlkWritable;
1049 }
1050 // nothing else to do; writeback doesn't expect response
1051 assert(!pkt->needsResponse());
1052 pkt->writeDataToBlock(blk->data, blkSize);
1053 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1054 incHitCount(pkt);
1055
1056 // A writeback searches for the block, then writes the data
1057 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
1058
1059 // When the packet metadata arrives, the tag lookup will be done while
1060 // the payload is arriving. Then the block will be ready to access as
1061 // soon as the fill is done
1062 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1063 std::max(cyclesToTicks(tag_latency), (uint64_t)pkt->payloadDelay));
1064
1065 return true;
1066 } else if (pkt->cmd == MemCmd::CleanEvict) {
1067 // A CleanEvict does not need to access the data array
1068 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1069
1070 if (blk) {
1071 // Found the block in the tags, need to stop CleanEvict from
1072 // propagating further down the hierarchy. Returning true will
1073 // treat the CleanEvict like a satisfied write request and delete
1074 // it.
1075 return true;
1076 }
1077 // We didn't find the block here, propagate the CleanEvict further
1078 // down the memory hierarchy. Returning false will treat the CleanEvict
1079 // like a Writeback which could not find a replaceable block so has to
1080 // go to next level.
1081 return false;
1082 } else if (pkt->cmd == MemCmd::WriteClean) {
1083 // WriteClean handling is a special case. We can allocate a
1084 // block directly if it doesn't exist and we can update the
1085 // block immediately. The WriteClean transfers the ownership
1086 // of the block as well.
1087 assert(blkSize == pkt->getSize());
1088
1089 if (!blk) {
1090 if (pkt->writeThrough()) {
1091 // A writeback searches for the block, then writes the data.
1092 // As the block could not be found, it was a tag-only access.
1093 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1094
1095 // if this is a write through packet, we don't try to
1096 // allocate if the block is not present
1097 return false;
1098 } else {
1099 // a writeback that misses needs to allocate a new block
1100 blk = allocateBlock(pkt, writebacks);
1101 if (!blk) {
1102 // no replaceable block available: give up, fwd to
1103 // next level.
1104 incMissCount(pkt);
1105
1106 // A writeback searches for the block, then writes the
1107 // data. As the block could not be found, it was a tag-only
1108 // access.
1109 lat = calculateTagOnlyLatency(pkt->headerDelay,
1110 tag_latency);
1111
1112 return false;
1113 }
1114
1115 blk->status |= BlkReadable;
1116 }
1117 }
1118
1119 // at this point either this is a writeback or a write-through
1120 // write clean operation and the block is already in this
1121 // cache, we need to update the data and the block flags
1122 assert(blk);
1123 // TODO: the coherent cache can assert(!blk->isDirty());
1124 if (!pkt->writeThrough()) {
1125 blk->status |= BlkDirty;
1126 }
1127 // nothing else to do; writeback doesn't expect response
1128 assert(!pkt->needsResponse());
1129 pkt->writeDataToBlock(blk->data, blkSize);
1130 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1131
1132 incHitCount(pkt);
1133
1134 // A writeback searches for the block, then writes the data
1135 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
1136
1137 // When the packet metadata arrives, the tag lookup will be done while
1138 // the payload is arriving. Then the block will be ready to access as
1139 // soon as the fill is done
1140 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1141 std::max(cyclesToTicks(tag_latency), (uint64_t)pkt->payloadDelay));
1142
1143 // if this a write-through packet it will be sent to cache
1144 // below
1145 return !pkt->writeThrough();
1146 } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
1147 blk->isReadable())) {
1148 // OK to satisfy access
1149 incHitCount(pkt);
1150
1151 // Calculate access latency based on the need to access the data array
1152 if (pkt->isRead() || pkt->isWrite()) {
1153 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
1154 } else {
1155 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1156 }
1157
1158 satisfyRequest(pkt, blk);
1159 maintainClusivity(pkt->fromCache(), blk);
1160
1161 return true;
1162 }
1163
1164 // Can't satisfy access normally... either no block (blk == nullptr)
1165 // or have block but need writable
1166
1167 incMissCount(pkt);
1168
1169 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
1170
1171 if (!blk && pkt->isLLSC() && pkt->isWrite()) {
1172 // complete miss on store conditional... just give up now
1173 pkt->req->setExtraData(0);
1174 return true;
1175 }
1176
1177 return false;
1178}
1179
1180void
1181BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk)
1182{
1183 if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
1184 clusivity == Enums::mostly_excl) {
1185 // if we have responded to a cache, and our block is still
1186 // valid, but not dirty, and this cache is mostly exclusive
1187 // with respect to the cache above, drop the block
1188 invalidateBlock(blk);
1189 }
1190}
1191
1192CacheBlk*
1193BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1194 bool allocate)
1195{
1196 assert(pkt->isResponse());
1197 Addr addr = pkt->getAddr();
1198 bool is_secure = pkt->isSecure();
1199#if TRACING_ON
1200 CacheBlk::State old_state = blk ? blk->status : 0;
1201#endif
1202
1203 // When handling a fill, we should have no writes to this line.
1204 assert(addr == pkt->getBlockAddr(blkSize));
1205 assert(!writeBuffer.findMatch(addr, is_secure));
1206
1207 if (!blk) {
1208 // better have read new data...
1209 assert(pkt->hasData() || pkt->cmd == MemCmd::InvalidateResp);
1210
1211 // need to do a replacement if allocating, otherwise we stick
1212 // with the temporary storage
1213 blk = allocate ? allocateBlock(pkt, writebacks) : nullptr;
1214
1215 if (!blk) {
1216 // No replaceable block or a mostly exclusive
1217 // cache... just use temporary storage to complete the
1218 // current request and then get rid of it
1219 blk = tempBlock;
1220 tempBlock->insert(addr, is_secure);
1221 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1222 is_secure ? "s" : "ns");
1223 }
1224 } else {
1225 // existing block... probably an upgrade
1226 // don't clear block status... if block is already dirty we
1227 // don't want to lose that
1228 }
1229
1230 // Block is guaranteed to be valid at this point
1231 assert(blk->isValid());
1232 assert(blk->isSecure() == is_secure);
1233 assert(regenerateBlkAddr(blk) == addr);
1234
1235 blk->status |= BlkReadable;
1236
1237 // sanity check for whole-line writes, which should always be
1238 // marked as writable as part of the fill, and then later marked
1239 // dirty as part of satisfyRequest
1240 if (pkt->cmd == MemCmd::InvalidateResp) {
1241 assert(!pkt->hasSharers());
1242 }
1243
1244 // here we deal with setting the appropriate state of the line,
1245 // and we start by looking at the hasSharers flag, and ignore the
1246 // cacheResponding flag (normally signalling dirty data) if the
1247 // packet has sharers, thus the line is never allocated as Owned
1248 // (dirty but not writable), and always ends up being either
1249 // Shared, Exclusive or Modified, see Packet::setCacheResponding
1250 // for more details
1251 if (!pkt->hasSharers()) {
1252 // we could get a writable line from memory (rather than a
1253 // cache) even in a read-only cache, note that we set this bit
1254 // even for a read-only cache, possibly revisit this decision
1255 blk->status |= BlkWritable;
1256
1257 // check if we got this via cache-to-cache transfer (i.e., from a
1258 // cache that had the block in Modified or Owned state)
1259 if (pkt->cacheResponding()) {
1260 // we got the block in Modified state, and invalidated the
1261 // owners copy
1262 blk->status |= BlkDirty;
1263
1264 chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1265 "in read-only cache %s\n", name());
1266
1267 } else if (pkt->cmd.isSWPrefetch() && pkt->needsWritable()) {
1268 // All other copies of the block were invalidated and we
1269 // have an exclusive copy.
1270
1271 // The coherence protocol assumes that if we fetched an
1272 // exclusive copy of the block, we have the intention to
1273 // modify it. Therefore the MSHR for the PrefetchExReq has
1274 // been the point of ordering and this cache has commited
1275 // to respond to snoops for the block.
1276 //
1277 // In most cases this is true anyway - a PrefetchExReq
1278 // will be followed by a WriteReq. However, if that
1279 // doesn't happen, the block is not marked as dirty and
1280 // the cache doesn't respond to snoops that has committed
1281 // to do so.
1282 //
1283 // To avoid deadlocks in cases where there is a snoop
1284 // between the PrefetchExReq and the expected WriteReq, we
1285 // proactively mark the block as Dirty.
1286
1287 blk->status |= BlkDirty;
1288
1289 panic_if(!isReadOnly, "Prefetch exclusive requests from read-only "
1290 "cache %s\n", name());
1291 }
1292 }
1293
1294 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1295 addr, is_secure ? "s" : "ns", old_state, blk->print());
1296
1297 // if we got new data, copy it in (checking for a read response
1298 // and a response that has data is the same in the end)
1299 if (pkt->isRead()) {
1300 // sanity checks
1301 assert(pkt->hasData());
1302 assert(pkt->getSize() == blkSize);
1303
1304 pkt->writeDataToBlock(blk->data, blkSize);
1305 }
1306 // The block will be ready when the payload arrives and the fill is done
1307 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1308 pkt->payloadDelay);
1309
1310 return blk;
1311}
1312
1313CacheBlk*
1314BaseCache::allocateBlock(const PacketPtr pkt, PacketList &writebacks)
1315{
1316 // Get address
1317 const Addr addr = pkt->getAddr();
1318
1319 // Get secure bit
1320 const bool is_secure = pkt->isSecure();
1321
1/*
2 * Copyright (c) 2012-2013, 2018-2019 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Erik Hallnor
41 * Nikos Nikoleris
42 */
43
44/**
45 * @file
46 * Definition of BaseCache functions.
47 */
48
49#include "mem/cache/base.hh"
50
51#include "base/compiler.hh"
52#include "base/logging.hh"
53#include "debug/Cache.hh"
54#include "debug/CachePort.hh"
55#include "debug/CacheRepl.hh"
56#include "debug/CacheVerbose.hh"
57#include "mem/cache/mshr.hh"
58#include "mem/cache/prefetch/base.hh"
59#include "mem/cache/queue_entry.hh"
60#include "params/BaseCache.hh"
61#include "params/WriteAllocator.hh"
62#include "sim/core.hh"
63
64class BaseMasterPort;
65class BaseSlavePort;
66
67using namespace std;
68
69BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name,
70 BaseCache *_cache,
71 const std::string &_label)
72 : QueuedSlavePort(_name, _cache, queue),
73 queue(*_cache, *this, true, _label),
74 blocked(false), mustSendRetry(false),
75 sendRetryEvent([this]{ processSendRetry(); }, _name)
76{
77}
78
79BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
80 : ClockedObject(p),
81 cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"),
82 memSidePort(p->name + ".mem_side", this, "MemSidePort"),
83 mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below
84 writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below
85 tags(p->tags),
86 prefetcher(p->prefetcher),
87 writeAllocator(p->write_allocator),
88 writebackClean(p->writeback_clean),
89 tempBlockWriteback(nullptr),
90 writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
91 name(), false,
92 EventBase::Delayed_Writeback_Pri),
93 blkSize(blk_size),
94 lookupLatency(p->tag_latency),
95 dataLatency(p->data_latency),
96 forwardLatency(p->tag_latency),
97 fillLatency(p->data_latency),
98 responseLatency(p->response_latency),
99 sequentialAccess(p->sequential_access),
100 numTarget(p->tgts_per_mshr),
101 forwardSnoops(true),
102 clusivity(p->clusivity),
103 isReadOnly(p->is_read_only),
104 blocked(0),
105 order(0),
106 noTargetMSHR(nullptr),
107 missCount(p->max_miss_count),
108 addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()),
109 system(p->system)
110{
111 // the MSHR queue has no reserve entries as we check the MSHR
112 // queue on every single allocation, whereas the write queue has
113 // as many reserve entries as we have MSHRs, since every MSHR may
114 // eventually require a writeback, and we do not check the write
115 // buffer before committing to an MSHR
116
117 // forward snoops is overridden in init() once we can query
118 // whether the connected master is actually snooping or not
119
120 tempBlock = new TempCacheBlk(blkSize);
121
122 tags->tagsInit();
123 if (prefetcher)
124 prefetcher->setCache(this);
125}
126
127BaseCache::~BaseCache()
128{
129 delete tempBlock;
130}
131
132void
133BaseCache::CacheSlavePort::setBlocked()
134{
135 assert(!blocked);
136 DPRINTF(CachePort, "Port is blocking new requests\n");
137 blocked = true;
138 // if we already scheduled a retry in this cycle, but it has not yet
139 // happened, cancel it
140 if (sendRetryEvent.scheduled()) {
141 owner.deschedule(sendRetryEvent);
142 DPRINTF(CachePort, "Port descheduled retry\n");
143 mustSendRetry = true;
144 }
145}
146
147void
148BaseCache::CacheSlavePort::clearBlocked()
149{
150 assert(blocked);
151 DPRINTF(CachePort, "Port is accepting new requests\n");
152 blocked = false;
153 if (mustSendRetry) {
154 // @TODO: need to find a better time (next cycle?)
155 owner.schedule(sendRetryEvent, curTick() + 1);
156 }
157}
158
159void
160BaseCache::CacheSlavePort::processSendRetry()
161{
162 DPRINTF(CachePort, "Port is sending retry\n");
163
164 // reset the flag and call retry
165 mustSendRetry = false;
166 sendRetryReq();
167}
168
169Addr
170BaseCache::regenerateBlkAddr(CacheBlk* blk)
171{
172 if (blk != tempBlock) {
173 return tags->regenerateBlkAddr(blk);
174 } else {
175 return tempBlock->getAddr();
176 }
177}
178
179void
180BaseCache::init()
181{
182 if (!cpuSidePort.isConnected() || !memSidePort.isConnected())
183 fatal("Cache ports on %s are not connected\n", name());
184 cpuSidePort.sendRangeChange();
185 forwardSnoops = cpuSidePort.isSnooping();
186}
187
188Port &
189BaseCache::getPort(const std::string &if_name, PortID idx)
190{
191 if (if_name == "mem_side") {
192 return memSidePort;
193 } else if (if_name == "cpu_side") {
194 return cpuSidePort;
195 } else {
196 return ClockedObject::getPort(if_name, idx);
197 }
198}
199
200bool
201BaseCache::inRange(Addr addr) const
202{
203 for (const auto& r : addrRanges) {
204 if (r.contains(addr)) {
205 return true;
206 }
207 }
208 return false;
209}
210
211void
212BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
213{
214 if (pkt->needsResponse()) {
215 // These delays should have been consumed by now
216 assert(pkt->headerDelay == 0);
217 assert(pkt->payloadDelay == 0);
218
219 pkt->makeTimingResponse();
220
221 // In this case we are considering request_time that takes
222 // into account the delay of the xbar, if any, and just
223 // lat, neglecting responseLatency, modelling hit latency
224 // just as the value of lat overriden by access(), which calls
225 // the calculateAccessLatency() function.
226 cpuSidePort.schedTimingResp(pkt, request_time);
227 } else {
228 DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
229 pkt->print());
230
231 // queue the packet for deletion, as the sending cache is
232 // still relying on it; if the block is found in access(),
233 // CleanEvict and Writeback messages will be deleted
234 // here as well
235 pendingDelete.reset(pkt);
236 }
237}
238
239void
240BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
241 Tick forward_time, Tick request_time)
242{
243 if (writeAllocator &&
244 pkt && pkt->isWrite() && !pkt->req->isUncacheable()) {
245 writeAllocator->updateMode(pkt->getAddr(), pkt->getSize(),
246 pkt->getBlockAddr(blkSize));
247 }
248
249 if (mshr) {
250 /// MSHR hit
251 /// @note writebacks will be checked in getNextMSHR()
252 /// for any conflicting requests to the same block
253
254 //@todo remove hw_pf here
255
256 // Coalesce unless it was a software prefetch (see above).
257 if (pkt) {
258 assert(!pkt->isWriteback());
259 // CleanEvicts corresponding to blocks which have
260 // outstanding requests in MSHRs are simply sunk here
261 if (pkt->cmd == MemCmd::CleanEvict) {
262 pendingDelete.reset(pkt);
263 } else if (pkt->cmd == MemCmd::WriteClean) {
264 // A WriteClean should never coalesce with any
265 // outstanding cache maintenance requests.
266
267 // We use forward_time here because there is an
268 // uncached memory write, forwarded to WriteBuffer.
269 allocateWriteBuffer(pkt, forward_time);
270 } else {
271 DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
272 pkt->print());
273
274 assert(pkt->req->masterId() < system->maxMasters());
275 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
276
277 // We use forward_time here because it is the same
278 // considering new targets. We have multiple
279 // requests for the same address here. It
280 // specifies the latency to allocate an internal
281 // buffer and to schedule an event to the queued
282 // port and also takes into account the additional
283 // delay of the xbar.
284 mshr->allocateTarget(pkt, forward_time, order++,
285 allocOnFill(pkt->cmd));
286 if (mshr->getNumTargets() == numTarget) {
287 noTargetMSHR = mshr;
288 setBlocked(Blocked_NoTargets);
289 // need to be careful with this... if this mshr isn't
290 // ready yet (i.e. time > curTick()), we don't want to
291 // move it ahead of mshrs that are ready
292 // mshrQueue.moveToFront(mshr);
293 }
294 }
295 }
296 } else {
297 // no MSHR
298 assert(pkt->req->masterId() < system->maxMasters());
299 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
300
301 if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) {
302 // We use forward_time here because there is an
303 // writeback or writeclean, forwarded to WriteBuffer.
304 allocateWriteBuffer(pkt, forward_time);
305 } else {
306 if (blk && blk->isValid()) {
307 // If we have a write miss to a valid block, we
308 // need to mark the block non-readable. Otherwise
309 // if we allow reads while there's an outstanding
310 // write miss, the read could return stale data
311 // out of the cache block... a more aggressive
312 // system could detect the overlap (if any) and
313 // forward data out of the MSHRs, but we don't do
314 // that yet. Note that we do need to leave the
315 // block valid so that it stays in the cache, in
316 // case we get an upgrade response (and hence no
317 // new data) when the write miss completes.
318 // As long as CPUs do proper store/load forwarding
319 // internally, and have a sufficiently weak memory
320 // model, this is probably unnecessary, but at some
321 // point it must have seemed like we needed it...
322 assert((pkt->needsWritable() && !blk->isWritable()) ||
323 pkt->req->isCacheMaintenance());
324 blk->status &= ~BlkReadable;
325 }
326 // Here we are using forward_time, modelling the latency of
327 // a miss (outbound) just as forwardLatency, neglecting the
328 // lookupLatency component.
329 allocateMissBuffer(pkt, forward_time);
330 }
331 }
332}
333
334void
335BaseCache::recvTimingReq(PacketPtr pkt)
336{
337 // anything that is merely forwarded pays for the forward latency and
338 // the delay provided by the crossbar
339 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
340
341 Cycles lat;
342 CacheBlk *blk = nullptr;
343 bool satisfied = false;
344 {
345 PacketList writebacks;
346 // Note that lat is passed by reference here. The function
347 // access() will set the lat value.
348 satisfied = access(pkt, blk, lat, writebacks);
349
350 // After the evicted blocks are selected, they must be forwarded
351 // to the write buffer to ensure they logically precede anything
352 // happening below
353 doWritebacks(writebacks, clockEdge(lat + forwardLatency));
354 }
355
356 // Here we charge the headerDelay that takes into account the latencies
357 // of the bus, if the packet comes from it.
358 // The latency charged is just the value set by the access() function.
359 // In case of a hit we are neglecting response latency.
360 // In case of a miss we are neglecting forward latency.
361 Tick request_time = clockEdge(lat);
362 // Here we reset the timing of the packet.
363 pkt->headerDelay = pkt->payloadDelay = 0;
364
365 if (satisfied) {
366 // notify before anything else as later handleTimingReqHit might turn
367 // the packet in a response
368 ppHit->notify(pkt);
369
370 if (prefetcher && blk && blk->wasPrefetched()) {
371 blk->status &= ~BlkHWPrefetched;
372 }
373
374 handleTimingReqHit(pkt, blk, request_time);
375 } else {
376 handleTimingReqMiss(pkt, blk, forward_time, request_time);
377
378 ppMiss->notify(pkt);
379 }
380
381 if (prefetcher) {
382 // track time of availability of next prefetch, if any
383 Tick next_pf_time = prefetcher->nextPrefetchReadyTime();
384 if (next_pf_time != MaxTick) {
385 schedMemSideSendEvent(next_pf_time);
386 }
387 }
388}
389
390void
391BaseCache::handleUncacheableWriteResp(PacketPtr pkt)
392{
393 Tick completion_time = clockEdge(responseLatency) +
394 pkt->headerDelay + pkt->payloadDelay;
395
396 // Reset the bus additional time as it is now accounted for
397 pkt->headerDelay = pkt->payloadDelay = 0;
398
399 cpuSidePort.schedTimingResp(pkt, completion_time);
400}
401
402void
403BaseCache::recvTimingResp(PacketPtr pkt)
404{
405 assert(pkt->isResponse());
406
407 // all header delay should be paid for by the crossbar, unless
408 // this is a prefetch response from above
409 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
410 "%s saw a non-zero packet delay\n", name());
411
412 const bool is_error = pkt->isError();
413
414 if (is_error) {
415 DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
416 pkt->print());
417 }
418
419 DPRINTF(Cache, "%s: Handling response %s\n", __func__,
420 pkt->print());
421
422 // if this is a write, we should be looking at an uncacheable
423 // write
424 if (pkt->isWrite()) {
425 assert(pkt->req->isUncacheable());
426 handleUncacheableWriteResp(pkt);
427 return;
428 }
429
430 // we have dealt with any (uncacheable) writes above, from here on
431 // we know we are dealing with an MSHR due to a miss or a prefetch
432 MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
433 assert(mshr);
434
435 if (mshr == noTargetMSHR) {
436 // we always clear at least one target
437 clearBlocked(Blocked_NoTargets);
438 noTargetMSHR = nullptr;
439 }
440
441 // Initial target is used just for stats
442 QueueEntry::Target *initial_tgt = mshr->getTarget();
443 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
444 Tick miss_latency = curTick() - initial_tgt->recvTime;
445
446 if (pkt->req->isUncacheable()) {
447 assert(pkt->req->masterId() < system->maxMasters());
448 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
449 miss_latency;
450 } else {
451 assert(pkt->req->masterId() < system->maxMasters());
452 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
453 miss_latency;
454 }
455
456 PacketList writebacks;
457
458 bool is_fill = !mshr->isForward &&
459 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp ||
460 mshr->wasWholeLineWrite);
461
462 // make sure that if the mshr was due to a whole line write then
463 // the response is an invalidation
464 assert(!mshr->wasWholeLineWrite || pkt->isInvalidate());
465
466 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
467
468 if (is_fill && !is_error) {
469 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
470 pkt->getAddr());
471
472 const bool allocate = (writeAllocator && mshr->wasWholeLineWrite) ?
473 writeAllocator->allocate() : mshr->allocOnFill();
474 blk = handleFill(pkt, blk, writebacks, allocate);
475 assert(blk != nullptr);
476 ppFill->notify(pkt);
477 }
478
479 if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
480 // The block was marked not readable while there was a pending
481 // cache maintenance operation, restore its flag.
482 blk->status |= BlkReadable;
483
484 // This was a cache clean operation (without invalidate)
485 // and we have a copy of the block already. Since there
486 // is no invalidation, we can promote targets that don't
487 // require a writable copy
488 mshr->promoteReadable();
489 }
490
491 if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
492 // If at this point the referenced block is writable and the
493 // response is not a cache invalidate, we promote targets that
494 // were deferred as we couldn't guarrantee a writable copy
495 mshr->promoteWritable();
496 }
497
498 serviceMSHRTargets(mshr, pkt, blk);
499
500 if (mshr->promoteDeferredTargets()) {
501 // avoid later read getting stale data while write miss is
502 // outstanding.. see comment in timingAccess()
503 if (blk) {
504 blk->status &= ~BlkReadable;
505 }
506 mshrQueue.markPending(mshr);
507 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
508 } else {
509 // while we deallocate an mshr from the queue we still have to
510 // check the isFull condition before and after as we might
511 // have been using the reserved entries already
512 const bool was_full = mshrQueue.isFull();
513 mshrQueue.deallocate(mshr);
514 if (was_full && !mshrQueue.isFull()) {
515 clearBlocked(Blocked_NoMSHRs);
516 }
517
518 // Request the bus for a prefetch if this deallocation freed enough
519 // MSHRs for a prefetch to take place
520 if (prefetcher && mshrQueue.canPrefetch()) {
521 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
522 clockEdge());
523 if (next_pf_time != MaxTick)
524 schedMemSideSendEvent(next_pf_time);
525 }
526 }
527
528 // if we used temp block, check to see if its valid and then clear it out
529 if (blk == tempBlock && tempBlock->isValid()) {
530 evictBlock(blk, writebacks);
531 }
532
533 const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
534 // copy writebacks to write buffer
535 doWritebacks(writebacks, forward_time);
536
537 DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
538 delete pkt;
539}
540
541
542Tick
543BaseCache::recvAtomic(PacketPtr pkt)
544{
545 // should assert here that there are no outstanding MSHRs or
546 // writebacks... that would mean that someone used an atomic
547 // access in timing mode
548
549 // We use lookupLatency here because it is used to specify the latency
550 // to access.
551 Cycles lat = lookupLatency;
552
553 CacheBlk *blk = nullptr;
554 PacketList writebacks;
555 bool satisfied = access(pkt, blk, lat, writebacks);
556
557 if (pkt->isClean() && blk && blk->isDirty()) {
558 // A cache clean opearation is looking for a dirty
559 // block. If a dirty block is encountered a WriteClean
560 // will update any copies to the path to the memory
561 // until the point of reference.
562 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
563 __func__, pkt->print(), blk->print());
564 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
565 writebacks.push_back(wb_pkt);
566 pkt->setSatisfied();
567 }
568
569 // handle writebacks resulting from the access here to ensure they
570 // logically precede anything happening below
571 doWritebacksAtomic(writebacks);
572 assert(writebacks.empty());
573
574 if (!satisfied) {
575 lat += handleAtomicReqMiss(pkt, blk, writebacks);
576 }
577
578 // Note that we don't invoke the prefetcher at all in atomic mode.
579 // It's not clear how to do it properly, particularly for
580 // prefetchers that aggressively generate prefetch candidates and
581 // rely on bandwidth contention to throttle them; these will tend
582 // to pollute the cache in atomic mode since there is no bandwidth
583 // contention. If we ever do want to enable prefetching in atomic
584 // mode, though, this is the place to do it... see timingAccess()
585 // for an example (though we'd want to issue the prefetch(es)
586 // immediately rather than calling requestMemSideBus() as we do
587 // there).
588
589 // do any writebacks resulting from the response handling
590 doWritebacksAtomic(writebacks);
591
592 // if we used temp block, check to see if its valid and if so
593 // clear it out, but only do so after the call to recvAtomic is
594 // finished so that any downstream observers (such as a snoop
595 // filter), first see the fill, and only then see the eviction
596 if (blk == tempBlock && tempBlock->isValid()) {
597 // the atomic CPU calls recvAtomic for fetch and load/store
598 // sequentuially, and we may already have a tempBlock
599 // writeback from the fetch that we have not yet sent
600 if (tempBlockWriteback) {
601 // if that is the case, write the prevoius one back, and
602 // do not schedule any new event
603 writebackTempBlockAtomic();
604 } else {
605 // the writeback/clean eviction happens after the call to
606 // recvAtomic has finished (but before any successive
607 // calls), so that the response handling from the fill is
608 // allowed to happen first
609 schedule(writebackTempBlockAtomicEvent, curTick());
610 }
611
612 tempBlockWriteback = evictBlock(blk);
613 }
614
615 if (pkt->needsResponse()) {
616 pkt->makeAtomicResponse();
617 }
618
619 return lat * clockPeriod();
620}
621
622void
623BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side)
624{
625 Addr blk_addr = pkt->getBlockAddr(blkSize);
626 bool is_secure = pkt->isSecure();
627 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
628 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
629
630 pkt->pushLabel(name());
631
632 CacheBlkPrintWrapper cbpw(blk);
633
634 // Note that just because an L2/L3 has valid data doesn't mean an
635 // L1 doesn't have a more up-to-date modified copy that still
636 // needs to be found. As a result we always update the request if
637 // we have it, but only declare it satisfied if we are the owner.
638
639 // see if we have data at all (owned or otherwise)
640 bool have_data = blk && blk->isValid()
641 && pkt->trySatisfyFunctional(&cbpw, blk_addr, is_secure, blkSize,
642 blk->data);
643
644 // data we have is dirty if marked as such or if we have an
645 // in-service MSHR that is pending a modified line
646 bool have_dirty =
647 have_data && (blk->isDirty() ||
648 (mshr && mshr->inService && mshr->isPendingModified()));
649
650 bool done = have_dirty ||
651 cpuSidePort.trySatisfyFunctional(pkt) ||
652 mshrQueue.trySatisfyFunctional(pkt) ||
653 writeBuffer.trySatisfyFunctional(pkt) ||
654 memSidePort.trySatisfyFunctional(pkt);
655
656 DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(),
657 (blk && blk->isValid()) ? "valid " : "",
658 have_data ? "data " : "", done ? "done " : "");
659
660 // We're leaving the cache, so pop cache->name() label
661 pkt->popLabel();
662
663 if (done) {
664 pkt->makeResponse();
665 } else {
666 // if it came as a request from the CPU side then make sure it
667 // continues towards the memory side
668 if (from_cpu_side) {
669 memSidePort.sendFunctional(pkt);
670 } else if (cpuSidePort.isSnooping()) {
671 // if it came from the memory side, it must be a snoop request
672 // and we should only forward it if we are forwarding snoops
673 cpuSidePort.sendFunctionalSnoop(pkt);
674 }
675 }
676}
677
678
679void
680BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
681{
682 assert(pkt->isRequest());
683
684 uint64_t overwrite_val;
685 bool overwrite_mem;
686 uint64_t condition_val64;
687 uint32_t condition_val32;
688
689 int offset = pkt->getOffset(blkSize);
690 uint8_t *blk_data = blk->data + offset;
691
692 assert(sizeof(uint64_t) >= pkt->getSize());
693
694 overwrite_mem = true;
695 // keep a copy of our possible write value, and copy what is at the
696 // memory address into the packet
697 pkt->writeData((uint8_t *)&overwrite_val);
698 pkt->setData(blk_data);
699
700 if (pkt->req->isCondSwap()) {
701 if (pkt->getSize() == sizeof(uint64_t)) {
702 condition_val64 = pkt->req->getExtraData();
703 overwrite_mem = !std::memcmp(&condition_val64, blk_data,
704 sizeof(uint64_t));
705 } else if (pkt->getSize() == sizeof(uint32_t)) {
706 condition_val32 = (uint32_t)pkt->req->getExtraData();
707 overwrite_mem = !std::memcmp(&condition_val32, blk_data,
708 sizeof(uint32_t));
709 } else
710 panic("Invalid size for conditional read/write\n");
711 }
712
713 if (overwrite_mem) {
714 std::memcpy(blk_data, &overwrite_val, pkt->getSize());
715 blk->status |= BlkDirty;
716 }
717}
718
719QueueEntry*
720BaseCache::getNextQueueEntry()
721{
722 // Check both MSHR queue and write buffer for potential requests,
723 // note that null does not mean there is no request, it could
724 // simply be that it is not ready
725 MSHR *miss_mshr = mshrQueue.getNext();
726 WriteQueueEntry *wq_entry = writeBuffer.getNext();
727
728 // If we got a write buffer request ready, first priority is a
729 // full write buffer, otherwise we favour the miss requests
730 if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
731 // need to search MSHR queue for conflicting earlier miss.
732 MSHR *conflict_mshr = mshrQueue.findPending(wq_entry);
733
734 if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
735 // Service misses in order until conflict is cleared.
736 return conflict_mshr;
737
738 // @todo Note that we ignore the ready time of the conflict here
739 }
740
741 // No conflicts; issue write
742 return wq_entry;
743 } else if (miss_mshr) {
744 // need to check for conflicting earlier writeback
745 WriteQueueEntry *conflict_mshr = writeBuffer.findPending(miss_mshr);
746 if (conflict_mshr) {
747 // not sure why we don't check order here... it was in the
748 // original code but commented out.
749
750 // The only way this happens is if we are
751 // doing a write and we didn't have permissions
752 // then subsequently saw a writeback (owned got evicted)
753 // We need to make sure to perform the writeback first
754 // To preserve the dirty data, then we can issue the write
755
756 // should we return wq_entry here instead? I.e. do we
757 // have to flush writes in order? I don't think so... not
758 // for Alpha anyway. Maybe for x86?
759 return conflict_mshr;
760
761 // @todo Note that we ignore the ready time of the conflict here
762 }
763
764 // No conflicts; issue read
765 return miss_mshr;
766 }
767
768 // fall through... no pending requests. Try a prefetch.
769 assert(!miss_mshr && !wq_entry);
770 if (prefetcher && mshrQueue.canPrefetch()) {
771 // If we have a miss queue slot, we can try a prefetch
772 PacketPtr pkt = prefetcher->getPacket();
773 if (pkt) {
774 Addr pf_addr = pkt->getBlockAddr(blkSize);
775 if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
776 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
777 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
778 // Update statistic on number of prefetches issued
779 // (hwpf_mshr_misses)
780 assert(pkt->req->masterId() < system->maxMasters());
781 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
782
783 // allocate an MSHR and return it, note
784 // that we send the packet straight away, so do not
785 // schedule the send
786 return allocateMissBuffer(pkt, curTick(), false);
787 } else {
788 // free the request and packet
789 delete pkt;
790 }
791 }
792 }
793
794 return nullptr;
795}
796
797void
798BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool)
799{
800 assert(pkt->isRequest());
801
802 assert(blk && blk->isValid());
803 // Occasionally this is not true... if we are a lower-level cache
804 // satisfying a string of Read and ReadEx requests from
805 // upper-level caches, a Read will mark the block as shared but we
806 // can satisfy a following ReadEx anyway since we can rely on the
807 // Read requester(s) to have buffered the ReadEx snoop and to
808 // invalidate their blocks after receiving them.
809 // assert(!pkt->needsWritable() || blk->isWritable());
810 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
811
812 // Check RMW operations first since both isRead() and
813 // isWrite() will be true for them
814 if (pkt->cmd == MemCmd::SwapReq) {
815 if (pkt->isAtomicOp()) {
816 // extract data from cache and save it into the data field in
817 // the packet as a return value from this atomic op
818 int offset = tags->extractBlkOffset(pkt->getAddr());
819 uint8_t *blk_data = blk->data + offset;
820 pkt->setData(blk_data);
821
822 // execute AMO operation
823 (*(pkt->getAtomicOp()))(blk_data);
824
825 // set block status to dirty
826 blk->status |= BlkDirty;
827 } else {
828 cmpAndSwap(blk, pkt);
829 }
830 } else if (pkt->isWrite()) {
831 // we have the block in a writable state and can go ahead,
832 // note that the line may be also be considered writable in
833 // downstream caches along the path to memory, but always
834 // Exclusive, and never Modified
835 assert(blk->isWritable());
836 // Write or WriteLine at the first cache with block in writable state
837 if (blk->checkWrite(pkt)) {
838 pkt->writeDataToBlock(blk->data, blkSize);
839 }
840 // Always mark the line as dirty (and thus transition to the
841 // Modified state) even if we are a failed StoreCond so we
842 // supply data to any snoops that have appended themselves to
843 // this cache before knowing the store will fail.
844 blk->status |= BlkDirty;
845 DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
846 } else if (pkt->isRead()) {
847 if (pkt->isLLSC()) {
848 blk->trackLoadLocked(pkt);
849 }
850
851 // all read responses have a data payload
852 assert(pkt->hasRespData());
853 pkt->setDataFromBlock(blk->data, blkSize);
854 } else if (pkt->isUpgrade()) {
855 // sanity check
856 assert(!pkt->hasSharers());
857
858 if (blk->isDirty()) {
859 // we were in the Owned state, and a cache above us that
860 // has the line in Shared state needs to be made aware
861 // that the data it already has is in fact dirty
862 pkt->setCacheResponding();
863 blk->status &= ~BlkDirty;
864 }
865 } else if (pkt->isClean()) {
866 blk->status &= ~BlkDirty;
867 } else {
868 assert(pkt->isInvalidate());
869 invalidateBlock(blk);
870 DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
871 pkt->print());
872 }
873}
874
875/////////////////////////////////////////////////////
876//
877// Access path: requests coming in from the CPU side
878//
879/////////////////////////////////////////////////////
880Cycles
881BaseCache::calculateTagOnlyLatency(const uint32_t delay,
882 const Cycles lookup_lat) const
883{
884 // A tag-only access has to wait for the packet to arrive in order to
885 // perform the tag lookup.
886 return ticksToCycles(delay) + lookup_lat;
887}
888
889Cycles
890BaseCache::calculateAccessLatency(const CacheBlk* blk, const uint32_t delay,
891 const Cycles lookup_lat) const
892{
893 Cycles lat(0);
894
895 if (blk != nullptr) {
896 // As soon as the access arrives, for sequential accesses first access
897 // tags, then the data entry. In the case of parallel accesses the
898 // latency is dictated by the slowest of tag and data latencies.
899 if (sequentialAccess) {
900 lat = ticksToCycles(delay) + lookup_lat + dataLatency;
901 } else {
902 lat = ticksToCycles(delay) + std::max(lookup_lat, dataLatency);
903 }
904
905 // Check if the block to be accessed is available. If not, apply the
906 // access latency on top of when the block is ready to be accessed.
907 const Tick tick = curTick() + delay;
908 const Tick when_ready = blk->getWhenReady();
909 if (when_ready > tick &&
910 ticksToCycles(when_ready - tick) > lat) {
911 lat += ticksToCycles(when_ready - tick);
912 }
913 } else {
914 // In case of a miss, we neglect the data access in a parallel
915 // configuration (i.e., the data access will be stopped as soon as
916 // we find out it is a miss), and use the tag-only latency.
917 lat = calculateTagOnlyLatency(delay, lookup_lat);
918 }
919
920 return lat;
921}
922
923bool
924BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
925 PacketList &writebacks)
926{
927 // sanity check
928 assert(pkt->isRequest());
929
930 chatty_assert(!(isReadOnly && pkt->isWrite()),
931 "Should never see a write in a read-only cache %s\n",
932 name());
933
934 // Access block in the tags
935 Cycles tag_latency(0);
936 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), tag_latency);
937
938 DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(),
939 blk ? "hit " + blk->print() : "miss");
940
941 if (pkt->req->isCacheMaintenance()) {
942 // A cache maintenance operation is always forwarded to the
943 // memory below even if the block is found in dirty state.
944
945 // We defer any changes to the state of the block until we
946 // create and mark as in service the mshr for the downstream
947 // packet.
948
949 // Calculate access latency on top of when the packet arrives. This
950 // takes into account the bus delay.
951 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
952
953 return false;
954 }
955
956 if (pkt->isEviction()) {
957 // We check for presence of block in above caches before issuing
958 // Writeback or CleanEvict to write buffer. Therefore the only
959 // possible cases can be of a CleanEvict packet coming from above
960 // encountering a Writeback generated in this cache peer cache and
961 // waiting in the write buffer. Cases of upper level peer caches
962 // generating CleanEvict and Writeback or simply CleanEvict and
963 // CleanEvict almost simultaneously will be caught by snoops sent out
964 // by crossbar.
965 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
966 pkt->isSecure());
967 if (wb_entry) {
968 assert(wb_entry->getNumTargets() == 1);
969 PacketPtr wbPkt = wb_entry->getTarget()->pkt;
970 assert(wbPkt->isWriteback());
971
972 if (pkt->isCleanEviction()) {
973 // The CleanEvict and WritebackClean snoops into other
974 // peer caches of the same level while traversing the
975 // crossbar. If a copy of the block is found, the
976 // packet is deleted in the crossbar. Hence, none of
977 // the other upper level caches connected to this
978 // cache have the block, so we can clear the
979 // BLOCK_CACHED flag in the Writeback if set and
980 // discard the CleanEvict by returning true.
981 wbPkt->clearBlockCached();
982
983 // A clean evict does not need to access the data array
984 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
985
986 return true;
987 } else {
988 assert(pkt->cmd == MemCmd::WritebackDirty);
989 // Dirty writeback from above trumps our clean
990 // writeback... discard here
991 // Note: markInService will remove entry from writeback buffer.
992 markInService(wb_entry);
993 delete wbPkt;
994 }
995 }
996 }
997
998 // Writeback handling is special case. We can write the block into
999 // the cache without having a writeable copy (or any copy at all).
1000 if (pkt->isWriteback()) {
1001 assert(blkSize == pkt->getSize());
1002
1003 // we could get a clean writeback while we are having
1004 // outstanding accesses to a block, do the simple thing for
1005 // now and drop the clean writeback so that we do not upset
1006 // any ordering/decisions about ownership already taken
1007 if (pkt->cmd == MemCmd::WritebackClean &&
1008 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
1009 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
1010 "dropping\n", pkt->getAddr());
1011
1012 // A writeback searches for the block, then writes the data.
1013 // As the writeback is being dropped, the data is not touched,
1014 // and we just had to wait for the time to find a match in the
1015 // MSHR. As of now assume a mshr queue search takes as long as
1016 // a tag lookup for simplicity.
1017 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1018
1019 return true;
1020 }
1021
1022 if (!blk) {
1023 // need to do a replacement
1024 blk = allocateBlock(pkt, writebacks);
1025 if (!blk) {
1026 // no replaceable block available: give up, fwd to next level.
1027 incMissCount(pkt);
1028
1029 // A writeback searches for the block, then writes the data.
1030 // As the block could not be found, it was a tag-only access.
1031 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1032
1033 return false;
1034 }
1035
1036 blk->status |= BlkReadable;
1037 }
1038 // only mark the block dirty if we got a writeback command,
1039 // and leave it as is for a clean writeback
1040 if (pkt->cmd == MemCmd::WritebackDirty) {
1041 // TODO: the coherent cache can assert(!blk->isDirty());
1042 blk->status |= BlkDirty;
1043 }
1044 // if the packet does not have sharers, it is passing
1045 // writable, and we got the writeback in Modified or Exclusive
1046 // state, if not we are in the Owned or Shared state
1047 if (!pkt->hasSharers()) {
1048 blk->status |= BlkWritable;
1049 }
1050 // nothing else to do; writeback doesn't expect response
1051 assert(!pkt->needsResponse());
1052 pkt->writeDataToBlock(blk->data, blkSize);
1053 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1054 incHitCount(pkt);
1055
1056 // A writeback searches for the block, then writes the data
1057 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
1058
1059 // When the packet metadata arrives, the tag lookup will be done while
1060 // the payload is arriving. Then the block will be ready to access as
1061 // soon as the fill is done
1062 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1063 std::max(cyclesToTicks(tag_latency), (uint64_t)pkt->payloadDelay));
1064
1065 return true;
1066 } else if (pkt->cmd == MemCmd::CleanEvict) {
1067 // A CleanEvict does not need to access the data array
1068 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1069
1070 if (blk) {
1071 // Found the block in the tags, need to stop CleanEvict from
1072 // propagating further down the hierarchy. Returning true will
1073 // treat the CleanEvict like a satisfied write request and delete
1074 // it.
1075 return true;
1076 }
1077 // We didn't find the block here, propagate the CleanEvict further
1078 // down the memory hierarchy. Returning false will treat the CleanEvict
1079 // like a Writeback which could not find a replaceable block so has to
1080 // go to next level.
1081 return false;
1082 } else if (pkt->cmd == MemCmd::WriteClean) {
1083 // WriteClean handling is a special case. We can allocate a
1084 // block directly if it doesn't exist and we can update the
1085 // block immediately. The WriteClean transfers the ownership
1086 // of the block as well.
1087 assert(blkSize == pkt->getSize());
1088
1089 if (!blk) {
1090 if (pkt->writeThrough()) {
1091 // A writeback searches for the block, then writes the data.
1092 // As the block could not be found, it was a tag-only access.
1093 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1094
1095 // if this is a write through packet, we don't try to
1096 // allocate if the block is not present
1097 return false;
1098 } else {
1099 // a writeback that misses needs to allocate a new block
1100 blk = allocateBlock(pkt, writebacks);
1101 if (!blk) {
1102 // no replaceable block available: give up, fwd to
1103 // next level.
1104 incMissCount(pkt);
1105
1106 // A writeback searches for the block, then writes the
1107 // data. As the block could not be found, it was a tag-only
1108 // access.
1109 lat = calculateTagOnlyLatency(pkt->headerDelay,
1110 tag_latency);
1111
1112 return false;
1113 }
1114
1115 blk->status |= BlkReadable;
1116 }
1117 }
1118
1119 // at this point either this is a writeback or a write-through
1120 // write clean operation and the block is already in this
1121 // cache, we need to update the data and the block flags
1122 assert(blk);
1123 // TODO: the coherent cache can assert(!blk->isDirty());
1124 if (!pkt->writeThrough()) {
1125 blk->status |= BlkDirty;
1126 }
1127 // nothing else to do; writeback doesn't expect response
1128 assert(!pkt->needsResponse());
1129 pkt->writeDataToBlock(blk->data, blkSize);
1130 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1131
1132 incHitCount(pkt);
1133
1134 // A writeback searches for the block, then writes the data
1135 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
1136
1137 // When the packet metadata arrives, the tag lookup will be done while
1138 // the payload is arriving. Then the block will be ready to access as
1139 // soon as the fill is done
1140 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1141 std::max(cyclesToTicks(tag_latency), (uint64_t)pkt->payloadDelay));
1142
1143 // if this a write-through packet it will be sent to cache
1144 // below
1145 return !pkt->writeThrough();
1146 } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
1147 blk->isReadable())) {
1148 // OK to satisfy access
1149 incHitCount(pkt);
1150
1151 // Calculate access latency based on the need to access the data array
1152 if (pkt->isRead() || pkt->isWrite()) {
1153 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
1154 } else {
1155 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1156 }
1157
1158 satisfyRequest(pkt, blk);
1159 maintainClusivity(pkt->fromCache(), blk);
1160
1161 return true;
1162 }
1163
1164 // Can't satisfy access normally... either no block (blk == nullptr)
1165 // or have block but need writable
1166
1167 incMissCount(pkt);
1168
1169 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
1170
1171 if (!blk && pkt->isLLSC() && pkt->isWrite()) {
1172 // complete miss on store conditional... just give up now
1173 pkt->req->setExtraData(0);
1174 return true;
1175 }
1176
1177 return false;
1178}
1179
1180void
1181BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk)
1182{
1183 if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
1184 clusivity == Enums::mostly_excl) {
1185 // if we have responded to a cache, and our block is still
1186 // valid, but not dirty, and this cache is mostly exclusive
1187 // with respect to the cache above, drop the block
1188 invalidateBlock(blk);
1189 }
1190}
1191
1192CacheBlk*
1193BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1194 bool allocate)
1195{
1196 assert(pkt->isResponse());
1197 Addr addr = pkt->getAddr();
1198 bool is_secure = pkt->isSecure();
1199#if TRACING_ON
1200 CacheBlk::State old_state = blk ? blk->status : 0;
1201#endif
1202
1203 // When handling a fill, we should have no writes to this line.
1204 assert(addr == pkt->getBlockAddr(blkSize));
1205 assert(!writeBuffer.findMatch(addr, is_secure));
1206
1207 if (!blk) {
1208 // better have read new data...
1209 assert(pkt->hasData() || pkt->cmd == MemCmd::InvalidateResp);
1210
1211 // need to do a replacement if allocating, otherwise we stick
1212 // with the temporary storage
1213 blk = allocate ? allocateBlock(pkt, writebacks) : nullptr;
1214
1215 if (!blk) {
1216 // No replaceable block or a mostly exclusive
1217 // cache... just use temporary storage to complete the
1218 // current request and then get rid of it
1219 blk = tempBlock;
1220 tempBlock->insert(addr, is_secure);
1221 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1222 is_secure ? "s" : "ns");
1223 }
1224 } else {
1225 // existing block... probably an upgrade
1226 // don't clear block status... if block is already dirty we
1227 // don't want to lose that
1228 }
1229
1230 // Block is guaranteed to be valid at this point
1231 assert(blk->isValid());
1232 assert(blk->isSecure() == is_secure);
1233 assert(regenerateBlkAddr(blk) == addr);
1234
1235 blk->status |= BlkReadable;
1236
1237 // sanity check for whole-line writes, which should always be
1238 // marked as writable as part of the fill, and then later marked
1239 // dirty as part of satisfyRequest
1240 if (pkt->cmd == MemCmd::InvalidateResp) {
1241 assert(!pkt->hasSharers());
1242 }
1243
1244 // here we deal with setting the appropriate state of the line,
1245 // and we start by looking at the hasSharers flag, and ignore the
1246 // cacheResponding flag (normally signalling dirty data) if the
1247 // packet has sharers, thus the line is never allocated as Owned
1248 // (dirty but not writable), and always ends up being either
1249 // Shared, Exclusive or Modified, see Packet::setCacheResponding
1250 // for more details
1251 if (!pkt->hasSharers()) {
1252 // we could get a writable line from memory (rather than a
1253 // cache) even in a read-only cache, note that we set this bit
1254 // even for a read-only cache, possibly revisit this decision
1255 blk->status |= BlkWritable;
1256
1257 // check if we got this via cache-to-cache transfer (i.e., from a
1258 // cache that had the block in Modified or Owned state)
1259 if (pkt->cacheResponding()) {
1260 // we got the block in Modified state, and invalidated the
1261 // owners copy
1262 blk->status |= BlkDirty;
1263
1264 chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1265 "in read-only cache %s\n", name());
1266
1267 } else if (pkt->cmd.isSWPrefetch() && pkt->needsWritable()) {
1268 // All other copies of the block were invalidated and we
1269 // have an exclusive copy.
1270
1271 // The coherence protocol assumes that if we fetched an
1272 // exclusive copy of the block, we have the intention to
1273 // modify it. Therefore the MSHR for the PrefetchExReq has
1274 // been the point of ordering and this cache has commited
1275 // to respond to snoops for the block.
1276 //
1277 // In most cases this is true anyway - a PrefetchExReq
1278 // will be followed by a WriteReq. However, if that
1279 // doesn't happen, the block is not marked as dirty and
1280 // the cache doesn't respond to snoops that has committed
1281 // to do so.
1282 //
1283 // To avoid deadlocks in cases where there is a snoop
1284 // between the PrefetchExReq and the expected WriteReq, we
1285 // proactively mark the block as Dirty.
1286
1287 blk->status |= BlkDirty;
1288
1289 panic_if(!isReadOnly, "Prefetch exclusive requests from read-only "
1290 "cache %s\n", name());
1291 }
1292 }
1293
1294 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1295 addr, is_secure ? "s" : "ns", old_state, blk->print());
1296
1297 // if we got new data, copy it in (checking for a read response
1298 // and a response that has data is the same in the end)
1299 if (pkt->isRead()) {
1300 // sanity checks
1301 assert(pkt->hasData());
1302 assert(pkt->getSize() == blkSize);
1303
1304 pkt->writeDataToBlock(blk->data, blkSize);
1305 }
1306 // The block will be ready when the payload arrives and the fill is done
1307 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1308 pkt->payloadDelay);
1309
1310 return blk;
1311}
1312
1313CacheBlk*
1314BaseCache::allocateBlock(const PacketPtr pkt, PacketList &writebacks)
1315{
1316 // Get address
1317 const Addr addr = pkt->getAddr();
1318
1319 // Get secure bit
1320 const bool is_secure = pkt->isSecure();
1321
1322 // @todo Compress and get compression related data
1323 std::size_t blk_size_bits = blkSize*8;
1324
1322 // Find replacement victim
1323 std::vector<CacheBlk*> evict_blks;
1325 // Find replacement victim
1326 std::vector<CacheBlk*> evict_blks;
1324 CacheBlk *victim = tags->findVictim(addr, is_secure, evict_blks);
1327 CacheBlk *victim = tags->findVictim(addr, is_secure, blk_size_bits,
1328 evict_blks);
1325
1326 // It is valid to return nullptr if there is no victim
1327 if (!victim)
1328 return nullptr;
1329
1330 // Print victim block's information
1331 DPRINTF(CacheRepl, "Replacement victim: %s\n", victim->print());
1332
1333 // Check for transient state allocations. If any of the entries listed
1334 // for eviction has a transient state, the allocation fails
1335 bool replacement = false;
1336 for (const auto& blk : evict_blks) {
1337 if (blk->isValid()) {
1338 replacement = true;
1339
1340 Addr repl_addr = regenerateBlkAddr(blk);
1341 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1342 if (repl_mshr) {
1343 // must be an outstanding upgrade or clean request
1344 // on a block we're about to replace...
1345 assert((!blk->isWritable() && repl_mshr->needsWritable()) ||
1346 repl_mshr->isCleaning());
1347
1348 // too hard to replace block with transient state
1349 // allocation failed, block not inserted
1350 return nullptr;
1351 }
1352 }
1353 }
1354
1355 // The victim will be replaced by a new entry, so increase the replacement
1356 // counter if a valid block is being replaced
1357 if (replacement) {
1358 // Evict valid blocks associated to this victim block
1359 for (const auto& blk : evict_blks) {
1360 if (blk->isValid()) {
1361 DPRINTF(CacheRepl, "Evicting %s (%#llx) to make room for " \
1362 "%#llx (%s)\n", blk->print(), regenerateBlkAddr(blk),
1363 addr, is_secure);
1364
1365 if (blk->wasPrefetched()) {
1366 unusedPrefetches++;
1367 }
1368
1369 evictBlock(blk, writebacks);
1370 }
1371 }
1372
1373 replacements++;
1374 }
1375
1376 // Insert new block at victimized entry
1377 tags->insertBlock(pkt, victim);
1378
1379 return victim;
1380}
1381
1382void
1383BaseCache::invalidateBlock(CacheBlk *blk)
1384{
1385 // If handling a block present in the Tags, let it do its invalidation
1386 // process, which will update stats and invalidate the block itself
1387 if (blk != tempBlock) {
1388 tags->invalidate(blk);
1389 } else {
1390 tempBlock->invalidate();
1391 }
1392}
1393
1394void
1395BaseCache::evictBlock(CacheBlk *blk, PacketList &writebacks)
1396{
1397 PacketPtr pkt = evictBlock(blk);
1398 if (pkt) {
1399 writebacks.push_back(pkt);
1400 }
1401}
1402
1403PacketPtr
1404BaseCache::writebackBlk(CacheBlk *blk)
1405{
1406 chatty_assert(!isReadOnly || writebackClean,
1407 "Writeback from read-only cache");
1408 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1409
1410 writebacks[Request::wbMasterId]++;
1411
1412 RequestPtr req = std::make_shared<Request>(
1413 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1414
1415 if (blk->isSecure())
1416 req->setFlags(Request::SECURE);
1417
1418 req->taskId(blk->task_id);
1419
1420 PacketPtr pkt =
1421 new Packet(req, blk->isDirty() ?
1422 MemCmd::WritebackDirty : MemCmd::WritebackClean);
1423
1424 DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1425 pkt->print(), blk->isWritable(), blk->isDirty());
1426
1427 if (blk->isWritable()) {
1428 // not asserting shared means we pass the block in modified
1429 // state, mark our own block non-writeable
1430 blk->status &= ~BlkWritable;
1431 } else {
1432 // we are in the Owned state, tell the receiver
1433 pkt->setHasSharers();
1434 }
1435
1436 // make sure the block is not marked dirty
1437 blk->status &= ~BlkDirty;
1438
1439 pkt->allocate();
1440 pkt->setDataFromBlock(blk->data, blkSize);
1441
1442 return pkt;
1443}
1444
1445PacketPtr
1446BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
1447{
1448 RequestPtr req = std::make_shared<Request>(
1449 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1450
1451 if (blk->isSecure()) {
1452 req->setFlags(Request::SECURE);
1453 }
1454 req->taskId(blk->task_id);
1455
1456 PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
1457
1458 if (dest) {
1459 req->setFlags(dest);
1460 pkt->setWriteThrough();
1461 }
1462
1463 DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1464 blk->isWritable(), blk->isDirty());
1465
1466 if (blk->isWritable()) {
1467 // not asserting shared means we pass the block in modified
1468 // state, mark our own block non-writeable
1469 blk->status &= ~BlkWritable;
1470 } else {
1471 // we are in the Owned state, tell the receiver
1472 pkt->setHasSharers();
1473 }
1474
1475 // make sure the block is not marked dirty
1476 blk->status &= ~BlkDirty;
1477
1478 pkt->allocate();
1479 pkt->setDataFromBlock(blk->data, blkSize);
1480
1481 return pkt;
1482}
1483
1484
1485void
1486BaseCache::memWriteback()
1487{
1488 tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); });
1489}
1490
1491void
1492BaseCache::memInvalidate()
1493{
1494 tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); });
1495}
1496
1497bool
1498BaseCache::isDirty() const
1499{
1500 return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); });
1501}
1502
1503bool
1504BaseCache::coalesce() const
1505{
1506 return writeAllocator && writeAllocator->coalesce();
1507}
1508
1509void
1510BaseCache::writebackVisitor(CacheBlk &blk)
1511{
1512 if (blk.isDirty()) {
1513 assert(blk.isValid());
1514
1515 RequestPtr request = std::make_shared<Request>(
1516 regenerateBlkAddr(&blk), blkSize, 0, Request::funcMasterId);
1517
1518 request->taskId(blk.task_id);
1519 if (blk.isSecure()) {
1520 request->setFlags(Request::SECURE);
1521 }
1522
1523 Packet packet(request, MemCmd::WriteReq);
1524 packet.dataStatic(blk.data);
1525
1526 memSidePort.sendFunctional(&packet);
1527
1528 blk.status &= ~BlkDirty;
1529 }
1530}
1531
1532void
1533BaseCache::invalidateVisitor(CacheBlk &blk)
1534{
1535 if (blk.isDirty())
1536 warn_once("Invalidating dirty cache lines. " \
1537 "Expect things to break.\n");
1538
1539 if (blk.isValid()) {
1540 assert(!blk.isDirty());
1541 invalidateBlock(&blk);
1542 }
1543}
1544
1545Tick
1546BaseCache::nextQueueReadyTime() const
1547{
1548 Tick nextReady = std::min(mshrQueue.nextReadyTime(),
1549 writeBuffer.nextReadyTime());
1550
1551 // Don't signal prefetch ready time if no MSHRs available
1552 // Will signal once enoguh MSHRs are deallocated
1553 if (prefetcher && mshrQueue.canPrefetch()) {
1554 nextReady = std::min(nextReady,
1555 prefetcher->nextPrefetchReadyTime());
1556 }
1557
1558 return nextReady;
1559}
1560
1561
1562bool
1563BaseCache::sendMSHRQueuePacket(MSHR* mshr)
1564{
1565 assert(mshr);
1566
1567 // use request from 1st target
1568 PacketPtr tgt_pkt = mshr->getTarget()->pkt;
1569
1570 DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
1571
1572 // if the cache is in write coalescing mode or (additionally) in
1573 // no allocation mode, and we have a write packet with an MSHR
1574 // that is not a whole-line write (due to incompatible flags etc),
1575 // then reset the write mode
1576 if (writeAllocator && writeAllocator->coalesce() && tgt_pkt->isWrite()) {
1577 if (!mshr->isWholeLineWrite()) {
1578 // if we are currently write coalescing, hold on the
1579 // MSHR as many cycles extra as we need to completely
1580 // write a cache line
1581 if (writeAllocator->delay(mshr->blkAddr)) {
1582 Tick delay = blkSize / tgt_pkt->getSize() * clockPeriod();
1583 DPRINTF(CacheVerbose, "Delaying pkt %s %llu ticks to allow "
1584 "for write coalescing\n", tgt_pkt->print(), delay);
1585 mshrQueue.delay(mshr, delay);
1586 return false;
1587 } else {
1588 writeAllocator->reset();
1589 }
1590 } else {
1591 writeAllocator->resetDelay(mshr->blkAddr);
1592 }
1593 }
1594
1595 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
1596
1597 // either a prefetch that is not present upstream, or a normal
1598 // MSHR request, proceed to get the packet to send downstream
1599 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable(),
1600 mshr->isWholeLineWrite());
1601
1602 mshr->isForward = (pkt == nullptr);
1603
1604 if (mshr->isForward) {
1605 // not a cache block request, but a response is expected
1606 // make copy of current packet to forward, keep current
1607 // copy for response handling
1608 pkt = new Packet(tgt_pkt, false, true);
1609 assert(!pkt->isWrite());
1610 }
1611
1612 // play it safe and append (rather than set) the sender state,
1613 // as forwarded packets may already have existing state
1614 pkt->pushSenderState(mshr);
1615
1616 if (pkt->isClean() && blk && blk->isDirty()) {
1617 // A cache clean opearation is looking for a dirty block. Mark
1618 // the packet so that the destination xbar can determine that
1619 // there will be a follow-up write packet as well.
1620 pkt->setSatisfied();
1621 }
1622
1623 if (!memSidePort.sendTimingReq(pkt)) {
1624 // we are awaiting a retry, but we
1625 // delete the packet and will be creating a new packet
1626 // when we get the opportunity
1627 delete pkt;
1628
1629 // note that we have now masked any requestBus and
1630 // schedSendEvent (we will wait for a retry before
1631 // doing anything), and this is so even if we do not
1632 // care about this packet and might override it before
1633 // it gets retried
1634 return true;
1635 } else {
1636 // As part of the call to sendTimingReq the packet is
1637 // forwarded to all neighbouring caches (and any caches
1638 // above them) as a snoop. Thus at this point we know if
1639 // any of the neighbouring caches are responding, and if
1640 // so, we know it is dirty, and we can determine if it is
1641 // being passed as Modified, making our MSHR the ordering
1642 // point
1643 bool pending_modified_resp = !pkt->hasSharers() &&
1644 pkt->cacheResponding();
1645 markInService(mshr, pending_modified_resp);
1646
1647 if (pkt->isClean() && blk && blk->isDirty()) {
1648 // A cache clean opearation is looking for a dirty
1649 // block. If a dirty block is encountered a WriteClean
1650 // will update any copies to the path to the memory
1651 // until the point of reference.
1652 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
1653 __func__, pkt->print(), blk->print());
1654 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
1655 pkt->id);
1656 PacketList writebacks;
1657 writebacks.push_back(wb_pkt);
1658 doWritebacks(writebacks, 0);
1659 }
1660
1661 return false;
1662 }
1663}
1664
1665bool
1666BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
1667{
1668 assert(wq_entry);
1669
1670 // always a single target for write queue entries
1671 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
1672
1673 DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
1674
1675 // forward as is, both for evictions and uncacheable writes
1676 if (!memSidePort.sendTimingReq(tgt_pkt)) {
1677 // note that we have now masked any requestBus and
1678 // schedSendEvent (we will wait for a retry before
1679 // doing anything), and this is so even if we do not
1680 // care about this packet and might override it before
1681 // it gets retried
1682 return true;
1683 } else {
1684 markInService(wq_entry);
1685 return false;
1686 }
1687}
1688
1689void
1690BaseCache::serialize(CheckpointOut &cp) const
1691{
1692 bool dirty(isDirty());
1693
1694 if (dirty) {
1695 warn("*** The cache still contains dirty data. ***\n");
1696 warn(" Make sure to drain the system using the correct flags.\n");
1697 warn(" This checkpoint will not restore correctly " \
1698 "and dirty data in the cache will be lost!\n");
1699 }
1700
1701 // Since we don't checkpoint the data in the cache, any dirty data
1702 // will be lost when restoring from a checkpoint of a system that
1703 // wasn't drained properly. Flag the checkpoint as invalid if the
1704 // cache contains dirty data.
1705 bool bad_checkpoint(dirty);
1706 SERIALIZE_SCALAR(bad_checkpoint);
1707}
1708
1709void
1710BaseCache::unserialize(CheckpointIn &cp)
1711{
1712 bool bad_checkpoint;
1713 UNSERIALIZE_SCALAR(bad_checkpoint);
1714 if (bad_checkpoint) {
1715 fatal("Restoring from checkpoints with dirty caches is not "
1716 "supported in the classic memory system. Please remove any "
1717 "caches or drain them properly before taking checkpoints.\n");
1718 }
1719}
1720
1721void
1722BaseCache::regStats()
1723{
1724 ClockedObject::regStats();
1725
1726 using namespace Stats;
1727
1728 // Hit statistics
1729 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1730 MemCmd cmd(access_idx);
1731 const string &cstr = cmd.toString();
1732
1733 hits[access_idx]
1734 .init(system->maxMasters())
1735 .name(name() + "." + cstr + "_hits")
1736 .desc("number of " + cstr + " hits")
1737 .flags(total | nozero | nonan)
1738 ;
1739 for (int i = 0; i < system->maxMasters(); i++) {
1740 hits[access_idx].subname(i, system->getMasterName(i));
1741 }
1742 }
1743
1744// These macros make it easier to sum the right subset of commands and
1745// to change the subset of commands that are considered "demand" vs
1746// "non-demand"
1747#define SUM_DEMAND(s) \
1748 (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \
1749 s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq])
1750
1751// should writebacks be included here? prior code was inconsistent...
1752#define SUM_NON_DEMAND(s) \
1753 (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq] + s[MemCmd::SoftPFExReq])
1754
1755 demandHits
1756 .name(name() + ".demand_hits")
1757 .desc("number of demand (read+write) hits")
1758 .flags(total | nozero | nonan)
1759 ;
1760 demandHits = SUM_DEMAND(hits);
1761 for (int i = 0; i < system->maxMasters(); i++) {
1762 demandHits.subname(i, system->getMasterName(i));
1763 }
1764
1765 overallHits
1766 .name(name() + ".overall_hits")
1767 .desc("number of overall hits")
1768 .flags(total | nozero | nonan)
1769 ;
1770 overallHits = demandHits + SUM_NON_DEMAND(hits);
1771 for (int i = 0; i < system->maxMasters(); i++) {
1772 overallHits.subname(i, system->getMasterName(i));
1773 }
1774
1775 // Miss statistics
1776 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1777 MemCmd cmd(access_idx);
1778 const string &cstr = cmd.toString();
1779
1780 misses[access_idx]
1781 .init(system->maxMasters())
1782 .name(name() + "." + cstr + "_misses")
1783 .desc("number of " + cstr + " misses")
1784 .flags(total | nozero | nonan)
1785 ;
1786 for (int i = 0; i < system->maxMasters(); i++) {
1787 misses[access_idx].subname(i, system->getMasterName(i));
1788 }
1789 }
1790
1791 demandMisses
1792 .name(name() + ".demand_misses")
1793 .desc("number of demand (read+write) misses")
1794 .flags(total | nozero | nonan)
1795 ;
1796 demandMisses = SUM_DEMAND(misses);
1797 for (int i = 0; i < system->maxMasters(); i++) {
1798 demandMisses.subname(i, system->getMasterName(i));
1799 }
1800
1801 overallMisses
1802 .name(name() + ".overall_misses")
1803 .desc("number of overall misses")
1804 .flags(total | nozero | nonan)
1805 ;
1806 overallMisses = demandMisses + SUM_NON_DEMAND(misses);
1807 for (int i = 0; i < system->maxMasters(); i++) {
1808 overallMisses.subname(i, system->getMasterName(i));
1809 }
1810
1811 // Miss latency statistics
1812 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1813 MemCmd cmd(access_idx);
1814 const string &cstr = cmd.toString();
1815
1816 missLatency[access_idx]
1817 .init(system->maxMasters())
1818 .name(name() + "." + cstr + "_miss_latency")
1819 .desc("number of " + cstr + " miss cycles")
1820 .flags(total | nozero | nonan)
1821 ;
1822 for (int i = 0; i < system->maxMasters(); i++) {
1823 missLatency[access_idx].subname(i, system->getMasterName(i));
1824 }
1825 }
1826
1827 demandMissLatency
1828 .name(name() + ".demand_miss_latency")
1829 .desc("number of demand (read+write) miss cycles")
1830 .flags(total | nozero | nonan)
1831 ;
1832 demandMissLatency = SUM_DEMAND(missLatency);
1833 for (int i = 0; i < system->maxMasters(); i++) {
1834 demandMissLatency.subname(i, system->getMasterName(i));
1835 }
1836
1837 overallMissLatency
1838 .name(name() + ".overall_miss_latency")
1839 .desc("number of overall miss cycles")
1840 .flags(total | nozero | nonan)
1841 ;
1842 overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency);
1843 for (int i = 0; i < system->maxMasters(); i++) {
1844 overallMissLatency.subname(i, system->getMasterName(i));
1845 }
1846
1847 // access formulas
1848 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1849 MemCmd cmd(access_idx);
1850 const string &cstr = cmd.toString();
1851
1852 accesses[access_idx]
1853 .name(name() + "." + cstr + "_accesses")
1854 .desc("number of " + cstr + " accesses(hits+misses)")
1855 .flags(total | nozero | nonan)
1856 ;
1857 accesses[access_idx] = hits[access_idx] + misses[access_idx];
1858
1859 for (int i = 0; i < system->maxMasters(); i++) {
1860 accesses[access_idx].subname(i, system->getMasterName(i));
1861 }
1862 }
1863
1864 demandAccesses
1865 .name(name() + ".demand_accesses")
1866 .desc("number of demand (read+write) accesses")
1867 .flags(total | nozero | nonan)
1868 ;
1869 demandAccesses = demandHits + demandMisses;
1870 for (int i = 0; i < system->maxMasters(); i++) {
1871 demandAccesses.subname(i, system->getMasterName(i));
1872 }
1873
1874 overallAccesses
1875 .name(name() + ".overall_accesses")
1876 .desc("number of overall (read+write) accesses")
1877 .flags(total | nozero | nonan)
1878 ;
1879 overallAccesses = overallHits + overallMisses;
1880 for (int i = 0; i < system->maxMasters(); i++) {
1881 overallAccesses.subname(i, system->getMasterName(i));
1882 }
1883
1884 // miss rate formulas
1885 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1886 MemCmd cmd(access_idx);
1887 const string &cstr = cmd.toString();
1888
1889 missRate[access_idx]
1890 .name(name() + "." + cstr + "_miss_rate")
1891 .desc("miss rate for " + cstr + " accesses")
1892 .flags(total | nozero | nonan)
1893 ;
1894 missRate[access_idx] = misses[access_idx] / accesses[access_idx];
1895
1896 for (int i = 0; i < system->maxMasters(); i++) {
1897 missRate[access_idx].subname(i, system->getMasterName(i));
1898 }
1899 }
1900
1901 demandMissRate
1902 .name(name() + ".demand_miss_rate")
1903 .desc("miss rate for demand accesses")
1904 .flags(total | nozero | nonan)
1905 ;
1906 demandMissRate = demandMisses / demandAccesses;
1907 for (int i = 0; i < system->maxMasters(); i++) {
1908 demandMissRate.subname(i, system->getMasterName(i));
1909 }
1910
1911 overallMissRate
1912 .name(name() + ".overall_miss_rate")
1913 .desc("miss rate for overall accesses")
1914 .flags(total | nozero | nonan)
1915 ;
1916 overallMissRate = overallMisses / overallAccesses;
1917 for (int i = 0; i < system->maxMasters(); i++) {
1918 overallMissRate.subname(i, system->getMasterName(i));
1919 }
1920
1921 // miss latency formulas
1922 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1923 MemCmd cmd(access_idx);
1924 const string &cstr = cmd.toString();
1925
1926 avgMissLatency[access_idx]
1927 .name(name() + "." + cstr + "_avg_miss_latency")
1928 .desc("average " + cstr + " miss latency")
1929 .flags(total | nozero | nonan)
1930 ;
1931 avgMissLatency[access_idx] =
1932 missLatency[access_idx] / misses[access_idx];
1933
1934 for (int i = 0; i < system->maxMasters(); i++) {
1935 avgMissLatency[access_idx].subname(i, system->getMasterName(i));
1936 }
1937 }
1938
1939 demandAvgMissLatency
1940 .name(name() + ".demand_avg_miss_latency")
1941 .desc("average overall miss latency")
1942 .flags(total | nozero | nonan)
1943 ;
1944 demandAvgMissLatency = demandMissLatency / demandMisses;
1945 for (int i = 0; i < system->maxMasters(); i++) {
1946 demandAvgMissLatency.subname(i, system->getMasterName(i));
1947 }
1948
1949 overallAvgMissLatency
1950 .name(name() + ".overall_avg_miss_latency")
1951 .desc("average overall miss latency")
1952 .flags(total | nozero | nonan)
1953 ;
1954 overallAvgMissLatency = overallMissLatency / overallMisses;
1955 for (int i = 0; i < system->maxMasters(); i++) {
1956 overallAvgMissLatency.subname(i, system->getMasterName(i));
1957 }
1958
1959 blocked_cycles.init(NUM_BLOCKED_CAUSES);
1960 blocked_cycles
1961 .name(name() + ".blocked_cycles")
1962 .desc("number of cycles access was blocked")
1963 .subname(Blocked_NoMSHRs, "no_mshrs")
1964 .subname(Blocked_NoTargets, "no_targets")
1965 ;
1966
1967
1968 blocked_causes.init(NUM_BLOCKED_CAUSES);
1969 blocked_causes
1970 .name(name() + ".blocked")
1971 .desc("number of cycles access was blocked")
1972 .subname(Blocked_NoMSHRs, "no_mshrs")
1973 .subname(Blocked_NoTargets, "no_targets")
1974 ;
1975
1976 avg_blocked
1977 .name(name() + ".avg_blocked_cycles")
1978 .desc("average number of cycles each access was blocked")
1979 .subname(Blocked_NoMSHRs, "no_mshrs")
1980 .subname(Blocked_NoTargets, "no_targets")
1981 ;
1982
1983 avg_blocked = blocked_cycles / blocked_causes;
1984
1985 unusedPrefetches
1986 .name(name() + ".unused_prefetches")
1987 .desc("number of HardPF blocks evicted w/o reference")
1988 .flags(nozero)
1989 ;
1990
1991 writebacks
1992 .init(system->maxMasters())
1993 .name(name() + ".writebacks")
1994 .desc("number of writebacks")
1995 .flags(total | nozero | nonan)
1996 ;
1997 for (int i = 0; i < system->maxMasters(); i++) {
1998 writebacks.subname(i, system->getMasterName(i));
1999 }
2000
2001 // MSHR statistics
2002 // MSHR hit statistics
2003 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2004 MemCmd cmd(access_idx);
2005 const string &cstr = cmd.toString();
2006
2007 mshr_hits[access_idx]
2008 .init(system->maxMasters())
2009 .name(name() + "." + cstr + "_mshr_hits")
2010 .desc("number of " + cstr + " MSHR hits")
2011 .flags(total | nozero | nonan)
2012 ;
2013 for (int i = 0; i < system->maxMasters(); i++) {
2014 mshr_hits[access_idx].subname(i, system->getMasterName(i));
2015 }
2016 }
2017
2018 demandMshrHits
2019 .name(name() + ".demand_mshr_hits")
2020 .desc("number of demand (read+write) MSHR hits")
2021 .flags(total | nozero | nonan)
2022 ;
2023 demandMshrHits = SUM_DEMAND(mshr_hits);
2024 for (int i = 0; i < system->maxMasters(); i++) {
2025 demandMshrHits.subname(i, system->getMasterName(i));
2026 }
2027
2028 overallMshrHits
2029 .name(name() + ".overall_mshr_hits")
2030 .desc("number of overall MSHR hits")
2031 .flags(total | nozero | nonan)
2032 ;
2033 overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits);
2034 for (int i = 0; i < system->maxMasters(); i++) {
2035 overallMshrHits.subname(i, system->getMasterName(i));
2036 }
2037
2038 // MSHR miss statistics
2039 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2040 MemCmd cmd(access_idx);
2041 const string &cstr = cmd.toString();
2042
2043 mshr_misses[access_idx]
2044 .init(system->maxMasters())
2045 .name(name() + "." + cstr + "_mshr_misses")
2046 .desc("number of " + cstr + " MSHR misses")
2047 .flags(total | nozero | nonan)
2048 ;
2049 for (int i = 0; i < system->maxMasters(); i++) {
2050 mshr_misses[access_idx].subname(i, system->getMasterName(i));
2051 }
2052 }
2053
2054 demandMshrMisses
2055 .name(name() + ".demand_mshr_misses")
2056 .desc("number of demand (read+write) MSHR misses")
2057 .flags(total | nozero | nonan)
2058 ;
2059 demandMshrMisses = SUM_DEMAND(mshr_misses);
2060 for (int i = 0; i < system->maxMasters(); i++) {
2061 demandMshrMisses.subname(i, system->getMasterName(i));
2062 }
2063
2064 overallMshrMisses
2065 .name(name() + ".overall_mshr_misses")
2066 .desc("number of overall MSHR misses")
2067 .flags(total | nozero | nonan)
2068 ;
2069 overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses);
2070 for (int i = 0; i < system->maxMasters(); i++) {
2071 overallMshrMisses.subname(i, system->getMasterName(i));
2072 }
2073
2074 // MSHR miss latency statistics
2075 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2076 MemCmd cmd(access_idx);
2077 const string &cstr = cmd.toString();
2078
2079 mshr_miss_latency[access_idx]
2080 .init(system->maxMasters())
2081 .name(name() + "." + cstr + "_mshr_miss_latency")
2082 .desc("number of " + cstr + " MSHR miss cycles")
2083 .flags(total | nozero | nonan)
2084 ;
2085 for (int i = 0; i < system->maxMasters(); i++) {
2086 mshr_miss_latency[access_idx].subname(i, system->getMasterName(i));
2087 }
2088 }
2089
2090 demandMshrMissLatency
2091 .name(name() + ".demand_mshr_miss_latency")
2092 .desc("number of demand (read+write) MSHR miss cycles")
2093 .flags(total | nozero | nonan)
2094 ;
2095 demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency);
2096 for (int i = 0; i < system->maxMasters(); i++) {
2097 demandMshrMissLatency.subname(i, system->getMasterName(i));
2098 }
2099
2100 overallMshrMissLatency
2101 .name(name() + ".overall_mshr_miss_latency")
2102 .desc("number of overall MSHR miss cycles")
2103 .flags(total | nozero | nonan)
2104 ;
2105 overallMshrMissLatency =
2106 demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency);
2107 for (int i = 0; i < system->maxMasters(); i++) {
2108 overallMshrMissLatency.subname(i, system->getMasterName(i));
2109 }
2110
2111 // MSHR uncacheable statistics
2112 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2113 MemCmd cmd(access_idx);
2114 const string &cstr = cmd.toString();
2115
2116 mshr_uncacheable[access_idx]
2117 .init(system->maxMasters())
2118 .name(name() + "." + cstr + "_mshr_uncacheable")
2119 .desc("number of " + cstr + " MSHR uncacheable")
2120 .flags(total | nozero | nonan)
2121 ;
2122 for (int i = 0; i < system->maxMasters(); i++) {
2123 mshr_uncacheable[access_idx].subname(i, system->getMasterName(i));
2124 }
2125 }
2126
2127 overallMshrUncacheable
2128 .name(name() + ".overall_mshr_uncacheable_misses")
2129 .desc("number of overall MSHR uncacheable misses")
2130 .flags(total | nozero | nonan)
2131 ;
2132 overallMshrUncacheable =
2133 SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable);
2134 for (int i = 0; i < system->maxMasters(); i++) {
2135 overallMshrUncacheable.subname(i, system->getMasterName(i));
2136 }
2137
2138 // MSHR miss latency statistics
2139 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2140 MemCmd cmd(access_idx);
2141 const string &cstr = cmd.toString();
2142
2143 mshr_uncacheable_lat[access_idx]
2144 .init(system->maxMasters())
2145 .name(name() + "." + cstr + "_mshr_uncacheable_latency")
2146 .desc("number of " + cstr + " MSHR uncacheable cycles")
2147 .flags(total | nozero | nonan)
2148 ;
2149 for (int i = 0; i < system->maxMasters(); i++) {
2150 mshr_uncacheable_lat[access_idx].subname(
2151 i, system->getMasterName(i));
2152 }
2153 }
2154
2155 overallMshrUncacheableLatency
2156 .name(name() + ".overall_mshr_uncacheable_latency")
2157 .desc("number of overall MSHR uncacheable cycles")
2158 .flags(total | nozero | nonan)
2159 ;
2160 overallMshrUncacheableLatency =
2161 SUM_DEMAND(mshr_uncacheable_lat) +
2162 SUM_NON_DEMAND(mshr_uncacheable_lat);
2163 for (int i = 0; i < system->maxMasters(); i++) {
2164 overallMshrUncacheableLatency.subname(i, system->getMasterName(i));
2165 }
2166
2167#if 0
2168 // MSHR access formulas
2169 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2170 MemCmd cmd(access_idx);
2171 const string &cstr = cmd.toString();
2172
2173 mshrAccesses[access_idx]
2174 .name(name() + "." + cstr + "_mshr_accesses")
2175 .desc("number of " + cstr + " mshr accesses(hits+misses)")
2176 .flags(total | nozero | nonan)
2177 ;
2178 mshrAccesses[access_idx] =
2179 mshr_hits[access_idx] + mshr_misses[access_idx]
2180 + mshr_uncacheable[access_idx];
2181 }
2182
2183 demandMshrAccesses
2184 .name(name() + ".demand_mshr_accesses")
2185 .desc("number of demand (read+write) mshr accesses")
2186 .flags(total | nozero | nonan)
2187 ;
2188 demandMshrAccesses = demandMshrHits + demandMshrMisses;
2189
2190 overallMshrAccesses
2191 .name(name() + ".overall_mshr_accesses")
2192 .desc("number of overall (read+write) mshr accesses")
2193 .flags(total | nozero | nonan)
2194 ;
2195 overallMshrAccesses = overallMshrHits + overallMshrMisses
2196 + overallMshrUncacheable;
2197#endif
2198
2199 // MSHR miss rate formulas
2200 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2201 MemCmd cmd(access_idx);
2202 const string &cstr = cmd.toString();
2203
2204 mshrMissRate[access_idx]
2205 .name(name() + "." + cstr + "_mshr_miss_rate")
2206 .desc("mshr miss rate for " + cstr + " accesses")
2207 .flags(total | nozero | nonan)
2208 ;
2209 mshrMissRate[access_idx] =
2210 mshr_misses[access_idx] / accesses[access_idx];
2211
2212 for (int i = 0; i < system->maxMasters(); i++) {
2213 mshrMissRate[access_idx].subname(i, system->getMasterName(i));
2214 }
2215 }
2216
2217 demandMshrMissRate
2218 .name(name() + ".demand_mshr_miss_rate")
2219 .desc("mshr miss rate for demand accesses")
2220 .flags(total | nozero | nonan)
2221 ;
2222 demandMshrMissRate = demandMshrMisses / demandAccesses;
2223 for (int i = 0; i < system->maxMasters(); i++) {
2224 demandMshrMissRate.subname(i, system->getMasterName(i));
2225 }
2226
2227 overallMshrMissRate
2228 .name(name() + ".overall_mshr_miss_rate")
2229 .desc("mshr miss rate for overall accesses")
2230 .flags(total | nozero | nonan)
2231 ;
2232 overallMshrMissRate = overallMshrMisses / overallAccesses;
2233 for (int i = 0; i < system->maxMasters(); i++) {
2234 overallMshrMissRate.subname(i, system->getMasterName(i));
2235 }
2236
2237 // mshrMiss latency formulas
2238 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2239 MemCmd cmd(access_idx);
2240 const string &cstr = cmd.toString();
2241
2242 avgMshrMissLatency[access_idx]
2243 .name(name() + "." + cstr + "_avg_mshr_miss_latency")
2244 .desc("average " + cstr + " mshr miss latency")
2245 .flags(total | nozero | nonan)
2246 ;
2247 avgMshrMissLatency[access_idx] =
2248 mshr_miss_latency[access_idx] / mshr_misses[access_idx];
2249
2250 for (int i = 0; i < system->maxMasters(); i++) {
2251 avgMshrMissLatency[access_idx].subname(
2252 i, system->getMasterName(i));
2253 }
2254 }
2255
2256 demandAvgMshrMissLatency
2257 .name(name() + ".demand_avg_mshr_miss_latency")
2258 .desc("average overall mshr miss latency")
2259 .flags(total | nozero | nonan)
2260 ;
2261 demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses;
2262 for (int i = 0; i < system->maxMasters(); i++) {
2263 demandAvgMshrMissLatency.subname(i, system->getMasterName(i));
2264 }
2265
2266 overallAvgMshrMissLatency
2267 .name(name() + ".overall_avg_mshr_miss_latency")
2268 .desc("average overall mshr miss latency")
2269 .flags(total | nozero | nonan)
2270 ;
2271 overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses;
2272 for (int i = 0; i < system->maxMasters(); i++) {
2273 overallAvgMshrMissLatency.subname(i, system->getMasterName(i));
2274 }
2275
2276 // mshrUncacheable latency formulas
2277 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2278 MemCmd cmd(access_idx);
2279 const string &cstr = cmd.toString();
2280
2281 avgMshrUncacheableLatency[access_idx]
2282 .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency")
2283 .desc("average " + cstr + " mshr uncacheable latency")
2284 .flags(total | nozero | nonan)
2285 ;
2286 avgMshrUncacheableLatency[access_idx] =
2287 mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx];
2288
2289 for (int i = 0; i < system->maxMasters(); i++) {
2290 avgMshrUncacheableLatency[access_idx].subname(
2291 i, system->getMasterName(i));
2292 }
2293 }
2294
2295 overallAvgMshrUncacheableLatency
2296 .name(name() + ".overall_avg_mshr_uncacheable_latency")
2297 .desc("average overall mshr uncacheable latency")
2298 .flags(total | nozero | nonan)
2299 ;
2300 overallAvgMshrUncacheableLatency =
2301 overallMshrUncacheableLatency / overallMshrUncacheable;
2302 for (int i = 0; i < system->maxMasters(); i++) {
2303 overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i));
2304 }
2305
2306 replacements
2307 .name(name() + ".replacements")
2308 .desc("number of replacements")
2309 ;
2310}
2311
2312void
2313BaseCache::regProbePoints()
2314{
2315 ppHit = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Hit");
2316 ppMiss = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Miss");
2317 ppFill = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Fill");
2318}
2319
2320///////////////
2321//
2322// CpuSidePort
2323//
2324///////////////
2325bool
2326BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2327{
2328 // Snoops shouldn't happen when bypassing caches
2329 assert(!cache->system->bypassCaches());
2330
2331 assert(pkt->isResponse());
2332
2333 // Express snoop responses from master to slave, e.g., from L1 to L2
2334 cache->recvTimingSnoopResp(pkt);
2335 return true;
2336}
2337
2338
2339bool
2340BaseCache::CpuSidePort::tryTiming(PacketPtr pkt)
2341{
2342 if (cache->system->bypassCaches() || pkt->isExpressSnoop()) {
2343 // always let express snoop packets through even if blocked
2344 return true;
2345 } else if (blocked || mustSendRetry) {
2346 // either already committed to send a retry, or blocked
2347 mustSendRetry = true;
2348 return false;
2349 }
2350 mustSendRetry = false;
2351 return true;
2352}
2353
2354bool
2355BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2356{
2357 assert(pkt->isRequest());
2358
2359 if (cache->system->bypassCaches()) {
2360 // Just forward the packet if caches are disabled.
2361 // @todo This should really enqueue the packet rather
2362 bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt);
2363 assert(success);
2364 return true;
2365 } else if (tryTiming(pkt)) {
2366 cache->recvTimingReq(pkt);
2367 return true;
2368 }
2369 return false;
2370}
2371
2372Tick
2373BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt)
2374{
2375 if (cache->system->bypassCaches()) {
2376 // Forward the request if the system is in cache bypass mode.
2377 return cache->memSidePort.sendAtomic(pkt);
2378 } else {
2379 return cache->recvAtomic(pkt);
2380 }
2381}
2382
2383void
2384BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt)
2385{
2386 if (cache->system->bypassCaches()) {
2387 // The cache should be flushed if we are in cache bypass mode,
2388 // so we don't need to check if we need to update anything.
2389 cache->memSidePort.sendFunctional(pkt);
2390 return;
2391 }
2392
2393 // functional request
2394 cache->functionalAccess(pkt, true);
2395}
2396
2397AddrRangeList
2398BaseCache::CpuSidePort::getAddrRanges() const
2399{
2400 return cache->getAddrRanges();
2401}
2402
2403
2404BaseCache::
2405CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache,
2406 const std::string &_label)
2407 : CacheSlavePort(_name, _cache, _label), cache(_cache)
2408{
2409}
2410
2411///////////////
2412//
2413// MemSidePort
2414//
2415///////////////
2416bool
2417BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt)
2418{
2419 cache->recvTimingResp(pkt);
2420 return true;
2421}
2422
2423// Express snooping requests to memside port
2424void
2425BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2426{
2427 // Snoops shouldn't happen when bypassing caches
2428 assert(!cache->system->bypassCaches());
2429
2430 // handle snooping requests
2431 cache->recvTimingSnoopReq(pkt);
2432}
2433
2434Tick
2435BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2436{
2437 // Snoops shouldn't happen when bypassing caches
2438 assert(!cache->system->bypassCaches());
2439
2440 return cache->recvAtomicSnoop(pkt);
2441}
2442
2443void
2444BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2445{
2446 // Snoops shouldn't happen when bypassing caches
2447 assert(!cache->system->bypassCaches());
2448
2449 // functional snoop (note that in contrast to atomic we don't have
2450 // a specific functionalSnoop method, as they have the same
2451 // behaviour regardless)
2452 cache->functionalAccess(pkt, false);
2453}
2454
2455void
2456BaseCache::CacheReqPacketQueue::sendDeferredPacket()
2457{
2458 // sanity check
2459 assert(!waitingOnRetry);
2460
2461 // there should never be any deferred request packets in the
2462 // queue, instead we resly on the cache to provide the packets
2463 // from the MSHR queue or write queue
2464 assert(deferredPacketReadyTime() == MaxTick);
2465
2466 // check for request packets (requests & writebacks)
2467 QueueEntry* entry = cache.getNextQueueEntry();
2468
2469 if (!entry) {
2470 // can happen if e.g. we attempt a writeback and fail, but
2471 // before the retry, the writeback is eliminated because
2472 // we snoop another cache's ReadEx.
2473 } else {
2474 // let our snoop responses go first if there are responses to
2475 // the same addresses
2476 if (checkConflictingSnoop(entry->getTarget()->pkt)) {
2477 return;
2478 }
2479 waitingOnRetry = entry->sendPacket(cache);
2480 }
2481
2482 // if we succeeded and are not waiting for a retry, schedule the
2483 // next send considering when the next queue is ready, note that
2484 // snoop responses have their own packet queue and thus schedule
2485 // their own events
2486 if (!waitingOnRetry) {
2487 schedSendEvent(cache.nextQueueReadyTime());
2488 }
2489}
2490
2491BaseCache::MemSidePort::MemSidePort(const std::string &_name,
2492 BaseCache *_cache,
2493 const std::string &_label)
2494 : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2495 _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2496 _snoopRespQueue(*_cache, *this, true, _label), cache(_cache)
2497{
2498}
2499
2500void
2501WriteAllocator::updateMode(Addr write_addr, unsigned write_size,
2502 Addr blk_addr)
2503{
2504 // check if we are continuing where the last write ended
2505 if (nextAddr == write_addr) {
2506 delayCtr[blk_addr] = delayThreshold;
2507 // stop if we have already saturated
2508 if (mode != WriteMode::NO_ALLOCATE) {
2509 byteCount += write_size;
2510 // switch to streaming mode if we have passed the lower
2511 // threshold
2512 if (mode == WriteMode::ALLOCATE &&
2513 byteCount > coalesceLimit) {
2514 mode = WriteMode::COALESCE;
2515 DPRINTF(Cache, "Switched to write coalescing\n");
2516 } else if (mode == WriteMode::COALESCE &&
2517 byteCount > noAllocateLimit) {
2518 // and continue and switch to non-allocating mode if we
2519 // pass the upper threshold
2520 mode = WriteMode::NO_ALLOCATE;
2521 DPRINTF(Cache, "Switched to write-no-allocate\n");
2522 }
2523 }
2524 } else {
2525 // we did not see a write matching the previous one, start
2526 // over again
2527 byteCount = write_size;
2528 mode = WriteMode::ALLOCATE;
2529 resetDelay(blk_addr);
2530 }
2531 nextAddr = write_addr + write_size;
2532}
2533
2534WriteAllocator*
2535WriteAllocatorParams::create()
2536{
2537 return new WriteAllocator(this);
2538}
1329
1330 // It is valid to return nullptr if there is no victim
1331 if (!victim)
1332 return nullptr;
1333
1334 // Print victim block's information
1335 DPRINTF(CacheRepl, "Replacement victim: %s\n", victim->print());
1336
1337 // Check for transient state allocations. If any of the entries listed
1338 // for eviction has a transient state, the allocation fails
1339 bool replacement = false;
1340 for (const auto& blk : evict_blks) {
1341 if (blk->isValid()) {
1342 replacement = true;
1343
1344 Addr repl_addr = regenerateBlkAddr(blk);
1345 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1346 if (repl_mshr) {
1347 // must be an outstanding upgrade or clean request
1348 // on a block we're about to replace...
1349 assert((!blk->isWritable() && repl_mshr->needsWritable()) ||
1350 repl_mshr->isCleaning());
1351
1352 // too hard to replace block with transient state
1353 // allocation failed, block not inserted
1354 return nullptr;
1355 }
1356 }
1357 }
1358
1359 // The victim will be replaced by a new entry, so increase the replacement
1360 // counter if a valid block is being replaced
1361 if (replacement) {
1362 // Evict valid blocks associated to this victim block
1363 for (const auto& blk : evict_blks) {
1364 if (blk->isValid()) {
1365 DPRINTF(CacheRepl, "Evicting %s (%#llx) to make room for " \
1366 "%#llx (%s)\n", blk->print(), regenerateBlkAddr(blk),
1367 addr, is_secure);
1368
1369 if (blk->wasPrefetched()) {
1370 unusedPrefetches++;
1371 }
1372
1373 evictBlock(blk, writebacks);
1374 }
1375 }
1376
1377 replacements++;
1378 }
1379
1380 // Insert new block at victimized entry
1381 tags->insertBlock(pkt, victim);
1382
1383 return victim;
1384}
1385
1386void
1387BaseCache::invalidateBlock(CacheBlk *blk)
1388{
1389 // If handling a block present in the Tags, let it do its invalidation
1390 // process, which will update stats and invalidate the block itself
1391 if (blk != tempBlock) {
1392 tags->invalidate(blk);
1393 } else {
1394 tempBlock->invalidate();
1395 }
1396}
1397
1398void
1399BaseCache::evictBlock(CacheBlk *blk, PacketList &writebacks)
1400{
1401 PacketPtr pkt = evictBlock(blk);
1402 if (pkt) {
1403 writebacks.push_back(pkt);
1404 }
1405}
1406
1407PacketPtr
1408BaseCache::writebackBlk(CacheBlk *blk)
1409{
1410 chatty_assert(!isReadOnly || writebackClean,
1411 "Writeback from read-only cache");
1412 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1413
1414 writebacks[Request::wbMasterId]++;
1415
1416 RequestPtr req = std::make_shared<Request>(
1417 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1418
1419 if (blk->isSecure())
1420 req->setFlags(Request::SECURE);
1421
1422 req->taskId(blk->task_id);
1423
1424 PacketPtr pkt =
1425 new Packet(req, blk->isDirty() ?
1426 MemCmd::WritebackDirty : MemCmd::WritebackClean);
1427
1428 DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1429 pkt->print(), blk->isWritable(), blk->isDirty());
1430
1431 if (blk->isWritable()) {
1432 // not asserting shared means we pass the block in modified
1433 // state, mark our own block non-writeable
1434 blk->status &= ~BlkWritable;
1435 } else {
1436 // we are in the Owned state, tell the receiver
1437 pkt->setHasSharers();
1438 }
1439
1440 // make sure the block is not marked dirty
1441 blk->status &= ~BlkDirty;
1442
1443 pkt->allocate();
1444 pkt->setDataFromBlock(blk->data, blkSize);
1445
1446 return pkt;
1447}
1448
1449PacketPtr
1450BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
1451{
1452 RequestPtr req = std::make_shared<Request>(
1453 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1454
1455 if (blk->isSecure()) {
1456 req->setFlags(Request::SECURE);
1457 }
1458 req->taskId(blk->task_id);
1459
1460 PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
1461
1462 if (dest) {
1463 req->setFlags(dest);
1464 pkt->setWriteThrough();
1465 }
1466
1467 DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1468 blk->isWritable(), blk->isDirty());
1469
1470 if (blk->isWritable()) {
1471 // not asserting shared means we pass the block in modified
1472 // state, mark our own block non-writeable
1473 blk->status &= ~BlkWritable;
1474 } else {
1475 // we are in the Owned state, tell the receiver
1476 pkt->setHasSharers();
1477 }
1478
1479 // make sure the block is not marked dirty
1480 blk->status &= ~BlkDirty;
1481
1482 pkt->allocate();
1483 pkt->setDataFromBlock(blk->data, blkSize);
1484
1485 return pkt;
1486}
1487
1488
1489void
1490BaseCache::memWriteback()
1491{
1492 tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); });
1493}
1494
1495void
1496BaseCache::memInvalidate()
1497{
1498 tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); });
1499}
1500
1501bool
1502BaseCache::isDirty() const
1503{
1504 return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); });
1505}
1506
1507bool
1508BaseCache::coalesce() const
1509{
1510 return writeAllocator && writeAllocator->coalesce();
1511}
1512
1513void
1514BaseCache::writebackVisitor(CacheBlk &blk)
1515{
1516 if (blk.isDirty()) {
1517 assert(blk.isValid());
1518
1519 RequestPtr request = std::make_shared<Request>(
1520 regenerateBlkAddr(&blk), blkSize, 0, Request::funcMasterId);
1521
1522 request->taskId(blk.task_id);
1523 if (blk.isSecure()) {
1524 request->setFlags(Request::SECURE);
1525 }
1526
1527 Packet packet(request, MemCmd::WriteReq);
1528 packet.dataStatic(blk.data);
1529
1530 memSidePort.sendFunctional(&packet);
1531
1532 blk.status &= ~BlkDirty;
1533 }
1534}
1535
1536void
1537BaseCache::invalidateVisitor(CacheBlk &blk)
1538{
1539 if (blk.isDirty())
1540 warn_once("Invalidating dirty cache lines. " \
1541 "Expect things to break.\n");
1542
1543 if (blk.isValid()) {
1544 assert(!blk.isDirty());
1545 invalidateBlock(&blk);
1546 }
1547}
1548
1549Tick
1550BaseCache::nextQueueReadyTime() const
1551{
1552 Tick nextReady = std::min(mshrQueue.nextReadyTime(),
1553 writeBuffer.nextReadyTime());
1554
1555 // Don't signal prefetch ready time if no MSHRs available
1556 // Will signal once enoguh MSHRs are deallocated
1557 if (prefetcher && mshrQueue.canPrefetch()) {
1558 nextReady = std::min(nextReady,
1559 prefetcher->nextPrefetchReadyTime());
1560 }
1561
1562 return nextReady;
1563}
1564
1565
1566bool
1567BaseCache::sendMSHRQueuePacket(MSHR* mshr)
1568{
1569 assert(mshr);
1570
1571 // use request from 1st target
1572 PacketPtr tgt_pkt = mshr->getTarget()->pkt;
1573
1574 DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
1575
1576 // if the cache is in write coalescing mode or (additionally) in
1577 // no allocation mode, and we have a write packet with an MSHR
1578 // that is not a whole-line write (due to incompatible flags etc),
1579 // then reset the write mode
1580 if (writeAllocator && writeAllocator->coalesce() && tgt_pkt->isWrite()) {
1581 if (!mshr->isWholeLineWrite()) {
1582 // if we are currently write coalescing, hold on the
1583 // MSHR as many cycles extra as we need to completely
1584 // write a cache line
1585 if (writeAllocator->delay(mshr->blkAddr)) {
1586 Tick delay = blkSize / tgt_pkt->getSize() * clockPeriod();
1587 DPRINTF(CacheVerbose, "Delaying pkt %s %llu ticks to allow "
1588 "for write coalescing\n", tgt_pkt->print(), delay);
1589 mshrQueue.delay(mshr, delay);
1590 return false;
1591 } else {
1592 writeAllocator->reset();
1593 }
1594 } else {
1595 writeAllocator->resetDelay(mshr->blkAddr);
1596 }
1597 }
1598
1599 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
1600
1601 // either a prefetch that is not present upstream, or a normal
1602 // MSHR request, proceed to get the packet to send downstream
1603 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable(),
1604 mshr->isWholeLineWrite());
1605
1606 mshr->isForward = (pkt == nullptr);
1607
1608 if (mshr->isForward) {
1609 // not a cache block request, but a response is expected
1610 // make copy of current packet to forward, keep current
1611 // copy for response handling
1612 pkt = new Packet(tgt_pkt, false, true);
1613 assert(!pkt->isWrite());
1614 }
1615
1616 // play it safe and append (rather than set) the sender state,
1617 // as forwarded packets may already have existing state
1618 pkt->pushSenderState(mshr);
1619
1620 if (pkt->isClean() && blk && blk->isDirty()) {
1621 // A cache clean opearation is looking for a dirty block. Mark
1622 // the packet so that the destination xbar can determine that
1623 // there will be a follow-up write packet as well.
1624 pkt->setSatisfied();
1625 }
1626
1627 if (!memSidePort.sendTimingReq(pkt)) {
1628 // we are awaiting a retry, but we
1629 // delete the packet and will be creating a new packet
1630 // when we get the opportunity
1631 delete pkt;
1632
1633 // note that we have now masked any requestBus and
1634 // schedSendEvent (we will wait for a retry before
1635 // doing anything), and this is so even if we do not
1636 // care about this packet and might override it before
1637 // it gets retried
1638 return true;
1639 } else {
1640 // As part of the call to sendTimingReq the packet is
1641 // forwarded to all neighbouring caches (and any caches
1642 // above them) as a snoop. Thus at this point we know if
1643 // any of the neighbouring caches are responding, and if
1644 // so, we know it is dirty, and we can determine if it is
1645 // being passed as Modified, making our MSHR the ordering
1646 // point
1647 bool pending_modified_resp = !pkt->hasSharers() &&
1648 pkt->cacheResponding();
1649 markInService(mshr, pending_modified_resp);
1650
1651 if (pkt->isClean() && blk && blk->isDirty()) {
1652 // A cache clean opearation is looking for a dirty
1653 // block. If a dirty block is encountered a WriteClean
1654 // will update any copies to the path to the memory
1655 // until the point of reference.
1656 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
1657 __func__, pkt->print(), blk->print());
1658 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
1659 pkt->id);
1660 PacketList writebacks;
1661 writebacks.push_back(wb_pkt);
1662 doWritebacks(writebacks, 0);
1663 }
1664
1665 return false;
1666 }
1667}
1668
1669bool
1670BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
1671{
1672 assert(wq_entry);
1673
1674 // always a single target for write queue entries
1675 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
1676
1677 DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
1678
1679 // forward as is, both for evictions and uncacheable writes
1680 if (!memSidePort.sendTimingReq(tgt_pkt)) {
1681 // note that we have now masked any requestBus and
1682 // schedSendEvent (we will wait for a retry before
1683 // doing anything), and this is so even if we do not
1684 // care about this packet and might override it before
1685 // it gets retried
1686 return true;
1687 } else {
1688 markInService(wq_entry);
1689 return false;
1690 }
1691}
1692
1693void
1694BaseCache::serialize(CheckpointOut &cp) const
1695{
1696 bool dirty(isDirty());
1697
1698 if (dirty) {
1699 warn("*** The cache still contains dirty data. ***\n");
1700 warn(" Make sure to drain the system using the correct flags.\n");
1701 warn(" This checkpoint will not restore correctly " \
1702 "and dirty data in the cache will be lost!\n");
1703 }
1704
1705 // Since we don't checkpoint the data in the cache, any dirty data
1706 // will be lost when restoring from a checkpoint of a system that
1707 // wasn't drained properly. Flag the checkpoint as invalid if the
1708 // cache contains dirty data.
1709 bool bad_checkpoint(dirty);
1710 SERIALIZE_SCALAR(bad_checkpoint);
1711}
1712
1713void
1714BaseCache::unserialize(CheckpointIn &cp)
1715{
1716 bool bad_checkpoint;
1717 UNSERIALIZE_SCALAR(bad_checkpoint);
1718 if (bad_checkpoint) {
1719 fatal("Restoring from checkpoints with dirty caches is not "
1720 "supported in the classic memory system. Please remove any "
1721 "caches or drain them properly before taking checkpoints.\n");
1722 }
1723}
1724
1725void
1726BaseCache::regStats()
1727{
1728 ClockedObject::regStats();
1729
1730 using namespace Stats;
1731
1732 // Hit statistics
1733 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1734 MemCmd cmd(access_idx);
1735 const string &cstr = cmd.toString();
1736
1737 hits[access_idx]
1738 .init(system->maxMasters())
1739 .name(name() + "." + cstr + "_hits")
1740 .desc("number of " + cstr + " hits")
1741 .flags(total | nozero | nonan)
1742 ;
1743 for (int i = 0; i < system->maxMasters(); i++) {
1744 hits[access_idx].subname(i, system->getMasterName(i));
1745 }
1746 }
1747
1748// These macros make it easier to sum the right subset of commands and
1749// to change the subset of commands that are considered "demand" vs
1750// "non-demand"
1751#define SUM_DEMAND(s) \
1752 (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \
1753 s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq])
1754
1755// should writebacks be included here? prior code was inconsistent...
1756#define SUM_NON_DEMAND(s) \
1757 (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq] + s[MemCmd::SoftPFExReq])
1758
1759 demandHits
1760 .name(name() + ".demand_hits")
1761 .desc("number of demand (read+write) hits")
1762 .flags(total | nozero | nonan)
1763 ;
1764 demandHits = SUM_DEMAND(hits);
1765 for (int i = 0; i < system->maxMasters(); i++) {
1766 demandHits.subname(i, system->getMasterName(i));
1767 }
1768
1769 overallHits
1770 .name(name() + ".overall_hits")
1771 .desc("number of overall hits")
1772 .flags(total | nozero | nonan)
1773 ;
1774 overallHits = demandHits + SUM_NON_DEMAND(hits);
1775 for (int i = 0; i < system->maxMasters(); i++) {
1776 overallHits.subname(i, system->getMasterName(i));
1777 }
1778
1779 // Miss statistics
1780 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1781 MemCmd cmd(access_idx);
1782 const string &cstr = cmd.toString();
1783
1784 misses[access_idx]
1785 .init(system->maxMasters())
1786 .name(name() + "." + cstr + "_misses")
1787 .desc("number of " + cstr + " misses")
1788 .flags(total | nozero | nonan)
1789 ;
1790 for (int i = 0; i < system->maxMasters(); i++) {
1791 misses[access_idx].subname(i, system->getMasterName(i));
1792 }
1793 }
1794
1795 demandMisses
1796 .name(name() + ".demand_misses")
1797 .desc("number of demand (read+write) misses")
1798 .flags(total | nozero | nonan)
1799 ;
1800 demandMisses = SUM_DEMAND(misses);
1801 for (int i = 0; i < system->maxMasters(); i++) {
1802 demandMisses.subname(i, system->getMasterName(i));
1803 }
1804
1805 overallMisses
1806 .name(name() + ".overall_misses")
1807 .desc("number of overall misses")
1808 .flags(total | nozero | nonan)
1809 ;
1810 overallMisses = demandMisses + SUM_NON_DEMAND(misses);
1811 for (int i = 0; i < system->maxMasters(); i++) {
1812 overallMisses.subname(i, system->getMasterName(i));
1813 }
1814
1815 // Miss latency statistics
1816 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1817 MemCmd cmd(access_idx);
1818 const string &cstr = cmd.toString();
1819
1820 missLatency[access_idx]
1821 .init(system->maxMasters())
1822 .name(name() + "." + cstr + "_miss_latency")
1823 .desc("number of " + cstr + " miss cycles")
1824 .flags(total | nozero | nonan)
1825 ;
1826 for (int i = 0; i < system->maxMasters(); i++) {
1827 missLatency[access_idx].subname(i, system->getMasterName(i));
1828 }
1829 }
1830
1831 demandMissLatency
1832 .name(name() + ".demand_miss_latency")
1833 .desc("number of demand (read+write) miss cycles")
1834 .flags(total | nozero | nonan)
1835 ;
1836 demandMissLatency = SUM_DEMAND(missLatency);
1837 for (int i = 0; i < system->maxMasters(); i++) {
1838 demandMissLatency.subname(i, system->getMasterName(i));
1839 }
1840
1841 overallMissLatency
1842 .name(name() + ".overall_miss_latency")
1843 .desc("number of overall miss cycles")
1844 .flags(total | nozero | nonan)
1845 ;
1846 overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency);
1847 for (int i = 0; i < system->maxMasters(); i++) {
1848 overallMissLatency.subname(i, system->getMasterName(i));
1849 }
1850
1851 // access formulas
1852 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1853 MemCmd cmd(access_idx);
1854 const string &cstr = cmd.toString();
1855
1856 accesses[access_idx]
1857 .name(name() + "." + cstr + "_accesses")
1858 .desc("number of " + cstr + " accesses(hits+misses)")
1859 .flags(total | nozero | nonan)
1860 ;
1861 accesses[access_idx] = hits[access_idx] + misses[access_idx];
1862
1863 for (int i = 0; i < system->maxMasters(); i++) {
1864 accesses[access_idx].subname(i, system->getMasterName(i));
1865 }
1866 }
1867
1868 demandAccesses
1869 .name(name() + ".demand_accesses")
1870 .desc("number of demand (read+write) accesses")
1871 .flags(total | nozero | nonan)
1872 ;
1873 demandAccesses = demandHits + demandMisses;
1874 for (int i = 0; i < system->maxMasters(); i++) {
1875 demandAccesses.subname(i, system->getMasterName(i));
1876 }
1877
1878 overallAccesses
1879 .name(name() + ".overall_accesses")
1880 .desc("number of overall (read+write) accesses")
1881 .flags(total | nozero | nonan)
1882 ;
1883 overallAccesses = overallHits + overallMisses;
1884 for (int i = 0; i < system->maxMasters(); i++) {
1885 overallAccesses.subname(i, system->getMasterName(i));
1886 }
1887
1888 // miss rate formulas
1889 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1890 MemCmd cmd(access_idx);
1891 const string &cstr = cmd.toString();
1892
1893 missRate[access_idx]
1894 .name(name() + "." + cstr + "_miss_rate")
1895 .desc("miss rate for " + cstr + " accesses")
1896 .flags(total | nozero | nonan)
1897 ;
1898 missRate[access_idx] = misses[access_idx] / accesses[access_idx];
1899
1900 for (int i = 0; i < system->maxMasters(); i++) {
1901 missRate[access_idx].subname(i, system->getMasterName(i));
1902 }
1903 }
1904
1905 demandMissRate
1906 .name(name() + ".demand_miss_rate")
1907 .desc("miss rate for demand accesses")
1908 .flags(total | nozero | nonan)
1909 ;
1910 demandMissRate = demandMisses / demandAccesses;
1911 for (int i = 0; i < system->maxMasters(); i++) {
1912 demandMissRate.subname(i, system->getMasterName(i));
1913 }
1914
1915 overallMissRate
1916 .name(name() + ".overall_miss_rate")
1917 .desc("miss rate for overall accesses")
1918 .flags(total | nozero | nonan)
1919 ;
1920 overallMissRate = overallMisses / overallAccesses;
1921 for (int i = 0; i < system->maxMasters(); i++) {
1922 overallMissRate.subname(i, system->getMasterName(i));
1923 }
1924
1925 // miss latency formulas
1926 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1927 MemCmd cmd(access_idx);
1928 const string &cstr = cmd.toString();
1929
1930 avgMissLatency[access_idx]
1931 .name(name() + "." + cstr + "_avg_miss_latency")
1932 .desc("average " + cstr + " miss latency")
1933 .flags(total | nozero | nonan)
1934 ;
1935 avgMissLatency[access_idx] =
1936 missLatency[access_idx] / misses[access_idx];
1937
1938 for (int i = 0; i < system->maxMasters(); i++) {
1939 avgMissLatency[access_idx].subname(i, system->getMasterName(i));
1940 }
1941 }
1942
1943 demandAvgMissLatency
1944 .name(name() + ".demand_avg_miss_latency")
1945 .desc("average overall miss latency")
1946 .flags(total | nozero | nonan)
1947 ;
1948 demandAvgMissLatency = demandMissLatency / demandMisses;
1949 for (int i = 0; i < system->maxMasters(); i++) {
1950 demandAvgMissLatency.subname(i, system->getMasterName(i));
1951 }
1952
1953 overallAvgMissLatency
1954 .name(name() + ".overall_avg_miss_latency")
1955 .desc("average overall miss latency")
1956 .flags(total | nozero | nonan)
1957 ;
1958 overallAvgMissLatency = overallMissLatency / overallMisses;
1959 for (int i = 0; i < system->maxMasters(); i++) {
1960 overallAvgMissLatency.subname(i, system->getMasterName(i));
1961 }
1962
1963 blocked_cycles.init(NUM_BLOCKED_CAUSES);
1964 blocked_cycles
1965 .name(name() + ".blocked_cycles")
1966 .desc("number of cycles access was blocked")
1967 .subname(Blocked_NoMSHRs, "no_mshrs")
1968 .subname(Blocked_NoTargets, "no_targets")
1969 ;
1970
1971
1972 blocked_causes.init(NUM_BLOCKED_CAUSES);
1973 blocked_causes
1974 .name(name() + ".blocked")
1975 .desc("number of cycles access was blocked")
1976 .subname(Blocked_NoMSHRs, "no_mshrs")
1977 .subname(Blocked_NoTargets, "no_targets")
1978 ;
1979
1980 avg_blocked
1981 .name(name() + ".avg_blocked_cycles")
1982 .desc("average number of cycles each access was blocked")
1983 .subname(Blocked_NoMSHRs, "no_mshrs")
1984 .subname(Blocked_NoTargets, "no_targets")
1985 ;
1986
1987 avg_blocked = blocked_cycles / blocked_causes;
1988
1989 unusedPrefetches
1990 .name(name() + ".unused_prefetches")
1991 .desc("number of HardPF blocks evicted w/o reference")
1992 .flags(nozero)
1993 ;
1994
1995 writebacks
1996 .init(system->maxMasters())
1997 .name(name() + ".writebacks")
1998 .desc("number of writebacks")
1999 .flags(total | nozero | nonan)
2000 ;
2001 for (int i = 0; i < system->maxMasters(); i++) {
2002 writebacks.subname(i, system->getMasterName(i));
2003 }
2004
2005 // MSHR statistics
2006 // MSHR hit statistics
2007 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2008 MemCmd cmd(access_idx);
2009 const string &cstr = cmd.toString();
2010
2011 mshr_hits[access_idx]
2012 .init(system->maxMasters())
2013 .name(name() + "." + cstr + "_mshr_hits")
2014 .desc("number of " + cstr + " MSHR hits")
2015 .flags(total | nozero | nonan)
2016 ;
2017 for (int i = 0; i < system->maxMasters(); i++) {
2018 mshr_hits[access_idx].subname(i, system->getMasterName(i));
2019 }
2020 }
2021
2022 demandMshrHits
2023 .name(name() + ".demand_mshr_hits")
2024 .desc("number of demand (read+write) MSHR hits")
2025 .flags(total | nozero | nonan)
2026 ;
2027 demandMshrHits = SUM_DEMAND(mshr_hits);
2028 for (int i = 0; i < system->maxMasters(); i++) {
2029 demandMshrHits.subname(i, system->getMasterName(i));
2030 }
2031
2032 overallMshrHits
2033 .name(name() + ".overall_mshr_hits")
2034 .desc("number of overall MSHR hits")
2035 .flags(total | nozero | nonan)
2036 ;
2037 overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits);
2038 for (int i = 0; i < system->maxMasters(); i++) {
2039 overallMshrHits.subname(i, system->getMasterName(i));
2040 }
2041
2042 // MSHR miss statistics
2043 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2044 MemCmd cmd(access_idx);
2045 const string &cstr = cmd.toString();
2046
2047 mshr_misses[access_idx]
2048 .init(system->maxMasters())
2049 .name(name() + "." + cstr + "_mshr_misses")
2050 .desc("number of " + cstr + " MSHR misses")
2051 .flags(total | nozero | nonan)
2052 ;
2053 for (int i = 0; i < system->maxMasters(); i++) {
2054 mshr_misses[access_idx].subname(i, system->getMasterName(i));
2055 }
2056 }
2057
2058 demandMshrMisses
2059 .name(name() + ".demand_mshr_misses")
2060 .desc("number of demand (read+write) MSHR misses")
2061 .flags(total | nozero | nonan)
2062 ;
2063 demandMshrMisses = SUM_DEMAND(mshr_misses);
2064 for (int i = 0; i < system->maxMasters(); i++) {
2065 demandMshrMisses.subname(i, system->getMasterName(i));
2066 }
2067
2068 overallMshrMisses
2069 .name(name() + ".overall_mshr_misses")
2070 .desc("number of overall MSHR misses")
2071 .flags(total | nozero | nonan)
2072 ;
2073 overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses);
2074 for (int i = 0; i < system->maxMasters(); i++) {
2075 overallMshrMisses.subname(i, system->getMasterName(i));
2076 }
2077
2078 // MSHR miss latency statistics
2079 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2080 MemCmd cmd(access_idx);
2081 const string &cstr = cmd.toString();
2082
2083 mshr_miss_latency[access_idx]
2084 .init(system->maxMasters())
2085 .name(name() + "." + cstr + "_mshr_miss_latency")
2086 .desc("number of " + cstr + " MSHR miss cycles")
2087 .flags(total | nozero | nonan)
2088 ;
2089 for (int i = 0; i < system->maxMasters(); i++) {
2090 mshr_miss_latency[access_idx].subname(i, system->getMasterName(i));
2091 }
2092 }
2093
2094 demandMshrMissLatency
2095 .name(name() + ".demand_mshr_miss_latency")
2096 .desc("number of demand (read+write) MSHR miss cycles")
2097 .flags(total | nozero | nonan)
2098 ;
2099 demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency);
2100 for (int i = 0; i < system->maxMasters(); i++) {
2101 demandMshrMissLatency.subname(i, system->getMasterName(i));
2102 }
2103
2104 overallMshrMissLatency
2105 .name(name() + ".overall_mshr_miss_latency")
2106 .desc("number of overall MSHR miss cycles")
2107 .flags(total | nozero | nonan)
2108 ;
2109 overallMshrMissLatency =
2110 demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency);
2111 for (int i = 0; i < system->maxMasters(); i++) {
2112 overallMshrMissLatency.subname(i, system->getMasterName(i));
2113 }
2114
2115 // MSHR uncacheable statistics
2116 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2117 MemCmd cmd(access_idx);
2118 const string &cstr = cmd.toString();
2119
2120 mshr_uncacheable[access_idx]
2121 .init(system->maxMasters())
2122 .name(name() + "." + cstr + "_mshr_uncacheable")
2123 .desc("number of " + cstr + " MSHR uncacheable")
2124 .flags(total | nozero | nonan)
2125 ;
2126 for (int i = 0; i < system->maxMasters(); i++) {
2127 mshr_uncacheable[access_idx].subname(i, system->getMasterName(i));
2128 }
2129 }
2130
2131 overallMshrUncacheable
2132 .name(name() + ".overall_mshr_uncacheable_misses")
2133 .desc("number of overall MSHR uncacheable misses")
2134 .flags(total | nozero | nonan)
2135 ;
2136 overallMshrUncacheable =
2137 SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable);
2138 for (int i = 0; i < system->maxMasters(); i++) {
2139 overallMshrUncacheable.subname(i, system->getMasterName(i));
2140 }
2141
2142 // MSHR miss latency statistics
2143 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2144 MemCmd cmd(access_idx);
2145 const string &cstr = cmd.toString();
2146
2147 mshr_uncacheable_lat[access_idx]
2148 .init(system->maxMasters())
2149 .name(name() + "." + cstr + "_mshr_uncacheable_latency")
2150 .desc("number of " + cstr + " MSHR uncacheable cycles")
2151 .flags(total | nozero | nonan)
2152 ;
2153 for (int i = 0; i < system->maxMasters(); i++) {
2154 mshr_uncacheable_lat[access_idx].subname(
2155 i, system->getMasterName(i));
2156 }
2157 }
2158
2159 overallMshrUncacheableLatency
2160 .name(name() + ".overall_mshr_uncacheable_latency")
2161 .desc("number of overall MSHR uncacheable cycles")
2162 .flags(total | nozero | nonan)
2163 ;
2164 overallMshrUncacheableLatency =
2165 SUM_DEMAND(mshr_uncacheable_lat) +
2166 SUM_NON_DEMAND(mshr_uncacheable_lat);
2167 for (int i = 0; i < system->maxMasters(); i++) {
2168 overallMshrUncacheableLatency.subname(i, system->getMasterName(i));
2169 }
2170
2171#if 0
2172 // MSHR access formulas
2173 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2174 MemCmd cmd(access_idx);
2175 const string &cstr = cmd.toString();
2176
2177 mshrAccesses[access_idx]
2178 .name(name() + "." + cstr + "_mshr_accesses")
2179 .desc("number of " + cstr + " mshr accesses(hits+misses)")
2180 .flags(total | nozero | nonan)
2181 ;
2182 mshrAccesses[access_idx] =
2183 mshr_hits[access_idx] + mshr_misses[access_idx]
2184 + mshr_uncacheable[access_idx];
2185 }
2186
2187 demandMshrAccesses
2188 .name(name() + ".demand_mshr_accesses")
2189 .desc("number of demand (read+write) mshr accesses")
2190 .flags(total | nozero | nonan)
2191 ;
2192 demandMshrAccesses = demandMshrHits + demandMshrMisses;
2193
2194 overallMshrAccesses
2195 .name(name() + ".overall_mshr_accesses")
2196 .desc("number of overall (read+write) mshr accesses")
2197 .flags(total | nozero | nonan)
2198 ;
2199 overallMshrAccesses = overallMshrHits + overallMshrMisses
2200 + overallMshrUncacheable;
2201#endif
2202
2203 // MSHR miss rate formulas
2204 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2205 MemCmd cmd(access_idx);
2206 const string &cstr = cmd.toString();
2207
2208 mshrMissRate[access_idx]
2209 .name(name() + "." + cstr + "_mshr_miss_rate")
2210 .desc("mshr miss rate for " + cstr + " accesses")
2211 .flags(total | nozero | nonan)
2212 ;
2213 mshrMissRate[access_idx] =
2214 mshr_misses[access_idx] / accesses[access_idx];
2215
2216 for (int i = 0; i < system->maxMasters(); i++) {
2217 mshrMissRate[access_idx].subname(i, system->getMasterName(i));
2218 }
2219 }
2220
2221 demandMshrMissRate
2222 .name(name() + ".demand_mshr_miss_rate")
2223 .desc("mshr miss rate for demand accesses")
2224 .flags(total | nozero | nonan)
2225 ;
2226 demandMshrMissRate = demandMshrMisses / demandAccesses;
2227 for (int i = 0; i < system->maxMasters(); i++) {
2228 demandMshrMissRate.subname(i, system->getMasterName(i));
2229 }
2230
2231 overallMshrMissRate
2232 .name(name() + ".overall_mshr_miss_rate")
2233 .desc("mshr miss rate for overall accesses")
2234 .flags(total | nozero | nonan)
2235 ;
2236 overallMshrMissRate = overallMshrMisses / overallAccesses;
2237 for (int i = 0; i < system->maxMasters(); i++) {
2238 overallMshrMissRate.subname(i, system->getMasterName(i));
2239 }
2240
2241 // mshrMiss latency formulas
2242 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2243 MemCmd cmd(access_idx);
2244 const string &cstr = cmd.toString();
2245
2246 avgMshrMissLatency[access_idx]
2247 .name(name() + "." + cstr + "_avg_mshr_miss_latency")
2248 .desc("average " + cstr + " mshr miss latency")
2249 .flags(total | nozero | nonan)
2250 ;
2251 avgMshrMissLatency[access_idx] =
2252 mshr_miss_latency[access_idx] / mshr_misses[access_idx];
2253
2254 for (int i = 0; i < system->maxMasters(); i++) {
2255 avgMshrMissLatency[access_idx].subname(
2256 i, system->getMasterName(i));
2257 }
2258 }
2259
2260 demandAvgMshrMissLatency
2261 .name(name() + ".demand_avg_mshr_miss_latency")
2262 .desc("average overall mshr miss latency")
2263 .flags(total | nozero | nonan)
2264 ;
2265 demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses;
2266 for (int i = 0; i < system->maxMasters(); i++) {
2267 demandAvgMshrMissLatency.subname(i, system->getMasterName(i));
2268 }
2269
2270 overallAvgMshrMissLatency
2271 .name(name() + ".overall_avg_mshr_miss_latency")
2272 .desc("average overall mshr miss latency")
2273 .flags(total | nozero | nonan)
2274 ;
2275 overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses;
2276 for (int i = 0; i < system->maxMasters(); i++) {
2277 overallAvgMshrMissLatency.subname(i, system->getMasterName(i));
2278 }
2279
2280 // mshrUncacheable latency formulas
2281 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2282 MemCmd cmd(access_idx);
2283 const string &cstr = cmd.toString();
2284
2285 avgMshrUncacheableLatency[access_idx]
2286 .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency")
2287 .desc("average " + cstr + " mshr uncacheable latency")
2288 .flags(total | nozero | nonan)
2289 ;
2290 avgMshrUncacheableLatency[access_idx] =
2291 mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx];
2292
2293 for (int i = 0; i < system->maxMasters(); i++) {
2294 avgMshrUncacheableLatency[access_idx].subname(
2295 i, system->getMasterName(i));
2296 }
2297 }
2298
2299 overallAvgMshrUncacheableLatency
2300 .name(name() + ".overall_avg_mshr_uncacheable_latency")
2301 .desc("average overall mshr uncacheable latency")
2302 .flags(total | nozero | nonan)
2303 ;
2304 overallAvgMshrUncacheableLatency =
2305 overallMshrUncacheableLatency / overallMshrUncacheable;
2306 for (int i = 0; i < system->maxMasters(); i++) {
2307 overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i));
2308 }
2309
2310 replacements
2311 .name(name() + ".replacements")
2312 .desc("number of replacements")
2313 ;
2314}
2315
2316void
2317BaseCache::regProbePoints()
2318{
2319 ppHit = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Hit");
2320 ppMiss = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Miss");
2321 ppFill = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Fill");
2322}
2323
2324///////////////
2325//
2326// CpuSidePort
2327//
2328///////////////
2329bool
2330BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2331{
2332 // Snoops shouldn't happen when bypassing caches
2333 assert(!cache->system->bypassCaches());
2334
2335 assert(pkt->isResponse());
2336
2337 // Express snoop responses from master to slave, e.g., from L1 to L2
2338 cache->recvTimingSnoopResp(pkt);
2339 return true;
2340}
2341
2342
2343bool
2344BaseCache::CpuSidePort::tryTiming(PacketPtr pkt)
2345{
2346 if (cache->system->bypassCaches() || pkt->isExpressSnoop()) {
2347 // always let express snoop packets through even if blocked
2348 return true;
2349 } else if (blocked || mustSendRetry) {
2350 // either already committed to send a retry, or blocked
2351 mustSendRetry = true;
2352 return false;
2353 }
2354 mustSendRetry = false;
2355 return true;
2356}
2357
2358bool
2359BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2360{
2361 assert(pkt->isRequest());
2362
2363 if (cache->system->bypassCaches()) {
2364 // Just forward the packet if caches are disabled.
2365 // @todo This should really enqueue the packet rather
2366 bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt);
2367 assert(success);
2368 return true;
2369 } else if (tryTiming(pkt)) {
2370 cache->recvTimingReq(pkt);
2371 return true;
2372 }
2373 return false;
2374}
2375
2376Tick
2377BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt)
2378{
2379 if (cache->system->bypassCaches()) {
2380 // Forward the request if the system is in cache bypass mode.
2381 return cache->memSidePort.sendAtomic(pkt);
2382 } else {
2383 return cache->recvAtomic(pkt);
2384 }
2385}
2386
2387void
2388BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt)
2389{
2390 if (cache->system->bypassCaches()) {
2391 // The cache should be flushed if we are in cache bypass mode,
2392 // so we don't need to check if we need to update anything.
2393 cache->memSidePort.sendFunctional(pkt);
2394 return;
2395 }
2396
2397 // functional request
2398 cache->functionalAccess(pkt, true);
2399}
2400
2401AddrRangeList
2402BaseCache::CpuSidePort::getAddrRanges() const
2403{
2404 return cache->getAddrRanges();
2405}
2406
2407
2408BaseCache::
2409CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache,
2410 const std::string &_label)
2411 : CacheSlavePort(_name, _cache, _label), cache(_cache)
2412{
2413}
2414
2415///////////////
2416//
2417// MemSidePort
2418//
2419///////////////
2420bool
2421BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt)
2422{
2423 cache->recvTimingResp(pkt);
2424 return true;
2425}
2426
2427// Express snooping requests to memside port
2428void
2429BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2430{
2431 // Snoops shouldn't happen when bypassing caches
2432 assert(!cache->system->bypassCaches());
2433
2434 // handle snooping requests
2435 cache->recvTimingSnoopReq(pkt);
2436}
2437
2438Tick
2439BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2440{
2441 // Snoops shouldn't happen when bypassing caches
2442 assert(!cache->system->bypassCaches());
2443
2444 return cache->recvAtomicSnoop(pkt);
2445}
2446
2447void
2448BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2449{
2450 // Snoops shouldn't happen when bypassing caches
2451 assert(!cache->system->bypassCaches());
2452
2453 // functional snoop (note that in contrast to atomic we don't have
2454 // a specific functionalSnoop method, as they have the same
2455 // behaviour regardless)
2456 cache->functionalAccess(pkt, false);
2457}
2458
2459void
2460BaseCache::CacheReqPacketQueue::sendDeferredPacket()
2461{
2462 // sanity check
2463 assert(!waitingOnRetry);
2464
2465 // there should never be any deferred request packets in the
2466 // queue, instead we resly on the cache to provide the packets
2467 // from the MSHR queue or write queue
2468 assert(deferredPacketReadyTime() == MaxTick);
2469
2470 // check for request packets (requests & writebacks)
2471 QueueEntry* entry = cache.getNextQueueEntry();
2472
2473 if (!entry) {
2474 // can happen if e.g. we attempt a writeback and fail, but
2475 // before the retry, the writeback is eliminated because
2476 // we snoop another cache's ReadEx.
2477 } else {
2478 // let our snoop responses go first if there are responses to
2479 // the same addresses
2480 if (checkConflictingSnoop(entry->getTarget()->pkt)) {
2481 return;
2482 }
2483 waitingOnRetry = entry->sendPacket(cache);
2484 }
2485
2486 // if we succeeded and are not waiting for a retry, schedule the
2487 // next send considering when the next queue is ready, note that
2488 // snoop responses have their own packet queue and thus schedule
2489 // their own events
2490 if (!waitingOnRetry) {
2491 schedSendEvent(cache.nextQueueReadyTime());
2492 }
2493}
2494
2495BaseCache::MemSidePort::MemSidePort(const std::string &_name,
2496 BaseCache *_cache,
2497 const std::string &_label)
2498 : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2499 _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2500 _snoopRespQueue(*_cache, *this, true, _label), cache(_cache)
2501{
2502}
2503
2504void
2505WriteAllocator::updateMode(Addr write_addr, unsigned write_size,
2506 Addr blk_addr)
2507{
2508 // check if we are continuing where the last write ended
2509 if (nextAddr == write_addr) {
2510 delayCtr[blk_addr] = delayThreshold;
2511 // stop if we have already saturated
2512 if (mode != WriteMode::NO_ALLOCATE) {
2513 byteCount += write_size;
2514 // switch to streaming mode if we have passed the lower
2515 // threshold
2516 if (mode == WriteMode::ALLOCATE &&
2517 byteCount > coalesceLimit) {
2518 mode = WriteMode::COALESCE;
2519 DPRINTF(Cache, "Switched to write coalescing\n");
2520 } else if (mode == WriteMode::COALESCE &&
2521 byteCount > noAllocateLimit) {
2522 // and continue and switch to non-allocating mode if we
2523 // pass the upper threshold
2524 mode = WriteMode::NO_ALLOCATE;
2525 DPRINTF(Cache, "Switched to write-no-allocate\n");
2526 }
2527 }
2528 } else {
2529 // we did not see a write matching the previous one, start
2530 // over again
2531 byteCount = write_size;
2532 mode = WriteMode::ALLOCATE;
2533 resetDelay(blk_addr);
2534 }
2535 nextAddr = write_addr + write_size;
2536}
2537
2538WriteAllocator*
2539WriteAllocatorParams::create()
2540{
2541 return new WriteAllocator(this);
2542}