base.cc (12754:15c1d281ce1a) base.cc (12766:1c347e60c7fd)
1/*
2 * Copyright (c) 2012-2013, 2018 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Erik Hallnor
41 * Nikos Nikoleris
42 */
43
44/**
45 * @file
46 * Definition of BaseCache functions.
47 */
48
49#include "mem/cache/base.hh"
50
51#include "base/compiler.hh"
52#include "base/logging.hh"
53#include "debug/Cache.hh"
54#include "debug/CachePort.hh"
55#include "debug/CacheVerbose.hh"
56#include "mem/cache/mshr.hh"
57#include "mem/cache/prefetch/base.hh"
58#include "mem/cache/queue_entry.hh"
59#include "params/BaseCache.hh"
60#include "sim/core.hh"
61
62class BaseMasterPort;
63class BaseSlavePort;
64
65using namespace std;
66
67BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name,
68 BaseCache *_cache,
69 const std::string &_label)
70 : QueuedSlavePort(_name, _cache, queue), queue(*_cache, *this, _label),
71 blocked(false), mustSendRetry(false),
72 sendRetryEvent([this]{ processSendRetry(); }, _name)
73{
74}
75
76BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
77 : MemObject(p),
78 cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"),
79 memSidePort(p->name + ".mem_side", this, "MemSidePort"),
80 mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below
81 writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below
82 tags(p->tags),
83 prefetcher(p->prefetcher),
84 prefetchOnAccess(p->prefetch_on_access),
85 writebackClean(p->writeback_clean),
86 tempBlockWriteback(nullptr),
87 writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
88 name(), false,
89 EventBase::Delayed_Writeback_Pri),
90 blkSize(blk_size),
91 lookupLatency(p->tag_latency),
92 dataLatency(p->data_latency),
93 forwardLatency(p->tag_latency),
94 fillLatency(p->data_latency),
95 responseLatency(p->response_latency),
96 numTarget(p->tgts_per_mshr),
97 forwardSnoops(true),
98 clusivity(p->clusivity),
99 isReadOnly(p->is_read_only),
100 blocked(0),
101 order(0),
102 noTargetMSHR(nullptr),
103 missCount(p->max_miss_count),
104 addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()),
105 system(p->system)
106{
107 // the MSHR queue has no reserve entries as we check the MSHR
108 // queue on every single allocation, whereas the write queue has
109 // as many reserve entries as we have MSHRs, since every MSHR may
110 // eventually require a writeback, and we do not check the write
111 // buffer before committing to an MSHR
112
113 // forward snoops is overridden in init() once we can query
114 // whether the connected master is actually snooping or not
115
116 tempBlock = new TempCacheBlk();
117 tempBlock->data = new uint8_t[blkSize];
118
119 tags->setCache(this);
120 if (prefetcher)
121 prefetcher->setCache(this);
122}
123
124BaseCache::~BaseCache()
125{
126 delete [] tempBlock->data;
127 delete tempBlock;
128}
129
130void
131BaseCache::CacheSlavePort::setBlocked()
132{
133 assert(!blocked);
134 DPRINTF(CachePort, "Port is blocking new requests\n");
135 blocked = true;
136 // if we already scheduled a retry in this cycle, but it has not yet
137 // happened, cancel it
138 if (sendRetryEvent.scheduled()) {
139 owner.deschedule(sendRetryEvent);
140 DPRINTF(CachePort, "Port descheduled retry\n");
141 mustSendRetry = true;
142 }
143}
144
145void
146BaseCache::CacheSlavePort::clearBlocked()
147{
148 assert(blocked);
149 DPRINTF(CachePort, "Port is accepting new requests\n");
150 blocked = false;
151 if (mustSendRetry) {
152 // @TODO: need to find a better time (next cycle?)
153 owner.schedule(sendRetryEvent, curTick() + 1);
154 }
155}
156
157void
158BaseCache::CacheSlavePort::processSendRetry()
159{
160 DPRINTF(CachePort, "Port is sending retry\n");
161
162 // reset the flag and call retry
163 mustSendRetry = false;
164 sendRetryReq();
165}
166
167Addr
168BaseCache::regenerateBlkAddr(CacheBlk* blk)
169{
170 if (blk != tempBlock) {
171 return tags->regenerateBlkAddr(blk);
172 } else {
173 return tempBlock->getAddr();
174 }
175}
176
177void
178BaseCache::init()
179{
180 if (!cpuSidePort.isConnected() || !memSidePort.isConnected())
181 fatal("Cache ports on %s are not connected\n", name());
182 cpuSidePort.sendRangeChange();
183 forwardSnoops = cpuSidePort.isSnooping();
184}
185
186BaseMasterPort &
187BaseCache::getMasterPort(const std::string &if_name, PortID idx)
188{
189 if (if_name == "mem_side") {
190 return memSidePort;
191 } else {
192 return MemObject::getMasterPort(if_name, idx);
193 }
194}
195
196BaseSlavePort &
197BaseCache::getSlavePort(const std::string &if_name, PortID idx)
198{
199 if (if_name == "cpu_side") {
200 return cpuSidePort;
201 } else {
202 return MemObject::getSlavePort(if_name, idx);
203 }
204}
205
206bool
207BaseCache::inRange(Addr addr) const
208{
209 for (const auto& r : addrRanges) {
210 if (r.contains(addr)) {
211 return true;
212 }
213 }
214 return false;
215}
216
217void
218BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
219{
220 if (pkt->needsResponse()) {
221 pkt->makeTimingResponse();
222 // @todo: Make someone pay for this
223 pkt->headerDelay = pkt->payloadDelay = 0;
224
225 // In this case we are considering request_time that takes
226 // into account the delay of the xbar, if any, and just
227 // lat, neglecting responseLatency, modelling hit latency
228 // just as lookupLatency or or the value of lat overriden
229 // by access(), that calls accessBlock() function.
230 cpuSidePort.schedTimingResp(pkt, request_time, true);
231 } else {
232 DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
233 pkt->print());
234
235 // queue the packet for deletion, as the sending cache is
236 // still relying on it; if the block is found in access(),
237 // CleanEvict and Writeback messages will be deleted
238 // here as well
239 pendingDelete.reset(pkt);
240 }
241}
242
243void
244BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
245 Tick forward_time, Tick request_time)
246{
247 if (mshr) {
248 /// MSHR hit
249 /// @note writebacks will be checked in getNextMSHR()
250 /// for any conflicting requests to the same block
251
252 //@todo remove hw_pf here
253
254 // Coalesce unless it was a software prefetch (see above).
255 if (pkt) {
256 assert(!pkt->isWriteback());
257 // CleanEvicts corresponding to blocks which have
258 // outstanding requests in MSHRs are simply sunk here
259 if (pkt->cmd == MemCmd::CleanEvict) {
260 pendingDelete.reset(pkt);
261 } else if (pkt->cmd == MemCmd::WriteClean) {
262 // A WriteClean should never coalesce with any
263 // outstanding cache maintenance requests.
264
265 // We use forward_time here because there is an
266 // uncached memory write, forwarded to WriteBuffer.
267 allocateWriteBuffer(pkt, forward_time);
268 } else {
269 DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
270 pkt->print());
271
272 assert(pkt->req->masterId() < system->maxMasters());
273 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
274
275 // We use forward_time here because it is the same
276 // considering new targets. We have multiple
277 // requests for the same address here. It
278 // specifies the latency to allocate an internal
279 // buffer and to schedule an event to the queued
280 // port and also takes into account the additional
281 // delay of the xbar.
282 mshr->allocateTarget(pkt, forward_time, order++,
283 allocOnFill(pkt->cmd));
284 if (mshr->getNumTargets() == numTarget) {
285 noTargetMSHR = mshr;
286 setBlocked(Blocked_NoTargets);
287 // need to be careful with this... if this mshr isn't
288 // ready yet (i.e. time > curTick()), we don't want to
289 // move it ahead of mshrs that are ready
290 // mshrQueue.moveToFront(mshr);
291 }
292 }
293 }
294 } else {
295 // no MSHR
296 assert(pkt->req->masterId() < system->maxMasters());
297 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
298
299 if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) {
300 // We use forward_time here because there is an
301 // writeback or writeclean, forwarded to WriteBuffer.
302 allocateWriteBuffer(pkt, forward_time);
303 } else {
304 if (blk && blk->isValid()) {
305 // If we have a write miss to a valid block, we
306 // need to mark the block non-readable. Otherwise
307 // if we allow reads while there's an outstanding
308 // write miss, the read could return stale data
309 // out of the cache block... a more aggressive
310 // system could detect the overlap (if any) and
311 // forward data out of the MSHRs, but we don't do
312 // that yet. Note that we do need to leave the
313 // block valid so that it stays in the cache, in
314 // case we get an upgrade response (and hence no
315 // new data) when the write miss completes.
316 // As long as CPUs do proper store/load forwarding
317 // internally, and have a sufficiently weak memory
318 // model, this is probably unnecessary, but at some
319 // point it must have seemed like we needed it...
320 assert((pkt->needsWritable() && !blk->isWritable()) ||
321 pkt->req->isCacheMaintenance());
322 blk->status &= ~BlkReadable;
323 }
324 // Here we are using forward_time, modelling the latency of
325 // a miss (outbound) just as forwardLatency, neglecting the
326 // lookupLatency component.
327 allocateMissBuffer(pkt, forward_time);
328 }
329 }
330}
331
332void
333BaseCache::recvTimingReq(PacketPtr pkt)
334{
335 // anything that is merely forwarded pays for the forward latency and
336 // the delay provided by the crossbar
337 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
338
339 // We use lookupLatency here because it is used to specify the latency
340 // to access.
341 Cycles lat = lookupLatency;
342 CacheBlk *blk = nullptr;
343 bool satisfied = false;
344 {
345 PacketList writebacks;
346 // Note that lat is passed by reference here. The function
347 // access() calls accessBlock() which can modify lat value.
348 satisfied = access(pkt, blk, lat, writebacks);
349
350 // copy writebacks to write buffer here to ensure they logically
351 // proceed anything happening below
352 doWritebacks(writebacks, forward_time);
353 }
354
355 // Here we charge the headerDelay that takes into account the latencies
356 // of the bus, if the packet comes from it.
357 // The latency charged it is just lat that is the value of lookupLatency
358 // modified by access() function, or if not just lookupLatency.
359 // In case of a hit we are neglecting response latency.
360 // In case of a miss we are neglecting forward latency.
361 Tick request_time = clockEdge(lat) + pkt->headerDelay;
362 // Here we reset the timing of the packet.
363 pkt->headerDelay = pkt->payloadDelay = 0;
364 // track time of availability of next prefetch, if any
365 Tick next_pf_time = MaxTick;
366
367 if (satisfied) {
368 // if need to notify the prefetcher we have to do it before
369 // anything else as later handleTimingReqHit might turn the
370 // packet in a response
371 if (prefetcher &&
372 (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
373 if (blk)
374 blk->status &= ~BlkHWPrefetched;
375
376 // Don't notify on SWPrefetch
377 if (!pkt->cmd.isSWPrefetch()) {
378 assert(!pkt->req->isCacheMaintenance());
379 next_pf_time = prefetcher->notify(pkt);
380 }
381 }
382
383 handleTimingReqHit(pkt, blk, request_time);
384 } else {
385 handleTimingReqMiss(pkt, blk, forward_time, request_time);
386
387 // We should call the prefetcher reguardless if the request is
388 // satisfied or not, reguardless if the request is in the MSHR
389 // or not. The request could be a ReadReq hit, but still not
390 // satisfied (potentially because of a prior write to the same
391 // cache line. So, even when not satisfied, there is an MSHR
392 // already allocated for this, we need to let the prefetcher
393 // know about the request
394
395 // Don't notify prefetcher on SWPrefetch or cache maintenance
396 // operations
397 if (prefetcher && pkt &&
398 !pkt->cmd.isSWPrefetch() &&
399 !pkt->req->isCacheMaintenance()) {
400 next_pf_time = prefetcher->notify(pkt);
401 }
402 }
403
404 if (next_pf_time != MaxTick) {
405 schedMemSideSendEvent(next_pf_time);
406 }
407}
408
409void
410BaseCache::handleUncacheableWriteResp(PacketPtr pkt)
411{
412 Tick completion_time = clockEdge(responseLatency) +
413 pkt->headerDelay + pkt->payloadDelay;
414
415 // Reset the bus additional time as it is now accounted for
416 pkt->headerDelay = pkt->payloadDelay = 0;
417
418 cpuSidePort.schedTimingResp(pkt, completion_time, true);
419}
420
421void
422BaseCache::recvTimingResp(PacketPtr pkt)
423{
424 assert(pkt->isResponse());
425
426 // all header delay should be paid for by the crossbar, unless
427 // this is a prefetch response from above
428 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
429 "%s saw a non-zero packet delay\n", name());
430
431 const bool is_error = pkt->isError();
432
433 if (is_error) {
434 DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
435 pkt->print());
436 }
437
438 DPRINTF(Cache, "%s: Handling response %s\n", __func__,
439 pkt->print());
440
441 // if this is a write, we should be looking at an uncacheable
442 // write
443 if (pkt->isWrite()) {
444 assert(pkt->req->isUncacheable());
445 handleUncacheableWriteResp(pkt);
446 return;
447 }
448
449 // we have dealt with any (uncacheable) writes above, from here on
450 // we know we are dealing with an MSHR due to a miss or a prefetch
451 MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
452 assert(mshr);
453
454 if (mshr == noTargetMSHR) {
455 // we always clear at least one target
456 clearBlocked(Blocked_NoTargets);
457 noTargetMSHR = nullptr;
458 }
459
460 // Initial target is used just for stats
461 MSHR::Target *initial_tgt = mshr->getTarget();
462 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
463 Tick miss_latency = curTick() - initial_tgt->recvTime;
464
465 if (pkt->req->isUncacheable()) {
466 assert(pkt->req->masterId() < system->maxMasters());
467 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
468 miss_latency;
469 } else {
470 assert(pkt->req->masterId() < system->maxMasters());
471 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
472 miss_latency;
473 }
474
475 PacketList writebacks;
476
477 bool is_fill = !mshr->isForward &&
478 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
479
480 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
481
482 if (is_fill && !is_error) {
483 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
484 pkt->getAddr());
485
486 blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill());
487 assert(blk != nullptr);
488 }
489
490 if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
491 // The block was marked not readable while there was a pending
492 // cache maintenance operation, restore its flag.
493 blk->status |= BlkReadable;
494 }
495
496 if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
497 // If at this point the referenced block is writable and the
498 // response is not a cache invalidate, we promote targets that
499 // were deferred as we couldn't guarrantee a writable copy
500 mshr->promoteWritable();
501 }
502
503 serviceMSHRTargets(mshr, pkt, blk, writebacks);
504
505 if (mshr->promoteDeferredTargets()) {
506 // avoid later read getting stale data while write miss is
507 // outstanding.. see comment in timingAccess()
508 if (blk) {
509 blk->status &= ~BlkReadable;
510 }
511 mshrQueue.markPending(mshr);
512 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
513 } else {
514 // while we deallocate an mshr from the queue we still have to
515 // check the isFull condition before and after as we might
516 // have been using the reserved entries already
517 const bool was_full = mshrQueue.isFull();
518 mshrQueue.deallocate(mshr);
519 if (was_full && !mshrQueue.isFull()) {
520 clearBlocked(Blocked_NoMSHRs);
521 }
522
523 // Request the bus for a prefetch if this deallocation freed enough
524 // MSHRs for a prefetch to take place
525 if (prefetcher && mshrQueue.canPrefetch()) {
526 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
527 clockEdge());
528 if (next_pf_time != MaxTick)
529 schedMemSideSendEvent(next_pf_time);
530 }
531 }
532
533 // if we used temp block, check to see if its valid and then clear it out
534 if (blk == tempBlock && tempBlock->isValid()) {
535 evictBlock(blk, writebacks);
536 }
537
538 const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
539 // copy writebacks to write buffer
540 doWritebacks(writebacks, forward_time);
541
542 DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
543 delete pkt;
544}
545
546
547Tick
548BaseCache::recvAtomic(PacketPtr pkt)
549{
550 // We are in atomic mode so we pay just for lookupLatency here.
551 Cycles lat = lookupLatency;
552
553 // follow the same flow as in recvTimingReq, and check if a cache
554 // above us is responding
555 if (pkt->cacheResponding() && !pkt->isClean()) {
556 assert(!pkt->req->isCacheInvalidate());
557 DPRINTF(Cache, "Cache above responding to %s: not responding\n",
558 pkt->print());
559
560 // if a cache is responding, and it had the line in Owned
561 // rather than Modified state, we need to invalidate any
562 // copies that are not on the same path to memory
563 assert(pkt->needsWritable() && !pkt->responderHadWritable());
564 lat += ticksToCycles(memSidePort.sendAtomic(pkt));
565
566 return lat * clockPeriod();
567 }
568
569 // should assert here that there are no outstanding MSHRs or
570 // writebacks... that would mean that someone used an atomic
571 // access in timing mode
572
573 CacheBlk *blk = nullptr;
574 PacketList writebacks;
575 bool satisfied = access(pkt, blk, lat, writebacks);
576
577 if (pkt->isClean() && blk && blk->isDirty()) {
578 // A cache clean opearation is looking for a dirty
579 // block. If a dirty block is encountered a WriteClean
580 // will update any copies to the path to the memory
581 // until the point of reference.
582 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
583 __func__, pkt->print(), blk->print());
584 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
585 writebacks.push_back(wb_pkt);
586 pkt->setSatisfied();
587 }
588
589 // handle writebacks resulting from the access here to ensure they
590 // logically proceed anything happening below
591 doWritebacksAtomic(writebacks);
592 assert(writebacks.empty());
593
594 if (!satisfied) {
595 lat += handleAtomicReqMiss(pkt, blk, writebacks);
596 }
597
598 // Note that we don't invoke the prefetcher at all in atomic mode.
599 // It's not clear how to do it properly, particularly for
600 // prefetchers that aggressively generate prefetch candidates and
601 // rely on bandwidth contention to throttle them; these will tend
602 // to pollute the cache in atomic mode since there is no bandwidth
603 // contention. If we ever do want to enable prefetching in atomic
604 // mode, though, this is the place to do it... see timingAccess()
605 // for an example (though we'd want to issue the prefetch(es)
606 // immediately rather than calling requestMemSideBus() as we do
607 // there).
608
609 // do any writebacks resulting from the response handling
610 doWritebacksAtomic(writebacks);
611
612 // if we used temp block, check to see if its valid and if so
613 // clear it out, but only do so after the call to recvAtomic is
614 // finished so that any downstream observers (such as a snoop
615 // filter), first see the fill, and only then see the eviction
616 if (blk == tempBlock && tempBlock->isValid()) {
617 // the atomic CPU calls recvAtomic for fetch and load/store
618 // sequentuially, and we may already have a tempBlock
619 // writeback from the fetch that we have not yet sent
620 if (tempBlockWriteback) {
621 // if that is the case, write the prevoius one back, and
622 // do not schedule any new event
623 writebackTempBlockAtomic();
624 } else {
625 // the writeback/clean eviction happens after the call to
626 // recvAtomic has finished (but before any successive
627 // calls), so that the response handling from the fill is
628 // allowed to happen first
629 schedule(writebackTempBlockAtomicEvent, curTick());
630 }
631
632 tempBlockWriteback = evictBlock(blk);
633 }
634
635 if (pkt->needsResponse()) {
636 pkt->makeAtomicResponse();
637 }
638
639 return lat * clockPeriod();
640}
641
642void
643BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side)
644{
645 Addr blk_addr = pkt->getBlockAddr(blkSize);
646 bool is_secure = pkt->isSecure();
647 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
648 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
649
650 pkt->pushLabel(name());
651
652 CacheBlkPrintWrapper cbpw(blk);
653
654 // Note that just because an L2/L3 has valid data doesn't mean an
655 // L1 doesn't have a more up-to-date modified copy that still
656 // needs to be found. As a result we always update the request if
657 // we have it, but only declare it satisfied if we are the owner.
658
659 // see if we have data at all (owned or otherwise)
660 bool have_data = blk && blk->isValid()
661 && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
662 blk->data);
663
664 // data we have is dirty if marked as such or if we have an
665 // in-service MSHR that is pending a modified line
666 bool have_dirty =
667 have_data && (blk->isDirty() ||
668 (mshr && mshr->inService && mshr->isPendingModified()));
669
670 bool done = have_dirty ||
671 cpuSidePort.checkFunctional(pkt) ||
672 mshrQueue.checkFunctional(pkt, blk_addr) ||
673 writeBuffer.checkFunctional(pkt, blk_addr) ||
674 memSidePort.checkFunctional(pkt);
675
676 DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(),
677 (blk && blk->isValid()) ? "valid " : "",
678 have_data ? "data " : "", done ? "done " : "");
679
680 // We're leaving the cache, so pop cache->name() label
681 pkt->popLabel();
682
683 if (done) {
684 pkt->makeResponse();
685 } else {
686 // if it came as a request from the CPU side then make sure it
687 // continues towards the memory side
688 if (from_cpu_side) {
689 memSidePort.sendFunctional(pkt);
690 } else if (cpuSidePort.isSnooping()) {
691 // if it came from the memory side, it must be a snoop request
692 // and we should only forward it if we are forwarding snoops
693 cpuSidePort.sendFunctionalSnoop(pkt);
694 }
695 }
696}
697
698
699void
700BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
701{
702 assert(pkt->isRequest());
703
704 uint64_t overwrite_val;
705 bool overwrite_mem;
706 uint64_t condition_val64;
707 uint32_t condition_val32;
708
709 int offset = pkt->getOffset(blkSize);
710 uint8_t *blk_data = blk->data + offset;
711
712 assert(sizeof(uint64_t) >= pkt->getSize());
713
714 overwrite_mem = true;
715 // keep a copy of our possible write value, and copy what is at the
716 // memory address into the packet
717 pkt->writeData((uint8_t *)&overwrite_val);
718 pkt->setData(blk_data);
719
720 if (pkt->req->isCondSwap()) {
721 if (pkt->getSize() == sizeof(uint64_t)) {
722 condition_val64 = pkt->req->getExtraData();
723 overwrite_mem = !std::memcmp(&condition_val64, blk_data,
724 sizeof(uint64_t));
725 } else if (pkt->getSize() == sizeof(uint32_t)) {
726 condition_val32 = (uint32_t)pkt->req->getExtraData();
727 overwrite_mem = !std::memcmp(&condition_val32, blk_data,
728 sizeof(uint32_t));
729 } else
730 panic("Invalid size for conditional read/write\n");
731 }
732
733 if (overwrite_mem) {
734 std::memcpy(blk_data, &overwrite_val, pkt->getSize());
735 blk->status |= BlkDirty;
736 }
737}
738
739QueueEntry*
740BaseCache::getNextQueueEntry()
741{
742 // Check both MSHR queue and write buffer for potential requests,
743 // note that null does not mean there is no request, it could
744 // simply be that it is not ready
745 MSHR *miss_mshr = mshrQueue.getNext();
746 WriteQueueEntry *wq_entry = writeBuffer.getNext();
747
748 // If we got a write buffer request ready, first priority is a
749 // full write buffer, otherwise we favour the miss requests
750 if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
751 // need to search MSHR queue for conflicting earlier miss.
752 MSHR *conflict_mshr =
753 mshrQueue.findPending(wq_entry->blkAddr,
754 wq_entry->isSecure);
755
756 if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
757 // Service misses in order until conflict is cleared.
758 return conflict_mshr;
759
760 // @todo Note that we ignore the ready time of the conflict here
761 }
762
763 // No conflicts; issue write
764 return wq_entry;
765 } else if (miss_mshr) {
766 // need to check for conflicting earlier writeback
767 WriteQueueEntry *conflict_mshr =
768 writeBuffer.findPending(miss_mshr->blkAddr,
769 miss_mshr->isSecure);
770 if (conflict_mshr) {
771 // not sure why we don't check order here... it was in the
772 // original code but commented out.
773
774 // The only way this happens is if we are
775 // doing a write and we didn't have permissions
776 // then subsequently saw a writeback (owned got evicted)
777 // We need to make sure to perform the writeback first
778 // To preserve the dirty data, then we can issue the write
779
780 // should we return wq_entry here instead? I.e. do we
781 // have to flush writes in order? I don't think so... not
782 // for Alpha anyway. Maybe for x86?
783 return conflict_mshr;
784
785 // @todo Note that we ignore the ready time of the conflict here
786 }
787
788 // No conflicts; issue read
789 return miss_mshr;
790 }
791
792 // fall through... no pending requests. Try a prefetch.
793 assert(!miss_mshr && !wq_entry);
794 if (prefetcher && mshrQueue.canPrefetch()) {
795 // If we have a miss queue slot, we can try a prefetch
796 PacketPtr pkt = prefetcher->getPacket();
797 if (pkt) {
798 Addr pf_addr = pkt->getBlockAddr(blkSize);
799 if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
800 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
801 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
802 // Update statistic on number of prefetches issued
803 // (hwpf_mshr_misses)
804 assert(pkt->req->masterId() < system->maxMasters());
805 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
806
807 // allocate an MSHR and return it, note
808 // that we send the packet straight away, so do not
809 // schedule the send
810 return allocateMissBuffer(pkt, curTick(), false);
811 } else {
812 // free the request and packet
813 delete pkt;
814 }
815 }
816 }
817
818 return nullptr;
819}
820
821void
822BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool)
823{
824 assert(pkt->isRequest());
825
826 assert(blk && blk->isValid());
827 // Occasionally this is not true... if we are a lower-level cache
828 // satisfying a string of Read and ReadEx requests from
829 // upper-level caches, a Read will mark the block as shared but we
830 // can satisfy a following ReadEx anyway since we can rely on the
831 // Read requester(s) to have buffered the ReadEx snoop and to
832 // invalidate their blocks after receiving them.
833 // assert(!pkt->needsWritable() || blk->isWritable());
834 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
835
836 // Check RMW operations first since both isRead() and
837 // isWrite() will be true for them
838 if (pkt->cmd == MemCmd::SwapReq) {
1/*
2 * Copyright (c) 2012-2013, 2018 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Erik Hallnor
41 * Nikos Nikoleris
42 */
43
44/**
45 * @file
46 * Definition of BaseCache functions.
47 */
48
49#include "mem/cache/base.hh"
50
51#include "base/compiler.hh"
52#include "base/logging.hh"
53#include "debug/Cache.hh"
54#include "debug/CachePort.hh"
55#include "debug/CacheVerbose.hh"
56#include "mem/cache/mshr.hh"
57#include "mem/cache/prefetch/base.hh"
58#include "mem/cache/queue_entry.hh"
59#include "params/BaseCache.hh"
60#include "sim/core.hh"
61
62class BaseMasterPort;
63class BaseSlavePort;
64
65using namespace std;
66
67BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name,
68 BaseCache *_cache,
69 const std::string &_label)
70 : QueuedSlavePort(_name, _cache, queue), queue(*_cache, *this, _label),
71 blocked(false), mustSendRetry(false),
72 sendRetryEvent([this]{ processSendRetry(); }, _name)
73{
74}
75
76BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
77 : MemObject(p),
78 cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"),
79 memSidePort(p->name + ".mem_side", this, "MemSidePort"),
80 mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below
81 writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below
82 tags(p->tags),
83 prefetcher(p->prefetcher),
84 prefetchOnAccess(p->prefetch_on_access),
85 writebackClean(p->writeback_clean),
86 tempBlockWriteback(nullptr),
87 writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
88 name(), false,
89 EventBase::Delayed_Writeback_Pri),
90 blkSize(blk_size),
91 lookupLatency(p->tag_latency),
92 dataLatency(p->data_latency),
93 forwardLatency(p->tag_latency),
94 fillLatency(p->data_latency),
95 responseLatency(p->response_latency),
96 numTarget(p->tgts_per_mshr),
97 forwardSnoops(true),
98 clusivity(p->clusivity),
99 isReadOnly(p->is_read_only),
100 blocked(0),
101 order(0),
102 noTargetMSHR(nullptr),
103 missCount(p->max_miss_count),
104 addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()),
105 system(p->system)
106{
107 // the MSHR queue has no reserve entries as we check the MSHR
108 // queue on every single allocation, whereas the write queue has
109 // as many reserve entries as we have MSHRs, since every MSHR may
110 // eventually require a writeback, and we do not check the write
111 // buffer before committing to an MSHR
112
113 // forward snoops is overridden in init() once we can query
114 // whether the connected master is actually snooping or not
115
116 tempBlock = new TempCacheBlk();
117 tempBlock->data = new uint8_t[blkSize];
118
119 tags->setCache(this);
120 if (prefetcher)
121 prefetcher->setCache(this);
122}
123
124BaseCache::~BaseCache()
125{
126 delete [] tempBlock->data;
127 delete tempBlock;
128}
129
130void
131BaseCache::CacheSlavePort::setBlocked()
132{
133 assert(!blocked);
134 DPRINTF(CachePort, "Port is blocking new requests\n");
135 blocked = true;
136 // if we already scheduled a retry in this cycle, but it has not yet
137 // happened, cancel it
138 if (sendRetryEvent.scheduled()) {
139 owner.deschedule(sendRetryEvent);
140 DPRINTF(CachePort, "Port descheduled retry\n");
141 mustSendRetry = true;
142 }
143}
144
145void
146BaseCache::CacheSlavePort::clearBlocked()
147{
148 assert(blocked);
149 DPRINTF(CachePort, "Port is accepting new requests\n");
150 blocked = false;
151 if (mustSendRetry) {
152 // @TODO: need to find a better time (next cycle?)
153 owner.schedule(sendRetryEvent, curTick() + 1);
154 }
155}
156
157void
158BaseCache::CacheSlavePort::processSendRetry()
159{
160 DPRINTF(CachePort, "Port is sending retry\n");
161
162 // reset the flag and call retry
163 mustSendRetry = false;
164 sendRetryReq();
165}
166
167Addr
168BaseCache::regenerateBlkAddr(CacheBlk* blk)
169{
170 if (blk != tempBlock) {
171 return tags->regenerateBlkAddr(blk);
172 } else {
173 return tempBlock->getAddr();
174 }
175}
176
177void
178BaseCache::init()
179{
180 if (!cpuSidePort.isConnected() || !memSidePort.isConnected())
181 fatal("Cache ports on %s are not connected\n", name());
182 cpuSidePort.sendRangeChange();
183 forwardSnoops = cpuSidePort.isSnooping();
184}
185
186BaseMasterPort &
187BaseCache::getMasterPort(const std::string &if_name, PortID idx)
188{
189 if (if_name == "mem_side") {
190 return memSidePort;
191 } else {
192 return MemObject::getMasterPort(if_name, idx);
193 }
194}
195
196BaseSlavePort &
197BaseCache::getSlavePort(const std::string &if_name, PortID idx)
198{
199 if (if_name == "cpu_side") {
200 return cpuSidePort;
201 } else {
202 return MemObject::getSlavePort(if_name, idx);
203 }
204}
205
206bool
207BaseCache::inRange(Addr addr) const
208{
209 for (const auto& r : addrRanges) {
210 if (r.contains(addr)) {
211 return true;
212 }
213 }
214 return false;
215}
216
217void
218BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
219{
220 if (pkt->needsResponse()) {
221 pkt->makeTimingResponse();
222 // @todo: Make someone pay for this
223 pkt->headerDelay = pkt->payloadDelay = 0;
224
225 // In this case we are considering request_time that takes
226 // into account the delay of the xbar, if any, and just
227 // lat, neglecting responseLatency, modelling hit latency
228 // just as lookupLatency or or the value of lat overriden
229 // by access(), that calls accessBlock() function.
230 cpuSidePort.schedTimingResp(pkt, request_time, true);
231 } else {
232 DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
233 pkt->print());
234
235 // queue the packet for deletion, as the sending cache is
236 // still relying on it; if the block is found in access(),
237 // CleanEvict and Writeback messages will be deleted
238 // here as well
239 pendingDelete.reset(pkt);
240 }
241}
242
243void
244BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
245 Tick forward_time, Tick request_time)
246{
247 if (mshr) {
248 /// MSHR hit
249 /// @note writebacks will be checked in getNextMSHR()
250 /// for any conflicting requests to the same block
251
252 //@todo remove hw_pf here
253
254 // Coalesce unless it was a software prefetch (see above).
255 if (pkt) {
256 assert(!pkt->isWriteback());
257 // CleanEvicts corresponding to blocks which have
258 // outstanding requests in MSHRs are simply sunk here
259 if (pkt->cmd == MemCmd::CleanEvict) {
260 pendingDelete.reset(pkt);
261 } else if (pkt->cmd == MemCmd::WriteClean) {
262 // A WriteClean should never coalesce with any
263 // outstanding cache maintenance requests.
264
265 // We use forward_time here because there is an
266 // uncached memory write, forwarded to WriteBuffer.
267 allocateWriteBuffer(pkt, forward_time);
268 } else {
269 DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
270 pkt->print());
271
272 assert(pkt->req->masterId() < system->maxMasters());
273 mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
274
275 // We use forward_time here because it is the same
276 // considering new targets. We have multiple
277 // requests for the same address here. It
278 // specifies the latency to allocate an internal
279 // buffer and to schedule an event to the queued
280 // port and also takes into account the additional
281 // delay of the xbar.
282 mshr->allocateTarget(pkt, forward_time, order++,
283 allocOnFill(pkt->cmd));
284 if (mshr->getNumTargets() == numTarget) {
285 noTargetMSHR = mshr;
286 setBlocked(Blocked_NoTargets);
287 // need to be careful with this... if this mshr isn't
288 // ready yet (i.e. time > curTick()), we don't want to
289 // move it ahead of mshrs that are ready
290 // mshrQueue.moveToFront(mshr);
291 }
292 }
293 }
294 } else {
295 // no MSHR
296 assert(pkt->req->masterId() < system->maxMasters());
297 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
298
299 if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) {
300 // We use forward_time here because there is an
301 // writeback or writeclean, forwarded to WriteBuffer.
302 allocateWriteBuffer(pkt, forward_time);
303 } else {
304 if (blk && blk->isValid()) {
305 // If we have a write miss to a valid block, we
306 // need to mark the block non-readable. Otherwise
307 // if we allow reads while there's an outstanding
308 // write miss, the read could return stale data
309 // out of the cache block... a more aggressive
310 // system could detect the overlap (if any) and
311 // forward data out of the MSHRs, but we don't do
312 // that yet. Note that we do need to leave the
313 // block valid so that it stays in the cache, in
314 // case we get an upgrade response (and hence no
315 // new data) when the write miss completes.
316 // As long as CPUs do proper store/load forwarding
317 // internally, and have a sufficiently weak memory
318 // model, this is probably unnecessary, but at some
319 // point it must have seemed like we needed it...
320 assert((pkt->needsWritable() && !blk->isWritable()) ||
321 pkt->req->isCacheMaintenance());
322 blk->status &= ~BlkReadable;
323 }
324 // Here we are using forward_time, modelling the latency of
325 // a miss (outbound) just as forwardLatency, neglecting the
326 // lookupLatency component.
327 allocateMissBuffer(pkt, forward_time);
328 }
329 }
330}
331
332void
333BaseCache::recvTimingReq(PacketPtr pkt)
334{
335 // anything that is merely forwarded pays for the forward latency and
336 // the delay provided by the crossbar
337 Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
338
339 // We use lookupLatency here because it is used to specify the latency
340 // to access.
341 Cycles lat = lookupLatency;
342 CacheBlk *blk = nullptr;
343 bool satisfied = false;
344 {
345 PacketList writebacks;
346 // Note that lat is passed by reference here. The function
347 // access() calls accessBlock() which can modify lat value.
348 satisfied = access(pkt, blk, lat, writebacks);
349
350 // copy writebacks to write buffer here to ensure they logically
351 // proceed anything happening below
352 doWritebacks(writebacks, forward_time);
353 }
354
355 // Here we charge the headerDelay that takes into account the latencies
356 // of the bus, if the packet comes from it.
357 // The latency charged it is just lat that is the value of lookupLatency
358 // modified by access() function, or if not just lookupLatency.
359 // In case of a hit we are neglecting response latency.
360 // In case of a miss we are neglecting forward latency.
361 Tick request_time = clockEdge(lat) + pkt->headerDelay;
362 // Here we reset the timing of the packet.
363 pkt->headerDelay = pkt->payloadDelay = 0;
364 // track time of availability of next prefetch, if any
365 Tick next_pf_time = MaxTick;
366
367 if (satisfied) {
368 // if need to notify the prefetcher we have to do it before
369 // anything else as later handleTimingReqHit might turn the
370 // packet in a response
371 if (prefetcher &&
372 (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
373 if (blk)
374 blk->status &= ~BlkHWPrefetched;
375
376 // Don't notify on SWPrefetch
377 if (!pkt->cmd.isSWPrefetch()) {
378 assert(!pkt->req->isCacheMaintenance());
379 next_pf_time = prefetcher->notify(pkt);
380 }
381 }
382
383 handleTimingReqHit(pkt, blk, request_time);
384 } else {
385 handleTimingReqMiss(pkt, blk, forward_time, request_time);
386
387 // We should call the prefetcher reguardless if the request is
388 // satisfied or not, reguardless if the request is in the MSHR
389 // or not. The request could be a ReadReq hit, but still not
390 // satisfied (potentially because of a prior write to the same
391 // cache line. So, even when not satisfied, there is an MSHR
392 // already allocated for this, we need to let the prefetcher
393 // know about the request
394
395 // Don't notify prefetcher on SWPrefetch or cache maintenance
396 // operations
397 if (prefetcher && pkt &&
398 !pkt->cmd.isSWPrefetch() &&
399 !pkt->req->isCacheMaintenance()) {
400 next_pf_time = prefetcher->notify(pkt);
401 }
402 }
403
404 if (next_pf_time != MaxTick) {
405 schedMemSideSendEvent(next_pf_time);
406 }
407}
408
409void
410BaseCache::handleUncacheableWriteResp(PacketPtr pkt)
411{
412 Tick completion_time = clockEdge(responseLatency) +
413 pkt->headerDelay + pkt->payloadDelay;
414
415 // Reset the bus additional time as it is now accounted for
416 pkt->headerDelay = pkt->payloadDelay = 0;
417
418 cpuSidePort.schedTimingResp(pkt, completion_time, true);
419}
420
421void
422BaseCache::recvTimingResp(PacketPtr pkt)
423{
424 assert(pkt->isResponse());
425
426 // all header delay should be paid for by the crossbar, unless
427 // this is a prefetch response from above
428 panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
429 "%s saw a non-zero packet delay\n", name());
430
431 const bool is_error = pkt->isError();
432
433 if (is_error) {
434 DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
435 pkt->print());
436 }
437
438 DPRINTF(Cache, "%s: Handling response %s\n", __func__,
439 pkt->print());
440
441 // if this is a write, we should be looking at an uncacheable
442 // write
443 if (pkt->isWrite()) {
444 assert(pkt->req->isUncacheable());
445 handleUncacheableWriteResp(pkt);
446 return;
447 }
448
449 // we have dealt with any (uncacheable) writes above, from here on
450 // we know we are dealing with an MSHR due to a miss or a prefetch
451 MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
452 assert(mshr);
453
454 if (mshr == noTargetMSHR) {
455 // we always clear at least one target
456 clearBlocked(Blocked_NoTargets);
457 noTargetMSHR = nullptr;
458 }
459
460 // Initial target is used just for stats
461 MSHR::Target *initial_tgt = mshr->getTarget();
462 int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
463 Tick miss_latency = curTick() - initial_tgt->recvTime;
464
465 if (pkt->req->isUncacheable()) {
466 assert(pkt->req->masterId() < system->maxMasters());
467 mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
468 miss_latency;
469 } else {
470 assert(pkt->req->masterId() < system->maxMasters());
471 mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
472 miss_latency;
473 }
474
475 PacketList writebacks;
476
477 bool is_fill = !mshr->isForward &&
478 (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
479
480 CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
481
482 if (is_fill && !is_error) {
483 DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
484 pkt->getAddr());
485
486 blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill());
487 assert(blk != nullptr);
488 }
489
490 if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
491 // The block was marked not readable while there was a pending
492 // cache maintenance operation, restore its flag.
493 blk->status |= BlkReadable;
494 }
495
496 if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
497 // If at this point the referenced block is writable and the
498 // response is not a cache invalidate, we promote targets that
499 // were deferred as we couldn't guarrantee a writable copy
500 mshr->promoteWritable();
501 }
502
503 serviceMSHRTargets(mshr, pkt, blk, writebacks);
504
505 if (mshr->promoteDeferredTargets()) {
506 // avoid later read getting stale data while write miss is
507 // outstanding.. see comment in timingAccess()
508 if (blk) {
509 blk->status &= ~BlkReadable;
510 }
511 mshrQueue.markPending(mshr);
512 schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
513 } else {
514 // while we deallocate an mshr from the queue we still have to
515 // check the isFull condition before and after as we might
516 // have been using the reserved entries already
517 const bool was_full = mshrQueue.isFull();
518 mshrQueue.deallocate(mshr);
519 if (was_full && !mshrQueue.isFull()) {
520 clearBlocked(Blocked_NoMSHRs);
521 }
522
523 // Request the bus for a prefetch if this deallocation freed enough
524 // MSHRs for a prefetch to take place
525 if (prefetcher && mshrQueue.canPrefetch()) {
526 Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
527 clockEdge());
528 if (next_pf_time != MaxTick)
529 schedMemSideSendEvent(next_pf_time);
530 }
531 }
532
533 // if we used temp block, check to see if its valid and then clear it out
534 if (blk == tempBlock && tempBlock->isValid()) {
535 evictBlock(blk, writebacks);
536 }
537
538 const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
539 // copy writebacks to write buffer
540 doWritebacks(writebacks, forward_time);
541
542 DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
543 delete pkt;
544}
545
546
547Tick
548BaseCache::recvAtomic(PacketPtr pkt)
549{
550 // We are in atomic mode so we pay just for lookupLatency here.
551 Cycles lat = lookupLatency;
552
553 // follow the same flow as in recvTimingReq, and check if a cache
554 // above us is responding
555 if (pkt->cacheResponding() && !pkt->isClean()) {
556 assert(!pkt->req->isCacheInvalidate());
557 DPRINTF(Cache, "Cache above responding to %s: not responding\n",
558 pkt->print());
559
560 // if a cache is responding, and it had the line in Owned
561 // rather than Modified state, we need to invalidate any
562 // copies that are not on the same path to memory
563 assert(pkt->needsWritable() && !pkt->responderHadWritable());
564 lat += ticksToCycles(memSidePort.sendAtomic(pkt));
565
566 return lat * clockPeriod();
567 }
568
569 // should assert here that there are no outstanding MSHRs or
570 // writebacks... that would mean that someone used an atomic
571 // access in timing mode
572
573 CacheBlk *blk = nullptr;
574 PacketList writebacks;
575 bool satisfied = access(pkt, blk, lat, writebacks);
576
577 if (pkt->isClean() && blk && blk->isDirty()) {
578 // A cache clean opearation is looking for a dirty
579 // block. If a dirty block is encountered a WriteClean
580 // will update any copies to the path to the memory
581 // until the point of reference.
582 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
583 __func__, pkt->print(), blk->print());
584 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
585 writebacks.push_back(wb_pkt);
586 pkt->setSatisfied();
587 }
588
589 // handle writebacks resulting from the access here to ensure they
590 // logically proceed anything happening below
591 doWritebacksAtomic(writebacks);
592 assert(writebacks.empty());
593
594 if (!satisfied) {
595 lat += handleAtomicReqMiss(pkt, blk, writebacks);
596 }
597
598 // Note that we don't invoke the prefetcher at all in atomic mode.
599 // It's not clear how to do it properly, particularly for
600 // prefetchers that aggressively generate prefetch candidates and
601 // rely on bandwidth contention to throttle them; these will tend
602 // to pollute the cache in atomic mode since there is no bandwidth
603 // contention. If we ever do want to enable prefetching in atomic
604 // mode, though, this is the place to do it... see timingAccess()
605 // for an example (though we'd want to issue the prefetch(es)
606 // immediately rather than calling requestMemSideBus() as we do
607 // there).
608
609 // do any writebacks resulting from the response handling
610 doWritebacksAtomic(writebacks);
611
612 // if we used temp block, check to see if its valid and if so
613 // clear it out, but only do so after the call to recvAtomic is
614 // finished so that any downstream observers (such as a snoop
615 // filter), first see the fill, and only then see the eviction
616 if (blk == tempBlock && tempBlock->isValid()) {
617 // the atomic CPU calls recvAtomic for fetch and load/store
618 // sequentuially, and we may already have a tempBlock
619 // writeback from the fetch that we have not yet sent
620 if (tempBlockWriteback) {
621 // if that is the case, write the prevoius one back, and
622 // do not schedule any new event
623 writebackTempBlockAtomic();
624 } else {
625 // the writeback/clean eviction happens after the call to
626 // recvAtomic has finished (but before any successive
627 // calls), so that the response handling from the fill is
628 // allowed to happen first
629 schedule(writebackTempBlockAtomicEvent, curTick());
630 }
631
632 tempBlockWriteback = evictBlock(blk);
633 }
634
635 if (pkt->needsResponse()) {
636 pkt->makeAtomicResponse();
637 }
638
639 return lat * clockPeriod();
640}
641
642void
643BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side)
644{
645 Addr blk_addr = pkt->getBlockAddr(blkSize);
646 bool is_secure = pkt->isSecure();
647 CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
648 MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
649
650 pkt->pushLabel(name());
651
652 CacheBlkPrintWrapper cbpw(blk);
653
654 // Note that just because an L2/L3 has valid data doesn't mean an
655 // L1 doesn't have a more up-to-date modified copy that still
656 // needs to be found. As a result we always update the request if
657 // we have it, but only declare it satisfied if we are the owner.
658
659 // see if we have data at all (owned or otherwise)
660 bool have_data = blk && blk->isValid()
661 && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
662 blk->data);
663
664 // data we have is dirty if marked as such or if we have an
665 // in-service MSHR that is pending a modified line
666 bool have_dirty =
667 have_data && (blk->isDirty() ||
668 (mshr && mshr->inService && mshr->isPendingModified()));
669
670 bool done = have_dirty ||
671 cpuSidePort.checkFunctional(pkt) ||
672 mshrQueue.checkFunctional(pkt, blk_addr) ||
673 writeBuffer.checkFunctional(pkt, blk_addr) ||
674 memSidePort.checkFunctional(pkt);
675
676 DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(),
677 (blk && blk->isValid()) ? "valid " : "",
678 have_data ? "data " : "", done ? "done " : "");
679
680 // We're leaving the cache, so pop cache->name() label
681 pkt->popLabel();
682
683 if (done) {
684 pkt->makeResponse();
685 } else {
686 // if it came as a request from the CPU side then make sure it
687 // continues towards the memory side
688 if (from_cpu_side) {
689 memSidePort.sendFunctional(pkt);
690 } else if (cpuSidePort.isSnooping()) {
691 // if it came from the memory side, it must be a snoop request
692 // and we should only forward it if we are forwarding snoops
693 cpuSidePort.sendFunctionalSnoop(pkt);
694 }
695 }
696}
697
698
699void
700BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
701{
702 assert(pkt->isRequest());
703
704 uint64_t overwrite_val;
705 bool overwrite_mem;
706 uint64_t condition_val64;
707 uint32_t condition_val32;
708
709 int offset = pkt->getOffset(blkSize);
710 uint8_t *blk_data = blk->data + offset;
711
712 assert(sizeof(uint64_t) >= pkt->getSize());
713
714 overwrite_mem = true;
715 // keep a copy of our possible write value, and copy what is at the
716 // memory address into the packet
717 pkt->writeData((uint8_t *)&overwrite_val);
718 pkt->setData(blk_data);
719
720 if (pkt->req->isCondSwap()) {
721 if (pkt->getSize() == sizeof(uint64_t)) {
722 condition_val64 = pkt->req->getExtraData();
723 overwrite_mem = !std::memcmp(&condition_val64, blk_data,
724 sizeof(uint64_t));
725 } else if (pkt->getSize() == sizeof(uint32_t)) {
726 condition_val32 = (uint32_t)pkt->req->getExtraData();
727 overwrite_mem = !std::memcmp(&condition_val32, blk_data,
728 sizeof(uint32_t));
729 } else
730 panic("Invalid size for conditional read/write\n");
731 }
732
733 if (overwrite_mem) {
734 std::memcpy(blk_data, &overwrite_val, pkt->getSize());
735 blk->status |= BlkDirty;
736 }
737}
738
739QueueEntry*
740BaseCache::getNextQueueEntry()
741{
742 // Check both MSHR queue and write buffer for potential requests,
743 // note that null does not mean there is no request, it could
744 // simply be that it is not ready
745 MSHR *miss_mshr = mshrQueue.getNext();
746 WriteQueueEntry *wq_entry = writeBuffer.getNext();
747
748 // If we got a write buffer request ready, first priority is a
749 // full write buffer, otherwise we favour the miss requests
750 if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
751 // need to search MSHR queue for conflicting earlier miss.
752 MSHR *conflict_mshr =
753 mshrQueue.findPending(wq_entry->blkAddr,
754 wq_entry->isSecure);
755
756 if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
757 // Service misses in order until conflict is cleared.
758 return conflict_mshr;
759
760 // @todo Note that we ignore the ready time of the conflict here
761 }
762
763 // No conflicts; issue write
764 return wq_entry;
765 } else if (miss_mshr) {
766 // need to check for conflicting earlier writeback
767 WriteQueueEntry *conflict_mshr =
768 writeBuffer.findPending(miss_mshr->blkAddr,
769 miss_mshr->isSecure);
770 if (conflict_mshr) {
771 // not sure why we don't check order here... it was in the
772 // original code but commented out.
773
774 // The only way this happens is if we are
775 // doing a write and we didn't have permissions
776 // then subsequently saw a writeback (owned got evicted)
777 // We need to make sure to perform the writeback first
778 // To preserve the dirty data, then we can issue the write
779
780 // should we return wq_entry here instead? I.e. do we
781 // have to flush writes in order? I don't think so... not
782 // for Alpha anyway. Maybe for x86?
783 return conflict_mshr;
784
785 // @todo Note that we ignore the ready time of the conflict here
786 }
787
788 // No conflicts; issue read
789 return miss_mshr;
790 }
791
792 // fall through... no pending requests. Try a prefetch.
793 assert(!miss_mshr && !wq_entry);
794 if (prefetcher && mshrQueue.canPrefetch()) {
795 // If we have a miss queue slot, we can try a prefetch
796 PacketPtr pkt = prefetcher->getPacket();
797 if (pkt) {
798 Addr pf_addr = pkt->getBlockAddr(blkSize);
799 if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
800 !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
801 !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
802 // Update statistic on number of prefetches issued
803 // (hwpf_mshr_misses)
804 assert(pkt->req->masterId() < system->maxMasters());
805 mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
806
807 // allocate an MSHR and return it, note
808 // that we send the packet straight away, so do not
809 // schedule the send
810 return allocateMissBuffer(pkt, curTick(), false);
811 } else {
812 // free the request and packet
813 delete pkt;
814 }
815 }
816 }
817
818 return nullptr;
819}
820
821void
822BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool)
823{
824 assert(pkt->isRequest());
825
826 assert(blk && blk->isValid());
827 // Occasionally this is not true... if we are a lower-level cache
828 // satisfying a string of Read and ReadEx requests from
829 // upper-level caches, a Read will mark the block as shared but we
830 // can satisfy a following ReadEx anyway since we can rely on the
831 // Read requester(s) to have buffered the ReadEx snoop and to
832 // invalidate their blocks after receiving them.
833 // assert(!pkt->needsWritable() || blk->isWritable());
834 assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
835
836 // Check RMW operations first since both isRead() and
837 // isWrite() will be true for them
838 if (pkt->cmd == MemCmd::SwapReq) {
839 cmpAndSwap(blk, pkt);
839 if (pkt->isAtomicOp()) {
840 // extract data from cache and save it into the data field in
841 // the packet as a return value from this atomic op
842
843 int offset = tags->extractBlkOffset(pkt->getAddr());
844 uint8_t *blk_data = blk->data + offset;
845 std::memcpy(pkt->getPtr<uint8_t>(), blk_data, pkt->getSize());
846
847 // execute AMO operation
848 (*(pkt->getAtomicOp()))(blk_data);
849
850 // set block status to dirty
851 blk->status |= BlkDirty;
852 } else {
853 cmpAndSwap(blk, pkt);
854 }
840 } else if (pkt->isWrite()) {
841 // we have the block in a writable state and can go ahead,
842 // note that the line may be also be considered writable in
843 // downstream caches along the path to memory, but always
844 // Exclusive, and never Modified
845 assert(blk->isWritable());
846 // Write or WriteLine at the first cache with block in writable state
847 if (blk->checkWrite(pkt)) {
848 pkt->writeDataToBlock(blk->data, blkSize);
849 }
850 // Always mark the line as dirty (and thus transition to the
851 // Modified state) even if we are a failed StoreCond so we
852 // supply data to any snoops that have appended themselves to
853 // this cache before knowing the store will fail.
854 blk->status |= BlkDirty;
855 DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
856 } else if (pkt->isRead()) {
857 if (pkt->isLLSC()) {
858 blk->trackLoadLocked(pkt);
859 }
860
861 // all read responses have a data payload
862 assert(pkt->hasRespData());
863 pkt->setDataFromBlock(blk->data, blkSize);
864 } else if (pkt->isUpgrade()) {
865 // sanity check
866 assert(!pkt->hasSharers());
867
868 if (blk->isDirty()) {
869 // we were in the Owned state, and a cache above us that
870 // has the line in Shared state needs to be made aware
871 // that the data it already has is in fact dirty
872 pkt->setCacheResponding();
873 blk->status &= ~BlkDirty;
874 }
875 } else {
876 assert(pkt->isInvalidate());
877 invalidateBlock(blk);
878 DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
879 pkt->print());
880 }
881}
882
883/////////////////////////////////////////////////////
884//
885// Access path: requests coming in from the CPU side
886//
887/////////////////////////////////////////////////////
888
889bool
890BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
891 PacketList &writebacks)
892{
893 // sanity check
894 assert(pkt->isRequest());
895
896 chatty_assert(!(isReadOnly && pkt->isWrite()),
897 "Should never see a write in a read-only cache %s\n",
898 name());
899
900 // Here lat is the value passed as parameter to accessBlock() function
901 // that can modify its value.
902 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat);
903
904 DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(),
905 blk ? "hit " + blk->print() : "miss");
906
907 if (pkt->req->isCacheMaintenance()) {
908 // A cache maintenance operation is always forwarded to the
909 // memory below even if the block is found in dirty state.
910
911 // We defer any changes to the state of the block until we
912 // create and mark as in service the mshr for the downstream
913 // packet.
914 return false;
915 }
916
917 if (pkt->isEviction()) {
918 // We check for presence of block in above caches before issuing
919 // Writeback or CleanEvict to write buffer. Therefore the only
920 // possible cases can be of a CleanEvict packet coming from above
921 // encountering a Writeback generated in this cache peer cache and
922 // waiting in the write buffer. Cases of upper level peer caches
923 // generating CleanEvict and Writeback or simply CleanEvict and
924 // CleanEvict almost simultaneously will be caught by snoops sent out
925 // by crossbar.
926 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
927 pkt->isSecure());
928 if (wb_entry) {
929 assert(wb_entry->getNumTargets() == 1);
930 PacketPtr wbPkt = wb_entry->getTarget()->pkt;
931 assert(wbPkt->isWriteback());
932
933 if (pkt->isCleanEviction()) {
934 // The CleanEvict and WritebackClean snoops into other
935 // peer caches of the same level while traversing the
936 // crossbar. If a copy of the block is found, the
937 // packet is deleted in the crossbar. Hence, none of
938 // the other upper level caches connected to this
939 // cache have the block, so we can clear the
940 // BLOCK_CACHED flag in the Writeback if set and
941 // discard the CleanEvict by returning true.
942 wbPkt->clearBlockCached();
943 return true;
944 } else {
945 assert(pkt->cmd == MemCmd::WritebackDirty);
946 // Dirty writeback from above trumps our clean
947 // writeback... discard here
948 // Note: markInService will remove entry from writeback buffer.
949 markInService(wb_entry);
950 delete wbPkt;
951 }
952 }
953 }
954
955 // Writeback handling is special case. We can write the block into
956 // the cache without having a writeable copy (or any copy at all).
957 if (pkt->isWriteback()) {
958 assert(blkSize == pkt->getSize());
959
960 // we could get a clean writeback while we are having
961 // outstanding accesses to a block, do the simple thing for
962 // now and drop the clean writeback so that we do not upset
963 // any ordering/decisions about ownership already taken
964 if (pkt->cmd == MemCmd::WritebackClean &&
965 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
966 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
967 "dropping\n", pkt->getAddr());
968 return true;
969 }
970
971 if (!blk) {
972 // need to do a replacement
973 blk = allocateBlock(pkt, writebacks);
974 if (!blk) {
975 // no replaceable block available: give up, fwd to next level.
976 incMissCount(pkt);
977 return false;
978 }
979
980 blk->status |= (BlkValid | BlkReadable);
981 }
982 // only mark the block dirty if we got a writeback command,
983 // and leave it as is for a clean writeback
984 if (pkt->cmd == MemCmd::WritebackDirty) {
985 // TODO: the coherent cache can assert(!blk->isDirty());
986 blk->status |= BlkDirty;
987 }
988 // if the packet does not have sharers, it is passing
989 // writable, and we got the writeback in Modified or Exclusive
990 // state, if not we are in the Owned or Shared state
991 if (!pkt->hasSharers()) {
992 blk->status |= BlkWritable;
993 }
994 // nothing else to do; writeback doesn't expect response
995 assert(!pkt->needsResponse());
996 pkt->writeDataToBlock(blk->data, blkSize);
997 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
998 incHitCount(pkt);
999 // populate the time when the block will be ready to access.
1000 blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
1001 pkt->payloadDelay;
1002 return true;
1003 } else if (pkt->cmd == MemCmd::CleanEvict) {
1004 if (blk) {
1005 // Found the block in the tags, need to stop CleanEvict from
1006 // propagating further down the hierarchy. Returning true will
1007 // treat the CleanEvict like a satisfied write request and delete
1008 // it.
1009 return true;
1010 }
1011 // We didn't find the block here, propagate the CleanEvict further
1012 // down the memory hierarchy. Returning false will treat the CleanEvict
1013 // like a Writeback which could not find a replaceable block so has to
1014 // go to next level.
1015 return false;
1016 } else if (pkt->cmd == MemCmd::WriteClean) {
1017 // WriteClean handling is a special case. We can allocate a
1018 // block directly if it doesn't exist and we can update the
1019 // block immediately. The WriteClean transfers the ownership
1020 // of the block as well.
1021 assert(blkSize == pkt->getSize());
1022
1023 if (!blk) {
1024 if (pkt->writeThrough()) {
1025 // if this is a write through packet, we don't try to
1026 // allocate if the block is not present
1027 return false;
1028 } else {
1029 // a writeback that misses needs to allocate a new block
1030 blk = allocateBlock(pkt, writebacks);
1031 if (!blk) {
1032 // no replaceable block available: give up, fwd to
1033 // next level.
1034 incMissCount(pkt);
1035 return false;
1036 }
1037
1038 blk->status |= (BlkValid | BlkReadable);
1039 }
1040 }
1041
1042 // at this point either this is a writeback or a write-through
1043 // write clean operation and the block is already in this
1044 // cache, we need to update the data and the block flags
1045 assert(blk);
1046 // TODO: the coherent cache can assert(!blk->isDirty());
1047 if (!pkt->writeThrough()) {
1048 blk->status |= BlkDirty;
1049 }
1050 // nothing else to do; writeback doesn't expect response
1051 assert(!pkt->needsResponse());
1052 pkt->writeDataToBlock(blk->data, blkSize);
1053 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1054
1055 incHitCount(pkt);
1056 // populate the time when the block will be ready to access.
1057 blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
1058 pkt->payloadDelay;
1059 // if this a write-through packet it will be sent to cache
1060 // below
1061 return !pkt->writeThrough();
1062 } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
1063 blk->isReadable())) {
1064 // OK to satisfy access
1065 incHitCount(pkt);
1066 satisfyRequest(pkt, blk);
1067 maintainClusivity(pkt->fromCache(), blk);
1068
1069 return true;
1070 }
1071
1072 // Can't satisfy access normally... either no block (blk == nullptr)
1073 // or have block but need writable
1074
1075 incMissCount(pkt);
1076
1077 if (!blk && pkt->isLLSC() && pkt->isWrite()) {
1078 // complete miss on store conditional... just give up now
1079 pkt->req->setExtraData(0);
1080 return true;
1081 }
1082
1083 return false;
1084}
1085
1086void
1087BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk)
1088{
1089 if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
1090 clusivity == Enums::mostly_excl) {
1091 // if we have responded to a cache, and our block is still
1092 // valid, but not dirty, and this cache is mostly exclusive
1093 // with respect to the cache above, drop the block
1094 invalidateBlock(blk);
1095 }
1096}
1097
1098CacheBlk*
1099BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1100 bool allocate)
1101{
1102 assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1103 Addr addr = pkt->getAddr();
1104 bool is_secure = pkt->isSecure();
1105#if TRACING_ON
1106 CacheBlk::State old_state = blk ? blk->status : 0;
1107#endif
1108
1109 // When handling a fill, we should have no writes to this line.
1110 assert(addr == pkt->getBlockAddr(blkSize));
1111 assert(!writeBuffer.findMatch(addr, is_secure));
1112
1113 if (!blk) {
1114 // better have read new data...
1115 assert(pkt->hasData());
1116
1117 // only read responses and write-line requests have data;
1118 // note that we don't write the data here for write-line - that
1119 // happens in the subsequent call to satisfyRequest
1120 assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1121
1122 // need to do a replacement if allocating, otherwise we stick
1123 // with the temporary storage
1124 blk = allocate ? allocateBlock(pkt, writebacks) : nullptr;
1125
1126 if (!blk) {
1127 // No replaceable block or a mostly exclusive
1128 // cache... just use temporary storage to complete the
1129 // current request and then get rid of it
1130 assert(!tempBlock->isValid());
1131 blk = tempBlock;
1132 tempBlock->insert(addr, is_secure);
1133 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1134 is_secure ? "s" : "ns");
1135 }
1136
1137 // we should never be overwriting a valid block
1138 assert(!blk->isValid());
1139 } else {
1140 // existing block... probably an upgrade
1141 assert(regenerateBlkAddr(blk) == addr);
1142 assert(blk->isSecure() == is_secure);
1143 // either we're getting new data or the block should already be valid
1144 assert(pkt->hasData() || blk->isValid());
1145 // don't clear block status... if block is already dirty we
1146 // don't want to lose that
1147 }
1148
1149 blk->status |= BlkValid | BlkReadable;
1150
1151 // sanity check for whole-line writes, which should always be
1152 // marked as writable as part of the fill, and then later marked
1153 // dirty as part of satisfyRequest
1154 if (pkt->cmd == MemCmd::WriteLineReq) {
1155 assert(!pkt->hasSharers());
1156 }
1157
1158 // here we deal with setting the appropriate state of the line,
1159 // and we start by looking at the hasSharers flag, and ignore the
1160 // cacheResponding flag (normally signalling dirty data) if the
1161 // packet has sharers, thus the line is never allocated as Owned
1162 // (dirty but not writable), and always ends up being either
1163 // Shared, Exclusive or Modified, see Packet::setCacheResponding
1164 // for more details
1165 if (!pkt->hasSharers()) {
1166 // we could get a writable line from memory (rather than a
1167 // cache) even in a read-only cache, note that we set this bit
1168 // even for a read-only cache, possibly revisit this decision
1169 blk->status |= BlkWritable;
1170
1171 // check if we got this via cache-to-cache transfer (i.e., from a
1172 // cache that had the block in Modified or Owned state)
1173 if (pkt->cacheResponding()) {
1174 // we got the block in Modified state, and invalidated the
1175 // owners copy
1176 blk->status |= BlkDirty;
1177
1178 chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1179 "in read-only cache %s\n", name());
1180 }
1181 }
1182
1183 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1184 addr, is_secure ? "s" : "ns", old_state, blk->print());
1185
1186 // if we got new data, copy it in (checking for a read response
1187 // and a response that has data is the same in the end)
1188 if (pkt->isRead()) {
1189 // sanity checks
1190 assert(pkt->hasData());
1191 assert(pkt->getSize() == blkSize);
1192
1193 pkt->writeDataToBlock(blk->data, blkSize);
1194 }
1195 // We pay for fillLatency here.
1196 blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1197 pkt->payloadDelay;
1198
1199 return blk;
1200}
1201
1202CacheBlk*
1203BaseCache::allocateBlock(const PacketPtr pkt, PacketList &writebacks)
1204{
1205 // Get address
1206 const Addr addr = pkt->getAddr();
1207
1208 // Get secure bit
1209 const bool is_secure = pkt->isSecure();
1210
1211 // Find replacement victim
1212 std::vector<CacheBlk*> evict_blks;
1213 CacheBlk *victim = tags->findVictim(addr, is_secure, evict_blks);
1214
1215 // It is valid to return nullptr if there is no victim
1216 if (!victim)
1217 return nullptr;
1218
1219 // Check for transient state allocations. If any of the entries listed
1220 // for eviction has a transient state, the allocation fails
1221 for (const auto& blk : evict_blks) {
1222 if (blk->isValid()) {
1223 Addr repl_addr = regenerateBlkAddr(blk);
1224 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1225 if (repl_mshr) {
1226 // must be an outstanding upgrade or clean request
1227 // on a block we're about to replace...
1228 assert((!blk->isWritable() && repl_mshr->needsWritable()) ||
1229 repl_mshr->isCleaning());
1230
1231 // too hard to replace block with transient state
1232 // allocation failed, block not inserted
1233 return nullptr;
1234 }
1235 }
1236 }
1237
1238 // The victim will be replaced by a new entry, so increase the replacement
1239 // counter if a valid block is being replaced
1240 if (victim->isValid()) {
1241 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1242 "(%s): %s\n", regenerateBlkAddr(victim),
1243 victim->isSecure() ? "s" : "ns",
1244 addr, is_secure ? "s" : "ns",
1245 victim->isDirty() ? "writeback" : "clean");
1246
1247 replacements++;
1248 }
1249
1250 // Evict valid blocks associated to this victim block
1251 for (const auto& blk : evict_blks) {
1252 if (blk->isValid()) {
1253 if (blk->wasPrefetched()) {
1254 unusedPrefetches++;
1255 }
1256
1257 evictBlock(blk, writebacks);
1258 }
1259 }
1260
1261 // Insert new block at victimized entry
1262 tags->insertBlock(pkt, victim);
1263
1264 return victim;
1265}
1266
1267void
1268BaseCache::invalidateBlock(CacheBlk *blk)
1269{
1270 if (blk != tempBlock)
1271 tags->invalidate(blk);
1272 blk->invalidate();
1273}
1274
1275PacketPtr
1276BaseCache::writebackBlk(CacheBlk *blk)
1277{
1278 chatty_assert(!isReadOnly || writebackClean,
1279 "Writeback from read-only cache");
1280 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1281
1282 writebacks[Request::wbMasterId]++;
1283
1284 RequestPtr req = std::make_shared<Request>(
1285 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1286
1287 if (blk->isSecure())
1288 req->setFlags(Request::SECURE);
1289
1290 req->taskId(blk->task_id);
1291
1292 PacketPtr pkt =
1293 new Packet(req, blk->isDirty() ?
1294 MemCmd::WritebackDirty : MemCmd::WritebackClean);
1295
1296 DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1297 pkt->print(), blk->isWritable(), blk->isDirty());
1298
1299 if (blk->isWritable()) {
1300 // not asserting shared means we pass the block in modified
1301 // state, mark our own block non-writeable
1302 blk->status &= ~BlkWritable;
1303 } else {
1304 // we are in the Owned state, tell the receiver
1305 pkt->setHasSharers();
1306 }
1307
1308 // make sure the block is not marked dirty
1309 blk->status &= ~BlkDirty;
1310
1311 pkt->allocate();
1312 pkt->setDataFromBlock(blk->data, blkSize);
1313
1314 return pkt;
1315}
1316
1317PacketPtr
1318BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
1319{
1320 RequestPtr req = std::make_shared<Request>(
1321 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1322
1323 if (blk->isSecure()) {
1324 req->setFlags(Request::SECURE);
1325 }
1326 req->taskId(blk->task_id);
1327
1328 PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
1329
1330 if (dest) {
1331 req->setFlags(dest);
1332 pkt->setWriteThrough();
1333 }
1334
1335 DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1336 blk->isWritable(), blk->isDirty());
1337
1338 if (blk->isWritable()) {
1339 // not asserting shared means we pass the block in modified
1340 // state, mark our own block non-writeable
1341 blk->status &= ~BlkWritable;
1342 } else {
1343 // we are in the Owned state, tell the receiver
1344 pkt->setHasSharers();
1345 }
1346
1347 // make sure the block is not marked dirty
1348 blk->status &= ~BlkDirty;
1349
1350 pkt->allocate();
1351 pkt->setDataFromBlock(blk->data, blkSize);
1352
1353 return pkt;
1354}
1355
1356
1357void
1358BaseCache::memWriteback()
1359{
1360 tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); });
1361}
1362
1363void
1364BaseCache::memInvalidate()
1365{
1366 tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); });
1367}
1368
1369bool
1370BaseCache::isDirty() const
1371{
1372 return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); });
1373}
1374
1375void
1376BaseCache::writebackVisitor(CacheBlk &blk)
1377{
1378 if (blk.isDirty()) {
1379 assert(blk.isValid());
1380
1381 RequestPtr request = std::make_shared<Request>(
1382 regenerateBlkAddr(&blk), blkSize, 0, Request::funcMasterId);
1383
1384 request->taskId(blk.task_id);
1385 if (blk.isSecure()) {
1386 request->setFlags(Request::SECURE);
1387 }
1388
1389 Packet packet(request, MemCmd::WriteReq);
1390 packet.dataStatic(blk.data);
1391
1392 memSidePort.sendFunctional(&packet);
1393
1394 blk.status &= ~BlkDirty;
1395 }
1396}
1397
1398void
1399BaseCache::invalidateVisitor(CacheBlk &blk)
1400{
1401 if (blk.isDirty())
1402 warn_once("Invalidating dirty cache lines. " \
1403 "Expect things to break.\n");
1404
1405 if (blk.isValid()) {
1406 assert(!blk.isDirty());
1407 invalidateBlock(&blk);
1408 }
1409}
1410
1411Tick
1412BaseCache::nextQueueReadyTime() const
1413{
1414 Tick nextReady = std::min(mshrQueue.nextReadyTime(),
1415 writeBuffer.nextReadyTime());
1416
1417 // Don't signal prefetch ready time if no MSHRs available
1418 // Will signal once enoguh MSHRs are deallocated
1419 if (prefetcher && mshrQueue.canPrefetch()) {
1420 nextReady = std::min(nextReady,
1421 prefetcher->nextPrefetchReadyTime());
1422 }
1423
1424 return nextReady;
1425}
1426
1427
1428bool
1429BaseCache::sendMSHRQueuePacket(MSHR* mshr)
1430{
1431 assert(mshr);
1432
1433 // use request from 1st target
1434 PacketPtr tgt_pkt = mshr->getTarget()->pkt;
1435
1436 DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
1437
1438 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
1439
1440 // either a prefetch that is not present upstream, or a normal
1441 // MSHR request, proceed to get the packet to send downstream
1442 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
1443
1444 mshr->isForward = (pkt == nullptr);
1445
1446 if (mshr->isForward) {
1447 // not a cache block request, but a response is expected
1448 // make copy of current packet to forward, keep current
1449 // copy for response handling
1450 pkt = new Packet(tgt_pkt, false, true);
1451 assert(!pkt->isWrite());
1452 }
1453
1454 // play it safe and append (rather than set) the sender state,
1455 // as forwarded packets may already have existing state
1456 pkt->pushSenderState(mshr);
1457
1458 if (pkt->isClean() && blk && blk->isDirty()) {
1459 // A cache clean opearation is looking for a dirty block. Mark
1460 // the packet so that the destination xbar can determine that
1461 // there will be a follow-up write packet as well.
1462 pkt->setSatisfied();
1463 }
1464
1465 if (!memSidePort.sendTimingReq(pkt)) {
1466 // we are awaiting a retry, but we
1467 // delete the packet and will be creating a new packet
1468 // when we get the opportunity
1469 delete pkt;
1470
1471 // note that we have now masked any requestBus and
1472 // schedSendEvent (we will wait for a retry before
1473 // doing anything), and this is so even if we do not
1474 // care about this packet and might override it before
1475 // it gets retried
1476 return true;
1477 } else {
1478 // As part of the call to sendTimingReq the packet is
1479 // forwarded to all neighbouring caches (and any caches
1480 // above them) as a snoop. Thus at this point we know if
1481 // any of the neighbouring caches are responding, and if
1482 // so, we know it is dirty, and we can determine if it is
1483 // being passed as Modified, making our MSHR the ordering
1484 // point
1485 bool pending_modified_resp = !pkt->hasSharers() &&
1486 pkt->cacheResponding();
1487 markInService(mshr, pending_modified_resp);
1488
1489 if (pkt->isClean() && blk && blk->isDirty()) {
1490 // A cache clean opearation is looking for a dirty
1491 // block. If a dirty block is encountered a WriteClean
1492 // will update any copies to the path to the memory
1493 // until the point of reference.
1494 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
1495 __func__, pkt->print(), blk->print());
1496 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
1497 pkt->id);
1498 PacketList writebacks;
1499 writebacks.push_back(wb_pkt);
1500 doWritebacks(writebacks, 0);
1501 }
1502
1503 return false;
1504 }
1505}
1506
1507bool
1508BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
1509{
1510 assert(wq_entry);
1511
1512 // always a single target for write queue entries
1513 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
1514
1515 DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
1516
1517 // forward as is, both for evictions and uncacheable writes
1518 if (!memSidePort.sendTimingReq(tgt_pkt)) {
1519 // note that we have now masked any requestBus and
1520 // schedSendEvent (we will wait for a retry before
1521 // doing anything), and this is so even if we do not
1522 // care about this packet and might override it before
1523 // it gets retried
1524 return true;
1525 } else {
1526 markInService(wq_entry);
1527 return false;
1528 }
1529}
1530
1531void
1532BaseCache::serialize(CheckpointOut &cp) const
1533{
1534 bool dirty(isDirty());
1535
1536 if (dirty) {
1537 warn("*** The cache still contains dirty data. ***\n");
1538 warn(" Make sure to drain the system using the correct flags.\n");
1539 warn(" This checkpoint will not restore correctly " \
1540 "and dirty data in the cache will be lost!\n");
1541 }
1542
1543 // Since we don't checkpoint the data in the cache, any dirty data
1544 // will be lost when restoring from a checkpoint of a system that
1545 // wasn't drained properly. Flag the checkpoint as invalid if the
1546 // cache contains dirty data.
1547 bool bad_checkpoint(dirty);
1548 SERIALIZE_SCALAR(bad_checkpoint);
1549}
1550
1551void
1552BaseCache::unserialize(CheckpointIn &cp)
1553{
1554 bool bad_checkpoint;
1555 UNSERIALIZE_SCALAR(bad_checkpoint);
1556 if (bad_checkpoint) {
1557 fatal("Restoring from checkpoints with dirty caches is not "
1558 "supported in the classic memory system. Please remove any "
1559 "caches or drain them properly before taking checkpoints.\n");
1560 }
1561}
1562
1563void
1564BaseCache::regStats()
1565{
1566 MemObject::regStats();
1567
1568 using namespace Stats;
1569
1570 // Hit statistics
1571 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1572 MemCmd cmd(access_idx);
1573 const string &cstr = cmd.toString();
1574
1575 hits[access_idx]
1576 .init(system->maxMasters())
1577 .name(name() + "." + cstr + "_hits")
1578 .desc("number of " + cstr + " hits")
1579 .flags(total | nozero | nonan)
1580 ;
1581 for (int i = 0; i < system->maxMasters(); i++) {
1582 hits[access_idx].subname(i, system->getMasterName(i));
1583 }
1584 }
1585
1586// These macros make it easier to sum the right subset of commands and
1587// to change the subset of commands that are considered "demand" vs
1588// "non-demand"
1589#define SUM_DEMAND(s) \
1590 (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \
1591 s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq])
1592
1593// should writebacks be included here? prior code was inconsistent...
1594#define SUM_NON_DEMAND(s) \
1595 (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq])
1596
1597 demandHits
1598 .name(name() + ".demand_hits")
1599 .desc("number of demand (read+write) hits")
1600 .flags(total | nozero | nonan)
1601 ;
1602 demandHits = SUM_DEMAND(hits);
1603 for (int i = 0; i < system->maxMasters(); i++) {
1604 demandHits.subname(i, system->getMasterName(i));
1605 }
1606
1607 overallHits
1608 .name(name() + ".overall_hits")
1609 .desc("number of overall hits")
1610 .flags(total | nozero | nonan)
1611 ;
1612 overallHits = demandHits + SUM_NON_DEMAND(hits);
1613 for (int i = 0; i < system->maxMasters(); i++) {
1614 overallHits.subname(i, system->getMasterName(i));
1615 }
1616
1617 // Miss statistics
1618 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1619 MemCmd cmd(access_idx);
1620 const string &cstr = cmd.toString();
1621
1622 misses[access_idx]
1623 .init(system->maxMasters())
1624 .name(name() + "." + cstr + "_misses")
1625 .desc("number of " + cstr + " misses")
1626 .flags(total | nozero | nonan)
1627 ;
1628 for (int i = 0; i < system->maxMasters(); i++) {
1629 misses[access_idx].subname(i, system->getMasterName(i));
1630 }
1631 }
1632
1633 demandMisses
1634 .name(name() + ".demand_misses")
1635 .desc("number of demand (read+write) misses")
1636 .flags(total | nozero | nonan)
1637 ;
1638 demandMisses = SUM_DEMAND(misses);
1639 for (int i = 0; i < system->maxMasters(); i++) {
1640 demandMisses.subname(i, system->getMasterName(i));
1641 }
1642
1643 overallMisses
1644 .name(name() + ".overall_misses")
1645 .desc("number of overall misses")
1646 .flags(total | nozero | nonan)
1647 ;
1648 overallMisses = demandMisses + SUM_NON_DEMAND(misses);
1649 for (int i = 0; i < system->maxMasters(); i++) {
1650 overallMisses.subname(i, system->getMasterName(i));
1651 }
1652
1653 // Miss latency statistics
1654 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1655 MemCmd cmd(access_idx);
1656 const string &cstr = cmd.toString();
1657
1658 missLatency[access_idx]
1659 .init(system->maxMasters())
1660 .name(name() + "." + cstr + "_miss_latency")
1661 .desc("number of " + cstr + " miss cycles")
1662 .flags(total | nozero | nonan)
1663 ;
1664 for (int i = 0; i < system->maxMasters(); i++) {
1665 missLatency[access_idx].subname(i, system->getMasterName(i));
1666 }
1667 }
1668
1669 demandMissLatency
1670 .name(name() + ".demand_miss_latency")
1671 .desc("number of demand (read+write) miss cycles")
1672 .flags(total | nozero | nonan)
1673 ;
1674 demandMissLatency = SUM_DEMAND(missLatency);
1675 for (int i = 0; i < system->maxMasters(); i++) {
1676 demandMissLatency.subname(i, system->getMasterName(i));
1677 }
1678
1679 overallMissLatency
1680 .name(name() + ".overall_miss_latency")
1681 .desc("number of overall miss cycles")
1682 .flags(total | nozero | nonan)
1683 ;
1684 overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency);
1685 for (int i = 0; i < system->maxMasters(); i++) {
1686 overallMissLatency.subname(i, system->getMasterName(i));
1687 }
1688
1689 // access formulas
1690 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1691 MemCmd cmd(access_idx);
1692 const string &cstr = cmd.toString();
1693
1694 accesses[access_idx]
1695 .name(name() + "." + cstr + "_accesses")
1696 .desc("number of " + cstr + " accesses(hits+misses)")
1697 .flags(total | nozero | nonan)
1698 ;
1699 accesses[access_idx] = hits[access_idx] + misses[access_idx];
1700
1701 for (int i = 0; i < system->maxMasters(); i++) {
1702 accesses[access_idx].subname(i, system->getMasterName(i));
1703 }
1704 }
1705
1706 demandAccesses
1707 .name(name() + ".demand_accesses")
1708 .desc("number of demand (read+write) accesses")
1709 .flags(total | nozero | nonan)
1710 ;
1711 demandAccesses = demandHits + demandMisses;
1712 for (int i = 0; i < system->maxMasters(); i++) {
1713 demandAccesses.subname(i, system->getMasterName(i));
1714 }
1715
1716 overallAccesses
1717 .name(name() + ".overall_accesses")
1718 .desc("number of overall (read+write) accesses")
1719 .flags(total | nozero | nonan)
1720 ;
1721 overallAccesses = overallHits + overallMisses;
1722 for (int i = 0; i < system->maxMasters(); i++) {
1723 overallAccesses.subname(i, system->getMasterName(i));
1724 }
1725
1726 // miss rate formulas
1727 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1728 MemCmd cmd(access_idx);
1729 const string &cstr = cmd.toString();
1730
1731 missRate[access_idx]
1732 .name(name() + "." + cstr + "_miss_rate")
1733 .desc("miss rate for " + cstr + " accesses")
1734 .flags(total | nozero | nonan)
1735 ;
1736 missRate[access_idx] = misses[access_idx] / accesses[access_idx];
1737
1738 for (int i = 0; i < system->maxMasters(); i++) {
1739 missRate[access_idx].subname(i, system->getMasterName(i));
1740 }
1741 }
1742
1743 demandMissRate
1744 .name(name() + ".demand_miss_rate")
1745 .desc("miss rate for demand accesses")
1746 .flags(total | nozero | nonan)
1747 ;
1748 demandMissRate = demandMisses / demandAccesses;
1749 for (int i = 0; i < system->maxMasters(); i++) {
1750 demandMissRate.subname(i, system->getMasterName(i));
1751 }
1752
1753 overallMissRate
1754 .name(name() + ".overall_miss_rate")
1755 .desc("miss rate for overall accesses")
1756 .flags(total | nozero | nonan)
1757 ;
1758 overallMissRate = overallMisses / overallAccesses;
1759 for (int i = 0; i < system->maxMasters(); i++) {
1760 overallMissRate.subname(i, system->getMasterName(i));
1761 }
1762
1763 // miss latency formulas
1764 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1765 MemCmd cmd(access_idx);
1766 const string &cstr = cmd.toString();
1767
1768 avgMissLatency[access_idx]
1769 .name(name() + "." + cstr + "_avg_miss_latency")
1770 .desc("average " + cstr + " miss latency")
1771 .flags(total | nozero | nonan)
1772 ;
1773 avgMissLatency[access_idx] =
1774 missLatency[access_idx] / misses[access_idx];
1775
1776 for (int i = 0; i < system->maxMasters(); i++) {
1777 avgMissLatency[access_idx].subname(i, system->getMasterName(i));
1778 }
1779 }
1780
1781 demandAvgMissLatency
1782 .name(name() + ".demand_avg_miss_latency")
1783 .desc("average overall miss latency")
1784 .flags(total | nozero | nonan)
1785 ;
1786 demandAvgMissLatency = demandMissLatency / demandMisses;
1787 for (int i = 0; i < system->maxMasters(); i++) {
1788 demandAvgMissLatency.subname(i, system->getMasterName(i));
1789 }
1790
1791 overallAvgMissLatency
1792 .name(name() + ".overall_avg_miss_latency")
1793 .desc("average overall miss latency")
1794 .flags(total | nozero | nonan)
1795 ;
1796 overallAvgMissLatency = overallMissLatency / overallMisses;
1797 for (int i = 0; i < system->maxMasters(); i++) {
1798 overallAvgMissLatency.subname(i, system->getMasterName(i));
1799 }
1800
1801 blocked_cycles.init(NUM_BLOCKED_CAUSES);
1802 blocked_cycles
1803 .name(name() + ".blocked_cycles")
1804 .desc("number of cycles access was blocked")
1805 .subname(Blocked_NoMSHRs, "no_mshrs")
1806 .subname(Blocked_NoTargets, "no_targets")
1807 ;
1808
1809
1810 blocked_causes.init(NUM_BLOCKED_CAUSES);
1811 blocked_causes
1812 .name(name() + ".blocked")
1813 .desc("number of cycles access was blocked")
1814 .subname(Blocked_NoMSHRs, "no_mshrs")
1815 .subname(Blocked_NoTargets, "no_targets")
1816 ;
1817
1818 avg_blocked
1819 .name(name() + ".avg_blocked_cycles")
1820 .desc("average number of cycles each access was blocked")
1821 .subname(Blocked_NoMSHRs, "no_mshrs")
1822 .subname(Blocked_NoTargets, "no_targets")
1823 ;
1824
1825 avg_blocked = blocked_cycles / blocked_causes;
1826
1827 unusedPrefetches
1828 .name(name() + ".unused_prefetches")
1829 .desc("number of HardPF blocks evicted w/o reference")
1830 .flags(nozero)
1831 ;
1832
1833 writebacks
1834 .init(system->maxMasters())
1835 .name(name() + ".writebacks")
1836 .desc("number of writebacks")
1837 .flags(total | nozero | nonan)
1838 ;
1839 for (int i = 0; i < system->maxMasters(); i++) {
1840 writebacks.subname(i, system->getMasterName(i));
1841 }
1842
1843 // MSHR statistics
1844 // MSHR hit statistics
1845 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1846 MemCmd cmd(access_idx);
1847 const string &cstr = cmd.toString();
1848
1849 mshr_hits[access_idx]
1850 .init(system->maxMasters())
1851 .name(name() + "." + cstr + "_mshr_hits")
1852 .desc("number of " + cstr + " MSHR hits")
1853 .flags(total | nozero | nonan)
1854 ;
1855 for (int i = 0; i < system->maxMasters(); i++) {
1856 mshr_hits[access_idx].subname(i, system->getMasterName(i));
1857 }
1858 }
1859
1860 demandMshrHits
1861 .name(name() + ".demand_mshr_hits")
1862 .desc("number of demand (read+write) MSHR hits")
1863 .flags(total | nozero | nonan)
1864 ;
1865 demandMshrHits = SUM_DEMAND(mshr_hits);
1866 for (int i = 0; i < system->maxMasters(); i++) {
1867 demandMshrHits.subname(i, system->getMasterName(i));
1868 }
1869
1870 overallMshrHits
1871 .name(name() + ".overall_mshr_hits")
1872 .desc("number of overall MSHR hits")
1873 .flags(total | nozero | nonan)
1874 ;
1875 overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits);
1876 for (int i = 0; i < system->maxMasters(); i++) {
1877 overallMshrHits.subname(i, system->getMasterName(i));
1878 }
1879
1880 // MSHR miss statistics
1881 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1882 MemCmd cmd(access_idx);
1883 const string &cstr = cmd.toString();
1884
1885 mshr_misses[access_idx]
1886 .init(system->maxMasters())
1887 .name(name() + "." + cstr + "_mshr_misses")
1888 .desc("number of " + cstr + " MSHR misses")
1889 .flags(total | nozero | nonan)
1890 ;
1891 for (int i = 0; i < system->maxMasters(); i++) {
1892 mshr_misses[access_idx].subname(i, system->getMasterName(i));
1893 }
1894 }
1895
1896 demandMshrMisses
1897 .name(name() + ".demand_mshr_misses")
1898 .desc("number of demand (read+write) MSHR misses")
1899 .flags(total | nozero | nonan)
1900 ;
1901 demandMshrMisses = SUM_DEMAND(mshr_misses);
1902 for (int i = 0; i < system->maxMasters(); i++) {
1903 demandMshrMisses.subname(i, system->getMasterName(i));
1904 }
1905
1906 overallMshrMisses
1907 .name(name() + ".overall_mshr_misses")
1908 .desc("number of overall MSHR misses")
1909 .flags(total | nozero | nonan)
1910 ;
1911 overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses);
1912 for (int i = 0; i < system->maxMasters(); i++) {
1913 overallMshrMisses.subname(i, system->getMasterName(i));
1914 }
1915
1916 // MSHR miss latency statistics
1917 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1918 MemCmd cmd(access_idx);
1919 const string &cstr = cmd.toString();
1920
1921 mshr_miss_latency[access_idx]
1922 .init(system->maxMasters())
1923 .name(name() + "." + cstr + "_mshr_miss_latency")
1924 .desc("number of " + cstr + " MSHR miss cycles")
1925 .flags(total | nozero | nonan)
1926 ;
1927 for (int i = 0; i < system->maxMasters(); i++) {
1928 mshr_miss_latency[access_idx].subname(i, system->getMasterName(i));
1929 }
1930 }
1931
1932 demandMshrMissLatency
1933 .name(name() + ".demand_mshr_miss_latency")
1934 .desc("number of demand (read+write) MSHR miss cycles")
1935 .flags(total | nozero | nonan)
1936 ;
1937 demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency);
1938 for (int i = 0; i < system->maxMasters(); i++) {
1939 demandMshrMissLatency.subname(i, system->getMasterName(i));
1940 }
1941
1942 overallMshrMissLatency
1943 .name(name() + ".overall_mshr_miss_latency")
1944 .desc("number of overall MSHR miss cycles")
1945 .flags(total | nozero | nonan)
1946 ;
1947 overallMshrMissLatency =
1948 demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency);
1949 for (int i = 0; i < system->maxMasters(); i++) {
1950 overallMshrMissLatency.subname(i, system->getMasterName(i));
1951 }
1952
1953 // MSHR uncacheable statistics
1954 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1955 MemCmd cmd(access_idx);
1956 const string &cstr = cmd.toString();
1957
1958 mshr_uncacheable[access_idx]
1959 .init(system->maxMasters())
1960 .name(name() + "." + cstr + "_mshr_uncacheable")
1961 .desc("number of " + cstr + " MSHR uncacheable")
1962 .flags(total | nozero | nonan)
1963 ;
1964 for (int i = 0; i < system->maxMasters(); i++) {
1965 mshr_uncacheable[access_idx].subname(i, system->getMasterName(i));
1966 }
1967 }
1968
1969 overallMshrUncacheable
1970 .name(name() + ".overall_mshr_uncacheable_misses")
1971 .desc("number of overall MSHR uncacheable misses")
1972 .flags(total | nozero | nonan)
1973 ;
1974 overallMshrUncacheable =
1975 SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable);
1976 for (int i = 0; i < system->maxMasters(); i++) {
1977 overallMshrUncacheable.subname(i, system->getMasterName(i));
1978 }
1979
1980 // MSHR miss latency statistics
1981 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1982 MemCmd cmd(access_idx);
1983 const string &cstr = cmd.toString();
1984
1985 mshr_uncacheable_lat[access_idx]
1986 .init(system->maxMasters())
1987 .name(name() + "." + cstr + "_mshr_uncacheable_latency")
1988 .desc("number of " + cstr + " MSHR uncacheable cycles")
1989 .flags(total | nozero | nonan)
1990 ;
1991 for (int i = 0; i < system->maxMasters(); i++) {
1992 mshr_uncacheable_lat[access_idx].subname(
1993 i, system->getMasterName(i));
1994 }
1995 }
1996
1997 overallMshrUncacheableLatency
1998 .name(name() + ".overall_mshr_uncacheable_latency")
1999 .desc("number of overall MSHR uncacheable cycles")
2000 .flags(total | nozero | nonan)
2001 ;
2002 overallMshrUncacheableLatency =
2003 SUM_DEMAND(mshr_uncacheable_lat) +
2004 SUM_NON_DEMAND(mshr_uncacheable_lat);
2005 for (int i = 0; i < system->maxMasters(); i++) {
2006 overallMshrUncacheableLatency.subname(i, system->getMasterName(i));
2007 }
2008
2009#if 0
2010 // MSHR access formulas
2011 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2012 MemCmd cmd(access_idx);
2013 const string &cstr = cmd.toString();
2014
2015 mshrAccesses[access_idx]
2016 .name(name() + "." + cstr + "_mshr_accesses")
2017 .desc("number of " + cstr + " mshr accesses(hits+misses)")
2018 .flags(total | nozero | nonan)
2019 ;
2020 mshrAccesses[access_idx] =
2021 mshr_hits[access_idx] + mshr_misses[access_idx]
2022 + mshr_uncacheable[access_idx];
2023 }
2024
2025 demandMshrAccesses
2026 .name(name() + ".demand_mshr_accesses")
2027 .desc("number of demand (read+write) mshr accesses")
2028 .flags(total | nozero | nonan)
2029 ;
2030 demandMshrAccesses = demandMshrHits + demandMshrMisses;
2031
2032 overallMshrAccesses
2033 .name(name() + ".overall_mshr_accesses")
2034 .desc("number of overall (read+write) mshr accesses")
2035 .flags(total | nozero | nonan)
2036 ;
2037 overallMshrAccesses = overallMshrHits + overallMshrMisses
2038 + overallMshrUncacheable;
2039#endif
2040
2041 // MSHR miss rate formulas
2042 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2043 MemCmd cmd(access_idx);
2044 const string &cstr = cmd.toString();
2045
2046 mshrMissRate[access_idx]
2047 .name(name() + "." + cstr + "_mshr_miss_rate")
2048 .desc("mshr miss rate for " + cstr + " accesses")
2049 .flags(total | nozero | nonan)
2050 ;
2051 mshrMissRate[access_idx] =
2052 mshr_misses[access_idx] / accesses[access_idx];
2053
2054 for (int i = 0; i < system->maxMasters(); i++) {
2055 mshrMissRate[access_idx].subname(i, system->getMasterName(i));
2056 }
2057 }
2058
2059 demandMshrMissRate
2060 .name(name() + ".demand_mshr_miss_rate")
2061 .desc("mshr miss rate for demand accesses")
2062 .flags(total | nozero | nonan)
2063 ;
2064 demandMshrMissRate = demandMshrMisses / demandAccesses;
2065 for (int i = 0; i < system->maxMasters(); i++) {
2066 demandMshrMissRate.subname(i, system->getMasterName(i));
2067 }
2068
2069 overallMshrMissRate
2070 .name(name() + ".overall_mshr_miss_rate")
2071 .desc("mshr miss rate for overall accesses")
2072 .flags(total | nozero | nonan)
2073 ;
2074 overallMshrMissRate = overallMshrMisses / overallAccesses;
2075 for (int i = 0; i < system->maxMasters(); i++) {
2076 overallMshrMissRate.subname(i, system->getMasterName(i));
2077 }
2078
2079 // mshrMiss latency formulas
2080 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2081 MemCmd cmd(access_idx);
2082 const string &cstr = cmd.toString();
2083
2084 avgMshrMissLatency[access_idx]
2085 .name(name() + "." + cstr + "_avg_mshr_miss_latency")
2086 .desc("average " + cstr + " mshr miss latency")
2087 .flags(total | nozero | nonan)
2088 ;
2089 avgMshrMissLatency[access_idx] =
2090 mshr_miss_latency[access_idx] / mshr_misses[access_idx];
2091
2092 for (int i = 0; i < system->maxMasters(); i++) {
2093 avgMshrMissLatency[access_idx].subname(
2094 i, system->getMasterName(i));
2095 }
2096 }
2097
2098 demandAvgMshrMissLatency
2099 .name(name() + ".demand_avg_mshr_miss_latency")
2100 .desc("average overall mshr miss latency")
2101 .flags(total | nozero | nonan)
2102 ;
2103 demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses;
2104 for (int i = 0; i < system->maxMasters(); i++) {
2105 demandAvgMshrMissLatency.subname(i, system->getMasterName(i));
2106 }
2107
2108 overallAvgMshrMissLatency
2109 .name(name() + ".overall_avg_mshr_miss_latency")
2110 .desc("average overall mshr miss latency")
2111 .flags(total | nozero | nonan)
2112 ;
2113 overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses;
2114 for (int i = 0; i < system->maxMasters(); i++) {
2115 overallAvgMshrMissLatency.subname(i, system->getMasterName(i));
2116 }
2117
2118 // mshrUncacheable latency formulas
2119 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2120 MemCmd cmd(access_idx);
2121 const string &cstr = cmd.toString();
2122
2123 avgMshrUncacheableLatency[access_idx]
2124 .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency")
2125 .desc("average " + cstr + " mshr uncacheable latency")
2126 .flags(total | nozero | nonan)
2127 ;
2128 avgMshrUncacheableLatency[access_idx] =
2129 mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx];
2130
2131 for (int i = 0; i < system->maxMasters(); i++) {
2132 avgMshrUncacheableLatency[access_idx].subname(
2133 i, system->getMasterName(i));
2134 }
2135 }
2136
2137 overallAvgMshrUncacheableLatency
2138 .name(name() + ".overall_avg_mshr_uncacheable_latency")
2139 .desc("average overall mshr uncacheable latency")
2140 .flags(total | nozero | nonan)
2141 ;
2142 overallAvgMshrUncacheableLatency =
2143 overallMshrUncacheableLatency / overallMshrUncacheable;
2144 for (int i = 0; i < system->maxMasters(); i++) {
2145 overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i));
2146 }
2147
2148 replacements
2149 .name(name() + ".replacements")
2150 .desc("number of replacements")
2151 ;
2152}
2153
2154///////////////
2155//
2156// CpuSidePort
2157//
2158///////////////
2159bool
2160BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2161{
2162 // Snoops shouldn't happen when bypassing caches
2163 assert(!cache->system->bypassCaches());
2164
2165 assert(pkt->isResponse());
2166
2167 // Express snoop responses from master to slave, e.g., from L1 to L2
2168 cache->recvTimingSnoopResp(pkt);
2169 return true;
2170}
2171
2172
2173bool
2174BaseCache::CpuSidePort::tryTiming(PacketPtr pkt)
2175{
2176 if (cache->system->bypassCaches() || pkt->isExpressSnoop()) {
2177 // always let express snoop packets through even if blocked
2178 return true;
2179 } else if (blocked || mustSendRetry) {
2180 // either already committed to send a retry, or blocked
2181 mustSendRetry = true;
2182 return false;
2183 }
2184 mustSendRetry = false;
2185 return true;
2186}
2187
2188bool
2189BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2190{
2191 assert(pkt->isRequest());
2192
2193 if (cache->system->bypassCaches()) {
2194 // Just forward the packet if caches are disabled.
2195 // @todo This should really enqueue the packet rather
2196 bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt);
2197 assert(success);
2198 return true;
2199 } else if (tryTiming(pkt)) {
2200 cache->recvTimingReq(pkt);
2201 return true;
2202 }
2203 return false;
2204}
2205
2206Tick
2207BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt)
2208{
2209 if (cache->system->bypassCaches()) {
2210 // Forward the request if the system is in cache bypass mode.
2211 return cache->memSidePort.sendAtomic(pkt);
2212 } else {
2213 return cache->recvAtomic(pkt);
2214 }
2215}
2216
2217void
2218BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt)
2219{
2220 if (cache->system->bypassCaches()) {
2221 // The cache should be flushed if we are in cache bypass mode,
2222 // so we don't need to check if we need to update anything.
2223 cache->memSidePort.sendFunctional(pkt);
2224 return;
2225 }
2226
2227 // functional request
2228 cache->functionalAccess(pkt, true);
2229}
2230
2231AddrRangeList
2232BaseCache::CpuSidePort::getAddrRanges() const
2233{
2234 return cache->getAddrRanges();
2235}
2236
2237
2238BaseCache::
2239CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache,
2240 const std::string &_label)
2241 : CacheSlavePort(_name, _cache, _label), cache(_cache)
2242{
2243}
2244
2245///////////////
2246//
2247// MemSidePort
2248//
2249///////////////
2250bool
2251BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt)
2252{
2253 cache->recvTimingResp(pkt);
2254 return true;
2255}
2256
2257// Express snooping requests to memside port
2258void
2259BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2260{
2261 // Snoops shouldn't happen when bypassing caches
2262 assert(!cache->system->bypassCaches());
2263
2264 // handle snooping requests
2265 cache->recvTimingSnoopReq(pkt);
2266}
2267
2268Tick
2269BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2270{
2271 // Snoops shouldn't happen when bypassing caches
2272 assert(!cache->system->bypassCaches());
2273
2274 return cache->recvAtomicSnoop(pkt);
2275}
2276
2277void
2278BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2279{
2280 // Snoops shouldn't happen when bypassing caches
2281 assert(!cache->system->bypassCaches());
2282
2283 // functional snoop (note that in contrast to atomic we don't have
2284 // a specific functionalSnoop method, as they have the same
2285 // behaviour regardless)
2286 cache->functionalAccess(pkt, false);
2287}
2288
2289void
2290BaseCache::CacheReqPacketQueue::sendDeferredPacket()
2291{
2292 // sanity check
2293 assert(!waitingOnRetry);
2294
2295 // there should never be any deferred request packets in the
2296 // queue, instead we resly on the cache to provide the packets
2297 // from the MSHR queue or write queue
2298 assert(deferredPacketReadyTime() == MaxTick);
2299
2300 // check for request packets (requests & writebacks)
2301 QueueEntry* entry = cache.getNextQueueEntry();
2302
2303 if (!entry) {
2304 // can happen if e.g. we attempt a writeback and fail, but
2305 // before the retry, the writeback is eliminated because
2306 // we snoop another cache's ReadEx.
2307 } else {
2308 // let our snoop responses go first if there are responses to
2309 // the same addresses
2310 if (checkConflictingSnoop(entry->blkAddr)) {
2311 return;
2312 }
2313 waitingOnRetry = entry->sendPacket(cache);
2314 }
2315
2316 // if we succeeded and are not waiting for a retry, schedule the
2317 // next send considering when the next queue is ready, note that
2318 // snoop responses have their own packet queue and thus schedule
2319 // their own events
2320 if (!waitingOnRetry) {
2321 schedSendEvent(cache.nextQueueReadyTime());
2322 }
2323}
2324
2325BaseCache::MemSidePort::MemSidePort(const std::string &_name,
2326 BaseCache *_cache,
2327 const std::string &_label)
2328 : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2329 _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2330 _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2331{
2332}
855 } else if (pkt->isWrite()) {
856 // we have the block in a writable state and can go ahead,
857 // note that the line may be also be considered writable in
858 // downstream caches along the path to memory, but always
859 // Exclusive, and never Modified
860 assert(blk->isWritable());
861 // Write or WriteLine at the first cache with block in writable state
862 if (blk->checkWrite(pkt)) {
863 pkt->writeDataToBlock(blk->data, blkSize);
864 }
865 // Always mark the line as dirty (and thus transition to the
866 // Modified state) even if we are a failed StoreCond so we
867 // supply data to any snoops that have appended themselves to
868 // this cache before knowing the store will fail.
869 blk->status |= BlkDirty;
870 DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
871 } else if (pkt->isRead()) {
872 if (pkt->isLLSC()) {
873 blk->trackLoadLocked(pkt);
874 }
875
876 // all read responses have a data payload
877 assert(pkt->hasRespData());
878 pkt->setDataFromBlock(blk->data, blkSize);
879 } else if (pkt->isUpgrade()) {
880 // sanity check
881 assert(!pkt->hasSharers());
882
883 if (blk->isDirty()) {
884 // we were in the Owned state, and a cache above us that
885 // has the line in Shared state needs to be made aware
886 // that the data it already has is in fact dirty
887 pkt->setCacheResponding();
888 blk->status &= ~BlkDirty;
889 }
890 } else {
891 assert(pkt->isInvalidate());
892 invalidateBlock(blk);
893 DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
894 pkt->print());
895 }
896}
897
898/////////////////////////////////////////////////////
899//
900// Access path: requests coming in from the CPU side
901//
902/////////////////////////////////////////////////////
903
904bool
905BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
906 PacketList &writebacks)
907{
908 // sanity check
909 assert(pkt->isRequest());
910
911 chatty_assert(!(isReadOnly && pkt->isWrite()),
912 "Should never see a write in a read-only cache %s\n",
913 name());
914
915 // Here lat is the value passed as parameter to accessBlock() function
916 // that can modify its value.
917 blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat);
918
919 DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(),
920 blk ? "hit " + blk->print() : "miss");
921
922 if (pkt->req->isCacheMaintenance()) {
923 // A cache maintenance operation is always forwarded to the
924 // memory below even if the block is found in dirty state.
925
926 // We defer any changes to the state of the block until we
927 // create and mark as in service the mshr for the downstream
928 // packet.
929 return false;
930 }
931
932 if (pkt->isEviction()) {
933 // We check for presence of block in above caches before issuing
934 // Writeback or CleanEvict to write buffer. Therefore the only
935 // possible cases can be of a CleanEvict packet coming from above
936 // encountering a Writeback generated in this cache peer cache and
937 // waiting in the write buffer. Cases of upper level peer caches
938 // generating CleanEvict and Writeback or simply CleanEvict and
939 // CleanEvict almost simultaneously will be caught by snoops sent out
940 // by crossbar.
941 WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
942 pkt->isSecure());
943 if (wb_entry) {
944 assert(wb_entry->getNumTargets() == 1);
945 PacketPtr wbPkt = wb_entry->getTarget()->pkt;
946 assert(wbPkt->isWriteback());
947
948 if (pkt->isCleanEviction()) {
949 // The CleanEvict and WritebackClean snoops into other
950 // peer caches of the same level while traversing the
951 // crossbar. If a copy of the block is found, the
952 // packet is deleted in the crossbar. Hence, none of
953 // the other upper level caches connected to this
954 // cache have the block, so we can clear the
955 // BLOCK_CACHED flag in the Writeback if set and
956 // discard the CleanEvict by returning true.
957 wbPkt->clearBlockCached();
958 return true;
959 } else {
960 assert(pkt->cmd == MemCmd::WritebackDirty);
961 // Dirty writeback from above trumps our clean
962 // writeback... discard here
963 // Note: markInService will remove entry from writeback buffer.
964 markInService(wb_entry);
965 delete wbPkt;
966 }
967 }
968 }
969
970 // Writeback handling is special case. We can write the block into
971 // the cache without having a writeable copy (or any copy at all).
972 if (pkt->isWriteback()) {
973 assert(blkSize == pkt->getSize());
974
975 // we could get a clean writeback while we are having
976 // outstanding accesses to a block, do the simple thing for
977 // now and drop the clean writeback so that we do not upset
978 // any ordering/decisions about ownership already taken
979 if (pkt->cmd == MemCmd::WritebackClean &&
980 mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
981 DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
982 "dropping\n", pkt->getAddr());
983 return true;
984 }
985
986 if (!blk) {
987 // need to do a replacement
988 blk = allocateBlock(pkt, writebacks);
989 if (!blk) {
990 // no replaceable block available: give up, fwd to next level.
991 incMissCount(pkt);
992 return false;
993 }
994
995 blk->status |= (BlkValid | BlkReadable);
996 }
997 // only mark the block dirty if we got a writeback command,
998 // and leave it as is for a clean writeback
999 if (pkt->cmd == MemCmd::WritebackDirty) {
1000 // TODO: the coherent cache can assert(!blk->isDirty());
1001 blk->status |= BlkDirty;
1002 }
1003 // if the packet does not have sharers, it is passing
1004 // writable, and we got the writeback in Modified or Exclusive
1005 // state, if not we are in the Owned or Shared state
1006 if (!pkt->hasSharers()) {
1007 blk->status |= BlkWritable;
1008 }
1009 // nothing else to do; writeback doesn't expect response
1010 assert(!pkt->needsResponse());
1011 pkt->writeDataToBlock(blk->data, blkSize);
1012 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1013 incHitCount(pkt);
1014 // populate the time when the block will be ready to access.
1015 blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
1016 pkt->payloadDelay;
1017 return true;
1018 } else if (pkt->cmd == MemCmd::CleanEvict) {
1019 if (blk) {
1020 // Found the block in the tags, need to stop CleanEvict from
1021 // propagating further down the hierarchy. Returning true will
1022 // treat the CleanEvict like a satisfied write request and delete
1023 // it.
1024 return true;
1025 }
1026 // We didn't find the block here, propagate the CleanEvict further
1027 // down the memory hierarchy. Returning false will treat the CleanEvict
1028 // like a Writeback which could not find a replaceable block so has to
1029 // go to next level.
1030 return false;
1031 } else if (pkt->cmd == MemCmd::WriteClean) {
1032 // WriteClean handling is a special case. We can allocate a
1033 // block directly if it doesn't exist and we can update the
1034 // block immediately. The WriteClean transfers the ownership
1035 // of the block as well.
1036 assert(blkSize == pkt->getSize());
1037
1038 if (!blk) {
1039 if (pkt->writeThrough()) {
1040 // if this is a write through packet, we don't try to
1041 // allocate if the block is not present
1042 return false;
1043 } else {
1044 // a writeback that misses needs to allocate a new block
1045 blk = allocateBlock(pkt, writebacks);
1046 if (!blk) {
1047 // no replaceable block available: give up, fwd to
1048 // next level.
1049 incMissCount(pkt);
1050 return false;
1051 }
1052
1053 blk->status |= (BlkValid | BlkReadable);
1054 }
1055 }
1056
1057 // at this point either this is a writeback or a write-through
1058 // write clean operation and the block is already in this
1059 // cache, we need to update the data and the block flags
1060 assert(blk);
1061 // TODO: the coherent cache can assert(!blk->isDirty());
1062 if (!pkt->writeThrough()) {
1063 blk->status |= BlkDirty;
1064 }
1065 // nothing else to do; writeback doesn't expect response
1066 assert(!pkt->needsResponse());
1067 pkt->writeDataToBlock(blk->data, blkSize);
1068 DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
1069
1070 incHitCount(pkt);
1071 // populate the time when the block will be ready to access.
1072 blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
1073 pkt->payloadDelay;
1074 // if this a write-through packet it will be sent to cache
1075 // below
1076 return !pkt->writeThrough();
1077 } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
1078 blk->isReadable())) {
1079 // OK to satisfy access
1080 incHitCount(pkt);
1081 satisfyRequest(pkt, blk);
1082 maintainClusivity(pkt->fromCache(), blk);
1083
1084 return true;
1085 }
1086
1087 // Can't satisfy access normally... either no block (blk == nullptr)
1088 // or have block but need writable
1089
1090 incMissCount(pkt);
1091
1092 if (!blk && pkt->isLLSC() && pkt->isWrite()) {
1093 // complete miss on store conditional... just give up now
1094 pkt->req->setExtraData(0);
1095 return true;
1096 }
1097
1098 return false;
1099}
1100
1101void
1102BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk)
1103{
1104 if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
1105 clusivity == Enums::mostly_excl) {
1106 // if we have responded to a cache, and our block is still
1107 // valid, but not dirty, and this cache is mostly exclusive
1108 // with respect to the cache above, drop the block
1109 invalidateBlock(blk);
1110 }
1111}
1112
1113CacheBlk*
1114BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
1115 bool allocate)
1116{
1117 assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
1118 Addr addr = pkt->getAddr();
1119 bool is_secure = pkt->isSecure();
1120#if TRACING_ON
1121 CacheBlk::State old_state = blk ? blk->status : 0;
1122#endif
1123
1124 // When handling a fill, we should have no writes to this line.
1125 assert(addr == pkt->getBlockAddr(blkSize));
1126 assert(!writeBuffer.findMatch(addr, is_secure));
1127
1128 if (!blk) {
1129 // better have read new data...
1130 assert(pkt->hasData());
1131
1132 // only read responses and write-line requests have data;
1133 // note that we don't write the data here for write-line - that
1134 // happens in the subsequent call to satisfyRequest
1135 assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
1136
1137 // need to do a replacement if allocating, otherwise we stick
1138 // with the temporary storage
1139 blk = allocate ? allocateBlock(pkt, writebacks) : nullptr;
1140
1141 if (!blk) {
1142 // No replaceable block or a mostly exclusive
1143 // cache... just use temporary storage to complete the
1144 // current request and then get rid of it
1145 assert(!tempBlock->isValid());
1146 blk = tempBlock;
1147 tempBlock->insert(addr, is_secure);
1148 DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
1149 is_secure ? "s" : "ns");
1150 }
1151
1152 // we should never be overwriting a valid block
1153 assert(!blk->isValid());
1154 } else {
1155 // existing block... probably an upgrade
1156 assert(regenerateBlkAddr(blk) == addr);
1157 assert(blk->isSecure() == is_secure);
1158 // either we're getting new data or the block should already be valid
1159 assert(pkt->hasData() || blk->isValid());
1160 // don't clear block status... if block is already dirty we
1161 // don't want to lose that
1162 }
1163
1164 blk->status |= BlkValid | BlkReadable;
1165
1166 // sanity check for whole-line writes, which should always be
1167 // marked as writable as part of the fill, and then later marked
1168 // dirty as part of satisfyRequest
1169 if (pkt->cmd == MemCmd::WriteLineReq) {
1170 assert(!pkt->hasSharers());
1171 }
1172
1173 // here we deal with setting the appropriate state of the line,
1174 // and we start by looking at the hasSharers flag, and ignore the
1175 // cacheResponding flag (normally signalling dirty data) if the
1176 // packet has sharers, thus the line is never allocated as Owned
1177 // (dirty but not writable), and always ends up being either
1178 // Shared, Exclusive or Modified, see Packet::setCacheResponding
1179 // for more details
1180 if (!pkt->hasSharers()) {
1181 // we could get a writable line from memory (rather than a
1182 // cache) even in a read-only cache, note that we set this bit
1183 // even for a read-only cache, possibly revisit this decision
1184 blk->status |= BlkWritable;
1185
1186 // check if we got this via cache-to-cache transfer (i.e., from a
1187 // cache that had the block in Modified or Owned state)
1188 if (pkt->cacheResponding()) {
1189 // we got the block in Modified state, and invalidated the
1190 // owners copy
1191 blk->status |= BlkDirty;
1192
1193 chatty_assert(!isReadOnly, "Should never see dirty snoop response "
1194 "in read-only cache %s\n", name());
1195 }
1196 }
1197
1198 DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
1199 addr, is_secure ? "s" : "ns", old_state, blk->print());
1200
1201 // if we got new data, copy it in (checking for a read response
1202 // and a response that has data is the same in the end)
1203 if (pkt->isRead()) {
1204 // sanity checks
1205 assert(pkt->hasData());
1206 assert(pkt->getSize() == blkSize);
1207
1208 pkt->writeDataToBlock(blk->data, blkSize);
1209 }
1210 // We pay for fillLatency here.
1211 blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
1212 pkt->payloadDelay;
1213
1214 return blk;
1215}
1216
1217CacheBlk*
1218BaseCache::allocateBlock(const PacketPtr pkt, PacketList &writebacks)
1219{
1220 // Get address
1221 const Addr addr = pkt->getAddr();
1222
1223 // Get secure bit
1224 const bool is_secure = pkt->isSecure();
1225
1226 // Find replacement victim
1227 std::vector<CacheBlk*> evict_blks;
1228 CacheBlk *victim = tags->findVictim(addr, is_secure, evict_blks);
1229
1230 // It is valid to return nullptr if there is no victim
1231 if (!victim)
1232 return nullptr;
1233
1234 // Check for transient state allocations. If any of the entries listed
1235 // for eviction has a transient state, the allocation fails
1236 for (const auto& blk : evict_blks) {
1237 if (blk->isValid()) {
1238 Addr repl_addr = regenerateBlkAddr(blk);
1239 MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
1240 if (repl_mshr) {
1241 // must be an outstanding upgrade or clean request
1242 // on a block we're about to replace...
1243 assert((!blk->isWritable() && repl_mshr->needsWritable()) ||
1244 repl_mshr->isCleaning());
1245
1246 // too hard to replace block with transient state
1247 // allocation failed, block not inserted
1248 return nullptr;
1249 }
1250 }
1251 }
1252
1253 // The victim will be replaced by a new entry, so increase the replacement
1254 // counter if a valid block is being replaced
1255 if (victim->isValid()) {
1256 DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
1257 "(%s): %s\n", regenerateBlkAddr(victim),
1258 victim->isSecure() ? "s" : "ns",
1259 addr, is_secure ? "s" : "ns",
1260 victim->isDirty() ? "writeback" : "clean");
1261
1262 replacements++;
1263 }
1264
1265 // Evict valid blocks associated to this victim block
1266 for (const auto& blk : evict_blks) {
1267 if (blk->isValid()) {
1268 if (blk->wasPrefetched()) {
1269 unusedPrefetches++;
1270 }
1271
1272 evictBlock(blk, writebacks);
1273 }
1274 }
1275
1276 // Insert new block at victimized entry
1277 tags->insertBlock(pkt, victim);
1278
1279 return victim;
1280}
1281
1282void
1283BaseCache::invalidateBlock(CacheBlk *blk)
1284{
1285 if (blk != tempBlock)
1286 tags->invalidate(blk);
1287 blk->invalidate();
1288}
1289
1290PacketPtr
1291BaseCache::writebackBlk(CacheBlk *blk)
1292{
1293 chatty_assert(!isReadOnly || writebackClean,
1294 "Writeback from read-only cache");
1295 assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
1296
1297 writebacks[Request::wbMasterId]++;
1298
1299 RequestPtr req = std::make_shared<Request>(
1300 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1301
1302 if (blk->isSecure())
1303 req->setFlags(Request::SECURE);
1304
1305 req->taskId(blk->task_id);
1306
1307 PacketPtr pkt =
1308 new Packet(req, blk->isDirty() ?
1309 MemCmd::WritebackDirty : MemCmd::WritebackClean);
1310
1311 DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
1312 pkt->print(), blk->isWritable(), blk->isDirty());
1313
1314 if (blk->isWritable()) {
1315 // not asserting shared means we pass the block in modified
1316 // state, mark our own block non-writeable
1317 blk->status &= ~BlkWritable;
1318 } else {
1319 // we are in the Owned state, tell the receiver
1320 pkt->setHasSharers();
1321 }
1322
1323 // make sure the block is not marked dirty
1324 blk->status &= ~BlkDirty;
1325
1326 pkt->allocate();
1327 pkt->setDataFromBlock(blk->data, blkSize);
1328
1329 return pkt;
1330}
1331
1332PacketPtr
1333BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
1334{
1335 RequestPtr req = std::make_shared<Request>(
1336 regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
1337
1338 if (blk->isSecure()) {
1339 req->setFlags(Request::SECURE);
1340 }
1341 req->taskId(blk->task_id);
1342
1343 PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
1344
1345 if (dest) {
1346 req->setFlags(dest);
1347 pkt->setWriteThrough();
1348 }
1349
1350 DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
1351 blk->isWritable(), blk->isDirty());
1352
1353 if (blk->isWritable()) {
1354 // not asserting shared means we pass the block in modified
1355 // state, mark our own block non-writeable
1356 blk->status &= ~BlkWritable;
1357 } else {
1358 // we are in the Owned state, tell the receiver
1359 pkt->setHasSharers();
1360 }
1361
1362 // make sure the block is not marked dirty
1363 blk->status &= ~BlkDirty;
1364
1365 pkt->allocate();
1366 pkt->setDataFromBlock(blk->data, blkSize);
1367
1368 return pkt;
1369}
1370
1371
1372void
1373BaseCache::memWriteback()
1374{
1375 tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); });
1376}
1377
1378void
1379BaseCache::memInvalidate()
1380{
1381 tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); });
1382}
1383
1384bool
1385BaseCache::isDirty() const
1386{
1387 return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); });
1388}
1389
1390void
1391BaseCache::writebackVisitor(CacheBlk &blk)
1392{
1393 if (blk.isDirty()) {
1394 assert(blk.isValid());
1395
1396 RequestPtr request = std::make_shared<Request>(
1397 regenerateBlkAddr(&blk), blkSize, 0, Request::funcMasterId);
1398
1399 request->taskId(blk.task_id);
1400 if (blk.isSecure()) {
1401 request->setFlags(Request::SECURE);
1402 }
1403
1404 Packet packet(request, MemCmd::WriteReq);
1405 packet.dataStatic(blk.data);
1406
1407 memSidePort.sendFunctional(&packet);
1408
1409 blk.status &= ~BlkDirty;
1410 }
1411}
1412
1413void
1414BaseCache::invalidateVisitor(CacheBlk &blk)
1415{
1416 if (blk.isDirty())
1417 warn_once("Invalidating dirty cache lines. " \
1418 "Expect things to break.\n");
1419
1420 if (blk.isValid()) {
1421 assert(!blk.isDirty());
1422 invalidateBlock(&blk);
1423 }
1424}
1425
1426Tick
1427BaseCache::nextQueueReadyTime() const
1428{
1429 Tick nextReady = std::min(mshrQueue.nextReadyTime(),
1430 writeBuffer.nextReadyTime());
1431
1432 // Don't signal prefetch ready time if no MSHRs available
1433 // Will signal once enoguh MSHRs are deallocated
1434 if (prefetcher && mshrQueue.canPrefetch()) {
1435 nextReady = std::min(nextReady,
1436 prefetcher->nextPrefetchReadyTime());
1437 }
1438
1439 return nextReady;
1440}
1441
1442
1443bool
1444BaseCache::sendMSHRQueuePacket(MSHR* mshr)
1445{
1446 assert(mshr);
1447
1448 // use request from 1st target
1449 PacketPtr tgt_pkt = mshr->getTarget()->pkt;
1450
1451 DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
1452
1453 CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
1454
1455 // either a prefetch that is not present upstream, or a normal
1456 // MSHR request, proceed to get the packet to send downstream
1457 PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
1458
1459 mshr->isForward = (pkt == nullptr);
1460
1461 if (mshr->isForward) {
1462 // not a cache block request, but a response is expected
1463 // make copy of current packet to forward, keep current
1464 // copy for response handling
1465 pkt = new Packet(tgt_pkt, false, true);
1466 assert(!pkt->isWrite());
1467 }
1468
1469 // play it safe and append (rather than set) the sender state,
1470 // as forwarded packets may already have existing state
1471 pkt->pushSenderState(mshr);
1472
1473 if (pkt->isClean() && blk && blk->isDirty()) {
1474 // A cache clean opearation is looking for a dirty block. Mark
1475 // the packet so that the destination xbar can determine that
1476 // there will be a follow-up write packet as well.
1477 pkt->setSatisfied();
1478 }
1479
1480 if (!memSidePort.sendTimingReq(pkt)) {
1481 // we are awaiting a retry, but we
1482 // delete the packet and will be creating a new packet
1483 // when we get the opportunity
1484 delete pkt;
1485
1486 // note that we have now masked any requestBus and
1487 // schedSendEvent (we will wait for a retry before
1488 // doing anything), and this is so even if we do not
1489 // care about this packet and might override it before
1490 // it gets retried
1491 return true;
1492 } else {
1493 // As part of the call to sendTimingReq the packet is
1494 // forwarded to all neighbouring caches (and any caches
1495 // above them) as a snoop. Thus at this point we know if
1496 // any of the neighbouring caches are responding, and if
1497 // so, we know it is dirty, and we can determine if it is
1498 // being passed as Modified, making our MSHR the ordering
1499 // point
1500 bool pending_modified_resp = !pkt->hasSharers() &&
1501 pkt->cacheResponding();
1502 markInService(mshr, pending_modified_resp);
1503
1504 if (pkt->isClean() && blk && blk->isDirty()) {
1505 // A cache clean opearation is looking for a dirty
1506 // block. If a dirty block is encountered a WriteClean
1507 // will update any copies to the path to the memory
1508 // until the point of reference.
1509 DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
1510 __func__, pkt->print(), blk->print());
1511 PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
1512 pkt->id);
1513 PacketList writebacks;
1514 writebacks.push_back(wb_pkt);
1515 doWritebacks(writebacks, 0);
1516 }
1517
1518 return false;
1519 }
1520}
1521
1522bool
1523BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
1524{
1525 assert(wq_entry);
1526
1527 // always a single target for write queue entries
1528 PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
1529
1530 DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
1531
1532 // forward as is, both for evictions and uncacheable writes
1533 if (!memSidePort.sendTimingReq(tgt_pkt)) {
1534 // note that we have now masked any requestBus and
1535 // schedSendEvent (we will wait for a retry before
1536 // doing anything), and this is so even if we do not
1537 // care about this packet and might override it before
1538 // it gets retried
1539 return true;
1540 } else {
1541 markInService(wq_entry);
1542 return false;
1543 }
1544}
1545
1546void
1547BaseCache::serialize(CheckpointOut &cp) const
1548{
1549 bool dirty(isDirty());
1550
1551 if (dirty) {
1552 warn("*** The cache still contains dirty data. ***\n");
1553 warn(" Make sure to drain the system using the correct flags.\n");
1554 warn(" This checkpoint will not restore correctly " \
1555 "and dirty data in the cache will be lost!\n");
1556 }
1557
1558 // Since we don't checkpoint the data in the cache, any dirty data
1559 // will be lost when restoring from a checkpoint of a system that
1560 // wasn't drained properly. Flag the checkpoint as invalid if the
1561 // cache contains dirty data.
1562 bool bad_checkpoint(dirty);
1563 SERIALIZE_SCALAR(bad_checkpoint);
1564}
1565
1566void
1567BaseCache::unserialize(CheckpointIn &cp)
1568{
1569 bool bad_checkpoint;
1570 UNSERIALIZE_SCALAR(bad_checkpoint);
1571 if (bad_checkpoint) {
1572 fatal("Restoring from checkpoints with dirty caches is not "
1573 "supported in the classic memory system. Please remove any "
1574 "caches or drain them properly before taking checkpoints.\n");
1575 }
1576}
1577
1578void
1579BaseCache::regStats()
1580{
1581 MemObject::regStats();
1582
1583 using namespace Stats;
1584
1585 // Hit statistics
1586 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1587 MemCmd cmd(access_idx);
1588 const string &cstr = cmd.toString();
1589
1590 hits[access_idx]
1591 .init(system->maxMasters())
1592 .name(name() + "." + cstr + "_hits")
1593 .desc("number of " + cstr + " hits")
1594 .flags(total | nozero | nonan)
1595 ;
1596 for (int i = 0; i < system->maxMasters(); i++) {
1597 hits[access_idx].subname(i, system->getMasterName(i));
1598 }
1599 }
1600
1601// These macros make it easier to sum the right subset of commands and
1602// to change the subset of commands that are considered "demand" vs
1603// "non-demand"
1604#define SUM_DEMAND(s) \
1605 (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \
1606 s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq])
1607
1608// should writebacks be included here? prior code was inconsistent...
1609#define SUM_NON_DEMAND(s) \
1610 (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq])
1611
1612 demandHits
1613 .name(name() + ".demand_hits")
1614 .desc("number of demand (read+write) hits")
1615 .flags(total | nozero | nonan)
1616 ;
1617 demandHits = SUM_DEMAND(hits);
1618 for (int i = 0; i < system->maxMasters(); i++) {
1619 demandHits.subname(i, system->getMasterName(i));
1620 }
1621
1622 overallHits
1623 .name(name() + ".overall_hits")
1624 .desc("number of overall hits")
1625 .flags(total | nozero | nonan)
1626 ;
1627 overallHits = demandHits + SUM_NON_DEMAND(hits);
1628 for (int i = 0; i < system->maxMasters(); i++) {
1629 overallHits.subname(i, system->getMasterName(i));
1630 }
1631
1632 // Miss statistics
1633 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1634 MemCmd cmd(access_idx);
1635 const string &cstr = cmd.toString();
1636
1637 misses[access_idx]
1638 .init(system->maxMasters())
1639 .name(name() + "." + cstr + "_misses")
1640 .desc("number of " + cstr + " misses")
1641 .flags(total | nozero | nonan)
1642 ;
1643 for (int i = 0; i < system->maxMasters(); i++) {
1644 misses[access_idx].subname(i, system->getMasterName(i));
1645 }
1646 }
1647
1648 demandMisses
1649 .name(name() + ".demand_misses")
1650 .desc("number of demand (read+write) misses")
1651 .flags(total | nozero | nonan)
1652 ;
1653 demandMisses = SUM_DEMAND(misses);
1654 for (int i = 0; i < system->maxMasters(); i++) {
1655 demandMisses.subname(i, system->getMasterName(i));
1656 }
1657
1658 overallMisses
1659 .name(name() + ".overall_misses")
1660 .desc("number of overall misses")
1661 .flags(total | nozero | nonan)
1662 ;
1663 overallMisses = demandMisses + SUM_NON_DEMAND(misses);
1664 for (int i = 0; i < system->maxMasters(); i++) {
1665 overallMisses.subname(i, system->getMasterName(i));
1666 }
1667
1668 // Miss latency statistics
1669 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1670 MemCmd cmd(access_idx);
1671 const string &cstr = cmd.toString();
1672
1673 missLatency[access_idx]
1674 .init(system->maxMasters())
1675 .name(name() + "." + cstr + "_miss_latency")
1676 .desc("number of " + cstr + " miss cycles")
1677 .flags(total | nozero | nonan)
1678 ;
1679 for (int i = 0; i < system->maxMasters(); i++) {
1680 missLatency[access_idx].subname(i, system->getMasterName(i));
1681 }
1682 }
1683
1684 demandMissLatency
1685 .name(name() + ".demand_miss_latency")
1686 .desc("number of demand (read+write) miss cycles")
1687 .flags(total | nozero | nonan)
1688 ;
1689 demandMissLatency = SUM_DEMAND(missLatency);
1690 for (int i = 0; i < system->maxMasters(); i++) {
1691 demandMissLatency.subname(i, system->getMasterName(i));
1692 }
1693
1694 overallMissLatency
1695 .name(name() + ".overall_miss_latency")
1696 .desc("number of overall miss cycles")
1697 .flags(total | nozero | nonan)
1698 ;
1699 overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency);
1700 for (int i = 0; i < system->maxMasters(); i++) {
1701 overallMissLatency.subname(i, system->getMasterName(i));
1702 }
1703
1704 // access formulas
1705 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1706 MemCmd cmd(access_idx);
1707 const string &cstr = cmd.toString();
1708
1709 accesses[access_idx]
1710 .name(name() + "." + cstr + "_accesses")
1711 .desc("number of " + cstr + " accesses(hits+misses)")
1712 .flags(total | nozero | nonan)
1713 ;
1714 accesses[access_idx] = hits[access_idx] + misses[access_idx];
1715
1716 for (int i = 0; i < system->maxMasters(); i++) {
1717 accesses[access_idx].subname(i, system->getMasterName(i));
1718 }
1719 }
1720
1721 demandAccesses
1722 .name(name() + ".demand_accesses")
1723 .desc("number of demand (read+write) accesses")
1724 .flags(total | nozero | nonan)
1725 ;
1726 demandAccesses = demandHits + demandMisses;
1727 for (int i = 0; i < system->maxMasters(); i++) {
1728 demandAccesses.subname(i, system->getMasterName(i));
1729 }
1730
1731 overallAccesses
1732 .name(name() + ".overall_accesses")
1733 .desc("number of overall (read+write) accesses")
1734 .flags(total | nozero | nonan)
1735 ;
1736 overallAccesses = overallHits + overallMisses;
1737 for (int i = 0; i < system->maxMasters(); i++) {
1738 overallAccesses.subname(i, system->getMasterName(i));
1739 }
1740
1741 // miss rate formulas
1742 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1743 MemCmd cmd(access_idx);
1744 const string &cstr = cmd.toString();
1745
1746 missRate[access_idx]
1747 .name(name() + "." + cstr + "_miss_rate")
1748 .desc("miss rate for " + cstr + " accesses")
1749 .flags(total | nozero | nonan)
1750 ;
1751 missRate[access_idx] = misses[access_idx] / accesses[access_idx];
1752
1753 for (int i = 0; i < system->maxMasters(); i++) {
1754 missRate[access_idx].subname(i, system->getMasterName(i));
1755 }
1756 }
1757
1758 demandMissRate
1759 .name(name() + ".demand_miss_rate")
1760 .desc("miss rate for demand accesses")
1761 .flags(total | nozero | nonan)
1762 ;
1763 demandMissRate = demandMisses / demandAccesses;
1764 for (int i = 0; i < system->maxMasters(); i++) {
1765 demandMissRate.subname(i, system->getMasterName(i));
1766 }
1767
1768 overallMissRate
1769 .name(name() + ".overall_miss_rate")
1770 .desc("miss rate for overall accesses")
1771 .flags(total | nozero | nonan)
1772 ;
1773 overallMissRate = overallMisses / overallAccesses;
1774 for (int i = 0; i < system->maxMasters(); i++) {
1775 overallMissRate.subname(i, system->getMasterName(i));
1776 }
1777
1778 // miss latency formulas
1779 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1780 MemCmd cmd(access_idx);
1781 const string &cstr = cmd.toString();
1782
1783 avgMissLatency[access_idx]
1784 .name(name() + "." + cstr + "_avg_miss_latency")
1785 .desc("average " + cstr + " miss latency")
1786 .flags(total | nozero | nonan)
1787 ;
1788 avgMissLatency[access_idx] =
1789 missLatency[access_idx] / misses[access_idx];
1790
1791 for (int i = 0; i < system->maxMasters(); i++) {
1792 avgMissLatency[access_idx].subname(i, system->getMasterName(i));
1793 }
1794 }
1795
1796 demandAvgMissLatency
1797 .name(name() + ".demand_avg_miss_latency")
1798 .desc("average overall miss latency")
1799 .flags(total | nozero | nonan)
1800 ;
1801 demandAvgMissLatency = demandMissLatency / demandMisses;
1802 for (int i = 0; i < system->maxMasters(); i++) {
1803 demandAvgMissLatency.subname(i, system->getMasterName(i));
1804 }
1805
1806 overallAvgMissLatency
1807 .name(name() + ".overall_avg_miss_latency")
1808 .desc("average overall miss latency")
1809 .flags(total | nozero | nonan)
1810 ;
1811 overallAvgMissLatency = overallMissLatency / overallMisses;
1812 for (int i = 0; i < system->maxMasters(); i++) {
1813 overallAvgMissLatency.subname(i, system->getMasterName(i));
1814 }
1815
1816 blocked_cycles.init(NUM_BLOCKED_CAUSES);
1817 blocked_cycles
1818 .name(name() + ".blocked_cycles")
1819 .desc("number of cycles access was blocked")
1820 .subname(Blocked_NoMSHRs, "no_mshrs")
1821 .subname(Blocked_NoTargets, "no_targets")
1822 ;
1823
1824
1825 blocked_causes.init(NUM_BLOCKED_CAUSES);
1826 blocked_causes
1827 .name(name() + ".blocked")
1828 .desc("number of cycles access was blocked")
1829 .subname(Blocked_NoMSHRs, "no_mshrs")
1830 .subname(Blocked_NoTargets, "no_targets")
1831 ;
1832
1833 avg_blocked
1834 .name(name() + ".avg_blocked_cycles")
1835 .desc("average number of cycles each access was blocked")
1836 .subname(Blocked_NoMSHRs, "no_mshrs")
1837 .subname(Blocked_NoTargets, "no_targets")
1838 ;
1839
1840 avg_blocked = blocked_cycles / blocked_causes;
1841
1842 unusedPrefetches
1843 .name(name() + ".unused_prefetches")
1844 .desc("number of HardPF blocks evicted w/o reference")
1845 .flags(nozero)
1846 ;
1847
1848 writebacks
1849 .init(system->maxMasters())
1850 .name(name() + ".writebacks")
1851 .desc("number of writebacks")
1852 .flags(total | nozero | nonan)
1853 ;
1854 for (int i = 0; i < system->maxMasters(); i++) {
1855 writebacks.subname(i, system->getMasterName(i));
1856 }
1857
1858 // MSHR statistics
1859 // MSHR hit statistics
1860 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1861 MemCmd cmd(access_idx);
1862 const string &cstr = cmd.toString();
1863
1864 mshr_hits[access_idx]
1865 .init(system->maxMasters())
1866 .name(name() + "." + cstr + "_mshr_hits")
1867 .desc("number of " + cstr + " MSHR hits")
1868 .flags(total | nozero | nonan)
1869 ;
1870 for (int i = 0; i < system->maxMasters(); i++) {
1871 mshr_hits[access_idx].subname(i, system->getMasterName(i));
1872 }
1873 }
1874
1875 demandMshrHits
1876 .name(name() + ".demand_mshr_hits")
1877 .desc("number of demand (read+write) MSHR hits")
1878 .flags(total | nozero | nonan)
1879 ;
1880 demandMshrHits = SUM_DEMAND(mshr_hits);
1881 for (int i = 0; i < system->maxMasters(); i++) {
1882 demandMshrHits.subname(i, system->getMasterName(i));
1883 }
1884
1885 overallMshrHits
1886 .name(name() + ".overall_mshr_hits")
1887 .desc("number of overall MSHR hits")
1888 .flags(total | nozero | nonan)
1889 ;
1890 overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits);
1891 for (int i = 0; i < system->maxMasters(); i++) {
1892 overallMshrHits.subname(i, system->getMasterName(i));
1893 }
1894
1895 // MSHR miss statistics
1896 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1897 MemCmd cmd(access_idx);
1898 const string &cstr = cmd.toString();
1899
1900 mshr_misses[access_idx]
1901 .init(system->maxMasters())
1902 .name(name() + "." + cstr + "_mshr_misses")
1903 .desc("number of " + cstr + " MSHR misses")
1904 .flags(total | nozero | nonan)
1905 ;
1906 for (int i = 0; i < system->maxMasters(); i++) {
1907 mshr_misses[access_idx].subname(i, system->getMasterName(i));
1908 }
1909 }
1910
1911 demandMshrMisses
1912 .name(name() + ".demand_mshr_misses")
1913 .desc("number of demand (read+write) MSHR misses")
1914 .flags(total | nozero | nonan)
1915 ;
1916 demandMshrMisses = SUM_DEMAND(mshr_misses);
1917 for (int i = 0; i < system->maxMasters(); i++) {
1918 demandMshrMisses.subname(i, system->getMasterName(i));
1919 }
1920
1921 overallMshrMisses
1922 .name(name() + ".overall_mshr_misses")
1923 .desc("number of overall MSHR misses")
1924 .flags(total | nozero | nonan)
1925 ;
1926 overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses);
1927 for (int i = 0; i < system->maxMasters(); i++) {
1928 overallMshrMisses.subname(i, system->getMasterName(i));
1929 }
1930
1931 // MSHR miss latency statistics
1932 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1933 MemCmd cmd(access_idx);
1934 const string &cstr = cmd.toString();
1935
1936 mshr_miss_latency[access_idx]
1937 .init(system->maxMasters())
1938 .name(name() + "." + cstr + "_mshr_miss_latency")
1939 .desc("number of " + cstr + " MSHR miss cycles")
1940 .flags(total | nozero | nonan)
1941 ;
1942 for (int i = 0; i < system->maxMasters(); i++) {
1943 mshr_miss_latency[access_idx].subname(i, system->getMasterName(i));
1944 }
1945 }
1946
1947 demandMshrMissLatency
1948 .name(name() + ".demand_mshr_miss_latency")
1949 .desc("number of demand (read+write) MSHR miss cycles")
1950 .flags(total | nozero | nonan)
1951 ;
1952 demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency);
1953 for (int i = 0; i < system->maxMasters(); i++) {
1954 demandMshrMissLatency.subname(i, system->getMasterName(i));
1955 }
1956
1957 overallMshrMissLatency
1958 .name(name() + ".overall_mshr_miss_latency")
1959 .desc("number of overall MSHR miss cycles")
1960 .flags(total | nozero | nonan)
1961 ;
1962 overallMshrMissLatency =
1963 demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency);
1964 for (int i = 0; i < system->maxMasters(); i++) {
1965 overallMshrMissLatency.subname(i, system->getMasterName(i));
1966 }
1967
1968 // MSHR uncacheable statistics
1969 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1970 MemCmd cmd(access_idx);
1971 const string &cstr = cmd.toString();
1972
1973 mshr_uncacheable[access_idx]
1974 .init(system->maxMasters())
1975 .name(name() + "." + cstr + "_mshr_uncacheable")
1976 .desc("number of " + cstr + " MSHR uncacheable")
1977 .flags(total | nozero | nonan)
1978 ;
1979 for (int i = 0; i < system->maxMasters(); i++) {
1980 mshr_uncacheable[access_idx].subname(i, system->getMasterName(i));
1981 }
1982 }
1983
1984 overallMshrUncacheable
1985 .name(name() + ".overall_mshr_uncacheable_misses")
1986 .desc("number of overall MSHR uncacheable misses")
1987 .flags(total | nozero | nonan)
1988 ;
1989 overallMshrUncacheable =
1990 SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable);
1991 for (int i = 0; i < system->maxMasters(); i++) {
1992 overallMshrUncacheable.subname(i, system->getMasterName(i));
1993 }
1994
1995 // MSHR miss latency statistics
1996 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
1997 MemCmd cmd(access_idx);
1998 const string &cstr = cmd.toString();
1999
2000 mshr_uncacheable_lat[access_idx]
2001 .init(system->maxMasters())
2002 .name(name() + "." + cstr + "_mshr_uncacheable_latency")
2003 .desc("number of " + cstr + " MSHR uncacheable cycles")
2004 .flags(total | nozero | nonan)
2005 ;
2006 for (int i = 0; i < system->maxMasters(); i++) {
2007 mshr_uncacheable_lat[access_idx].subname(
2008 i, system->getMasterName(i));
2009 }
2010 }
2011
2012 overallMshrUncacheableLatency
2013 .name(name() + ".overall_mshr_uncacheable_latency")
2014 .desc("number of overall MSHR uncacheable cycles")
2015 .flags(total | nozero | nonan)
2016 ;
2017 overallMshrUncacheableLatency =
2018 SUM_DEMAND(mshr_uncacheable_lat) +
2019 SUM_NON_DEMAND(mshr_uncacheable_lat);
2020 for (int i = 0; i < system->maxMasters(); i++) {
2021 overallMshrUncacheableLatency.subname(i, system->getMasterName(i));
2022 }
2023
2024#if 0
2025 // MSHR access formulas
2026 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2027 MemCmd cmd(access_idx);
2028 const string &cstr = cmd.toString();
2029
2030 mshrAccesses[access_idx]
2031 .name(name() + "." + cstr + "_mshr_accesses")
2032 .desc("number of " + cstr + " mshr accesses(hits+misses)")
2033 .flags(total | nozero | nonan)
2034 ;
2035 mshrAccesses[access_idx] =
2036 mshr_hits[access_idx] + mshr_misses[access_idx]
2037 + mshr_uncacheable[access_idx];
2038 }
2039
2040 demandMshrAccesses
2041 .name(name() + ".demand_mshr_accesses")
2042 .desc("number of demand (read+write) mshr accesses")
2043 .flags(total | nozero | nonan)
2044 ;
2045 demandMshrAccesses = demandMshrHits + demandMshrMisses;
2046
2047 overallMshrAccesses
2048 .name(name() + ".overall_mshr_accesses")
2049 .desc("number of overall (read+write) mshr accesses")
2050 .flags(total | nozero | nonan)
2051 ;
2052 overallMshrAccesses = overallMshrHits + overallMshrMisses
2053 + overallMshrUncacheable;
2054#endif
2055
2056 // MSHR miss rate formulas
2057 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2058 MemCmd cmd(access_idx);
2059 const string &cstr = cmd.toString();
2060
2061 mshrMissRate[access_idx]
2062 .name(name() + "." + cstr + "_mshr_miss_rate")
2063 .desc("mshr miss rate for " + cstr + " accesses")
2064 .flags(total | nozero | nonan)
2065 ;
2066 mshrMissRate[access_idx] =
2067 mshr_misses[access_idx] / accesses[access_idx];
2068
2069 for (int i = 0; i < system->maxMasters(); i++) {
2070 mshrMissRate[access_idx].subname(i, system->getMasterName(i));
2071 }
2072 }
2073
2074 demandMshrMissRate
2075 .name(name() + ".demand_mshr_miss_rate")
2076 .desc("mshr miss rate for demand accesses")
2077 .flags(total | nozero | nonan)
2078 ;
2079 demandMshrMissRate = demandMshrMisses / demandAccesses;
2080 for (int i = 0; i < system->maxMasters(); i++) {
2081 demandMshrMissRate.subname(i, system->getMasterName(i));
2082 }
2083
2084 overallMshrMissRate
2085 .name(name() + ".overall_mshr_miss_rate")
2086 .desc("mshr miss rate for overall accesses")
2087 .flags(total | nozero | nonan)
2088 ;
2089 overallMshrMissRate = overallMshrMisses / overallAccesses;
2090 for (int i = 0; i < system->maxMasters(); i++) {
2091 overallMshrMissRate.subname(i, system->getMasterName(i));
2092 }
2093
2094 // mshrMiss latency formulas
2095 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2096 MemCmd cmd(access_idx);
2097 const string &cstr = cmd.toString();
2098
2099 avgMshrMissLatency[access_idx]
2100 .name(name() + "." + cstr + "_avg_mshr_miss_latency")
2101 .desc("average " + cstr + " mshr miss latency")
2102 .flags(total | nozero | nonan)
2103 ;
2104 avgMshrMissLatency[access_idx] =
2105 mshr_miss_latency[access_idx] / mshr_misses[access_idx];
2106
2107 for (int i = 0; i < system->maxMasters(); i++) {
2108 avgMshrMissLatency[access_idx].subname(
2109 i, system->getMasterName(i));
2110 }
2111 }
2112
2113 demandAvgMshrMissLatency
2114 .name(name() + ".demand_avg_mshr_miss_latency")
2115 .desc("average overall mshr miss latency")
2116 .flags(total | nozero | nonan)
2117 ;
2118 demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses;
2119 for (int i = 0; i < system->maxMasters(); i++) {
2120 demandAvgMshrMissLatency.subname(i, system->getMasterName(i));
2121 }
2122
2123 overallAvgMshrMissLatency
2124 .name(name() + ".overall_avg_mshr_miss_latency")
2125 .desc("average overall mshr miss latency")
2126 .flags(total | nozero | nonan)
2127 ;
2128 overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses;
2129 for (int i = 0; i < system->maxMasters(); i++) {
2130 overallAvgMshrMissLatency.subname(i, system->getMasterName(i));
2131 }
2132
2133 // mshrUncacheable latency formulas
2134 for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
2135 MemCmd cmd(access_idx);
2136 const string &cstr = cmd.toString();
2137
2138 avgMshrUncacheableLatency[access_idx]
2139 .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency")
2140 .desc("average " + cstr + " mshr uncacheable latency")
2141 .flags(total | nozero | nonan)
2142 ;
2143 avgMshrUncacheableLatency[access_idx] =
2144 mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx];
2145
2146 for (int i = 0; i < system->maxMasters(); i++) {
2147 avgMshrUncacheableLatency[access_idx].subname(
2148 i, system->getMasterName(i));
2149 }
2150 }
2151
2152 overallAvgMshrUncacheableLatency
2153 .name(name() + ".overall_avg_mshr_uncacheable_latency")
2154 .desc("average overall mshr uncacheable latency")
2155 .flags(total | nozero | nonan)
2156 ;
2157 overallAvgMshrUncacheableLatency =
2158 overallMshrUncacheableLatency / overallMshrUncacheable;
2159 for (int i = 0; i < system->maxMasters(); i++) {
2160 overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i));
2161 }
2162
2163 replacements
2164 .name(name() + ".replacements")
2165 .desc("number of replacements")
2166 ;
2167}
2168
2169///////////////
2170//
2171// CpuSidePort
2172//
2173///////////////
2174bool
2175BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
2176{
2177 // Snoops shouldn't happen when bypassing caches
2178 assert(!cache->system->bypassCaches());
2179
2180 assert(pkt->isResponse());
2181
2182 // Express snoop responses from master to slave, e.g., from L1 to L2
2183 cache->recvTimingSnoopResp(pkt);
2184 return true;
2185}
2186
2187
2188bool
2189BaseCache::CpuSidePort::tryTiming(PacketPtr pkt)
2190{
2191 if (cache->system->bypassCaches() || pkt->isExpressSnoop()) {
2192 // always let express snoop packets through even if blocked
2193 return true;
2194 } else if (blocked || mustSendRetry) {
2195 // either already committed to send a retry, or blocked
2196 mustSendRetry = true;
2197 return false;
2198 }
2199 mustSendRetry = false;
2200 return true;
2201}
2202
2203bool
2204BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt)
2205{
2206 assert(pkt->isRequest());
2207
2208 if (cache->system->bypassCaches()) {
2209 // Just forward the packet if caches are disabled.
2210 // @todo This should really enqueue the packet rather
2211 bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt);
2212 assert(success);
2213 return true;
2214 } else if (tryTiming(pkt)) {
2215 cache->recvTimingReq(pkt);
2216 return true;
2217 }
2218 return false;
2219}
2220
2221Tick
2222BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt)
2223{
2224 if (cache->system->bypassCaches()) {
2225 // Forward the request if the system is in cache bypass mode.
2226 return cache->memSidePort.sendAtomic(pkt);
2227 } else {
2228 return cache->recvAtomic(pkt);
2229 }
2230}
2231
2232void
2233BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt)
2234{
2235 if (cache->system->bypassCaches()) {
2236 // The cache should be flushed if we are in cache bypass mode,
2237 // so we don't need to check if we need to update anything.
2238 cache->memSidePort.sendFunctional(pkt);
2239 return;
2240 }
2241
2242 // functional request
2243 cache->functionalAccess(pkt, true);
2244}
2245
2246AddrRangeList
2247BaseCache::CpuSidePort::getAddrRanges() const
2248{
2249 return cache->getAddrRanges();
2250}
2251
2252
2253BaseCache::
2254CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache,
2255 const std::string &_label)
2256 : CacheSlavePort(_name, _cache, _label), cache(_cache)
2257{
2258}
2259
2260///////////////
2261//
2262// MemSidePort
2263//
2264///////////////
2265bool
2266BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt)
2267{
2268 cache->recvTimingResp(pkt);
2269 return true;
2270}
2271
2272// Express snooping requests to memside port
2273void
2274BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
2275{
2276 // Snoops shouldn't happen when bypassing caches
2277 assert(!cache->system->bypassCaches());
2278
2279 // handle snooping requests
2280 cache->recvTimingSnoopReq(pkt);
2281}
2282
2283Tick
2284BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
2285{
2286 // Snoops shouldn't happen when bypassing caches
2287 assert(!cache->system->bypassCaches());
2288
2289 return cache->recvAtomicSnoop(pkt);
2290}
2291
2292void
2293BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
2294{
2295 // Snoops shouldn't happen when bypassing caches
2296 assert(!cache->system->bypassCaches());
2297
2298 // functional snoop (note that in contrast to atomic we don't have
2299 // a specific functionalSnoop method, as they have the same
2300 // behaviour regardless)
2301 cache->functionalAccess(pkt, false);
2302}
2303
2304void
2305BaseCache::CacheReqPacketQueue::sendDeferredPacket()
2306{
2307 // sanity check
2308 assert(!waitingOnRetry);
2309
2310 // there should never be any deferred request packets in the
2311 // queue, instead we resly on the cache to provide the packets
2312 // from the MSHR queue or write queue
2313 assert(deferredPacketReadyTime() == MaxTick);
2314
2315 // check for request packets (requests & writebacks)
2316 QueueEntry* entry = cache.getNextQueueEntry();
2317
2318 if (!entry) {
2319 // can happen if e.g. we attempt a writeback and fail, but
2320 // before the retry, the writeback is eliminated because
2321 // we snoop another cache's ReadEx.
2322 } else {
2323 // let our snoop responses go first if there are responses to
2324 // the same addresses
2325 if (checkConflictingSnoop(entry->blkAddr)) {
2326 return;
2327 }
2328 waitingOnRetry = entry->sendPacket(cache);
2329 }
2330
2331 // if we succeeded and are not waiting for a retry, schedule the
2332 // next send considering when the next queue is ready, note that
2333 // snoop responses have their own packet queue and thus schedule
2334 // their own events
2335 if (!waitingOnRetry) {
2336 schedSendEvent(cache.nextQueueReadyTime());
2337 }
2338}
2339
2340BaseCache::MemSidePort::MemSidePort(const std::string &_name,
2341 BaseCache *_cache,
2342 const std::string &_label)
2343 : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
2344 _reqQueue(*_cache, *this, _snoopRespQueue, _label),
2345 _snoopRespQueue(*_cache, *this, _label), cache(_cache)
2346{
2347}