base.cc (13866:d0829f20374a) base.cc (13892:0182a0601f66)
1/*
2 * Copyright (c) 2012-2013, 2018 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Erik Hallnor
41 * Nikos Nikoleris
42 */
43
44/**
45 * @file
46 * Definition of BaseCache functions.
47 */
48
49#include "mem/cache/base.hh"
50
51#include "base/compiler.hh"
52#include "base/logging.hh"
53#include "debug/Cache.hh"
54#include "debug/CachePort.hh"
55#include "debug/CacheRepl.hh"
56#include "debug/CacheVerbose.hh"
57#include "mem/cache/mshr.hh"
58#include "mem/cache/prefetch/base.hh"
59#include "mem/cache/queue_entry.hh"
60#include "params/BaseCache.hh"
61#include "params/WriteAllocator.hh"
62#include "sim/core.hh"
63
64class BaseMasterPort;
65class BaseSlavePort;
66
67using namespace std;
68
69BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name,
70 BaseCache *_cache,
71 const std::string &_label)
72 : QueuedSlavePort(_name, _cache, queue),
73 queue(*_cache, *this, true, _label),
74 blocked(false), mustSendRetry(false),
75 sendRetryEvent([this]{ processSendRetry(); }, _name)
76{
77}
78
79BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
1/*
2 * Copyright (c) 2012-2013, 2018 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Erik Hallnor
41 * Nikos Nikoleris
42 */
43
44/**
45 * @file
46 * Definition of BaseCache functions.
47 */
48
49#include "mem/cache/base.hh"
50
51#include "base/compiler.hh"
52#include "base/logging.hh"
53#include "debug/Cache.hh"
54#include "debug/CachePort.hh"
55#include "debug/CacheRepl.hh"
56#include "debug/CacheVerbose.hh"
57#include "mem/cache/mshr.hh"
58#include "mem/cache/prefetch/base.hh"
59#include "mem/cache/queue_entry.hh"
60#include "params/BaseCache.hh"
61#include "params/WriteAllocator.hh"
62#include "sim/core.hh"
63
64class BaseMasterPort;
65class BaseSlavePort;
66
67using namespace std;
68
69BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name,
70 BaseCache *_cache,
71 const std::string &_label)
72 : QueuedSlavePort(_name, _cache, queue),
73 queue(*_cache, *this, true, _label),
74 blocked(false), mustSendRetry(false),
75 sendRetryEvent([this]{ processSendRetry(); }, _name)
76{
77}
78
79BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
80 : MemObject(p),
80 : ClockedObject(p),
81 cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"),
82 memSidePort(p->name + ".mem_side", this, "MemSidePort"),
83 mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below
84 writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below
85 tags(p->tags),
86 prefetcher(p->prefetcher),
87 writeAllocator(p->write_allocator),
88 writebackClean(p->writeback_clean),
89 tempBlockWriteback(nullptr),
90 writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
91 name(), false,
92 EventBase::Delayed_Writeback_Pri),
93 blkSize(blk_size),
94 lookupLatency(p->tag_latency),
95 dataLatency(p->data_latency),
96 forwardLatency(p->tag_latency),
97 fillLatency(p->data_latency),
98 responseLatency(p->response_latency),
99 sequentialAccess(p->sequential_access),
100 numTarget(p->tgts_per_mshr),
101 forwardSnoops(true),
102 clusivity(p->clusivity),
103 isReadOnly(p->is_read_only),
104 blocked(0),
105 order(0),
106 noTargetMSHR(nullptr),
107 missCount(p->max_miss_count),
108 addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()),
109 system(p->system)
110{
111 // the MSHR queue has no reserve entries as we check the MSHR
112 // queue on every single allocation, whereas the write queue has
113 // as many reserve entries as we have MSHRs, since every MSHR may
114 // eventually require a writeback, and we do not check the write
115 // buffer before committing to an MSHR
116
117 // forward snoops is overridden in init() once we can query
118 // whether the connected master is actually snooping or not
119
120 tempBlock = new TempCacheBlk(blkSize);
121
122 tags->tagsInit();
123 if (prefetcher)
124 prefetcher->setCache(this);
125}
126
127BaseCache::~BaseCache()
128{
129 delete tempBlock;
130}
131
132void
133BaseCache::CacheSlavePort::setBlocked()
134{
135 assert(!blocked);
136 DPRINTF(CachePort, "Port is blocking new requests\n");
137 blocked = true;
138 // if we already scheduled a retry in this cycle, but it has not yet
139 // happened, cancel it
140 if (sendRetryEvent.scheduled()) {
141 owner.deschedule(sendRetryEvent);
142 DPRINTF(CachePort, "Port descheduled retry\n");
143 mustSendRetry = true;
144 }
145}
146
147void
148BaseCache::CacheSlavePort::clearBlocked()
149{
150 assert(blocked);
151 DPRINTF(CachePort, "Port is accepting new requests\n");
152 blocked = false;
153 if (mustSendRetry) {
154 // @TODO: need to find a better time (next cycle?)
155 owner.schedule(sendRetryEvent, curTick() + 1);
156 }
157}
158
159void
160BaseCache::CacheSlavePort::processSendRetry()
161{
162 DPRINTF(CachePort, "Port is sending retry\n");
163
164 // reset the flag and call retry
165 mustSendRetry = false;
166 sendRetryReq();
167}
168
169Addr
170BaseCache::regenerateBlkAddr(CacheBlk* blk)
171{
172 if (blk != tempBlock) {
173 return tags->regenerateBlkAddr(blk);
174 } else {
175 return tempBlock->getAddr();
176 }
177}
178
179void
180BaseCache::init()
181{
182 if (!cpuSidePort.isConnected() || !memSidePort.isConnected())
183 fatal("Cache ports on %s are not connected\n", name());
184 cpuSidePort.sendRangeChange();
185 forwardSnoops = cpuSidePort.isSnooping();
186}
187
188Port &
189BaseCache::getPort(const std::string &if_name, PortID idx)
190{
191 if (if_name == "mem_side") {
192 return memSidePort;
193 } else if (if_name == "cpu_side") {
194 return cpuSidePort;
195 } else {
81 cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"),
82 memSidePort(p->name + ".mem_side", this, "MemSidePort"),
83 mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below
84 writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below
85 tags(p->tags),
86 prefetcher(p->prefetcher),
87 writeAllocator(p->write_allocator),
88 writebackClean(p->writeback_clean),
89 tempBlockWriteback(nullptr),
90 writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
91 name(), false,
92 EventBase::Delayed_Writeback_Pri),
93 blkSize(blk_size),
94 lookupLatency(p->tag_latency),
95 dataLatency(p->data_latency),
96 forwardLatency(p->tag_latency),
97 fillLatency(p->data_latency),
98 responseLatency(p->response_latency),
99 sequentialAccess(p->sequential_access),
100 numTarget(p->tgts_per_mshr),
101 forwardSnoops(true),
102 clusivity(p->clusivity),
103 isReadOnly(p->is_read_only),
104 blocked(0),
105 order(0),
106 noTargetMSHR(nullptr),
107 missCount(p->max_miss_count),
108 addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()),
109 system(p->system)
110{
111 // the MSHR queue has no reserve entries as we check the MSHR
112 // queue on every single allocation, whereas the write queue has
113 // as many reserve entries as we have MSHRs, since every MSHR may
114 // eventually require a writeback, and we do not check the write
115 // buffer before committing to an MSHR
116
117 // forward snoops is overridden in init() once we can query
118 // whether the connected master is actually snooping or not
119
120 tempBlock = new TempCacheBlk(blkSize);
121
122 tags->tagsInit();
123 if (prefetcher)
124 prefetcher->setCache(this);
125}
126
127BaseCache::~BaseCache()
128{
129 delete tempBlock;
130}
131
132void
133BaseCache::CacheSlavePort::setBlocked()
134{
135 assert(!blocked);
136 DPRINTF(CachePort, "Port is blocking new requests\n");
137 blocked = true;
138 // if we already scheduled a retry in this cycle, but it has not yet
139 // happened, cancel it
140 if (sendRetryEvent.scheduled()) {
141 owner.deschedule(sendRetryEvent);
142 DPRINTF(CachePort, "Port descheduled retry\n");
143 mustSendRetry = true;
144 }
145}
146
147void
148BaseCache::CacheSlavePort::clearBlocked()
149{
150 assert(blocked);
151 DPRINTF(CachePort, "Port is accepting new requests\n");
152 blocked = false;
153 if (mustSendRetry) {
154 // @TODO: need to find a better time (next cycle?)
155 owner.schedule(sendRetryEvent, curTick() + 1);
156 }
157}
158
159void
160BaseCache::CacheSlavePort::processSendRetry()
161{
162 DPRINTF(CachePort, "Port is sending retry\n");
163
164 // reset the flag and call retry
165 mustSendRetry = false;
166 sendRetryReq();
167}
168
169Addr
170BaseCache::regenerateBlkAddr(CacheBlk* blk)
171{
172 if (blk != tempBlock) {
173 return tags->regenerateBlkAddr(blk);
174 } else {
175 return tempBlock->getAddr();
176 }
177}
178
179void
180BaseCache::init()
181{
182 if (!cpuSidePort.isConnected() || !memSidePort.isConnected())
183 fatal("Cache ports on %s are not connected\n", name());
184 cpuSidePort.sendRangeChange();
185 forwardSnoops = cpuSidePort.isSnooping();
186}
187
188Port &
189BaseCache::getPort(const std::string &if_name, PortID idx)
190{
191 if (if_name == "mem_side") {
192 return memSidePort;
193 } else if (if_name == "cpu_side") {
194 return cpuSidePort;
195 } else {
196 return MemObject::getPort(if_name, idx);
196 return ClockedObject::getPort(if_name, idx);
197 }
198}
199
200bool
201BaseCache::inRange(Addr addr) const
202{
203 for (const auto& r : addrRanges) {
204 if (r.contains(addr)) {
205 return true;
206 }
207 }
208 return false;
209}
210
211void
212BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
213{
214 if (pkt->needsResponse()) {
215 // These delays should have been consumed by now
216 assert(pkt->headerDelay == 0);
217 assert(pkt->payloadDelay == 0);
218
219 pkt->makeTimingResponse();
220
221 // In this case we are considering request_time that takes
222 // into account the delay of the xbar, if any, and just
223 // lat, neglecting responseLatency, modelling hit latency
224 // just as the value of lat overriden by access(), which calls
225 // the calculateAccessLatency() function.
226 cpuSidePort.schedTimingResp(pkt, request_time);
227 } else {
228 DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
229 pkt->print());
230
231 // queue the packet for deletion, as the sending cache is
232 // still relying on it; if the block is found in access(),
233 // CleanEvict and Writeback messages will be deleted
234 // here as well
235 pendingDelete.reset(pkt);
236 }
237}
238
239void
240BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
241 Tick forward_time, Tick request_time)
242{
243 if (writeAllocator &&
244 pkt && pkt->isWrite() && !pkt->req->isUncacheable()) {
245 writeAllocator->updateMode(pkt->getAddr(), pkt->getSize(),
246 pkt->getBlockAddr(blkSize));
247 }
248
249 if (mshr) {
250 /// MSHR hit
251 /// @note writebacks will be checked in getNextMSHR()
252 /// for any conflicting requests to the same block
253
254 //@todo remove hw_pf here
255
256 // Coalesce unless it was a software prefetch (see above).
257 if (pkt) {
258 assert(!pkt->isWriteback());
259 // CleanEvicts corresponding to blocks which have
260 // outstanding requests in MSHRs are simply sunk here
261 if (pkt->cmd == MemCmd::CleanEvict) {
262 pendingDelete.reset(pkt);
263 } else if (pkt->cmd == MemCmd::WriteClean) {
264 // A WriteClean should never coalesce with any
265 // outstanding cache maintenance requests.
266
267 // We use forward_time here because there is an
268 // uncached memory write, forwarded to WriteBuffer.
269 allocateWriteBuffer(pkt, forward_time);
270 } else {
271 DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
272 pkt->print());
273
274 assert(pkt->req->masterId() < system->maxMasters());
275 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
276
277 // We use forward_time here because it is the same
278 // considering new targets. We have multiple
279 // requests for the same address here. It
280 // specifies the latency to allocate an internal
281 // buffer and to schedule an event to the queued
282 // port and also takes into account the additional
283 // delay of the xbar.
284 mshr->allocateTarget(pkt, forward_time, order++,
285 allocOnFill(pkt->cmd));
286 if (mshr->getNumTargets() == numTarget) {
287 noTargetMSHR = mshr;
288 setBlocked(Blocked_NoTargets);
289 // need to be careful with this... if this mshr isn't
290 // ready yet (i.e. time > curTick()), we don't want to
291 // move it ahead of mshrs that are ready
292 // mshrQueue.moveToFront(mshr);
293 }
294 }
295 }
296 } else {
297 // no MSHR
298 assert(pkt->req->masterId() < system->maxMasters());
299 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
300
301 if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) {
302 // We use forward_time here because there is an
303 // writeback or writeclean, forwarded to WriteBuffer.
304 allocateWriteBuffer(pkt, forward_time);
305 } else {
306 if (blk && blk->isValid()) {
307 // If we have a write miss to a valid block, we
308 // need to mark the block non-readable. Otherwise
309 // if we allow reads while there's an outstanding
310 // write miss, the read could return stale data
311 // out of the cache block... a more aggressive
312 // system could detect the overlap (if any) and
313 // forward data out of the MSHRs, but we don't do
314 // that yet. Note that we do need to leave the
315 // block valid so that it stays in the cache, in
316 // case we get an upgrade response (and hence no
317 // new data) when the write miss completes.
318 // As long as CPUs do proper store/load forwarding
319 // internally, and have a sufficiently weak memory
320 // model, this is probably unnecessary, but at some
321 // point it must have seemed like we needed it...
322 assert((pkt->needsWritable() && !blk->isWritable()) ||
323 pkt->req->isCacheMaintenance());
324 blk->status &= ~BlkReadable;
325 }
326 // Here we are using forward_time, modelling the latency of
327 // a miss (outbound) just as forwardLatency, neglecting the
328 // lookupLatency component.
329 allocateMissBuffer(pkt, forward_time);
330 }
331 }
332}
333
334void
335BaseCache::recvTimingReq(PacketPtr pkt)
336{
337 // anything that is merely forwarded pays for the forward latency and
338 // the delay provided by the crossbar
339 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
340
341 Cycles lat;
342 CacheBlk *blk = nullptr;
343 bool satisfied = false;
344 {
345 PacketList writebacks;
346 // Note that lat is passed by reference here. The function
347 // access() will set the lat value.
348 satisfied = access(pkt, blk, lat, writebacks);
349
350 // After the evicted blocks are selected, they must be forwarded
351 // to the write buffer to ensure they logically precede anything
352 // happening below
353 doWritebacks(writebacks, clockEdge(lat + forwardLatency));
354 }
355
356 // Here we charge the headerDelay that takes into account the latencies
357 // of the bus, if the packet comes from it.
358 // The latency charged is just the value set by the access() function.
359 // In case of a hit we are neglecting response latency.
360 // In case of a miss we are neglecting forward latency.
361 Tick request_time = clockEdge(lat);
362 // Here we reset the timing of the packet.
363 pkt->headerDelay = pkt->payloadDelay = 0;
364
365 if (satisfied) {
366 // notify before anything else as later handleTimingReqHit might turn
367 // the packet in a response
368 ppHit->notify(pkt);
369
370 if (prefetcher && blk && blk->wasPrefetched()) {
371 blk->status &= ~BlkHWPrefetched;
372 }
373
374 handleTimingReqHit(pkt, blk, request_time);
375 } else {
376 handleTimingReqMiss(pkt, blk, forward_time, request_time);
377
378 ppMiss->notify(pkt);
379 }
380
381 if (prefetcher) {
382 // track time of availability of next prefetch, if any
383 Tick next_pf_time = prefetcher->nextPrefetchReadyTime();
384 if (next_pf_time != MaxTick) {
385 schedMemSideSendEvent(next_pf_time);
386 }
387 }
388}
389
390void
391BaseCache::handleUncacheableWriteResp(PacketPtr pkt)
392{
393 Tick completion_time = clockEdge(responseLatency) +
394 pkt->headerDelay + pkt->payloadDelay;
395
396 // Reset the bus additional time as it is now accounted for
397 pkt->headerDelay = pkt->payloadDelay = 0;
398
399 cpuSidePort.schedTimingResp(pkt, completion_time);
400}
401
402void
403BaseCache::recvTimingResp(PacketPtr pkt)
404{
405 assert(pkt->isResponse());
406
407 // all header delay should be paid for by the crossbar, unless
408 // this is a prefetch response from above
409 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
410 "%s saw a non-zero packet delay\n", name());
411
412 const bool is_error = pkt->isError();
413
414 if (is_error) {
415 DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
416 pkt->print());
417 }
418
419 DPRINTF(Cache, "%s: Handling response %s\n", __func__,
420 pkt->print());
421
422 // if this is a write, we should be looking at an uncacheable
423 // write
424 if (pkt->isWrite()) {
425 assert(pkt->req->isUncacheable());
426 handleUncacheableWriteResp(pkt);
427 return;
428 }
429
430 // we have dealt with any (uncacheable) writes above, from here on
431 // we know we are dealing with an MSHR due to a miss or a prefetch
432 MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
433 assert(mshr);
434
435 if (mshr == noTargetMSHR) {
436 // we always clear at least one target
437 clearBlocked(Blocked_NoTargets);
438 noTargetMSHR = nullptr;
439 }
440
441 // Initial target is used just for stats
442 QueueEntry::Target *initial_tgt = mshr->getTarget();
443 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
444 Tick miss_latency = curTick() - initial_tgt->recvTime;
445
446 if (pkt->req->isUncacheable()) {
447 assert(pkt->req->masterId() < system->maxMasters());
448 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
449 miss_latency;
450 } else {
451 assert(pkt->req->masterId() < system->maxMasters());
452 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
453 miss_latency;
454 }
455
456 PacketList writebacks;
457
458 bool is_fill = !mshr->isForward &&
459 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp ||
460 mshr->wasWholeLineWrite);
461
462 // make sure that if the mshr was due to a whole line write then
463 // the response is an invalidation
464 assert(!mshr->wasWholeLineWrite || pkt->isInvalidate());
465
466 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
467
468 if (is_fill && !is_error) {
469 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
470 pkt->getAddr());
471
472 const bool allocate = (writeAllocator && mshr->wasWholeLineWrite) ?
473 writeAllocator->allocate() : mshr->allocOnFill();
474 blk = handleFill(pkt, blk, writebacks, allocate);
475 assert(blk != nullptr);
476 ppFill->notify(pkt);
477 }
478
479 if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
480 // The block was marked not readable while there was a pending
481 // cache maintenance operation, restore its flag.
482 blk->status |= BlkReadable;
483
484 // This was a cache clean operation (without invalidate)
485 // and we have a copy of the block already. Since there
486 // is no invalidation, we can promote targets that don't
487 // require a writable copy
488 mshr->promoteReadable();
489 }
490
491 if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
492 // If at this point the referenced block is writable and the
493 // response is not a cache invalidate, we promote targets that
494 // were deferred as we couldn't guarrantee a writable copy
495 mshr->promoteWritable();
496 }
497
498 serviceMSHRTargets(mshr, pkt, blk);
499
500 if (mshr->promoteDeferredTargets()) {
501 // avoid later read getting stale data while write miss is
502 // outstanding.. see comment in timingAccess()
503 if (blk) {
504 blk->status &= ~BlkReadable;
505 }
506 mshrQueue.markPending(mshr);
507 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
508 } else {
509 // while we deallocate an mshr from the queue we still have to
510 // check the isFull condition before and after as we might
511 // have been using the reserved entries already
512 const bool was_full = mshrQueue.isFull();
513 mshrQueue.deallocate(mshr);
514 if (was_full && !mshrQueue.isFull()) {
515 clearBlocked(Blocked_NoMSHRs);
516 }
517
518 // Request the bus for a prefetch if this deallocation freed enough
519 // MSHRs for a prefetch to take place
520 if (prefetcher && mshrQueue.canPrefetch()) {
521 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
522 clockEdge());
523 if (next_pf_time != MaxTick)
524 schedMemSideSendEvent(next_pf_time);
525 }
526 }
527
528 // if we used temp block, check to see if its valid and then clear it out
529 if (blk == tempBlock && tempBlock->isValid()) {
530 evictBlock(blk, writebacks);
531 }
532
533 const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
534 // copy writebacks to write buffer
535 doWritebacks(writebacks, forward_time);
536
537 DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
538 delete pkt;
539}
540
541
542Tick
543BaseCache::recvAtomic(PacketPtr pkt)
544{
545 // should assert here that there are no outstanding MSHRs or
546 // writebacks... that would mean that someone used an atomic
547 // access in timing mode
548
549 // We use lookupLatency here because it is used to specify the latency
550 // to access.
551 Cycles lat = lookupLatency;
552
553 CacheBlk *blk = nullptr;
554 PacketList writebacks;
555 bool satisfied = access(pkt, blk, lat, writebacks);
556
557 if (pkt->isClean() && blk && blk->isDirty()) {
558 // A cache clean opearation is looking for a dirty
559 // block. If a dirty block is encountered a WriteClean
560 // will update any copies to the path to the memory
561 // until the point of reference.
562 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
563 __func__, pkt->print(), blk->print());
564 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
565 writebacks.push_back(wb_pkt);
566 pkt->setSatisfied();
567 }
568
569 // handle writebacks resulting from the access here to ensure they
570 // logically precede anything happening below
571 doWritebacksAtomic(writebacks);
572 assert(writebacks.empty());
573
574 if (!satisfied) {
575 lat += handleAtomicReqMiss(pkt, blk, writebacks);
576 }
577
578 // Note that we don't invoke the prefetcher at all in atomic mode.
579 // It's not clear how to do it properly, particularly for
580 // prefetchers that aggressively generate prefetch candidates and
581 // rely on bandwidth contention to throttle them; these will tend
582 // to pollute the cache in atomic mode since there is no bandwidth
583 // contention. If we ever do want to enable prefetching in atomic
584 // mode, though, this is the place to do it... see timingAccess()
585 // for an example (though we'd want to issue the prefetch(es)
586 // immediately rather than calling requestMemSideBus() as we do
587 // there).
588
589 // do any writebacks resulting from the response handling
590 doWritebacksAtomic(writebacks);
591
592 // if we used temp block, check to see if its valid and if so
593 // clear it out, but only do so after the call to recvAtomic is
594 // finished so that any downstream observers (such as a snoop
595 // filter), first see the fill, and only then see the eviction
596 if (blk == tempBlock && tempBlock->isValid()) {
597 // the atomic CPU calls recvAtomic for fetch and load/store
598 // sequentuially, and we may already have a tempBlock
599 // writeback from the fetch that we have not yet sent
600 if (tempBlockWriteback) {
601 // if that is the case, write the prevoius one back, and
602 // do not schedule any new event
603 writebackTempBlockAtomic();
604 } else {
605 // the writeback/clean eviction happens after the call to
606 // recvAtomic has finished (but before any successive
607 // calls), so that the response handling from the fill is
608 // allowed to happen first
609 schedule(writebackTempBlockAtomicEvent, curTick());
610 }
611
612 tempBlockWriteback = evictBlock(blk);
613 }
614
615 if (pkt->needsResponse()) {
616 pkt->makeAtomicResponse();
617 }
618
619 return lat * clockPeriod();
620}
621
622void
623BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side)
624{
625 Addr blk_addr = pkt->getBlockAddr(blkSize);
626 bool is_secure = pkt->isSecure();
627 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
628 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
629
630 pkt->pushLabel(name());
631
632 CacheBlkPrintWrapper cbpw(blk);
633
634 // Note that just because an L2/L3 has valid data doesn't mean an
635 // L1 doesn't have a more up-to-date modified copy that still
636 // needs to be found. As a result we always update the request if
637 // we have it, but only declare it satisfied if we are the owner.
638
639 // see if we have data at all (owned or otherwise)
640 bool have_data = blk && blk->isValid()
641 && pkt->trySatisfyFunctional(&cbpw, blk_addr, is_secure, blkSize,
642 blk->data);
643
644 // data we have is dirty if marked as such or if we have an
645 // in-service MSHR that is pending a modified line
646 bool have_dirty =
647 have_data && (blk->isDirty() ||
648 (mshr && mshr->inService && mshr->isPendingModified()));
649
650 bool done = have_dirty ||
651 cpuSidePort.trySatisfyFunctional(pkt) ||
652 mshrQueue.trySatisfyFunctional(pkt) ||
653 writeBuffer.trySatisfyFunctional(pkt) ||
654 memSidePort.trySatisfyFunctional(pkt);
655
656 DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(),
657 (blk && blk->isValid()) ? "valid " : "",
658 have_data ? "data " : "", done ? "done " : "");
659
660 // We're leaving the cache, so pop cache->name() label
661 pkt->popLabel();
662
663 if (done) {
664 pkt->makeResponse();
665 } else {
666 // if it came as a request from the CPU side then make sure it
667 // continues towards the memory side
668 if (from_cpu_side) {
669 memSidePort.sendFunctional(pkt);
670 } else if (cpuSidePort.isSnooping()) {
671 // if it came from the memory side, it must be a snoop request
672 // and we should only forward it if we are forwarding snoops
673 cpuSidePort.sendFunctionalSnoop(pkt);
674 }
675 }
676}
677
678
679void
680BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
681{
682 assert(pkt->isRequest());
683
684 uint64_t overwrite_val;
685 bool overwrite_mem;
686 uint64_t condition_val64;
687 uint32_t condition_val32;
688
689 int offset = pkt->getOffset(blkSize);
690 uint8_t *blk_data = blk->data + offset;
691
692 assert(sizeof(uint64_t) >= pkt->getSize());
693
694 overwrite_mem = true;
695 // keep a copy of our possible write value, and copy what is at the
696 // memory address into the packet
697 pkt->writeData((uint8_t *)&overwrite_val);
698 pkt->setData(blk_data);
699
700 if (pkt->req->isCondSwap()) {
701 if (pkt->getSize() == sizeof(uint64_t)) {
702 condition_val64 = pkt->req->getExtraData();
703 overwrite_mem = !std::memcmp(&condition_val64, blk_data,
704 sizeof(uint64_t));
705 } else if (pkt->getSize() == sizeof(uint32_t)) {
706 condition_val32 = (uint32_t)pkt->req->getExtraData();
707 overwrite_mem = !std::memcmp(&condition_val32, blk_data,
708 sizeof(uint32_t));
709 } else
710 panic("Invalid size for conditional read/write\n");
711 }
712
713 if (overwrite_mem) {
714 std::memcpy(blk_data, &overwrite_val, pkt->getSize());
715 blk->status |= BlkDirty;
716 }
717}
718
719QueueEntry*
720BaseCache::getNextQueueEntry()
721{
722 // Check both MSHR queue and write buffer for potential requests,
723 // note that null does not mean there is no request, it could
724 // simply be that it is not ready
725 MSHR *miss_mshr = mshrQueue.getNext();
726 WriteQueueEntry *wq_entry = writeBuffer.getNext();
727
728 // If we got a write buffer request ready, first priority is a
729 // full write buffer, otherwise we favour the miss requests
730 if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
731 // need to search MSHR queue for conflicting earlier miss.
732 MSHR *conflict_mshr = mshrQueue.findPending(wq_entry);
733
734 if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
735 // Service misses in order until conflict is cleared.
736 return conflict_mshr;
737
738 // @todo Note that we ignore the ready time of the conflict here
739 }
740
741 // No conflicts; issue write
742 return wq_entry;
743 } else if (miss_mshr) {
744 // need to check for conflicting earlier writeback
745 WriteQueueEntry *conflict_mshr = writeBuffer.findPending(miss_mshr);
746 if (conflict_mshr) {
747 // not sure why we don't check order here... it was in the
748 // original code but commented out.
749
750 // The only way this happens is if we are
751 // doing a write and we didn't have permissions
752 // then subsequently saw a writeback (owned got evicted)
753 // We need to make sure to perform the writeback first
754 // To preserve the dirty data, then we can issue the write
755
756 // should we return wq_entry here instead? I.e. do we
757 // have to flush writes in order? I don't think so... not
758 // for Alpha anyway. Maybe for x86?
759 return conflict_mshr;
760
761 // @todo Note that we ignore the ready time of the conflict here
762 }
763
764 // No conflicts; issue read
765 return miss_mshr;
766 }
767
768 // fall through... no pending requests. Try a prefetch.
769 assert(!miss_mshr && !wq_entry);
770 if (prefetcher && mshrQueue.canPrefetch()) {
771 // If we have a miss queue slot, we can try a prefetch
772 PacketPtr pkt = prefetcher->getPacket();
773 if (pkt) {
774 Addr pf_addr = pkt->getBlockAddr(blkSize);
775 if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
776 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
777 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
778 // Update statistic on number of prefetches issued
779 // (hwpf_mshr_misses)
780 assert(pkt->req->masterId() < system->maxMasters());
781 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
782
783 // allocate an MSHR and return it, note
784 // that we send the packet straight away, so do not
785 // schedule the send
786 return allocateMissBuffer(pkt, curTick(), false);
787 } else {
788 // free the request and packet
789 delete pkt;
790 }
791 }
792 }
793
794 return nullptr;
795}
796
797void
798BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool)
799{
800 assert(pkt->isRequest());
801
802 assert(blk && blk->isValid());
803 // Occasionally this is not true... if we are a lower-level cache
804 // satisfying a string of Read and ReadEx requests from
805 // upper-level caches, a Read will mark the block as shared but we
806 // can satisfy a following ReadEx anyway since we can rely on the
807 // Read requester(s) to have buffered the ReadEx snoop and to
808 // invalidate their blocks after receiving them.
809 // assert(!pkt->needsWritable() || blk->isWritable());
810 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
811
812 // Check RMW operations first since both isRead() and
813 // isWrite() will be true for them
814 if (pkt->cmd == MemCmd::SwapReq) {
815 if (pkt->isAtomicOp()) {
816 // extract data from cache and save it into the data field in
817 // the packet as a return value from this atomic op
818 int offset = tags->extractBlkOffset(pkt->getAddr());
819 uint8_t *blk_data = blk->data + offset;
820 pkt->setData(blk_data);
821
822 // execute AMO operation
823 (*(pkt->getAtomicOp()))(blk_data);
824
825 // set block status to dirty
826 blk->status |= BlkDirty;
827 } else {
828 cmpAndSwap(blk, pkt);
829 }
830 } else if (pkt->isWrite()) {
831 // we have the block in a writable state and can go ahead,
832 // note that the line may be also be considered writable in
833 // downstream caches along the path to memory, but always
834 // Exclusive, and never Modified
835 assert(blk->isWritable());
836 // Write or WriteLine at the first cache with block in writable state
837 if (blk->checkWrite(pkt)) {
838 pkt->writeDataToBlock(blk->data, blkSize);
839 }
840 // Always mark the line as dirty (and thus transition to the
841 // Modified state) even if we are a failed StoreCond so we
842 // supply data to any snoops that have appended themselves to
843 // this cache before knowing the store will fail.
844 blk->status |= BlkDirty;
845 DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
846 } else if (pkt->isRead()) {
847 if (pkt->isLLSC()) {
848 blk->trackLoadLocked(pkt);
849 }
850
851 // all read responses have a data payload
852 assert(pkt->hasRespData());
853 pkt->setDataFromBlock(blk->data, blkSize);
854 } else if (pkt->isUpgrade()) {
855 // sanity check
856 assert(!pkt->hasSharers());
857
858 if (blk->isDirty()) {
859 // we were in the Owned state, and a cache above us that
860 // has the line in Shared state needs to be made aware
861 // that the data it already has is in fact dirty
862 pkt->setCacheResponding();
863 blk->status &= ~BlkDirty;
864 }
865 } else if (pkt->isClean()) {
866 blk->status &= ~BlkDirty;
867 } else {
868 assert(pkt->isInvalidate());
869 invalidateBlock(blk);
870 DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
871 pkt->print());
872 }
873}
874
875/////////////////////////////////////////////////////
876//
877// Access path: requests coming in from the CPU side
878//
879/////////////////////////////////////////////////////
880Cycles
881BaseCache::calculateTagOnlyLatency(const uint32_t delay,
882 const Cycles lookup_lat) const
883{
884 // A tag-only access has to wait for the packet to arrive in order to
885 // perform the tag lookup.
886 return ticksToCycles(delay) + lookup_lat;
887}
888
889Cycles
890BaseCache::calculateAccessLatency(const CacheBlk* blk, const uint32_t delay,
891 const Cycles lookup_lat) const
892{
893 Cycles lat(0);
894
895 if (blk != nullptr) {
896 // As soon as the access arrives, for sequential accesses first access
897 // tags, then the data entry. In the case of parallel accesses the
898 // latency is dictated by the slowest of tag and data latencies.
899 if (sequentialAccess) {
900 lat = ticksToCycles(delay) + lookup_lat + dataLatency;
901 } else {
902 lat = ticksToCycles(delay) + std::max(lookup_lat, dataLatency);
903 }
904
905 // Check if the block to be accessed is available. If not, apply the
906 // access latency on top of when the block is ready to be accessed.
907 const Tick tick = curTick() + delay;
908 const Tick when_ready = blk->getWhenReady();
909 if (when_ready > tick &&
910 ticksToCycles(when_ready - tick) > lat) {
911 lat += ticksToCycles(when_ready - tick);
912 }
913 } else {
914 // In case of a miss, we neglect the data access in a parallel
915 // configuration (i.e., the data access will be stopped as soon as
916 // we find out it is a miss), and use the tag-only latency.
917 lat = calculateTagOnlyLatency(delay, lookup_lat);
918 }
919
920 return lat;
921}
922
923bool
924BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
925 PacketList &writebacks)
926{
927 // sanity check
928 assert(pkt->isRequest());
929
930 chatty_assert(!(isReadOnly && pkt->isWrite()),
931 "Should never see a write in a read-only cache %s\n",
932 name());
933
934 // Access block in the tags
935 Cycles tag_latency(0);
936 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), tag_latency);
937
938 DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(),
939 blk ? "hit " + blk->print() : "miss");
940
941 if (pkt->req->isCacheMaintenance()) {
942 // A cache maintenance operation is always forwarded to the
943 // memory below even if the block is found in dirty state.
944
945 // We defer any changes to the state of the block until we
946 // create and mark as in service the mshr for the downstream
947 // packet.
948
949 // Calculate access latency on top of when the packet arrives. This
950 // takes into account the bus delay.
951 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
952
953 return false;
954 }
955
956 if (pkt->isEviction()) {
957 // We check for presence of block in above caches before issuing
958 // Writeback or CleanEvict to write buffer. Therefore the only
959 // possible cases can be of a CleanEvict packet coming from above
960 // encountering a Writeback generated in this cache peer cache and
961 // waiting in the write buffer. Cases of upper level peer caches
962 // generating CleanEvict and Writeback or simply CleanEvict and
963 // CleanEvict almost simultaneously will be caught by snoops sent out
964 // by crossbar.
965 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
966 pkt->isSecure());
967 if (wb_entry) {
968 assert(wb_entry->getNumTargets() == 1);
969 PacketPtr wbPkt = wb_entry->getTarget()->pkt;
970 assert(wbPkt->isWriteback());
971
972 if (pkt->isCleanEviction()) {
973 // The CleanEvict and WritebackClean snoops into other
974 // peer caches of the same level while traversing the
975 // crossbar. If a copy of the block is found, the
976 // packet is deleted in the crossbar. Hence, none of
977 // the other upper level caches connected to this
978 // cache have the block, so we can clear the
979 // BLOCK_CACHED flag in the Writeback if set and
980 // discard the CleanEvict by returning true.
981 wbPkt->clearBlockCached();
982
983 // A clean evict does not need to access the data array
984 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
985
986 return true;
987 } else {
988 assert(pkt->cmd == MemCmd::WritebackDirty);
989 // Dirty writeback from above trumps our clean
990 // writeback... discard here
991 // Note: markInService will remove entry from writeback buffer.
992 markInService(wb_entry);
993 delete wbPkt;
994 }
995 }
996 }
997
998 // Writeback handling is special case. We can write the block into
999 // the cache without having a writeable copy (or any copy at all).
1000 if (pkt->isWriteback()) {
1001 assert(blkSize == pkt->getSize());
1002
1003 // we could get a clean writeback while we are having
1004 // outstanding accesses to a block, do the simple thing for
1005 // now and drop the clean writeback so that we do not upset
1006 // any ordering/decisions about ownership already taken
1007 if (pkt->cmd == MemCmd::WritebackClean &&
1008 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
1009 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
1010 "dropping\n", pkt->getAddr());
1011
1012 // A writeback searches for the block, then writes the data.
1013 // As the writeback is being dropped, the data is not touched,
1014 // and we just had to wait for the time to find a match in the
1015 // MSHR. As of now assume a mshr queue search takes as long as
1016 // a tag lookup for simplicity.
1017 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1018
1019 return true;
1020 }
1021
1022 if (!blk) {
1023 // need to do a replacement
1024 blk = allocateBlock(pkt, writebacks);
1025 if (!blk) {
1026 // no replaceable block available: give up, fwd to next level.
1027 incMissCount(pkt);
1028
1029 // A writeback searches for the block, then writes the data.
1030 // As the block could not be found, it was a tag-only access.
1031 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1032
1033 return false;
1034 }
1035
1036 blk->status |= BlkReadable;
1037 }
1038 // only mark the block dirty if we got a writeback command,
1039 // and leave it as is for a clean writeback
1040 if (pkt->cmd == MemCmd::WritebackDirty) {
1041 // TODO: the coherent cache can assert(!blk->isDirty());
1042 blk->status |= BlkDirty;
1043 }
1044 // if the packet does not have sharers, it is passing
1045 // writable, and we got the writeback in Modified or Exclusive
1046 // state, if not we are in the Owned or Shared state
1047 if (!pkt->hasSharers()) {
1048 blk->status |= BlkWritable;
1049 }
1050 // nothing else to do; writeback doesn't expect response
1051 assert(!pkt->needsResponse());
1052 pkt->writeDataToBlock(blk->data, blkSize);
1053 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1054 incHitCount(pkt);
1055
1056 // A writeback searches for the block, then writes the data
1057 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
1058
1059 // When the packet metadata arrives, the tag lookup will be done while
1060 // the payload is arriving. Then the block will be ready to access as
1061 // soon as the fill is done
1062 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1063 std::max(cyclesToTicks(tag_latency), (uint64_t)pkt->payloadDelay));
1064
1065 return true;
1066 } else if (pkt->cmd == MemCmd::CleanEvict) {
1067 // A CleanEvict does not need to access the data array
1068 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1069
1070 if (blk) {
1071 // Found the block in the tags, need to stop CleanEvict from
1072 // propagating further down the hierarchy. Returning true will
1073 // treat the CleanEvict like a satisfied write request and delete
1074 // it.
1075 return true;
1076 }
1077 // We didn't find the block here, propagate the CleanEvict further
1078 // down the memory hierarchy. Returning false will treat the CleanEvict
1079 // like a Writeback which could not find a replaceable block so has to
1080 // go to next level.
1081 return false;
1082 } else if (pkt->cmd == MemCmd::WriteClean) {
1083 // WriteClean handling is a special case. We can allocate a
1084 // block directly if it doesn't exist and we can update the
1085 // block immediately. The WriteClean transfers the ownership
1086 // of the block as well.
1087 assert(blkSize == pkt->getSize());
1088
1089 if (!blk) {
1090 if (pkt->writeThrough()) {
1091 // A writeback searches for the block, then writes the data.
1092 // As the block could not be found, it was a tag-only access.
1093 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1094
1095 // if this is a write through packet, we don't try to
1096 // allocate if the block is not present
1097 return false;
1098 } else {
1099 // a writeback that misses needs to allocate a new block
1100 blk = allocateBlock(pkt, writebacks);
1101 if (!blk) {
1102 // no replaceable block available: give up, fwd to
1103 // next level.
1104 incMissCount(pkt);
1105
1106 // A writeback searches for the block, then writes the
1107 // data. As the block could not be found, it was a tag-only
1108 // access.
1109 lat = calculateTagOnlyLatency(pkt->headerDelay,
1110 tag_latency);
1111
1112 return false;
1113 }
1114
1115 blk->status |= BlkReadable;
1116 }
1117 }
1118
1119 // at this point either this is a writeback or a write-through
1120 // write clean operation and the block is already in this
1121 // cache, we need to update the data and the block flags
1122 assert(blk);
1123 // TODO: the coherent cache can assert(!blk->isDirty());
1124 if (!pkt->writeThrough()) {
1125 blk->status |= BlkDirty;
1126 }
1127 // nothing else to do; writeback doesn't expect response
1128 assert(!pkt->needsResponse());
1129 pkt->writeDataToBlock(blk->data, blkSize);
1130 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1131
1132 incHitCount(pkt);
1133
1134 // A writeback searches for the block, then writes the data
1135 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
1136
1137 // When the packet metadata arrives, the tag lookup will be done while
1138 // the payload is arriving. Then the block will be ready to access as
1139 // soon as the fill is done
1140 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1141 std::max(cyclesToTicks(tag_latency), (uint64_t)pkt->payloadDelay));
1142
1143 // if this a write-through packet it will be sent to cache
1144 // below
1145 return !pkt->writeThrough();
1146 } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
1147 blk->isReadable())) {
1148 // OK to satisfy access
1149 incHitCount(pkt);
1150
1151 // Calculate access latency based on the need to access the data array
1152 if (pkt->isRead() || pkt->isWrite()) {
1153 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
1154 } else {
1155 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1156 }
1157
1158 satisfyRequest(pkt, blk);
1159 maintainClusivity(pkt->fromCache(), blk);
1160
1161 return true;
1162 }
1163
1164 // Can't satisfy access normally... either no block (blk == nullptr)
1165 // or have block but need writable
1166
1167 incMissCount(pkt);
1168
1169 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
1170
1171 if (!blk && pkt->isLLSC() && pkt->isWrite()) {
1172 // complete miss on store conditional... just give up now
1173 pkt->req->setExtraData(0);
1174 return true;
1175 }
1176
1177 return false;
1178}
1179
1180void
1181BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk)
1182{
1183 if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
1184 clusivity == Enums::mostly_excl) {
1185 // if we have responded to a cache, and our block is still
1186 // valid, but not dirty, and this cache is mostly exclusive
1187 // with respect to the cache above, drop the block
1188 invalidateBlock(blk);
1189 }
1190}
1191
1192CacheBlk*
1193BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1194 bool allocate)
1195{
1196 assert(pkt->isResponse());
1197 Addr addr = pkt->getAddr();
1198 bool is_secure = pkt->isSecure();
1199#if TRACING_ON
1200 CacheBlk::State old_state = blk ? blk->status : 0;
1201#endif
1202
1203 // When handling a fill, we should have no writes to this line.
1204 assert(addr == pkt->getBlockAddr(blkSize));
1205 assert(!writeBuffer.findMatch(addr, is_secure));
1206
1207 if (!blk) {
1208 // better have read new data...
1209 assert(pkt->hasData() || pkt->cmd == MemCmd::InvalidateResp);
1210
1211 // need to do a replacement if allocating, otherwise we stick
1212 // with the temporary storage
1213 blk = allocate ? allocateBlock(pkt, writebacks) : nullptr;
1214
1215 if (!blk) {
1216 // No replaceable block or a mostly exclusive
1217 // cache... just use temporary storage to complete the
1218 // current request and then get rid of it
1219 blk = tempBlock;
1220 tempBlock->insert(addr, is_secure);
1221 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1222 is_secure ? "s" : "ns");
1223 }
1224 } else {
1225 // existing block... probably an upgrade
1226 // don't clear block status... if block is already dirty we
1227 // don't want to lose that
1228 }
1229
1230 // Block is guaranteed to be valid at this point
1231 assert(blk->isValid());
1232 assert(blk->isSecure() == is_secure);
1233 assert(regenerateBlkAddr(blk) == addr);
1234
1235 blk->status |= BlkReadable;
1236
1237 // sanity check for whole-line writes, which should always be
1238 // marked as writable as part of the fill, and then later marked
1239 // dirty as part of satisfyRequest
1240 if (pkt->cmd == MemCmd::InvalidateResp) {
1241 assert(!pkt->hasSharers());
1242 }
1243
1244 // here we deal with setting the appropriate state of the line,
1245 // and we start by looking at the hasSharers flag, and ignore the
1246 // cacheResponding flag (normally signalling dirty data) if the
1247 // packet has sharers, thus the line is never allocated as Owned
1248 // (dirty but not writable), and always ends up being either
1249 // Shared, Exclusive or Modified, see Packet::setCacheResponding
1250 // for more details
1251 if (!pkt->hasSharers()) {
1252 // we could get a writable line from memory (rather than a
1253 // cache) even in a read-only cache, note that we set this bit
1254 // even for a read-only cache, possibly revisit this decision
1255 blk->status |= BlkWritable;
1256
1257 // check if we got this via cache-to-cache transfer (i.e., from a
1258 // cache that had the block in Modified or Owned state)
1259 if (pkt->cacheResponding()) {
1260 // we got the block in Modified state, and invalidated the
1261 // owners copy
1262 blk->status |= BlkDirty;
1263
1264 chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1265 "in read-only cache %s\n", name());
1266 }
1267 }
1268
1269 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1270 addr, is_secure ? "s" : "ns", old_state, blk->print());
1271
1272 // if we got new data, copy it in (checking for a read response
1273 // and a response that has data is the same in the end)
1274 if (pkt->isRead()) {
1275 // sanity checks
1276 assert(pkt->hasData());
1277 assert(pkt->getSize() == blkSize);
1278
1279 pkt->writeDataToBlock(blk->data, blkSize);
1280 }
1281 // The block will be ready when the payload arrives and the fill is done
1282 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1283 pkt->payloadDelay);
1284
1285 return blk;
1286}
1287
1288CacheBlk*
1289BaseCache::allocateBlock(const PacketPtr pkt, PacketList &writebacks)
1290{
1291 // Get address
1292 const Addr addr = pkt->getAddr();
1293
1294 // Get secure bit
1295 const bool is_secure = pkt->isSecure();
1296
1297 // Find replacement victim
1298 std::vector<CacheBlk*> evict_blks;
1299 CacheBlk *victim = tags->findVictim(addr, is_secure, evict_blks);
1300
1301 // It is valid to return nullptr if there is no victim
1302 if (!victim)
1303 return nullptr;
1304
1305 // Print victim block's information
1306 DPRINTF(CacheRepl, "Replacement victim: %s\n", victim->print());
1307
1308 // Check for transient state allocations. If any of the entries listed
1309 // for eviction has a transient state, the allocation fails
1310 bool replacement = false;
1311 for (const auto& blk : evict_blks) {
1312 if (blk->isValid()) {
1313 replacement = true;
1314
1315 Addr repl_addr = regenerateBlkAddr(blk);
1316 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1317 if (repl_mshr) {
1318 // must be an outstanding upgrade or clean request
1319 // on a block we're about to replace...
1320 assert((!blk->isWritable() && repl_mshr->needsWritable()) ||
1321 repl_mshr->isCleaning());
1322
1323 // too hard to replace block with transient state
1324 // allocation failed, block not inserted
1325 return nullptr;
1326 }
1327 }
1328 }
1329
1330 // The victim will be replaced by a new entry, so increase the replacement
1331 // counter if a valid block is being replaced
1332 if (replacement) {
1333 // Evict valid blocks associated to this victim block
1334 for (const auto& blk : evict_blks) {
1335 if (blk->isValid()) {
1336 DPRINTF(CacheRepl, "Evicting %s (%#llx) to make room for " \
1337 "%#llx (%s)\n", blk->print(), regenerateBlkAddr(blk),
1338 addr, is_secure);
1339
1340 if (blk->wasPrefetched()) {
1341 unusedPrefetches++;
1342 }
1343
1344 evictBlock(blk, writebacks);
1345 }
1346 }
1347
1348 replacements++;
1349 }
1350
1351 // Insert new block at victimized entry
1352 tags->insertBlock(pkt, victim);
1353
1354 return victim;
1355}
1356
1357void
1358BaseCache::invalidateBlock(CacheBlk *blk)
1359{
1360 // If handling a block present in the Tags, let it do its invalidation
1361 // process, which will update stats and invalidate the block itself
1362 if (blk != tempBlock) {
1363 tags->invalidate(blk);
1364 } else {
1365 tempBlock->invalidate();
1366 }
1367}
1368
1369void
1370BaseCache::evictBlock(CacheBlk *blk, PacketList &writebacks)
1371{
1372 PacketPtr pkt = evictBlock(blk);
1373 if (pkt) {
1374 writebacks.push_back(pkt);
1375 }
1376}
1377
1378PacketPtr
1379BaseCache::writebackBlk(CacheBlk *blk)
1380{
1381 chatty_assert(!isReadOnly || writebackClean,
1382 "Writeback from read-only cache");
1383 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1384
1385 writebacks[Request::wbMasterId]++;
1386
1387 RequestPtr req = std::make_shared<Request>(
1388 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1389
1390 if (blk->isSecure())
1391 req->setFlags(Request::SECURE);
1392
1393 req->taskId(blk->task_id);
1394
1395 PacketPtr pkt =
1396 new Packet(req, blk->isDirty() ?
1397 MemCmd::WritebackDirty : MemCmd::WritebackClean);
1398
1399 DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1400 pkt->print(), blk->isWritable(), blk->isDirty());
1401
1402 if (blk->isWritable()) {
1403 // not asserting shared means we pass the block in modified
1404 // state, mark our own block non-writeable
1405 blk->status &= ~BlkWritable;
1406 } else {
1407 // we are in the Owned state, tell the receiver
1408 pkt->setHasSharers();
1409 }
1410
1411 // make sure the block is not marked dirty
1412 blk->status &= ~BlkDirty;
1413
1414 pkt->allocate();
1415 pkt->setDataFromBlock(blk->data, blkSize);
1416
1417 return pkt;
1418}
1419
1420PacketPtr
1421BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
1422{
1423 RequestPtr req = std::make_shared<Request>(
1424 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1425
1426 if (blk->isSecure()) {
1427 req->setFlags(Request::SECURE);
1428 }
1429 req->taskId(blk->task_id);
1430
1431 PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
1432
1433 if (dest) {
1434 req->setFlags(dest);
1435 pkt->setWriteThrough();
1436 }
1437
1438 DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1439 blk->isWritable(), blk->isDirty());
1440
1441 if (blk->isWritable()) {
1442 // not asserting shared means we pass the block in modified
1443 // state, mark our own block non-writeable
1444 blk->status &= ~BlkWritable;
1445 } else {
1446 // we are in the Owned state, tell the receiver
1447 pkt->setHasSharers();
1448 }
1449
1450 // make sure the block is not marked dirty
1451 blk->status &= ~BlkDirty;
1452
1453 pkt->allocate();
1454 pkt->setDataFromBlock(blk->data, blkSize);
1455
1456 return pkt;
1457}
1458
1459
1460void
1461BaseCache::memWriteback()
1462{
1463 tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); });
1464}
1465
1466void
1467BaseCache::memInvalidate()
1468{
1469 tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); });
1470}
1471
1472bool
1473BaseCache::isDirty() const
1474{
1475 return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); });
1476}
1477
1478bool
1479BaseCache::coalesce() const
1480{
1481 return writeAllocator && writeAllocator->coalesce();
1482}
1483
1484void
1485BaseCache::writebackVisitor(CacheBlk &blk)
1486{
1487 if (blk.isDirty()) {
1488 assert(blk.isValid());
1489
1490 RequestPtr request = std::make_shared<Request>(
1491 regenerateBlkAddr(&blk), blkSize, 0, Request::funcMasterId);
1492
1493 request->taskId(blk.task_id);
1494 if (blk.isSecure()) {
1495 request->setFlags(Request::SECURE);
1496 }
1497
1498 Packet packet(request, MemCmd::WriteReq);
1499 packet.dataStatic(blk.data);
1500
1501 memSidePort.sendFunctional(&packet);
1502
1503 blk.status &= ~BlkDirty;
1504 }
1505}
1506
1507void
1508BaseCache::invalidateVisitor(CacheBlk &blk)
1509{
1510 if (blk.isDirty())
1511 warn_once("Invalidating dirty cache lines. " \
1512 "Expect things to break.\n");
1513
1514 if (blk.isValid()) {
1515 assert(!blk.isDirty());
1516 invalidateBlock(&blk);
1517 }
1518}
1519
1520Tick
1521BaseCache::nextQueueReadyTime() const
1522{
1523 Tick nextReady = std::min(mshrQueue.nextReadyTime(),
1524 writeBuffer.nextReadyTime());
1525
1526 // Don't signal prefetch ready time if no MSHRs available
1527 // Will signal once enoguh MSHRs are deallocated
1528 if (prefetcher && mshrQueue.canPrefetch()) {
1529 nextReady = std::min(nextReady,
1530 prefetcher->nextPrefetchReadyTime());
1531 }
1532
1533 return nextReady;
1534}
1535
1536
1537bool
1538BaseCache::sendMSHRQueuePacket(MSHR* mshr)
1539{
1540 assert(mshr);
1541
1542 // use request from 1st target
1543 PacketPtr tgt_pkt = mshr->getTarget()->pkt;
1544
1545 DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
1546
1547 // if the cache is in write coalescing mode or (additionally) in
1548 // no allocation mode, and we have a write packet with an MSHR
1549 // that is not a whole-line write (due to incompatible flags etc),
1550 // then reset the write mode
1551 if (writeAllocator && writeAllocator->coalesce() && tgt_pkt->isWrite()) {
1552 if (!mshr->isWholeLineWrite()) {
1553 // if we are currently write coalescing, hold on the
1554 // MSHR as many cycles extra as we need to completely
1555 // write a cache line
1556 if (writeAllocator->delay(mshr->blkAddr)) {
1557 Tick delay = blkSize / tgt_pkt->getSize() * clockPeriod();
1558 DPRINTF(CacheVerbose, "Delaying pkt %s %llu ticks to allow "
1559 "for write coalescing\n", tgt_pkt->print(), delay);
1560 mshrQueue.delay(mshr, delay);
1561 return false;
1562 } else {
1563 writeAllocator->reset();
1564 }
1565 } else {
1566 writeAllocator->resetDelay(mshr->blkAddr);
1567 }
1568 }
1569
1570 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
1571
1572 // either a prefetch that is not present upstream, or a normal
1573 // MSHR request, proceed to get the packet to send downstream
1574 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable(),
1575 mshr->isWholeLineWrite());
1576
1577 mshr->isForward = (pkt == nullptr);
1578
1579 if (mshr->isForward) {
1580 // not a cache block request, but a response is expected
1581 // make copy of current packet to forward, keep current
1582 // copy for response handling
1583 pkt = new Packet(tgt_pkt, false, true);
1584 assert(!pkt->isWrite());
1585 }
1586
1587 // play it safe and append (rather than set) the sender state,
1588 // as forwarded packets may already have existing state
1589 pkt->pushSenderState(mshr);
1590
1591 if (pkt->isClean() && blk && blk->isDirty()) {
1592 // A cache clean opearation is looking for a dirty block. Mark
1593 // the packet so that the destination xbar can determine that
1594 // there will be a follow-up write packet as well.
1595 pkt->setSatisfied();
1596 }
1597
1598 if (!memSidePort.sendTimingReq(pkt)) {
1599 // we are awaiting a retry, but we
1600 // delete the packet and will be creating a new packet
1601 // when we get the opportunity
1602 delete pkt;
1603
1604 // note that we have now masked any requestBus and
1605 // schedSendEvent (we will wait for a retry before
1606 // doing anything), and this is so even if we do not
1607 // care about this packet and might override it before
1608 // it gets retried
1609 return true;
1610 } else {
1611 // As part of the call to sendTimingReq the packet is
1612 // forwarded to all neighbouring caches (and any caches
1613 // above them) as a snoop. Thus at this point we know if
1614 // any of the neighbouring caches are responding, and if
1615 // so, we know it is dirty, and we can determine if it is
1616 // being passed as Modified, making our MSHR the ordering
1617 // point
1618 bool pending_modified_resp = !pkt->hasSharers() &&
1619 pkt->cacheResponding();
1620 markInService(mshr, pending_modified_resp);
1621
1622 if (pkt->isClean() && blk && blk->isDirty()) {
1623 // A cache clean opearation is looking for a dirty
1624 // block. If a dirty block is encountered a WriteClean
1625 // will update any copies to the path to the memory
1626 // until the point of reference.
1627 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
1628 __func__, pkt->print(), blk->print());
1629 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
1630 pkt->id);
1631 PacketList writebacks;
1632 writebacks.push_back(wb_pkt);
1633 doWritebacks(writebacks, 0);
1634 }
1635
1636 return false;
1637 }
1638}
1639
1640bool
1641BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
1642{
1643 assert(wq_entry);
1644
1645 // always a single target for write queue entries
1646 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
1647
1648 DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
1649
1650 // forward as is, both for evictions and uncacheable writes
1651 if (!memSidePort.sendTimingReq(tgt_pkt)) {
1652 // note that we have now masked any requestBus and
1653 // schedSendEvent (we will wait for a retry before
1654 // doing anything), and this is so even if we do not
1655 // care about this packet and might override it before
1656 // it gets retried
1657 return true;
1658 } else {
1659 markInService(wq_entry);
1660 return false;
1661 }
1662}
1663
1664void
1665BaseCache::serialize(CheckpointOut &cp) const
1666{
1667 bool dirty(isDirty());
1668
1669 if (dirty) {
1670 warn("*** The cache still contains dirty data. ***\n");
1671 warn(" Make sure to drain the system using the correct flags.\n");
1672 warn(" This checkpoint will not restore correctly " \
1673 "and dirty data in the cache will be lost!\n");
1674 }
1675
1676 // Since we don't checkpoint the data in the cache, any dirty data
1677 // will be lost when restoring from a checkpoint of a system that
1678 // wasn't drained properly. Flag the checkpoint as invalid if the
1679 // cache contains dirty data.
1680 bool bad_checkpoint(dirty);
1681 SERIALIZE_SCALAR(bad_checkpoint);
1682}
1683
1684void
1685BaseCache::unserialize(CheckpointIn &cp)
1686{
1687 bool bad_checkpoint;
1688 UNSERIALIZE_SCALAR(bad_checkpoint);
1689 if (bad_checkpoint) {
1690 fatal("Restoring from checkpoints with dirty caches is not "
1691 "supported in the classic memory system. Please remove any "
1692 "caches or drain them properly before taking checkpoints.\n");
1693 }
1694}
1695
1696void
1697BaseCache::regStats()
1698{
197 }
198}
199
200bool
201BaseCache::inRange(Addr addr) const
202{
203 for (const auto& r : addrRanges) {
204 if (r.contains(addr)) {
205 return true;
206 }
207 }
208 return false;
209}
210
211void
212BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
213{
214 if (pkt->needsResponse()) {
215 // These delays should have been consumed by now
216 assert(pkt->headerDelay == 0);
217 assert(pkt->payloadDelay == 0);
218
219 pkt->makeTimingResponse();
220
221 // In this case we are considering request_time that takes
222 // into account the delay of the xbar, if any, and just
223 // lat, neglecting responseLatency, modelling hit latency
224 // just as the value of lat overriden by access(), which calls
225 // the calculateAccessLatency() function.
226 cpuSidePort.schedTimingResp(pkt, request_time);
227 } else {
228 DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
229 pkt->print());
230
231 // queue the packet for deletion, as the sending cache is
232 // still relying on it; if the block is found in access(),
233 // CleanEvict and Writeback messages will be deleted
234 // here as well
235 pendingDelete.reset(pkt);
236 }
237}
238
239void
240BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
241 Tick forward_time, Tick request_time)
242{
243 if (writeAllocator &&
244 pkt && pkt->isWrite() && !pkt->req->isUncacheable()) {
245 writeAllocator->updateMode(pkt->getAddr(), pkt->getSize(),
246 pkt->getBlockAddr(blkSize));
247 }
248
249 if (mshr) {
250 /// MSHR hit
251 /// @note writebacks will be checked in getNextMSHR()
252 /// for any conflicting requests to the same block
253
254 //@todo remove hw_pf here
255
256 // Coalesce unless it was a software prefetch (see above).
257 if (pkt) {
258 assert(!pkt->isWriteback());
259 // CleanEvicts corresponding to blocks which have
260 // outstanding requests in MSHRs are simply sunk here
261 if (pkt->cmd == MemCmd::CleanEvict) {
262 pendingDelete.reset(pkt);
263 } else if (pkt->cmd == MemCmd::WriteClean) {
264 // A WriteClean should never coalesce with any
265 // outstanding cache maintenance requests.
266
267 // We use forward_time here because there is an
268 // uncached memory write, forwarded to WriteBuffer.
269 allocateWriteBuffer(pkt, forward_time);
270 } else {
271 DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
272 pkt->print());
273
274 assert(pkt->req->masterId() < system->maxMasters());
275 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
276
277 // We use forward_time here because it is the same
278 // considering new targets. We have multiple
279 // requests for the same address here. It
280 // specifies the latency to allocate an internal
281 // buffer and to schedule an event to the queued
282 // port and also takes into account the additional
283 // delay of the xbar.
284 mshr->allocateTarget(pkt, forward_time, order++,
285 allocOnFill(pkt->cmd));
286 if (mshr->getNumTargets() == numTarget) {
287 noTargetMSHR = mshr;
288 setBlocked(Blocked_NoTargets);
289 // need to be careful with this... if this mshr isn't
290 // ready yet (i.e. time > curTick()), we don't want to
291 // move it ahead of mshrs that are ready
292 // mshrQueue.moveToFront(mshr);
293 }
294 }
295 }
296 } else {
297 // no MSHR
298 assert(pkt->req->masterId() < system->maxMasters());
299 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
300
301 if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) {
302 // We use forward_time here because there is an
303 // writeback or writeclean, forwarded to WriteBuffer.
304 allocateWriteBuffer(pkt, forward_time);
305 } else {
306 if (blk && blk->isValid()) {
307 // If we have a write miss to a valid block, we
308 // need to mark the block non-readable. Otherwise
309 // if we allow reads while there's an outstanding
310 // write miss, the read could return stale data
311 // out of the cache block... a more aggressive
312 // system could detect the overlap (if any) and
313 // forward data out of the MSHRs, but we don't do
314 // that yet. Note that we do need to leave the
315 // block valid so that it stays in the cache, in
316 // case we get an upgrade response (and hence no
317 // new data) when the write miss completes.
318 // As long as CPUs do proper store/load forwarding
319 // internally, and have a sufficiently weak memory
320 // model, this is probably unnecessary, but at some
321 // point it must have seemed like we needed it...
322 assert((pkt->needsWritable() && !blk->isWritable()) ||
323 pkt->req->isCacheMaintenance());
324 blk->status &= ~BlkReadable;
325 }
326 // Here we are using forward_time, modelling the latency of
327 // a miss (outbound) just as forwardLatency, neglecting the
328 // lookupLatency component.
329 allocateMissBuffer(pkt, forward_time);
330 }
331 }
332}
333
334void
335BaseCache::recvTimingReq(PacketPtr pkt)
336{
337 // anything that is merely forwarded pays for the forward latency and
338 // the delay provided by the crossbar
339 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
340
341 Cycles lat;
342 CacheBlk *blk = nullptr;
343 bool satisfied = false;
344 {
345 PacketList writebacks;
346 // Note that lat is passed by reference here. The function
347 // access() will set the lat value.
348 satisfied = access(pkt, blk, lat, writebacks);
349
350 // After the evicted blocks are selected, they must be forwarded
351 // to the write buffer to ensure they logically precede anything
352 // happening below
353 doWritebacks(writebacks, clockEdge(lat + forwardLatency));
354 }
355
356 // Here we charge the headerDelay that takes into account the latencies
357 // of the bus, if the packet comes from it.
358 // The latency charged is just the value set by the access() function.
359 // In case of a hit we are neglecting response latency.
360 // In case of a miss we are neglecting forward latency.
361 Tick request_time = clockEdge(lat);
362 // Here we reset the timing of the packet.
363 pkt->headerDelay = pkt->payloadDelay = 0;
364
365 if (satisfied) {
366 // notify before anything else as later handleTimingReqHit might turn
367 // the packet in a response
368 ppHit->notify(pkt);
369
370 if (prefetcher && blk && blk->wasPrefetched()) {
371 blk->status &= ~BlkHWPrefetched;
372 }
373
374 handleTimingReqHit(pkt, blk, request_time);
375 } else {
376 handleTimingReqMiss(pkt, blk, forward_time, request_time);
377
378 ppMiss->notify(pkt);
379 }
380
381 if (prefetcher) {
382 // track time of availability of next prefetch, if any
383 Tick next_pf_time = prefetcher->nextPrefetchReadyTime();
384 if (next_pf_time != MaxTick) {
385 schedMemSideSendEvent(next_pf_time);
386 }
387 }
388}
389
390void
391BaseCache::handleUncacheableWriteResp(PacketPtr pkt)
392{
393 Tick completion_time = clockEdge(responseLatency) +
394 pkt->headerDelay + pkt->payloadDelay;
395
396 // Reset the bus additional time as it is now accounted for
397 pkt->headerDelay = pkt->payloadDelay = 0;
398
399 cpuSidePort.schedTimingResp(pkt, completion_time);
400}
401
402void
403BaseCache::recvTimingResp(PacketPtr pkt)
404{
405 assert(pkt->isResponse());
406
407 // all header delay should be paid for by the crossbar, unless
408 // this is a prefetch response from above
409 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
410 "%s saw a non-zero packet delay\n", name());
411
412 const bool is_error = pkt->isError();
413
414 if (is_error) {
415 DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
416 pkt->print());
417 }
418
419 DPRINTF(Cache, "%s: Handling response %s\n", __func__,
420 pkt->print());
421
422 // if this is a write, we should be looking at an uncacheable
423 // write
424 if (pkt->isWrite()) {
425 assert(pkt->req->isUncacheable());
426 handleUncacheableWriteResp(pkt);
427 return;
428 }
429
430 // we have dealt with any (uncacheable) writes above, from here on
431 // we know we are dealing with an MSHR due to a miss or a prefetch
432 MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
433 assert(mshr);
434
435 if (mshr == noTargetMSHR) {
436 // we always clear at least one target
437 clearBlocked(Blocked_NoTargets);
438 noTargetMSHR = nullptr;
439 }
440
441 // Initial target is used just for stats
442 QueueEntry::Target *initial_tgt = mshr->getTarget();
443 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
444 Tick miss_latency = curTick() - initial_tgt->recvTime;
445
446 if (pkt->req->isUncacheable()) {
447 assert(pkt->req->masterId() < system->maxMasters());
448 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
449 miss_latency;
450 } else {
451 assert(pkt->req->masterId() < system->maxMasters());
452 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
453 miss_latency;
454 }
455
456 PacketList writebacks;
457
458 bool is_fill = !mshr->isForward &&
459 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp ||
460 mshr->wasWholeLineWrite);
461
462 // make sure that if the mshr was due to a whole line write then
463 // the response is an invalidation
464 assert(!mshr->wasWholeLineWrite || pkt->isInvalidate());
465
466 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
467
468 if (is_fill && !is_error) {
469 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
470 pkt->getAddr());
471
472 const bool allocate = (writeAllocator && mshr->wasWholeLineWrite) ?
473 writeAllocator->allocate() : mshr->allocOnFill();
474 blk = handleFill(pkt, blk, writebacks, allocate);
475 assert(blk != nullptr);
476 ppFill->notify(pkt);
477 }
478
479 if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
480 // The block was marked not readable while there was a pending
481 // cache maintenance operation, restore its flag.
482 blk->status |= BlkReadable;
483
484 // This was a cache clean operation (without invalidate)
485 // and we have a copy of the block already. Since there
486 // is no invalidation, we can promote targets that don't
487 // require a writable copy
488 mshr->promoteReadable();
489 }
490
491 if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
492 // If at this point the referenced block is writable and the
493 // response is not a cache invalidate, we promote targets that
494 // were deferred as we couldn't guarrantee a writable copy
495 mshr->promoteWritable();
496 }
497
498 serviceMSHRTargets(mshr, pkt, blk);
499
500 if (mshr->promoteDeferredTargets()) {
501 // avoid later read getting stale data while write miss is
502 // outstanding.. see comment in timingAccess()
503 if (blk) {
504 blk->status &= ~BlkReadable;
505 }
506 mshrQueue.markPending(mshr);
507 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
508 } else {
509 // while we deallocate an mshr from the queue we still have to
510 // check the isFull condition before and after as we might
511 // have been using the reserved entries already
512 const bool was_full = mshrQueue.isFull();
513 mshrQueue.deallocate(mshr);
514 if (was_full && !mshrQueue.isFull()) {
515 clearBlocked(Blocked_NoMSHRs);
516 }
517
518 // Request the bus for a prefetch if this deallocation freed enough
519 // MSHRs for a prefetch to take place
520 if (prefetcher && mshrQueue.canPrefetch()) {
521 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
522 clockEdge());
523 if (next_pf_time != MaxTick)
524 schedMemSideSendEvent(next_pf_time);
525 }
526 }
527
528 // if we used temp block, check to see if its valid and then clear it out
529 if (blk == tempBlock && tempBlock->isValid()) {
530 evictBlock(blk, writebacks);
531 }
532
533 const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
534 // copy writebacks to write buffer
535 doWritebacks(writebacks, forward_time);
536
537 DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
538 delete pkt;
539}
540
541
542Tick
543BaseCache::recvAtomic(PacketPtr pkt)
544{
545 // should assert here that there are no outstanding MSHRs or
546 // writebacks... that would mean that someone used an atomic
547 // access in timing mode
548
549 // We use lookupLatency here because it is used to specify the latency
550 // to access.
551 Cycles lat = lookupLatency;
552
553 CacheBlk *blk = nullptr;
554 PacketList writebacks;
555 bool satisfied = access(pkt, blk, lat, writebacks);
556
557 if (pkt->isClean() && blk && blk->isDirty()) {
558 // A cache clean opearation is looking for a dirty
559 // block. If a dirty block is encountered a WriteClean
560 // will update any copies to the path to the memory
561 // until the point of reference.
562 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
563 __func__, pkt->print(), blk->print());
564 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
565 writebacks.push_back(wb_pkt);
566 pkt->setSatisfied();
567 }
568
569 // handle writebacks resulting from the access here to ensure they
570 // logically precede anything happening below
571 doWritebacksAtomic(writebacks);
572 assert(writebacks.empty());
573
574 if (!satisfied) {
575 lat += handleAtomicReqMiss(pkt, blk, writebacks);
576 }
577
578 // Note that we don't invoke the prefetcher at all in atomic mode.
579 // It's not clear how to do it properly, particularly for
580 // prefetchers that aggressively generate prefetch candidates and
581 // rely on bandwidth contention to throttle them; these will tend
582 // to pollute the cache in atomic mode since there is no bandwidth
583 // contention. If we ever do want to enable prefetching in atomic
584 // mode, though, this is the place to do it... see timingAccess()
585 // for an example (though we'd want to issue the prefetch(es)
586 // immediately rather than calling requestMemSideBus() as we do
587 // there).
588
589 // do any writebacks resulting from the response handling
590 doWritebacksAtomic(writebacks);
591
592 // if we used temp block, check to see if its valid and if so
593 // clear it out, but only do so after the call to recvAtomic is
594 // finished so that any downstream observers (such as a snoop
595 // filter), first see the fill, and only then see the eviction
596 if (blk == tempBlock && tempBlock->isValid()) {
597 // the atomic CPU calls recvAtomic for fetch and load/store
598 // sequentuially, and we may already have a tempBlock
599 // writeback from the fetch that we have not yet sent
600 if (tempBlockWriteback) {
601 // if that is the case, write the prevoius one back, and
602 // do not schedule any new event
603 writebackTempBlockAtomic();
604 } else {
605 // the writeback/clean eviction happens after the call to
606 // recvAtomic has finished (but before any successive
607 // calls), so that the response handling from the fill is
608 // allowed to happen first
609 schedule(writebackTempBlockAtomicEvent, curTick());
610 }
611
612 tempBlockWriteback = evictBlock(blk);
613 }
614
615 if (pkt->needsResponse()) {
616 pkt->makeAtomicResponse();
617 }
618
619 return lat * clockPeriod();
620}
621
622void
623BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side)
624{
625 Addr blk_addr = pkt->getBlockAddr(blkSize);
626 bool is_secure = pkt->isSecure();
627 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
628 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
629
630 pkt->pushLabel(name());
631
632 CacheBlkPrintWrapper cbpw(blk);
633
634 // Note that just because an L2/L3 has valid data doesn't mean an
635 // L1 doesn't have a more up-to-date modified copy that still
636 // needs to be found. As a result we always update the request if
637 // we have it, but only declare it satisfied if we are the owner.
638
639 // see if we have data at all (owned or otherwise)
640 bool have_data = blk && blk->isValid()
641 && pkt->trySatisfyFunctional(&cbpw, blk_addr, is_secure, blkSize,
642 blk->data);
643
644 // data we have is dirty if marked as such or if we have an
645 // in-service MSHR that is pending a modified line
646 bool have_dirty =
647 have_data && (blk->isDirty() ||
648 (mshr && mshr->inService && mshr->isPendingModified()));
649
650 bool done = have_dirty ||
651 cpuSidePort.trySatisfyFunctional(pkt) ||
652 mshrQueue.trySatisfyFunctional(pkt) ||
653 writeBuffer.trySatisfyFunctional(pkt) ||
654 memSidePort.trySatisfyFunctional(pkt);
655
656 DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(),
657 (blk && blk->isValid()) ? "valid " : "",
658 have_data ? "data " : "", done ? "done " : "");
659
660 // We're leaving the cache, so pop cache->name() label
661 pkt->popLabel();
662
663 if (done) {
664 pkt->makeResponse();
665 } else {
666 // if it came as a request from the CPU side then make sure it
667 // continues towards the memory side
668 if (from_cpu_side) {
669 memSidePort.sendFunctional(pkt);
670 } else if (cpuSidePort.isSnooping()) {
671 // if it came from the memory side, it must be a snoop request
672 // and we should only forward it if we are forwarding snoops
673 cpuSidePort.sendFunctionalSnoop(pkt);
674 }
675 }
676}
677
678
679void
680BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
681{
682 assert(pkt->isRequest());
683
684 uint64_t overwrite_val;
685 bool overwrite_mem;
686 uint64_t condition_val64;
687 uint32_t condition_val32;
688
689 int offset = pkt->getOffset(blkSize);
690 uint8_t *blk_data = blk->data + offset;
691
692 assert(sizeof(uint64_t) >= pkt->getSize());
693
694 overwrite_mem = true;
695 // keep a copy of our possible write value, and copy what is at the
696 // memory address into the packet
697 pkt->writeData((uint8_t *)&overwrite_val);
698 pkt->setData(blk_data);
699
700 if (pkt->req->isCondSwap()) {
701 if (pkt->getSize() == sizeof(uint64_t)) {
702 condition_val64 = pkt->req->getExtraData();
703 overwrite_mem = !std::memcmp(&condition_val64, blk_data,
704 sizeof(uint64_t));
705 } else if (pkt->getSize() == sizeof(uint32_t)) {
706 condition_val32 = (uint32_t)pkt->req->getExtraData();
707 overwrite_mem = !std::memcmp(&condition_val32, blk_data,
708 sizeof(uint32_t));
709 } else
710 panic("Invalid size for conditional read/write\n");
711 }
712
713 if (overwrite_mem) {
714 std::memcpy(blk_data, &overwrite_val, pkt->getSize());
715 blk->status |= BlkDirty;
716 }
717}
718
719QueueEntry*
720BaseCache::getNextQueueEntry()
721{
722 // Check both MSHR queue and write buffer for potential requests,
723 // note that null does not mean there is no request, it could
724 // simply be that it is not ready
725 MSHR *miss_mshr = mshrQueue.getNext();
726 WriteQueueEntry *wq_entry = writeBuffer.getNext();
727
728 // If we got a write buffer request ready, first priority is a
729 // full write buffer, otherwise we favour the miss requests
730 if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
731 // need to search MSHR queue for conflicting earlier miss.
732 MSHR *conflict_mshr = mshrQueue.findPending(wq_entry);
733
734 if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
735 // Service misses in order until conflict is cleared.
736 return conflict_mshr;
737
738 // @todo Note that we ignore the ready time of the conflict here
739 }
740
741 // No conflicts; issue write
742 return wq_entry;
743 } else if (miss_mshr) {
744 // need to check for conflicting earlier writeback
745 WriteQueueEntry *conflict_mshr = writeBuffer.findPending(miss_mshr);
746 if (conflict_mshr) {
747 // not sure why we don't check order here... it was in the
748 // original code but commented out.
749
750 // The only way this happens is if we are
751 // doing a write and we didn't have permissions
752 // then subsequently saw a writeback (owned got evicted)
753 // We need to make sure to perform the writeback first
754 // To preserve the dirty data, then we can issue the write
755
756 // should we return wq_entry here instead? I.e. do we
757 // have to flush writes in order? I don't think so... not
758 // for Alpha anyway. Maybe for x86?
759 return conflict_mshr;
760
761 // @todo Note that we ignore the ready time of the conflict here
762 }
763
764 // No conflicts; issue read
765 return miss_mshr;
766 }
767
768 // fall through... no pending requests. Try a prefetch.
769 assert(!miss_mshr && !wq_entry);
770 if (prefetcher && mshrQueue.canPrefetch()) {
771 // If we have a miss queue slot, we can try a prefetch
772 PacketPtr pkt = prefetcher->getPacket();
773 if (pkt) {
774 Addr pf_addr = pkt->getBlockAddr(blkSize);
775 if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
776 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
777 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
778 // Update statistic on number of prefetches issued
779 // (hwpf_mshr_misses)
780 assert(pkt->req->masterId() < system->maxMasters());
781 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
782
783 // allocate an MSHR and return it, note
784 // that we send the packet straight away, so do not
785 // schedule the send
786 return allocateMissBuffer(pkt, curTick(), false);
787 } else {
788 // free the request and packet
789 delete pkt;
790 }
791 }
792 }
793
794 return nullptr;
795}
796
797void
798BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool)
799{
800 assert(pkt->isRequest());
801
802 assert(blk && blk->isValid());
803 // Occasionally this is not true... if we are a lower-level cache
804 // satisfying a string of Read and ReadEx requests from
805 // upper-level caches, a Read will mark the block as shared but we
806 // can satisfy a following ReadEx anyway since we can rely on the
807 // Read requester(s) to have buffered the ReadEx snoop and to
808 // invalidate their blocks after receiving them.
809 // assert(!pkt->needsWritable() || blk->isWritable());
810 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
811
812 // Check RMW operations first since both isRead() and
813 // isWrite() will be true for them
814 if (pkt->cmd == MemCmd::SwapReq) {
815 if (pkt->isAtomicOp()) {
816 // extract data from cache and save it into the data field in
817 // the packet as a return value from this atomic op
818 int offset = tags->extractBlkOffset(pkt->getAddr());
819 uint8_t *blk_data = blk->data + offset;
820 pkt->setData(blk_data);
821
822 // execute AMO operation
823 (*(pkt->getAtomicOp()))(blk_data);
824
825 // set block status to dirty
826 blk->status |= BlkDirty;
827 } else {
828 cmpAndSwap(blk, pkt);
829 }
830 } else if (pkt->isWrite()) {
831 // we have the block in a writable state and can go ahead,
832 // note that the line may be also be considered writable in
833 // downstream caches along the path to memory, but always
834 // Exclusive, and never Modified
835 assert(blk->isWritable());
836 // Write or WriteLine at the first cache with block in writable state
837 if (blk->checkWrite(pkt)) {
838 pkt->writeDataToBlock(blk->data, blkSize);
839 }
840 // Always mark the line as dirty (and thus transition to the
841 // Modified state) even if we are a failed StoreCond so we
842 // supply data to any snoops that have appended themselves to
843 // this cache before knowing the store will fail.
844 blk->status |= BlkDirty;
845 DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
846 } else if (pkt->isRead()) {
847 if (pkt->isLLSC()) {
848 blk->trackLoadLocked(pkt);
849 }
850
851 // all read responses have a data payload
852 assert(pkt->hasRespData());
853 pkt->setDataFromBlock(blk->data, blkSize);
854 } else if (pkt->isUpgrade()) {
855 // sanity check
856 assert(!pkt->hasSharers());
857
858 if (blk->isDirty()) {
859 // we were in the Owned state, and a cache above us that
860 // has the line in Shared state needs to be made aware
861 // that the data it already has is in fact dirty
862 pkt->setCacheResponding();
863 blk->status &= ~BlkDirty;
864 }
865 } else if (pkt->isClean()) {
866 blk->status &= ~BlkDirty;
867 } else {
868 assert(pkt->isInvalidate());
869 invalidateBlock(blk);
870 DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
871 pkt->print());
872 }
873}
874
875/////////////////////////////////////////////////////
876//
877// Access path: requests coming in from the CPU side
878//
879/////////////////////////////////////////////////////
880Cycles
881BaseCache::calculateTagOnlyLatency(const uint32_t delay,
882 const Cycles lookup_lat) const
883{
884 // A tag-only access has to wait for the packet to arrive in order to
885 // perform the tag lookup.
886 return ticksToCycles(delay) + lookup_lat;
887}
888
889Cycles
890BaseCache::calculateAccessLatency(const CacheBlk* blk, const uint32_t delay,
891 const Cycles lookup_lat) const
892{
893 Cycles lat(0);
894
895 if (blk != nullptr) {
896 // As soon as the access arrives, for sequential accesses first access
897 // tags, then the data entry. In the case of parallel accesses the
898 // latency is dictated by the slowest of tag and data latencies.
899 if (sequentialAccess) {
900 lat = ticksToCycles(delay) + lookup_lat + dataLatency;
901 } else {
902 lat = ticksToCycles(delay) + std::max(lookup_lat, dataLatency);
903 }
904
905 // Check if the block to be accessed is available. If not, apply the
906 // access latency on top of when the block is ready to be accessed.
907 const Tick tick = curTick() + delay;
908 const Tick when_ready = blk->getWhenReady();
909 if (when_ready > tick &&
910 ticksToCycles(when_ready - tick) > lat) {
911 lat += ticksToCycles(when_ready - tick);
912 }
913 } else {
914 // In case of a miss, we neglect the data access in a parallel
915 // configuration (i.e., the data access will be stopped as soon as
916 // we find out it is a miss), and use the tag-only latency.
917 lat = calculateTagOnlyLatency(delay, lookup_lat);
918 }
919
920 return lat;
921}
922
923bool
924BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
925 PacketList &writebacks)
926{
927 // sanity check
928 assert(pkt->isRequest());
929
930 chatty_assert(!(isReadOnly && pkt->isWrite()),
931 "Should never see a write in a read-only cache %s\n",
932 name());
933
934 // Access block in the tags
935 Cycles tag_latency(0);
936 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), tag_latency);
937
938 DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(),
939 blk ? "hit " + blk->print() : "miss");
940
941 if (pkt->req->isCacheMaintenance()) {
942 // A cache maintenance operation is always forwarded to the
943 // memory below even if the block is found in dirty state.
944
945 // We defer any changes to the state of the block until we
946 // create and mark as in service the mshr for the downstream
947 // packet.
948
949 // Calculate access latency on top of when the packet arrives. This
950 // takes into account the bus delay.
951 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
952
953 return false;
954 }
955
956 if (pkt->isEviction()) {
957 // We check for presence of block in above caches before issuing
958 // Writeback or CleanEvict to write buffer. Therefore the only
959 // possible cases can be of a CleanEvict packet coming from above
960 // encountering a Writeback generated in this cache peer cache and
961 // waiting in the write buffer. Cases of upper level peer caches
962 // generating CleanEvict and Writeback or simply CleanEvict and
963 // CleanEvict almost simultaneously will be caught by snoops sent out
964 // by crossbar.
965 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
966 pkt->isSecure());
967 if (wb_entry) {
968 assert(wb_entry->getNumTargets() == 1);
969 PacketPtr wbPkt = wb_entry->getTarget()->pkt;
970 assert(wbPkt->isWriteback());
971
972 if (pkt->isCleanEviction()) {
973 // The CleanEvict and WritebackClean snoops into other
974 // peer caches of the same level while traversing the
975 // crossbar. If a copy of the block is found, the
976 // packet is deleted in the crossbar. Hence, none of
977 // the other upper level caches connected to this
978 // cache have the block, so we can clear the
979 // BLOCK_CACHED flag in the Writeback if set and
980 // discard the CleanEvict by returning true.
981 wbPkt->clearBlockCached();
982
983 // A clean evict does not need to access the data array
984 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
985
986 return true;
987 } else {
988 assert(pkt->cmd == MemCmd::WritebackDirty);
989 // Dirty writeback from above trumps our clean
990 // writeback... discard here
991 // Note: markInService will remove entry from writeback buffer.
992 markInService(wb_entry);
993 delete wbPkt;
994 }
995 }
996 }
997
998 // Writeback handling is special case. We can write the block into
999 // the cache without having a writeable copy (or any copy at all).
1000 if (pkt->isWriteback()) {
1001 assert(blkSize == pkt->getSize());
1002
1003 // we could get a clean writeback while we are having
1004 // outstanding accesses to a block, do the simple thing for
1005 // now and drop the clean writeback so that we do not upset
1006 // any ordering/decisions about ownership already taken
1007 if (pkt->cmd == MemCmd::WritebackClean &&
1008 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
1009 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
1010 "dropping\n", pkt->getAddr());
1011
1012 // A writeback searches for the block, then writes the data.
1013 // As the writeback is being dropped, the data is not touched,
1014 // and we just had to wait for the time to find a match in the
1015 // MSHR. As of now assume a mshr queue search takes as long as
1016 // a tag lookup for simplicity.
1017 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1018
1019 return true;
1020 }
1021
1022 if (!blk) {
1023 // need to do a replacement
1024 blk = allocateBlock(pkt, writebacks);
1025 if (!blk) {
1026 // no replaceable block available: give up, fwd to next level.
1027 incMissCount(pkt);
1028
1029 // A writeback searches for the block, then writes the data.
1030 // As the block could not be found, it was a tag-only access.
1031 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1032
1033 return false;
1034 }
1035
1036 blk->status |= BlkReadable;
1037 }
1038 // only mark the block dirty if we got a writeback command,
1039 // and leave it as is for a clean writeback
1040 if (pkt->cmd == MemCmd::WritebackDirty) {
1041 // TODO: the coherent cache can assert(!blk->isDirty());
1042 blk->status |= BlkDirty;
1043 }
1044 // if the packet does not have sharers, it is passing
1045 // writable, and we got the writeback in Modified or Exclusive
1046 // state, if not we are in the Owned or Shared state
1047 if (!pkt->hasSharers()) {
1048 blk->status |= BlkWritable;
1049 }
1050 // nothing else to do; writeback doesn't expect response
1051 assert(!pkt->needsResponse());
1052 pkt->writeDataToBlock(blk->data, blkSize);
1053 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1054 incHitCount(pkt);
1055
1056 // A writeback searches for the block, then writes the data
1057 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
1058
1059 // When the packet metadata arrives, the tag lookup will be done while
1060 // the payload is arriving. Then the block will be ready to access as
1061 // soon as the fill is done
1062 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1063 std::max(cyclesToTicks(tag_latency), (uint64_t)pkt->payloadDelay));
1064
1065 return true;
1066 } else if (pkt->cmd == MemCmd::CleanEvict) {
1067 // A CleanEvict does not need to access the data array
1068 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1069
1070 if (blk) {
1071 // Found the block in the tags, need to stop CleanEvict from
1072 // propagating further down the hierarchy. Returning true will
1073 // treat the CleanEvict like a satisfied write request and delete
1074 // it.
1075 return true;
1076 }
1077 // We didn't find the block here, propagate the CleanEvict further
1078 // down the memory hierarchy. Returning false will treat the CleanEvict
1079 // like a Writeback which could not find a replaceable block so has to
1080 // go to next level.
1081 return false;
1082 } else if (pkt->cmd == MemCmd::WriteClean) {
1083 // WriteClean handling is a special case. We can allocate a
1084 // block directly if it doesn't exist and we can update the
1085 // block immediately. The WriteClean transfers the ownership
1086 // of the block as well.
1087 assert(blkSize == pkt->getSize());
1088
1089 if (!blk) {
1090 if (pkt->writeThrough()) {
1091 // A writeback searches for the block, then writes the data.
1092 // As the block could not be found, it was a tag-only access.
1093 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1094
1095 // if this is a write through packet, we don't try to
1096 // allocate if the block is not present
1097 return false;
1098 } else {
1099 // a writeback that misses needs to allocate a new block
1100 blk = allocateBlock(pkt, writebacks);
1101 if (!blk) {
1102 // no replaceable block available: give up, fwd to
1103 // next level.
1104 incMissCount(pkt);
1105
1106 // A writeback searches for the block, then writes the
1107 // data. As the block could not be found, it was a tag-only
1108 // access.
1109 lat = calculateTagOnlyLatency(pkt->headerDelay,
1110 tag_latency);
1111
1112 return false;
1113 }
1114
1115 blk->status |= BlkReadable;
1116 }
1117 }
1118
1119 // at this point either this is a writeback or a write-through
1120 // write clean operation and the block is already in this
1121 // cache, we need to update the data and the block flags
1122 assert(blk);
1123 // TODO: the coherent cache can assert(!blk->isDirty());
1124 if (!pkt->writeThrough()) {
1125 blk->status |= BlkDirty;
1126 }
1127 // nothing else to do; writeback doesn't expect response
1128 assert(!pkt->needsResponse());
1129 pkt->writeDataToBlock(blk->data, blkSize);
1130 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1131
1132 incHitCount(pkt);
1133
1134 // A writeback searches for the block, then writes the data
1135 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
1136
1137 // When the packet metadata arrives, the tag lookup will be done while
1138 // the payload is arriving. Then the block will be ready to access as
1139 // soon as the fill is done
1140 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1141 std::max(cyclesToTicks(tag_latency), (uint64_t)pkt->payloadDelay));
1142
1143 // if this a write-through packet it will be sent to cache
1144 // below
1145 return !pkt->writeThrough();
1146 } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
1147 blk->isReadable())) {
1148 // OK to satisfy access
1149 incHitCount(pkt);
1150
1151 // Calculate access latency based on the need to access the data array
1152 if (pkt->isRead() || pkt->isWrite()) {
1153 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
1154 } else {
1155 lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
1156 }
1157
1158 satisfyRequest(pkt, blk);
1159 maintainClusivity(pkt->fromCache(), blk);
1160
1161 return true;
1162 }
1163
1164 // Can't satisfy access normally... either no block (blk == nullptr)
1165 // or have block but need writable
1166
1167 incMissCount(pkt);
1168
1169 lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
1170
1171 if (!blk && pkt->isLLSC() && pkt->isWrite()) {
1172 // complete miss on store conditional... just give up now
1173 pkt->req->setExtraData(0);
1174 return true;
1175 }
1176
1177 return false;
1178}
1179
1180void
1181BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk)
1182{
1183 if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
1184 clusivity == Enums::mostly_excl) {
1185 // if we have responded to a cache, and our block is still
1186 // valid, but not dirty, and this cache is mostly exclusive
1187 // with respect to the cache above, drop the block
1188 invalidateBlock(blk);
1189 }
1190}
1191
1192CacheBlk*
1193BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1194 bool allocate)
1195{
1196 assert(pkt->isResponse());
1197 Addr addr = pkt->getAddr();
1198 bool is_secure = pkt->isSecure();
1199#if TRACING_ON
1200 CacheBlk::State old_state = blk ? blk->status : 0;
1201#endif
1202
1203 // When handling a fill, we should have no writes to this line.
1204 assert(addr == pkt->getBlockAddr(blkSize));
1205 assert(!writeBuffer.findMatch(addr, is_secure));
1206
1207 if (!blk) {
1208 // better have read new data...
1209 assert(pkt->hasData() || pkt->cmd == MemCmd::InvalidateResp);
1210
1211 // need to do a replacement if allocating, otherwise we stick
1212 // with the temporary storage
1213 blk = allocate ? allocateBlock(pkt, writebacks) : nullptr;
1214
1215 if (!blk) {
1216 // No replaceable block or a mostly exclusive
1217 // cache... just use temporary storage to complete the
1218 // current request and then get rid of it
1219 blk = tempBlock;
1220 tempBlock->insert(addr, is_secure);
1221 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1222 is_secure ? "s" : "ns");
1223 }
1224 } else {
1225 // existing block... probably an upgrade
1226 // don't clear block status... if block is already dirty we
1227 // don't want to lose that
1228 }
1229
1230 // Block is guaranteed to be valid at this point
1231 assert(blk->isValid());
1232 assert(blk->isSecure() == is_secure);
1233 assert(regenerateBlkAddr(blk) == addr);
1234
1235 blk->status |= BlkReadable;
1236
1237 // sanity check for whole-line writes, which should always be
1238 // marked as writable as part of the fill, and then later marked
1239 // dirty as part of satisfyRequest
1240 if (pkt->cmd == MemCmd::InvalidateResp) {
1241 assert(!pkt->hasSharers());
1242 }
1243
1244 // here we deal with setting the appropriate state of the line,
1245 // and we start by looking at the hasSharers flag, and ignore the
1246 // cacheResponding flag (normally signalling dirty data) if the
1247 // packet has sharers, thus the line is never allocated as Owned
1248 // (dirty but not writable), and always ends up being either
1249 // Shared, Exclusive or Modified, see Packet::setCacheResponding
1250 // for more details
1251 if (!pkt->hasSharers()) {
1252 // we could get a writable line from memory (rather than a
1253 // cache) even in a read-only cache, note that we set this bit
1254 // even for a read-only cache, possibly revisit this decision
1255 blk->status |= BlkWritable;
1256
1257 // check if we got this via cache-to-cache transfer (i.e., from a
1258 // cache that had the block in Modified or Owned state)
1259 if (pkt->cacheResponding()) {
1260 // we got the block in Modified state, and invalidated the
1261 // owners copy
1262 blk->status |= BlkDirty;
1263
1264 chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1265 "in read-only cache %s\n", name());
1266 }
1267 }
1268
1269 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1270 addr, is_secure ? "s" : "ns", old_state, blk->print());
1271
1272 // if we got new data, copy it in (checking for a read response
1273 // and a response that has data is the same in the end)
1274 if (pkt->isRead()) {
1275 // sanity checks
1276 assert(pkt->hasData());
1277 assert(pkt->getSize() == blkSize);
1278
1279 pkt->writeDataToBlock(blk->data, blkSize);
1280 }
1281 // The block will be ready when the payload arrives and the fill is done
1282 blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
1283 pkt->payloadDelay);
1284
1285 return blk;
1286}
1287
1288CacheBlk*
1289BaseCache::allocateBlock(const PacketPtr pkt, PacketList &writebacks)
1290{
1291 // Get address
1292 const Addr addr = pkt->getAddr();
1293
1294 // Get secure bit
1295 const bool is_secure = pkt->isSecure();
1296
1297 // Find replacement victim
1298 std::vector<CacheBlk*> evict_blks;
1299 CacheBlk *victim = tags->findVictim(addr, is_secure, evict_blks);
1300
1301 // It is valid to return nullptr if there is no victim
1302 if (!victim)
1303 return nullptr;
1304
1305 // Print victim block's information
1306 DPRINTF(CacheRepl, "Replacement victim: %s\n", victim->print());
1307
1308 // Check for transient state allocations. If any of the entries listed
1309 // for eviction has a transient state, the allocation fails
1310 bool replacement = false;
1311 for (const auto& blk : evict_blks) {
1312 if (blk->isValid()) {
1313 replacement = true;
1314
1315 Addr repl_addr = regenerateBlkAddr(blk);
1316 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1317 if (repl_mshr) {
1318 // must be an outstanding upgrade or clean request
1319 // on a block we're about to replace...
1320 assert((!blk->isWritable() && repl_mshr->needsWritable()) ||
1321 repl_mshr->isCleaning());
1322
1323 // too hard to replace block with transient state
1324 // allocation failed, block not inserted
1325 return nullptr;
1326 }
1327 }
1328 }
1329
1330 // The victim will be replaced by a new entry, so increase the replacement
1331 // counter if a valid block is being replaced
1332 if (replacement) {
1333 // Evict valid blocks associated to this victim block
1334 for (const auto& blk : evict_blks) {
1335 if (blk->isValid()) {
1336 DPRINTF(CacheRepl, "Evicting %s (%#llx) to make room for " \
1337 "%#llx (%s)\n", blk->print(), regenerateBlkAddr(blk),
1338 addr, is_secure);
1339
1340 if (blk->wasPrefetched()) {
1341 unusedPrefetches++;
1342 }
1343
1344 evictBlock(blk, writebacks);
1345 }
1346 }
1347
1348 replacements++;
1349 }
1350
1351 // Insert new block at victimized entry
1352 tags->insertBlock(pkt, victim);
1353
1354 return victim;
1355}
1356
1357void
1358BaseCache::invalidateBlock(CacheBlk *blk)
1359{
1360 // If handling a block present in the Tags, let it do its invalidation
1361 // process, which will update stats and invalidate the block itself
1362 if (blk != tempBlock) {
1363 tags->invalidate(blk);
1364 } else {
1365 tempBlock->invalidate();
1366 }
1367}
1368
1369void
1370BaseCache::evictBlock(CacheBlk *blk, PacketList &writebacks)
1371{
1372 PacketPtr pkt = evictBlock(blk);
1373 if (pkt) {
1374 writebacks.push_back(pkt);
1375 }
1376}
1377
1378PacketPtr
1379BaseCache::writebackBlk(CacheBlk *blk)
1380{
1381 chatty_assert(!isReadOnly || writebackClean,
1382 "Writeback from read-only cache");
1383 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1384
1385 writebacks[Request::wbMasterId]++;
1386
1387 RequestPtr req = std::make_shared<Request>(
1388 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1389
1390 if (blk->isSecure())
1391 req->setFlags(Request::SECURE);
1392
1393 req->taskId(blk->task_id);
1394
1395 PacketPtr pkt =
1396 new Packet(req, blk->isDirty() ?
1397 MemCmd::WritebackDirty : MemCmd::WritebackClean);
1398
1399 DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1400 pkt->print(), blk->isWritable(), blk->isDirty());
1401
1402 if (blk->isWritable()) {
1403 // not asserting shared means we pass the block in modified
1404 // state, mark our own block non-writeable
1405 blk->status &= ~BlkWritable;
1406 } else {
1407 // we are in the Owned state, tell the receiver
1408 pkt->setHasSharers();
1409 }
1410
1411 // make sure the block is not marked dirty
1412 blk->status &= ~BlkDirty;
1413
1414 pkt->allocate();
1415 pkt->setDataFromBlock(blk->data, blkSize);
1416
1417 return pkt;
1418}
1419
1420PacketPtr
1421BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
1422{
1423 RequestPtr req = std::make_shared<Request>(
1424 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1425
1426 if (blk->isSecure()) {
1427 req->setFlags(Request::SECURE);
1428 }
1429 req->taskId(blk->task_id);
1430
1431 PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
1432
1433 if (dest) {
1434 req->setFlags(dest);
1435 pkt->setWriteThrough();
1436 }
1437
1438 DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1439 blk->isWritable(), blk->isDirty());
1440
1441 if (blk->isWritable()) {
1442 // not asserting shared means we pass the block in modified
1443 // state, mark our own block non-writeable
1444 blk->status &= ~BlkWritable;
1445 } else {
1446 // we are in the Owned state, tell the receiver
1447 pkt->setHasSharers();
1448 }
1449
1450 // make sure the block is not marked dirty
1451 blk->status &= ~BlkDirty;
1452
1453 pkt->allocate();
1454 pkt->setDataFromBlock(blk->data, blkSize);
1455
1456 return pkt;
1457}
1458
1459
1460void
1461BaseCache::memWriteback()
1462{
1463 tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); });
1464}
1465
1466void
1467BaseCache::memInvalidate()
1468{
1469 tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); });
1470}
1471
1472bool
1473BaseCache::isDirty() const
1474{
1475 return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); });
1476}
1477
1478bool
1479BaseCache::coalesce() const
1480{
1481 return writeAllocator && writeAllocator->coalesce();
1482}
1483
1484void
1485BaseCache::writebackVisitor(CacheBlk &blk)
1486{
1487 if (blk.isDirty()) {
1488 assert(blk.isValid());
1489
1490 RequestPtr request = std::make_shared<Request>(
1491 regenerateBlkAddr(&blk), blkSize, 0, Request::funcMasterId);
1492
1493 request->taskId(blk.task_id);
1494 if (blk.isSecure()) {
1495 request->setFlags(Request::SECURE);
1496 }
1497
1498 Packet packet(request, MemCmd::WriteReq);
1499 packet.dataStatic(blk.data);
1500
1501 memSidePort.sendFunctional(&packet);
1502
1503 blk.status &= ~BlkDirty;
1504 }
1505}
1506
1507void
1508BaseCache::invalidateVisitor(CacheBlk &blk)
1509{
1510 if (blk.isDirty())
1511 warn_once("Invalidating dirty cache lines. " \
1512 "Expect things to break.\n");
1513
1514 if (blk.isValid()) {
1515 assert(!blk.isDirty());
1516 invalidateBlock(&blk);
1517 }
1518}
1519
1520Tick
1521BaseCache::nextQueueReadyTime() const
1522{
1523 Tick nextReady = std::min(mshrQueue.nextReadyTime(),
1524 writeBuffer.nextReadyTime());
1525
1526 // Don't signal prefetch ready time if no MSHRs available
1527 // Will signal once enoguh MSHRs are deallocated
1528 if (prefetcher && mshrQueue.canPrefetch()) {
1529 nextReady = std::min(nextReady,
1530 prefetcher->nextPrefetchReadyTime());
1531 }
1532
1533 return nextReady;
1534}
1535
1536
1537bool
1538BaseCache::sendMSHRQueuePacket(MSHR* mshr)
1539{
1540 assert(mshr);
1541
1542 // use request from 1st target
1543 PacketPtr tgt_pkt = mshr->getTarget()->pkt;
1544
1545 DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
1546
1547 // if the cache is in write coalescing mode or (additionally) in
1548 // no allocation mode, and we have a write packet with an MSHR
1549 // that is not a whole-line write (due to incompatible flags etc),
1550 // then reset the write mode
1551 if (writeAllocator && writeAllocator->coalesce() && tgt_pkt->isWrite()) {
1552 if (!mshr->isWholeLineWrite()) {
1553 // if we are currently write coalescing, hold on the
1554 // MSHR as many cycles extra as we need to completely
1555 // write a cache line
1556 if (writeAllocator->delay(mshr->blkAddr)) {
1557 Tick delay = blkSize / tgt_pkt->getSize() * clockPeriod();
1558 DPRINTF(CacheVerbose, "Delaying pkt %s %llu ticks to allow "
1559 "for write coalescing\n", tgt_pkt->print(), delay);
1560 mshrQueue.delay(mshr, delay);
1561 return false;
1562 } else {
1563 writeAllocator->reset();
1564 }
1565 } else {
1566 writeAllocator->resetDelay(mshr->blkAddr);
1567 }
1568 }
1569
1570 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
1571
1572 // either a prefetch that is not present upstream, or a normal
1573 // MSHR request, proceed to get the packet to send downstream
1574 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable(),
1575 mshr->isWholeLineWrite());
1576
1577 mshr->isForward = (pkt == nullptr);
1578
1579 if (mshr->isForward) {
1580 // not a cache block request, but a response is expected
1581 // make copy of current packet to forward, keep current
1582 // copy for response handling
1583 pkt = new Packet(tgt_pkt, false, true);
1584 assert(!pkt->isWrite());
1585 }
1586
1587 // play it safe and append (rather than set) the sender state,
1588 // as forwarded packets may already have existing state
1589 pkt->pushSenderState(mshr);
1590
1591 if (pkt->isClean() && blk && blk->isDirty()) {
1592 // A cache clean opearation is looking for a dirty block. Mark
1593 // the packet so that the destination xbar can determine that
1594 // there will be a follow-up write packet as well.
1595 pkt->setSatisfied();
1596 }
1597
1598 if (!memSidePort.sendTimingReq(pkt)) {
1599 // we are awaiting a retry, but we
1600 // delete the packet and will be creating a new packet
1601 // when we get the opportunity
1602 delete pkt;
1603
1604 // note that we have now masked any requestBus and
1605 // schedSendEvent (we will wait for a retry before
1606 // doing anything), and this is so even if we do not
1607 // care about this packet and might override it before
1608 // it gets retried
1609 return true;
1610 } else {
1611 // As part of the call to sendTimingReq the packet is
1612 // forwarded to all neighbouring caches (and any caches
1613 // above them) as a snoop. Thus at this point we know if
1614 // any of the neighbouring caches are responding, and if
1615 // so, we know it is dirty, and we can determine if it is
1616 // being passed as Modified, making our MSHR the ordering
1617 // point
1618 bool pending_modified_resp = !pkt->hasSharers() &&
1619 pkt->cacheResponding();
1620 markInService(mshr, pending_modified_resp);
1621
1622 if (pkt->isClean() && blk && blk->isDirty()) {
1623 // A cache clean opearation is looking for a dirty
1624 // block. If a dirty block is encountered a WriteClean
1625 // will update any copies to the path to the memory
1626 // until the point of reference.
1627 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
1628 __func__, pkt->print(), blk->print());
1629 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
1630 pkt->id);
1631 PacketList writebacks;
1632 writebacks.push_back(wb_pkt);
1633 doWritebacks(writebacks, 0);
1634 }
1635
1636 return false;
1637 }
1638}
1639
1640bool
1641BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
1642{
1643 assert(wq_entry);
1644
1645 // always a single target for write queue entries
1646 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
1647
1648 DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
1649
1650 // forward as is, both for evictions and uncacheable writes
1651 if (!memSidePort.sendTimingReq(tgt_pkt)) {
1652 // note that we have now masked any requestBus and
1653 // schedSendEvent (we will wait for a retry before
1654 // doing anything), and this is so even if we do not
1655 // care about this packet and might override it before
1656 // it gets retried
1657 return true;
1658 } else {
1659 markInService(wq_entry);
1660 return false;
1661 }
1662}
1663
1664void
1665BaseCache::serialize(CheckpointOut &cp) const
1666{
1667 bool dirty(isDirty());
1668
1669 if (dirty) {
1670 warn("*** The cache still contains dirty data. ***\n");
1671 warn(" Make sure to drain the system using the correct flags.\n");
1672 warn(" This checkpoint will not restore correctly " \
1673 "and dirty data in the cache will be lost!\n");
1674 }
1675
1676 // Since we don't checkpoint the data in the cache, any dirty data
1677 // will be lost when restoring from a checkpoint of a system that
1678 // wasn't drained properly. Flag the checkpoint as invalid if the
1679 // cache contains dirty data.
1680 bool bad_checkpoint(dirty);
1681 SERIALIZE_SCALAR(bad_checkpoint);
1682}
1683
1684void
1685BaseCache::unserialize(CheckpointIn &cp)
1686{
1687 bool bad_checkpoint;
1688 UNSERIALIZE_SCALAR(bad_checkpoint);
1689 if (bad_checkpoint) {
1690 fatal("Restoring from checkpoints with dirty caches is not "
1691 "supported in the classic memory system. Please remove any "
1692 "caches or drain them properly before taking checkpoints.\n");
1693 }
1694}
1695
1696void
1697BaseCache::regStats()
1698{
1699 MemObject::regStats();
1699 ClockedObject::regStats();
1700
1701 using namespace Stats;
1702
1703 // Hit statistics
1704 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1705 MemCmd cmd(access_idx);
1706 const string &cstr = cmd.toString();
1707
1708 hits[access_idx]
1709 .init(system->maxMasters())
1710 .name(name() + "." + cstr + "_hits")
1711 .desc("number of " + cstr + " hits")
1712 .flags(total | nozero | nonan)
1713 ;
1714 for (int i = 0; i < system->maxMasters(); i++) {
1715 hits[access_idx].subname(i, system->getMasterName(i));
1716 }
1717 }
1718
1719// These macros make it easier to sum the right subset of commands and
1720// to change the subset of commands that are considered "demand" vs
1721// "non-demand"
1722#define SUM_DEMAND(s) \
1723 (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \
1724 s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq])
1725
1726// should writebacks be included here? prior code was inconsistent...
1727#define SUM_NON_DEMAND(s) \
1728 (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq] + s[MemCmd::SoftPFExReq])
1729
1730 demandHits
1731 .name(name() + ".demand_hits")
1732 .desc("number of demand (read+write) hits")
1733 .flags(total | nozero | nonan)
1734 ;
1735 demandHits = SUM_DEMAND(hits);
1736 for (int i = 0; i < system->maxMasters(); i++) {
1737 demandHits.subname(i, system->getMasterName(i));
1738 }
1739
1740 overallHits
1741 .name(name() + ".overall_hits")
1742 .desc("number of overall hits")
1743 .flags(total | nozero | nonan)
1744 ;
1745 overallHits = demandHits + SUM_NON_DEMAND(hits);
1746 for (int i = 0; i < system->maxMasters(); i++) {
1747 overallHits.subname(i, system->getMasterName(i));
1748 }
1749
1750 // Miss statistics
1751 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1752 MemCmd cmd(access_idx);
1753 const string &cstr = cmd.toString();
1754
1755 misses[access_idx]
1756 .init(system->maxMasters())
1757 .name(name() + "." + cstr + "_misses")
1758 .desc("number of " + cstr + " misses")
1759 .flags(total | nozero | nonan)
1760 ;
1761 for (int i = 0; i < system->maxMasters(); i++) {
1762 misses[access_idx].subname(i, system->getMasterName(i));
1763 }
1764 }
1765
1766 demandMisses
1767 .name(name() + ".demand_misses")
1768 .desc("number of demand (read+write) misses")
1769 .flags(total | nozero | nonan)
1770 ;
1771 demandMisses = SUM_DEMAND(misses);
1772 for (int i = 0; i < system->maxMasters(); i++) {
1773 demandMisses.subname(i, system->getMasterName(i));
1774 }
1775
1776 overallMisses
1777 .name(name() + ".overall_misses")
1778 .desc("number of overall misses")
1779 .flags(total | nozero | nonan)
1780 ;
1781 overallMisses = demandMisses + SUM_NON_DEMAND(misses);
1782 for (int i = 0; i < system->maxMasters(); i++) {
1783 overallMisses.subname(i, system->getMasterName(i));
1784 }
1785
1786 // Miss latency statistics
1787 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1788 MemCmd cmd(access_idx);
1789 const string &cstr = cmd.toString();
1790
1791 missLatency[access_idx]
1792 .init(system->maxMasters())
1793 .name(name() + "." + cstr + "_miss_latency")
1794 .desc("number of " + cstr + " miss cycles")
1795 .flags(total | nozero | nonan)
1796 ;
1797 for (int i = 0; i < system->maxMasters(); i++) {
1798 missLatency[access_idx].subname(i, system->getMasterName(i));
1799 }
1800 }
1801
1802 demandMissLatency
1803 .name(name() + ".demand_miss_latency")
1804 .desc("number of demand (read+write) miss cycles")
1805 .flags(total | nozero | nonan)
1806 ;
1807 demandMissLatency = SUM_DEMAND(missLatency);
1808 for (int i = 0; i < system->maxMasters(); i++) {
1809 demandMissLatency.subname(i, system->getMasterName(i));
1810 }
1811
1812 overallMissLatency
1813 .name(name() + ".overall_miss_latency")
1814 .desc("number of overall miss cycles")
1815 .flags(total | nozero | nonan)
1816 ;
1817 overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency);
1818 for (int i = 0; i < system->maxMasters(); i++) {
1819 overallMissLatency.subname(i, system->getMasterName(i));
1820 }
1821
1822 // access formulas
1823 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1824 MemCmd cmd(access_idx);
1825 const string &cstr = cmd.toString();
1826
1827 accesses[access_idx]
1828 .name(name() + "." + cstr + "_accesses")
1829 .desc("number of " + cstr + " accesses(hits+misses)")
1830 .flags(total | nozero | nonan)
1831 ;
1832 accesses[access_idx] = hits[access_idx] + misses[access_idx];
1833
1834 for (int i = 0; i < system->maxMasters(); i++) {
1835 accesses[access_idx].subname(i, system->getMasterName(i));
1836 }
1837 }
1838
1839 demandAccesses
1840 .name(name() + ".demand_accesses")
1841 .desc("number of demand (read+write) accesses")
1842 .flags(total | nozero | nonan)
1843 ;
1844 demandAccesses = demandHits + demandMisses;
1845 for (int i = 0; i < system->maxMasters(); i++) {
1846 demandAccesses.subname(i, system->getMasterName(i));
1847 }
1848
1849 overallAccesses
1850 .name(name() + ".overall_accesses")
1851 .desc("number of overall (read+write) accesses")
1852 .flags(total | nozero | nonan)
1853 ;
1854 overallAccesses = overallHits + overallMisses;
1855 for (int i = 0; i < system->maxMasters(); i++) {
1856 overallAccesses.subname(i, system->getMasterName(i));
1857 }
1858
1859 // miss rate formulas
1860 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1861 MemCmd cmd(access_idx);
1862 const string &cstr = cmd.toString();
1863
1864 missRate[access_idx]
1865 .name(name() + "." + cstr + "_miss_rate")
1866 .desc("miss rate for " + cstr + " accesses")
1867 .flags(total | nozero | nonan)
1868 ;
1869 missRate[access_idx] = misses[access_idx] / accesses[access_idx];
1870
1871 for (int i = 0; i < system->maxMasters(); i++) {
1872 missRate[access_idx].subname(i, system->getMasterName(i));
1873 }
1874 }
1875
1876 demandMissRate
1877 .name(name() + ".demand_miss_rate")
1878 .desc("miss rate for demand accesses")
1879 .flags(total | nozero | nonan)
1880 ;
1881 demandMissRate = demandMisses / demandAccesses;
1882 for (int i = 0; i < system->maxMasters(); i++) {
1883 demandMissRate.subname(i, system->getMasterName(i));
1884 }
1885
1886 overallMissRate
1887 .name(name() + ".overall_miss_rate")
1888 .desc("miss rate for overall accesses")
1889 .flags(total | nozero | nonan)
1890 ;
1891 overallMissRate = overallMisses / overallAccesses;
1892 for (int i = 0; i < system->maxMasters(); i++) {
1893 overallMissRate.subname(i, system->getMasterName(i));
1894 }
1895
1896 // miss latency formulas
1897 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1898 MemCmd cmd(access_idx);
1899 const string &cstr = cmd.toString();
1900
1901 avgMissLatency[access_idx]
1902 .name(name() + "." + cstr + "_avg_miss_latency")
1903 .desc("average " + cstr + " miss latency")
1904 .flags(total | nozero | nonan)
1905 ;
1906 avgMissLatency[access_idx] =
1907 missLatency[access_idx] / misses[access_idx];
1908
1909 for (int i = 0; i < system->maxMasters(); i++) {
1910 avgMissLatency[access_idx].subname(i, system->getMasterName(i));
1911 }
1912 }
1913
1914 demandAvgMissLatency
1915 .name(name() + ".demand_avg_miss_latency")
1916 .desc("average overall miss latency")
1917 .flags(total | nozero | nonan)
1918 ;
1919 demandAvgMissLatency = demandMissLatency / demandMisses;
1920 for (int i = 0; i < system->maxMasters(); i++) {
1921 demandAvgMissLatency.subname(i, system->getMasterName(i));
1922 }
1923
1924 overallAvgMissLatency
1925 .name(name() + ".overall_avg_miss_latency")
1926 .desc("average overall miss latency")
1927 .flags(total | nozero | nonan)
1928 ;
1929 overallAvgMissLatency = overallMissLatency / overallMisses;
1930 for (int i = 0; i < system->maxMasters(); i++) {
1931 overallAvgMissLatency.subname(i, system->getMasterName(i));
1932 }
1933
1934 blocked_cycles.init(NUM_BLOCKED_CAUSES);
1935 blocked_cycles
1936 .name(name() + ".blocked_cycles")
1937 .desc("number of cycles access was blocked")
1938 .subname(Blocked_NoMSHRs, "no_mshrs")
1939 .subname(Blocked_NoTargets, "no_targets")
1940 ;
1941
1942
1943 blocked_causes.init(NUM_BLOCKED_CAUSES);
1944 blocked_causes
1945 .name(name() + ".blocked")
1946 .desc("number of cycles access was blocked")
1947 .subname(Blocked_NoMSHRs, "no_mshrs")
1948 .subname(Blocked_NoTargets, "no_targets")
1949 ;
1950
1951 avg_blocked
1952 .name(name() + ".avg_blocked_cycles")
1953 .desc("average number of cycles each access was blocked")
1954 .subname(Blocked_NoMSHRs, "no_mshrs")
1955 .subname(Blocked_NoTargets, "no_targets")
1956 ;
1957
1958 avg_blocked = blocked_cycles / blocked_causes;
1959
1960 unusedPrefetches
1961 .name(name() + ".unused_prefetches")
1962 .desc("number of HardPF blocks evicted w/o reference")
1963 .flags(nozero)
1964 ;
1965
1966 writebacks
1967 .init(system->maxMasters())
1968 .name(name() + ".writebacks")
1969 .desc("number of writebacks")
1970 .flags(total | nozero | nonan)
1971 ;
1972 for (int i = 0; i < system->maxMasters(); i++) {
1973 writebacks.subname(i, system->getMasterName(i));
1974 }
1975
1976 // MSHR statistics
1977 // MSHR hit statistics
1978 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1979 MemCmd cmd(access_idx);
1980 const string &cstr = cmd.toString();
1981
1982 mshr_hits[access_idx]
1983 .init(system->maxMasters())
1984 .name(name() + "." + cstr + "_mshr_hits")
1985 .desc("number of " + cstr + " MSHR hits")
1986 .flags(total | nozero | nonan)
1987 ;
1988 for (int i = 0; i < system->maxMasters(); i++) {
1989 mshr_hits[access_idx].subname(i, system->getMasterName(i));
1990 }
1991 }
1992
1993 demandMshrHits
1994 .name(name() + ".demand_mshr_hits")
1995 .desc("number of demand (read+write) MSHR hits")
1996 .flags(total | nozero | nonan)
1997 ;
1998 demandMshrHits = SUM_DEMAND(mshr_hits);
1999 for (int i = 0; i < system->maxMasters(); i++) {
2000 demandMshrHits.subname(i, system->getMasterName(i));
2001 }
2002
2003 overallMshrHits
2004 .name(name() + ".overall_mshr_hits")
2005 .desc("number of overall MSHR hits")
2006 .flags(total | nozero | nonan)
2007 ;
2008 overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits);
2009 for (int i = 0; i < system->maxMasters(); i++) {
2010 overallMshrHits.subname(i, system->getMasterName(i));
2011 }
2012
2013 // MSHR miss statistics
2014 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2015 MemCmd cmd(access_idx);
2016 const string &cstr = cmd.toString();
2017
2018 mshr_misses[access_idx]
2019 .init(system->maxMasters())
2020 .name(name() + "." + cstr + "_mshr_misses")
2021 .desc("number of " + cstr + " MSHR misses")
2022 .flags(total | nozero | nonan)
2023 ;
2024 for (int i = 0; i < system->maxMasters(); i++) {
2025 mshr_misses[access_idx].subname(i, system->getMasterName(i));
2026 }
2027 }
2028
2029 demandMshrMisses
2030 .name(name() + ".demand_mshr_misses")
2031 .desc("number of demand (read+write) MSHR misses")
2032 .flags(total | nozero | nonan)
2033 ;
2034 demandMshrMisses = SUM_DEMAND(mshr_misses);
2035 for (int i = 0; i < system->maxMasters(); i++) {
2036 demandMshrMisses.subname(i, system->getMasterName(i));
2037 }
2038
2039 overallMshrMisses
2040 .name(name() + ".overall_mshr_misses")
2041 .desc("number of overall MSHR misses")
2042 .flags(total | nozero | nonan)
2043 ;
2044 overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses);
2045 for (int i = 0; i < system->maxMasters(); i++) {
2046 overallMshrMisses.subname(i, system->getMasterName(i));
2047 }
2048
2049 // MSHR miss latency statistics
2050 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2051 MemCmd cmd(access_idx);
2052 const string &cstr = cmd.toString();
2053
2054 mshr_miss_latency[access_idx]
2055 .init(system->maxMasters())
2056 .name(name() + "." + cstr + "_mshr_miss_latency")
2057 .desc("number of " + cstr + " MSHR miss cycles")
2058 .flags(total | nozero | nonan)
2059 ;
2060 for (int i = 0; i < system->maxMasters(); i++) {
2061 mshr_miss_latency[access_idx].subname(i, system->getMasterName(i));
2062 }
2063 }
2064
2065 demandMshrMissLatency
2066 .name(name() + ".demand_mshr_miss_latency")
2067 .desc("number of demand (read+write) MSHR miss cycles")
2068 .flags(total | nozero | nonan)
2069 ;
2070 demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency);
2071 for (int i = 0; i < system->maxMasters(); i++) {
2072 demandMshrMissLatency.subname(i, system->getMasterName(i));
2073 }
2074
2075 overallMshrMissLatency
2076 .name(name() + ".overall_mshr_miss_latency")
2077 .desc("number of overall MSHR miss cycles")
2078 .flags(total | nozero | nonan)
2079 ;
2080 overallMshrMissLatency =
2081 demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency);
2082 for (int i = 0; i < system->maxMasters(); i++) {
2083 overallMshrMissLatency.subname(i, system->getMasterName(i));
2084 }
2085
2086 // MSHR uncacheable statistics
2087 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2088 MemCmd cmd(access_idx);
2089 const string &cstr = cmd.toString();
2090
2091 mshr_uncacheable[access_idx]
2092 .init(system->maxMasters())
2093 .name(name() + "." + cstr + "_mshr_uncacheable")
2094 .desc("number of " + cstr + " MSHR uncacheable")
2095 .flags(total | nozero | nonan)
2096 ;
2097 for (int i = 0; i < system->maxMasters(); i++) {
2098 mshr_uncacheable[access_idx].subname(i, system->getMasterName(i));
2099 }
2100 }
2101
2102 overallMshrUncacheable
2103 .name(name() + ".overall_mshr_uncacheable_misses")
2104 .desc("number of overall MSHR uncacheable misses")
2105 .flags(total | nozero | nonan)
2106 ;
2107 overallMshrUncacheable =
2108 SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable);
2109 for (int i = 0; i < system->maxMasters(); i++) {
2110 overallMshrUncacheable.subname(i, system->getMasterName(i));
2111 }
2112
2113 // MSHR miss latency statistics
2114 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2115 MemCmd cmd(access_idx);
2116 const string &cstr = cmd.toString();
2117
2118 mshr_uncacheable_lat[access_idx]
2119 .init(system->maxMasters())
2120 .name(name() + "." + cstr + "_mshr_uncacheable_latency")
2121 .desc("number of " + cstr + " MSHR uncacheable cycles")
2122 .flags(total | nozero | nonan)
2123 ;
2124 for (int i = 0; i < system->maxMasters(); i++) {
2125 mshr_uncacheable_lat[access_idx].subname(
2126 i, system->getMasterName(i));
2127 }
2128 }
2129
2130 overallMshrUncacheableLatency
2131 .name(name() + ".overall_mshr_uncacheable_latency")
2132 .desc("number of overall MSHR uncacheable cycles")
2133 .flags(total | nozero | nonan)
2134 ;
2135 overallMshrUncacheableLatency =
2136 SUM_DEMAND(mshr_uncacheable_lat) +
2137 SUM_NON_DEMAND(mshr_uncacheable_lat);
2138 for (int i = 0; i < system->maxMasters(); i++) {
2139 overallMshrUncacheableLatency.subname(i, system->getMasterName(i));
2140 }
2141
2142#if 0
2143 // MSHR access formulas
2144 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2145 MemCmd cmd(access_idx);
2146 const string &cstr = cmd.toString();
2147
2148 mshrAccesses[access_idx]
2149 .name(name() + "." + cstr + "_mshr_accesses")
2150 .desc("number of " + cstr + " mshr accesses(hits+misses)")
2151 .flags(total | nozero | nonan)
2152 ;
2153 mshrAccesses[access_idx] =
2154 mshr_hits[access_idx] + mshr_misses[access_idx]
2155 + mshr_uncacheable[access_idx];
2156 }
2157
2158 demandMshrAccesses
2159 .name(name() + ".demand_mshr_accesses")
2160 .desc("number of demand (read+write) mshr accesses")
2161 .flags(total | nozero | nonan)
2162 ;
2163 demandMshrAccesses = demandMshrHits + demandMshrMisses;
2164
2165 overallMshrAccesses
2166 .name(name() + ".overall_mshr_accesses")
2167 .desc("number of overall (read+write) mshr accesses")
2168 .flags(total | nozero | nonan)
2169 ;
2170 overallMshrAccesses = overallMshrHits + overallMshrMisses
2171 + overallMshrUncacheable;
2172#endif
2173
2174 // MSHR miss rate formulas
2175 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2176 MemCmd cmd(access_idx);
2177 const string &cstr = cmd.toString();
2178
2179 mshrMissRate[access_idx]
2180 .name(name() + "." + cstr + "_mshr_miss_rate")
2181 .desc("mshr miss rate for " + cstr + " accesses")
2182 .flags(total | nozero | nonan)
2183 ;
2184 mshrMissRate[access_idx] =
2185 mshr_misses[access_idx] / accesses[access_idx];
2186
2187 for (int i = 0; i < system->maxMasters(); i++) {
2188 mshrMissRate[access_idx].subname(i, system->getMasterName(i));
2189 }
2190 }
2191
2192 demandMshrMissRate
2193 .name(name() + ".demand_mshr_miss_rate")
2194 .desc("mshr miss rate for demand accesses")
2195 .flags(total | nozero | nonan)
2196 ;
2197 demandMshrMissRate = demandMshrMisses / demandAccesses;
2198 for (int i = 0; i < system->maxMasters(); i++) {
2199 demandMshrMissRate.subname(i, system->getMasterName(i));
2200 }
2201
2202 overallMshrMissRate
2203 .name(name() + ".overall_mshr_miss_rate")
2204 .desc("mshr miss rate for overall accesses")
2205 .flags(total | nozero | nonan)
2206 ;
2207 overallMshrMissRate = overallMshrMisses / overallAccesses;
2208 for (int i = 0; i < system->maxMasters(); i++) {
2209 overallMshrMissRate.subname(i, system->getMasterName(i));
2210 }
2211
2212 // mshrMiss latency formulas
2213 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2214 MemCmd cmd(access_idx);
2215 const string &cstr = cmd.toString();
2216
2217 avgMshrMissLatency[access_idx]
2218 .name(name() + "." + cstr + "_avg_mshr_miss_latency")
2219 .desc("average " + cstr + " mshr miss latency")
2220 .flags(total | nozero | nonan)
2221 ;
2222 avgMshrMissLatency[access_idx] =
2223 mshr_miss_latency[access_idx] / mshr_misses[access_idx];
2224
2225 for (int i = 0; i < system->maxMasters(); i++) {
2226 avgMshrMissLatency[access_idx].subname(
2227 i, system->getMasterName(i));
2228 }
2229 }
2230
2231 demandAvgMshrMissLatency
2232 .name(name() + ".demand_avg_mshr_miss_latency")
2233 .desc("average overall mshr miss latency")
2234 .flags(total | nozero | nonan)
2235 ;
2236 demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses;
2237 for (int i = 0; i < system->maxMasters(); i++) {
2238 demandAvgMshrMissLatency.subname(i, system->getMasterName(i));
2239 }
2240
2241 overallAvgMshrMissLatency
2242 .name(name() + ".overall_avg_mshr_miss_latency")
2243 .desc("average overall mshr miss latency")
2244 .flags(total | nozero | nonan)
2245 ;
2246 overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses;
2247 for (int i = 0; i < system->maxMasters(); i++) {
2248 overallAvgMshrMissLatency.subname(i, system->getMasterName(i));
2249 }
2250
2251 // mshrUncacheable latency formulas
2252 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2253 MemCmd cmd(access_idx);
2254 const string &cstr = cmd.toString();
2255
2256 avgMshrUncacheableLatency[access_idx]
2257 .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency")
2258 .desc("average " + cstr + " mshr uncacheable latency")
2259 .flags(total | nozero | nonan)
2260 ;
2261 avgMshrUncacheableLatency[access_idx] =
2262 mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx];
2263
2264 for (int i = 0; i < system->maxMasters(); i++) {
2265 avgMshrUncacheableLatency[access_idx].subname(
2266 i, system->getMasterName(i));
2267 }
2268 }
2269
2270 overallAvgMshrUncacheableLatency
2271 .name(name() + ".overall_avg_mshr_uncacheable_latency")
2272 .desc("average overall mshr uncacheable latency")
2273 .flags(total | nozero | nonan)
2274 ;
2275 overallAvgMshrUncacheableLatency =
2276 overallMshrUncacheableLatency / overallMshrUncacheable;
2277 for (int i = 0; i < system->maxMasters(); i++) {
2278 overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i));
2279 }
2280
2281 replacements
2282 .name(name() + ".replacements")
2283 .desc("number of replacements")
2284 ;
2285}
2286
2287void
2288BaseCache::regProbePoints()
2289{
2290 ppHit = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Hit");
2291 ppMiss = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Miss");
2292 ppFill = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Fill");
2293}
2294
2295///////////////
2296//
2297// CpuSidePort
2298//
2299///////////////
2300bool
2301BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2302{
2303 // Snoops shouldn't happen when bypassing caches
2304 assert(!cache->system->bypassCaches());
2305
2306 assert(pkt->isResponse());
2307
2308 // Express snoop responses from master to slave, e.g., from L1 to L2
2309 cache->recvTimingSnoopResp(pkt);
2310 return true;
2311}
2312
2313
2314bool
2315BaseCache::CpuSidePort::tryTiming(PacketPtr pkt)
2316{
2317 if (cache->system->bypassCaches() || pkt->isExpressSnoop()) {
2318 // always let express snoop packets through even if blocked
2319 return true;
2320 } else if (blocked || mustSendRetry) {
2321 // either already committed to send a retry, or blocked
2322 mustSendRetry = true;
2323 return false;
2324 }
2325 mustSendRetry = false;
2326 return true;
2327}
2328
2329bool
2330BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2331{
2332 assert(pkt->isRequest());
2333
2334 if (cache->system->bypassCaches()) {
2335 // Just forward the packet if caches are disabled.
2336 // @todo This should really enqueue the packet rather
2337 bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt);
2338 assert(success);
2339 return true;
2340 } else if (tryTiming(pkt)) {
2341 cache->recvTimingReq(pkt);
2342 return true;
2343 }
2344 return false;
2345}
2346
2347Tick
2348BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt)
2349{
2350 if (cache->system->bypassCaches()) {
2351 // Forward the request if the system is in cache bypass mode.
2352 return cache->memSidePort.sendAtomic(pkt);
2353 } else {
2354 return cache->recvAtomic(pkt);
2355 }
2356}
2357
2358void
2359BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt)
2360{
2361 if (cache->system->bypassCaches()) {
2362 // The cache should be flushed if we are in cache bypass mode,
2363 // so we don't need to check if we need to update anything.
2364 cache->memSidePort.sendFunctional(pkt);
2365 return;
2366 }
2367
2368 // functional request
2369 cache->functionalAccess(pkt, true);
2370}
2371
2372AddrRangeList
2373BaseCache::CpuSidePort::getAddrRanges() const
2374{
2375 return cache->getAddrRanges();
2376}
2377
2378
2379BaseCache::
2380CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache,
2381 const std::string &_label)
2382 : CacheSlavePort(_name, _cache, _label), cache(_cache)
2383{
2384}
2385
2386///////////////
2387//
2388// MemSidePort
2389//
2390///////////////
2391bool
2392BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt)
2393{
2394 cache->recvTimingResp(pkt);
2395 return true;
2396}
2397
2398// Express snooping requests to memside port
2399void
2400BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2401{
2402 // Snoops shouldn't happen when bypassing caches
2403 assert(!cache->system->bypassCaches());
2404
2405 // handle snooping requests
2406 cache->recvTimingSnoopReq(pkt);
2407}
2408
2409Tick
2410BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2411{
2412 // Snoops shouldn't happen when bypassing caches
2413 assert(!cache->system->bypassCaches());
2414
2415 return cache->recvAtomicSnoop(pkt);
2416}
2417
2418void
2419BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2420{
2421 // Snoops shouldn't happen when bypassing caches
2422 assert(!cache->system->bypassCaches());
2423
2424 // functional snoop (note that in contrast to atomic we don't have
2425 // a specific functionalSnoop method, as they have the same
2426 // behaviour regardless)
2427 cache->functionalAccess(pkt, false);
2428}
2429
2430void
2431BaseCache::CacheReqPacketQueue::sendDeferredPacket()
2432{
2433 // sanity check
2434 assert(!waitingOnRetry);
2435
2436 // there should never be any deferred request packets in the
2437 // queue, instead we resly on the cache to provide the packets
2438 // from the MSHR queue or write queue
2439 assert(deferredPacketReadyTime() == MaxTick);
2440
2441 // check for request packets (requests & writebacks)
2442 QueueEntry* entry = cache.getNextQueueEntry();
2443
2444 if (!entry) {
2445 // can happen if e.g. we attempt a writeback and fail, but
2446 // before the retry, the writeback is eliminated because
2447 // we snoop another cache's ReadEx.
2448 } else {
2449 // let our snoop responses go first if there are responses to
2450 // the same addresses
2451 if (checkConflictingSnoop(entry->getTarget()->pkt)) {
2452 return;
2453 }
2454 waitingOnRetry = entry->sendPacket(cache);
2455 }
2456
2457 // if we succeeded and are not waiting for a retry, schedule the
2458 // next send considering when the next queue is ready, note that
2459 // snoop responses have their own packet queue and thus schedule
2460 // their own events
2461 if (!waitingOnRetry) {
2462 schedSendEvent(cache.nextQueueReadyTime());
2463 }
2464}
2465
2466BaseCache::MemSidePort::MemSidePort(const std::string &_name,
2467 BaseCache *_cache,
2468 const std::string &_label)
2469 : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2470 _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2471 _snoopRespQueue(*_cache, *this, true, _label), cache(_cache)
2472{
2473}
2474
2475void
2476WriteAllocator::updateMode(Addr write_addr, unsigned write_size,
2477 Addr blk_addr)
2478{
2479 // check if we are continuing where the last write ended
2480 if (nextAddr == write_addr) {
2481 delayCtr[blk_addr] = delayThreshold;
2482 // stop if we have already saturated
2483 if (mode != WriteMode::NO_ALLOCATE) {
2484 byteCount += write_size;
2485 // switch to streaming mode if we have passed the lower
2486 // threshold
2487 if (mode == WriteMode::ALLOCATE &&
2488 byteCount > coalesceLimit) {
2489 mode = WriteMode::COALESCE;
2490 DPRINTF(Cache, "Switched to write coalescing\n");
2491 } else if (mode == WriteMode::COALESCE &&
2492 byteCount > noAllocateLimit) {
2493 // and continue and switch to non-allocating mode if we
2494 // pass the upper threshold
2495 mode = WriteMode::NO_ALLOCATE;
2496 DPRINTF(Cache, "Switched to write-no-allocate\n");
2497 }
2498 }
2499 } else {
2500 // we did not see a write matching the previous one, start
2501 // over again
2502 byteCount = write_size;
2503 mode = WriteMode::ALLOCATE;
2504 resetDelay(blk_addr);
2505 }
2506 nextAddr = write_addr + write_size;
2507}
2508
2509WriteAllocator*
2510WriteAllocatorParams::create()
2511{
2512 return new WriteAllocator(this);
2513}
1700
1701 using namespace Stats;
1702
1703 // Hit statistics
1704 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1705 MemCmd cmd(access_idx);
1706 const string &cstr = cmd.toString();
1707
1708 hits[access_idx]
1709 .init(system->maxMasters())
1710 .name(name() + "." + cstr + "_hits")
1711 .desc("number of " + cstr + " hits")
1712 .flags(total | nozero | nonan)
1713 ;
1714 for (int i = 0; i < system->maxMasters(); i++) {
1715 hits[access_idx].subname(i, system->getMasterName(i));
1716 }
1717 }
1718
1719// These macros make it easier to sum the right subset of commands and
1720// to change the subset of commands that are considered "demand" vs
1721// "non-demand"
1722#define SUM_DEMAND(s) \
1723 (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \
1724 s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq])
1725
1726// should writebacks be included here? prior code was inconsistent...
1727#define SUM_NON_DEMAND(s) \
1728 (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq] + s[MemCmd::SoftPFExReq])
1729
1730 demandHits
1731 .name(name() + ".demand_hits")
1732 .desc("number of demand (read+write) hits")
1733 .flags(total | nozero | nonan)
1734 ;
1735 demandHits = SUM_DEMAND(hits);
1736 for (int i = 0; i < system->maxMasters(); i++) {
1737 demandHits.subname(i, system->getMasterName(i));
1738 }
1739
1740 overallHits
1741 .name(name() + ".overall_hits")
1742 .desc("number of overall hits")
1743 .flags(total | nozero | nonan)
1744 ;
1745 overallHits = demandHits + SUM_NON_DEMAND(hits);
1746 for (int i = 0; i < system->maxMasters(); i++) {
1747 overallHits.subname(i, system->getMasterName(i));
1748 }
1749
1750 // Miss statistics
1751 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1752 MemCmd cmd(access_idx);
1753 const string &cstr = cmd.toString();
1754
1755 misses[access_idx]
1756 .init(system->maxMasters())
1757 .name(name() + "." + cstr + "_misses")
1758 .desc("number of " + cstr + " misses")
1759 .flags(total | nozero | nonan)
1760 ;
1761 for (int i = 0; i < system->maxMasters(); i++) {
1762 misses[access_idx].subname(i, system->getMasterName(i));
1763 }
1764 }
1765
1766 demandMisses
1767 .name(name() + ".demand_misses")
1768 .desc("number of demand (read+write) misses")
1769 .flags(total | nozero | nonan)
1770 ;
1771 demandMisses = SUM_DEMAND(misses);
1772 for (int i = 0; i < system->maxMasters(); i++) {
1773 demandMisses.subname(i, system->getMasterName(i));
1774 }
1775
1776 overallMisses
1777 .name(name() + ".overall_misses")
1778 .desc("number of overall misses")
1779 .flags(total | nozero | nonan)
1780 ;
1781 overallMisses = demandMisses + SUM_NON_DEMAND(misses);
1782 for (int i = 0; i < system->maxMasters(); i++) {
1783 overallMisses.subname(i, system->getMasterName(i));
1784 }
1785
1786 // Miss latency statistics
1787 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1788 MemCmd cmd(access_idx);
1789 const string &cstr = cmd.toString();
1790
1791 missLatency[access_idx]
1792 .init(system->maxMasters())
1793 .name(name() + "." + cstr + "_miss_latency")
1794 .desc("number of " + cstr + " miss cycles")
1795 .flags(total | nozero | nonan)
1796 ;
1797 for (int i = 0; i < system->maxMasters(); i++) {
1798 missLatency[access_idx].subname(i, system->getMasterName(i));
1799 }
1800 }
1801
1802 demandMissLatency
1803 .name(name() + ".demand_miss_latency")
1804 .desc("number of demand (read+write) miss cycles")
1805 .flags(total | nozero | nonan)
1806 ;
1807 demandMissLatency = SUM_DEMAND(missLatency);
1808 for (int i = 0; i < system->maxMasters(); i++) {
1809 demandMissLatency.subname(i, system->getMasterName(i));
1810 }
1811
1812 overallMissLatency
1813 .name(name() + ".overall_miss_latency")
1814 .desc("number of overall miss cycles")
1815 .flags(total | nozero | nonan)
1816 ;
1817 overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency);
1818 for (int i = 0; i < system->maxMasters(); i++) {
1819 overallMissLatency.subname(i, system->getMasterName(i));
1820 }
1821
1822 // access formulas
1823 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1824 MemCmd cmd(access_idx);
1825 const string &cstr = cmd.toString();
1826
1827 accesses[access_idx]
1828 .name(name() + "." + cstr + "_accesses")
1829 .desc("number of " + cstr + " accesses(hits+misses)")
1830 .flags(total | nozero | nonan)
1831 ;
1832 accesses[access_idx] = hits[access_idx] + misses[access_idx];
1833
1834 for (int i = 0; i < system->maxMasters(); i++) {
1835 accesses[access_idx].subname(i, system->getMasterName(i));
1836 }
1837 }
1838
1839 demandAccesses
1840 .name(name() + ".demand_accesses")
1841 .desc("number of demand (read+write) accesses")
1842 .flags(total | nozero | nonan)
1843 ;
1844 demandAccesses = demandHits + demandMisses;
1845 for (int i = 0; i < system->maxMasters(); i++) {
1846 demandAccesses.subname(i, system->getMasterName(i));
1847 }
1848
1849 overallAccesses
1850 .name(name() + ".overall_accesses")
1851 .desc("number of overall (read+write) accesses")
1852 .flags(total | nozero | nonan)
1853 ;
1854 overallAccesses = overallHits + overallMisses;
1855 for (int i = 0; i < system->maxMasters(); i++) {
1856 overallAccesses.subname(i, system->getMasterName(i));
1857 }
1858
1859 // miss rate formulas
1860 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1861 MemCmd cmd(access_idx);
1862 const string &cstr = cmd.toString();
1863
1864 missRate[access_idx]
1865 .name(name() + "." + cstr + "_miss_rate")
1866 .desc("miss rate for " + cstr + " accesses")
1867 .flags(total | nozero | nonan)
1868 ;
1869 missRate[access_idx] = misses[access_idx] / accesses[access_idx];
1870
1871 for (int i = 0; i < system->maxMasters(); i++) {
1872 missRate[access_idx].subname(i, system->getMasterName(i));
1873 }
1874 }
1875
1876 demandMissRate
1877 .name(name() + ".demand_miss_rate")
1878 .desc("miss rate for demand accesses")
1879 .flags(total | nozero | nonan)
1880 ;
1881 demandMissRate = demandMisses / demandAccesses;
1882 for (int i = 0; i < system->maxMasters(); i++) {
1883 demandMissRate.subname(i, system->getMasterName(i));
1884 }
1885
1886 overallMissRate
1887 .name(name() + ".overall_miss_rate")
1888 .desc("miss rate for overall accesses")
1889 .flags(total | nozero | nonan)
1890 ;
1891 overallMissRate = overallMisses / overallAccesses;
1892 for (int i = 0; i < system->maxMasters(); i++) {
1893 overallMissRate.subname(i, system->getMasterName(i));
1894 }
1895
1896 // miss latency formulas
1897 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1898 MemCmd cmd(access_idx);
1899 const string &cstr = cmd.toString();
1900
1901 avgMissLatency[access_idx]
1902 .name(name() + "." + cstr + "_avg_miss_latency")
1903 .desc("average " + cstr + " miss latency")
1904 .flags(total | nozero | nonan)
1905 ;
1906 avgMissLatency[access_idx] =
1907 missLatency[access_idx] / misses[access_idx];
1908
1909 for (int i = 0; i < system->maxMasters(); i++) {
1910 avgMissLatency[access_idx].subname(i, system->getMasterName(i));
1911 }
1912 }
1913
1914 demandAvgMissLatency
1915 .name(name() + ".demand_avg_miss_latency")
1916 .desc("average overall miss latency")
1917 .flags(total | nozero | nonan)
1918 ;
1919 demandAvgMissLatency = demandMissLatency / demandMisses;
1920 for (int i = 0; i < system->maxMasters(); i++) {
1921 demandAvgMissLatency.subname(i, system->getMasterName(i));
1922 }
1923
1924 overallAvgMissLatency
1925 .name(name() + ".overall_avg_miss_latency")
1926 .desc("average overall miss latency")
1927 .flags(total | nozero | nonan)
1928 ;
1929 overallAvgMissLatency = overallMissLatency / overallMisses;
1930 for (int i = 0; i < system->maxMasters(); i++) {
1931 overallAvgMissLatency.subname(i, system->getMasterName(i));
1932 }
1933
1934 blocked_cycles.init(NUM_BLOCKED_CAUSES);
1935 blocked_cycles
1936 .name(name() + ".blocked_cycles")
1937 .desc("number of cycles access was blocked")
1938 .subname(Blocked_NoMSHRs, "no_mshrs")
1939 .subname(Blocked_NoTargets, "no_targets")
1940 ;
1941
1942
1943 blocked_causes.init(NUM_BLOCKED_CAUSES);
1944 blocked_causes
1945 .name(name() + ".blocked")
1946 .desc("number of cycles access was blocked")
1947 .subname(Blocked_NoMSHRs, "no_mshrs")
1948 .subname(Blocked_NoTargets, "no_targets")
1949 ;
1950
1951 avg_blocked
1952 .name(name() + ".avg_blocked_cycles")
1953 .desc("average number of cycles each access was blocked")
1954 .subname(Blocked_NoMSHRs, "no_mshrs")
1955 .subname(Blocked_NoTargets, "no_targets")
1956 ;
1957
1958 avg_blocked = blocked_cycles / blocked_causes;
1959
1960 unusedPrefetches
1961 .name(name() + ".unused_prefetches")
1962 .desc("number of HardPF blocks evicted w/o reference")
1963 .flags(nozero)
1964 ;
1965
1966 writebacks
1967 .init(system->maxMasters())
1968 .name(name() + ".writebacks")
1969 .desc("number of writebacks")
1970 .flags(total | nozero | nonan)
1971 ;
1972 for (int i = 0; i < system->maxMasters(); i++) {
1973 writebacks.subname(i, system->getMasterName(i));
1974 }
1975
1976 // MSHR statistics
1977 // MSHR hit statistics
1978 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1979 MemCmd cmd(access_idx);
1980 const string &cstr = cmd.toString();
1981
1982 mshr_hits[access_idx]
1983 .init(system->maxMasters())
1984 .name(name() + "." + cstr + "_mshr_hits")
1985 .desc("number of " + cstr + " MSHR hits")
1986 .flags(total | nozero | nonan)
1987 ;
1988 for (int i = 0; i < system->maxMasters(); i++) {
1989 mshr_hits[access_idx].subname(i, system->getMasterName(i));
1990 }
1991 }
1992
1993 demandMshrHits
1994 .name(name() + ".demand_mshr_hits")
1995 .desc("number of demand (read+write) MSHR hits")
1996 .flags(total | nozero | nonan)
1997 ;
1998 demandMshrHits = SUM_DEMAND(mshr_hits);
1999 for (int i = 0; i < system->maxMasters(); i++) {
2000 demandMshrHits.subname(i, system->getMasterName(i));
2001 }
2002
2003 overallMshrHits
2004 .name(name() + ".overall_mshr_hits")
2005 .desc("number of overall MSHR hits")
2006 .flags(total | nozero | nonan)
2007 ;
2008 overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits);
2009 for (int i = 0; i < system->maxMasters(); i++) {
2010 overallMshrHits.subname(i, system->getMasterName(i));
2011 }
2012
2013 // MSHR miss statistics
2014 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2015 MemCmd cmd(access_idx);
2016 const string &cstr = cmd.toString();
2017
2018 mshr_misses[access_idx]
2019 .init(system->maxMasters())
2020 .name(name() + "." + cstr + "_mshr_misses")
2021 .desc("number of " + cstr + " MSHR misses")
2022 .flags(total | nozero | nonan)
2023 ;
2024 for (int i = 0; i < system->maxMasters(); i++) {
2025 mshr_misses[access_idx].subname(i, system->getMasterName(i));
2026 }
2027 }
2028
2029 demandMshrMisses
2030 .name(name() + ".demand_mshr_misses")
2031 .desc("number of demand (read+write) MSHR misses")
2032 .flags(total | nozero | nonan)
2033 ;
2034 demandMshrMisses = SUM_DEMAND(mshr_misses);
2035 for (int i = 0; i < system->maxMasters(); i++) {
2036 demandMshrMisses.subname(i, system->getMasterName(i));
2037 }
2038
2039 overallMshrMisses
2040 .name(name() + ".overall_mshr_misses")
2041 .desc("number of overall MSHR misses")
2042 .flags(total | nozero | nonan)
2043 ;
2044 overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses);
2045 for (int i = 0; i < system->maxMasters(); i++) {
2046 overallMshrMisses.subname(i, system->getMasterName(i));
2047 }
2048
2049 // MSHR miss latency statistics
2050 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2051 MemCmd cmd(access_idx);
2052 const string &cstr = cmd.toString();
2053
2054 mshr_miss_latency[access_idx]
2055 .init(system->maxMasters())
2056 .name(name() + "." + cstr + "_mshr_miss_latency")
2057 .desc("number of " + cstr + " MSHR miss cycles")
2058 .flags(total | nozero | nonan)
2059 ;
2060 for (int i = 0; i < system->maxMasters(); i++) {
2061 mshr_miss_latency[access_idx].subname(i, system->getMasterName(i));
2062 }
2063 }
2064
2065 demandMshrMissLatency
2066 .name(name() + ".demand_mshr_miss_latency")
2067 .desc("number of demand (read+write) MSHR miss cycles")
2068 .flags(total | nozero | nonan)
2069 ;
2070 demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency);
2071 for (int i = 0; i < system->maxMasters(); i++) {
2072 demandMshrMissLatency.subname(i, system->getMasterName(i));
2073 }
2074
2075 overallMshrMissLatency
2076 .name(name() + ".overall_mshr_miss_latency")
2077 .desc("number of overall MSHR miss cycles")
2078 .flags(total | nozero | nonan)
2079 ;
2080 overallMshrMissLatency =
2081 demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency);
2082 for (int i = 0; i < system->maxMasters(); i++) {
2083 overallMshrMissLatency.subname(i, system->getMasterName(i));
2084 }
2085
2086 // MSHR uncacheable statistics
2087 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2088 MemCmd cmd(access_idx);
2089 const string &cstr = cmd.toString();
2090
2091 mshr_uncacheable[access_idx]
2092 .init(system->maxMasters())
2093 .name(name() + "." + cstr + "_mshr_uncacheable")
2094 .desc("number of " + cstr + " MSHR uncacheable")
2095 .flags(total | nozero | nonan)
2096 ;
2097 for (int i = 0; i < system->maxMasters(); i++) {
2098 mshr_uncacheable[access_idx].subname(i, system->getMasterName(i));
2099 }
2100 }
2101
2102 overallMshrUncacheable
2103 .name(name() + ".overall_mshr_uncacheable_misses")
2104 .desc("number of overall MSHR uncacheable misses")
2105 .flags(total | nozero | nonan)
2106 ;
2107 overallMshrUncacheable =
2108 SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable);
2109 for (int i = 0; i < system->maxMasters(); i++) {
2110 overallMshrUncacheable.subname(i, system->getMasterName(i));
2111 }
2112
2113 // MSHR miss latency statistics
2114 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2115 MemCmd cmd(access_idx);
2116 const string &cstr = cmd.toString();
2117
2118 mshr_uncacheable_lat[access_idx]
2119 .init(system->maxMasters())
2120 .name(name() + "." + cstr + "_mshr_uncacheable_latency")
2121 .desc("number of " + cstr + " MSHR uncacheable cycles")
2122 .flags(total | nozero | nonan)
2123 ;
2124 for (int i = 0; i < system->maxMasters(); i++) {
2125 mshr_uncacheable_lat[access_idx].subname(
2126 i, system->getMasterName(i));
2127 }
2128 }
2129
2130 overallMshrUncacheableLatency
2131 .name(name() + ".overall_mshr_uncacheable_latency")
2132 .desc("number of overall MSHR uncacheable cycles")
2133 .flags(total | nozero | nonan)
2134 ;
2135 overallMshrUncacheableLatency =
2136 SUM_DEMAND(mshr_uncacheable_lat) +
2137 SUM_NON_DEMAND(mshr_uncacheable_lat);
2138 for (int i = 0; i < system->maxMasters(); i++) {
2139 overallMshrUncacheableLatency.subname(i, system->getMasterName(i));
2140 }
2141
2142#if 0
2143 // MSHR access formulas
2144 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2145 MemCmd cmd(access_idx);
2146 const string &cstr = cmd.toString();
2147
2148 mshrAccesses[access_idx]
2149 .name(name() + "." + cstr + "_mshr_accesses")
2150 .desc("number of " + cstr + " mshr accesses(hits+misses)")
2151 .flags(total | nozero | nonan)
2152 ;
2153 mshrAccesses[access_idx] =
2154 mshr_hits[access_idx] + mshr_misses[access_idx]
2155 + mshr_uncacheable[access_idx];
2156 }
2157
2158 demandMshrAccesses
2159 .name(name() + ".demand_mshr_accesses")
2160 .desc("number of demand (read+write) mshr accesses")
2161 .flags(total | nozero | nonan)
2162 ;
2163 demandMshrAccesses = demandMshrHits + demandMshrMisses;
2164
2165 overallMshrAccesses
2166 .name(name() + ".overall_mshr_accesses")
2167 .desc("number of overall (read+write) mshr accesses")
2168 .flags(total | nozero | nonan)
2169 ;
2170 overallMshrAccesses = overallMshrHits + overallMshrMisses
2171 + overallMshrUncacheable;
2172#endif
2173
2174 // MSHR miss rate formulas
2175 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2176 MemCmd cmd(access_idx);
2177 const string &cstr = cmd.toString();
2178
2179 mshrMissRate[access_idx]
2180 .name(name() + "." + cstr + "_mshr_miss_rate")
2181 .desc("mshr miss rate for " + cstr + " accesses")
2182 .flags(total | nozero | nonan)
2183 ;
2184 mshrMissRate[access_idx] =
2185 mshr_misses[access_idx] / accesses[access_idx];
2186
2187 for (int i = 0; i < system->maxMasters(); i++) {
2188 mshrMissRate[access_idx].subname(i, system->getMasterName(i));
2189 }
2190 }
2191
2192 demandMshrMissRate
2193 .name(name() + ".demand_mshr_miss_rate")
2194 .desc("mshr miss rate for demand accesses")
2195 .flags(total | nozero | nonan)
2196 ;
2197 demandMshrMissRate = demandMshrMisses / demandAccesses;
2198 for (int i = 0; i < system->maxMasters(); i++) {
2199 demandMshrMissRate.subname(i, system->getMasterName(i));
2200 }
2201
2202 overallMshrMissRate
2203 .name(name() + ".overall_mshr_miss_rate")
2204 .desc("mshr miss rate for overall accesses")
2205 .flags(total | nozero | nonan)
2206 ;
2207 overallMshrMissRate = overallMshrMisses / overallAccesses;
2208 for (int i = 0; i < system->maxMasters(); i++) {
2209 overallMshrMissRate.subname(i, system->getMasterName(i));
2210 }
2211
2212 // mshrMiss latency formulas
2213 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2214 MemCmd cmd(access_idx);
2215 const string &cstr = cmd.toString();
2216
2217 avgMshrMissLatency[access_idx]
2218 .name(name() + "." + cstr + "_avg_mshr_miss_latency")
2219 .desc("average " + cstr + " mshr miss latency")
2220 .flags(total | nozero | nonan)
2221 ;
2222 avgMshrMissLatency[access_idx] =
2223 mshr_miss_latency[access_idx] / mshr_misses[access_idx];
2224
2225 for (int i = 0; i < system->maxMasters(); i++) {
2226 avgMshrMissLatency[access_idx].subname(
2227 i, system->getMasterName(i));
2228 }
2229 }
2230
2231 demandAvgMshrMissLatency
2232 .name(name() + ".demand_avg_mshr_miss_latency")
2233 .desc("average overall mshr miss latency")
2234 .flags(total | nozero | nonan)
2235 ;
2236 demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses;
2237 for (int i = 0; i < system->maxMasters(); i++) {
2238 demandAvgMshrMissLatency.subname(i, system->getMasterName(i));
2239 }
2240
2241 overallAvgMshrMissLatency
2242 .name(name() + ".overall_avg_mshr_miss_latency")
2243 .desc("average overall mshr miss latency")
2244 .flags(total | nozero | nonan)
2245 ;
2246 overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses;
2247 for (int i = 0; i < system->maxMasters(); i++) {
2248 overallAvgMshrMissLatency.subname(i, system->getMasterName(i));
2249 }
2250
2251 // mshrUncacheable latency formulas
2252 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2253 MemCmd cmd(access_idx);
2254 const string &cstr = cmd.toString();
2255
2256 avgMshrUncacheableLatency[access_idx]
2257 .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency")
2258 .desc("average " + cstr + " mshr uncacheable latency")
2259 .flags(total | nozero | nonan)
2260 ;
2261 avgMshrUncacheableLatency[access_idx] =
2262 mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx];
2263
2264 for (int i = 0; i < system->maxMasters(); i++) {
2265 avgMshrUncacheableLatency[access_idx].subname(
2266 i, system->getMasterName(i));
2267 }
2268 }
2269
2270 overallAvgMshrUncacheableLatency
2271 .name(name() + ".overall_avg_mshr_uncacheable_latency")
2272 .desc("average overall mshr uncacheable latency")
2273 .flags(total | nozero | nonan)
2274 ;
2275 overallAvgMshrUncacheableLatency =
2276 overallMshrUncacheableLatency / overallMshrUncacheable;
2277 for (int i = 0; i < system->maxMasters(); i++) {
2278 overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i));
2279 }
2280
2281 replacements
2282 .name(name() + ".replacements")
2283 .desc("number of replacements")
2284 ;
2285}
2286
2287void
2288BaseCache::regProbePoints()
2289{
2290 ppHit = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Hit");
2291 ppMiss = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Miss");
2292 ppFill = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Fill");
2293}
2294
2295///////////////
2296//
2297// CpuSidePort
2298//
2299///////////////
2300bool
2301BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2302{
2303 // Snoops shouldn't happen when bypassing caches
2304 assert(!cache->system->bypassCaches());
2305
2306 assert(pkt->isResponse());
2307
2308 // Express snoop responses from master to slave, e.g., from L1 to L2
2309 cache->recvTimingSnoopResp(pkt);
2310 return true;
2311}
2312
2313
2314bool
2315BaseCache::CpuSidePort::tryTiming(PacketPtr pkt)
2316{
2317 if (cache->system->bypassCaches() || pkt->isExpressSnoop()) {
2318 // always let express snoop packets through even if blocked
2319 return true;
2320 } else if (blocked || mustSendRetry) {
2321 // either already committed to send a retry, or blocked
2322 mustSendRetry = true;
2323 return false;
2324 }
2325 mustSendRetry = false;
2326 return true;
2327}
2328
2329bool
2330BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2331{
2332 assert(pkt->isRequest());
2333
2334 if (cache->system->bypassCaches()) {
2335 // Just forward the packet if caches are disabled.
2336 // @todo This should really enqueue the packet rather
2337 bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt);
2338 assert(success);
2339 return true;
2340 } else if (tryTiming(pkt)) {
2341 cache->recvTimingReq(pkt);
2342 return true;
2343 }
2344 return false;
2345}
2346
2347Tick
2348BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt)
2349{
2350 if (cache->system->bypassCaches()) {
2351 // Forward the request if the system is in cache bypass mode.
2352 return cache->memSidePort.sendAtomic(pkt);
2353 } else {
2354 return cache->recvAtomic(pkt);
2355 }
2356}
2357
2358void
2359BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt)
2360{
2361 if (cache->system->bypassCaches()) {
2362 // The cache should be flushed if we are in cache bypass mode,
2363 // so we don't need to check if we need to update anything.
2364 cache->memSidePort.sendFunctional(pkt);
2365 return;
2366 }
2367
2368 // functional request
2369 cache->functionalAccess(pkt, true);
2370}
2371
2372AddrRangeList
2373BaseCache::CpuSidePort::getAddrRanges() const
2374{
2375 return cache->getAddrRanges();
2376}
2377
2378
2379BaseCache::
2380CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache,
2381 const std::string &_label)
2382 : CacheSlavePort(_name, _cache, _label), cache(_cache)
2383{
2384}
2385
2386///////////////
2387//
2388// MemSidePort
2389//
2390///////////////
2391bool
2392BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt)
2393{
2394 cache->recvTimingResp(pkt);
2395 return true;
2396}
2397
2398// Express snooping requests to memside port
2399void
2400BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2401{
2402 // Snoops shouldn't happen when bypassing caches
2403 assert(!cache->system->bypassCaches());
2404
2405 // handle snooping requests
2406 cache->recvTimingSnoopReq(pkt);
2407}
2408
2409Tick
2410BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2411{
2412 // Snoops shouldn't happen when bypassing caches
2413 assert(!cache->system->bypassCaches());
2414
2415 return cache->recvAtomicSnoop(pkt);
2416}
2417
2418void
2419BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2420{
2421 // Snoops shouldn't happen when bypassing caches
2422 assert(!cache->system->bypassCaches());
2423
2424 // functional snoop (note that in contrast to atomic we don't have
2425 // a specific functionalSnoop method, as they have the same
2426 // behaviour regardless)
2427 cache->functionalAccess(pkt, false);
2428}
2429
2430void
2431BaseCache::CacheReqPacketQueue::sendDeferredPacket()
2432{
2433 // sanity check
2434 assert(!waitingOnRetry);
2435
2436 // there should never be any deferred request packets in the
2437 // queue, instead we resly on the cache to provide the packets
2438 // from the MSHR queue or write queue
2439 assert(deferredPacketReadyTime() == MaxTick);
2440
2441 // check for request packets (requests & writebacks)
2442 QueueEntry* entry = cache.getNextQueueEntry();
2443
2444 if (!entry) {
2445 // can happen if e.g. we attempt a writeback and fail, but
2446 // before the retry, the writeback is eliminated because
2447 // we snoop another cache's ReadEx.
2448 } else {
2449 // let our snoop responses go first if there are responses to
2450 // the same addresses
2451 if (checkConflictingSnoop(entry->getTarget()->pkt)) {
2452 return;
2453 }
2454 waitingOnRetry = entry->sendPacket(cache);
2455 }
2456
2457 // if we succeeded and are not waiting for a retry, schedule the
2458 // next send considering when the next queue is ready, note that
2459 // snoop responses have their own packet queue and thus schedule
2460 // their own events
2461 if (!waitingOnRetry) {
2462 schedSendEvent(cache.nextQueueReadyTime());
2463 }
2464}
2465
2466BaseCache::MemSidePort::MemSidePort(const std::string &_name,
2467 BaseCache *_cache,
2468 const std::string &_label)
2469 : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2470 _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2471 _snoopRespQueue(*_cache, *this, true, _label), cache(_cache)
2472{
2473}
2474
2475void
2476WriteAllocator::updateMode(Addr write_addr, unsigned write_size,
2477 Addr blk_addr)
2478{
2479 // check if we are continuing where the last write ended
2480 if (nextAddr == write_addr) {
2481 delayCtr[blk_addr] = delayThreshold;
2482 // stop if we have already saturated
2483 if (mode != WriteMode::NO_ALLOCATE) {
2484 byteCount += write_size;
2485 // switch to streaming mode if we have passed the lower
2486 // threshold
2487 if (mode == WriteMode::ALLOCATE &&
2488 byteCount > coalesceLimit) {
2489 mode = WriteMode::COALESCE;
2490 DPRINTF(Cache, "Switched to write coalescing\n");
2491 } else if (mode == WriteMode::COALESCE &&
2492 byteCount > noAllocateLimit) {
2493 // and continue and switch to non-allocating mode if we
2494 // pass the upper threshold
2495 mode = WriteMode::NO_ALLOCATE;
2496 DPRINTF(Cache, "Switched to write-no-allocate\n");
2497 }
2498 }
2499 } else {
2500 // we did not see a write matching the previous one, start
2501 // over again
2502 byteCount = write_size;
2503 mode = WriteMode::ALLOCATE;
2504 resetDelay(blk_addr);
2505 }
2506 nextAddr = write_addr + write_size;
2507}
2508
2509WriteAllocator*
2510WriteAllocatorParams::create()
2511{
2512 return new WriteAllocator(this);
2513}