gpu_tlb.cc (12085:de78ea63e0ca) gpu_tlb.cc (12455:c88f0b37f433)
1/*
2 * Copyright (c) 2011-2015 Advanced Micro Devices, Inc.
3 * All rights reserved.
4 *
5 * For use for simulation and test purposes only
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright notice,
14 * this list of conditions and the following disclaimer in the documentation
15 * and/or other materials provided with the distribution.
16 *
17 * 3. Neither the name of the copyright holder nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
25 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Author: Lisa Hsu
34 */
35
36#include "gpu-compute/gpu_tlb.hh"
37
38#include <cmath>
39#include <cstring>
40
41#include "arch/x86/faults.hh"
42#include "arch/x86/insts/microldstop.hh"
43#include "arch/x86/pagetable.hh"
44#include "arch/x86/pagetable_walker.hh"
45#include "arch/x86/regs/misc.hh"
46#include "arch/x86/x86_traits.hh"
47#include "base/bitfield.hh"
48#include "base/output.hh"
49#include "base/trace.hh"
50#include "cpu/base.hh"
51#include "cpu/thread_context.hh"
52#include "debug/GPUPrefetch.hh"
53#include "debug/GPUTLB.hh"
54#include "mem/packet_access.hh"
55#include "mem/page_table.hh"
56#include "mem/request.hh"
57#include "sim/process.hh"
58
59namespace X86ISA
60{
61
62 GpuTLB::GpuTLB(const Params *p)
63 : MemObject(p), configAddress(0), size(p->size),
64 cleanupEvent([this]{ cleanup(); }, name(), false,
65 Event::Maximum_Pri),
66 exitEvent([this]{ exitCallback(); }, name())
67 {
68 assoc = p->assoc;
69 assert(assoc <= size);
70 numSets = size/assoc;
71 allocationPolicy = p->allocationPolicy;
72 hasMemSidePort = false;
73 accessDistance = p->accessDistance;
74 clock = p->clk_domain->clockPeriod();
75
76 tlb.assign(size, GpuTlbEntry());
77
78 freeList.resize(numSets);
79 entryList.resize(numSets);
80
81 for (int set = 0; set < numSets; ++set) {
82 for (int way = 0; way < assoc; ++way) {
83 int x = set * assoc + way;
84 freeList[set].push_back(&tlb.at(x));
85 }
86 }
87
88 FA = (size == assoc);
89
90 /**
91 * @warning: the set-associative version assumes you have a
92 * fixed page size of 4KB.
93 * If the page size is greather than 4KB (as defined in the
94 * TheISA::PageBytes), then there are various issues w/ the current
95 * implementation (you'd have the same 8KB page being replicated in
96 * different sets etc)
97 */
98 setMask = numSets - 1;
99
100 #if 0
101 // GpuTLB doesn't yet support full system
102 walker = p->walker;
103 walker->setTLB(this);
104 #endif
105
106 maxCoalescedReqs = p->maxOutstandingReqs;
107
108 // Do not allow maxCoalescedReqs to be more than the TLB associativity
109 if (maxCoalescedReqs > assoc) {
110 maxCoalescedReqs = assoc;
111 cprintf("Forcing maxCoalescedReqs to %d (TLB assoc.) \n", assoc);
112 }
113
114 outstandingReqs = 0;
115 hitLatency = p->hitLatency;
116 missLatency1 = p->missLatency1;
117 missLatency2 = p->missLatency2;
118
119 // create the slave ports based on the number of connected ports
120 for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
121 cpuSidePort.push_back(new CpuSidePort(csprintf("%s-port%d",
122 name(), i), this, i));
123 }
124
125 // create the master ports based on the number of connected ports
126 for (size_t i = 0; i < p->port_master_connection_count; ++i) {
127 memSidePort.push_back(new MemSidePort(csprintf("%s-port%d",
128 name(), i), this, i));
129 }
130 }
131
132 // fixme: this is never called?
133 GpuTLB::~GpuTLB()
134 {
135 // make sure all the hash-maps are empty
136 assert(translationReturnEvent.empty());
137 }
138
139 BaseSlavePort&
140 GpuTLB::getSlavePort(const std::string &if_name, PortID idx)
141 {
142 if (if_name == "slave") {
143 if (idx >= static_cast<PortID>(cpuSidePort.size())) {
144 panic("TLBCoalescer::getSlavePort: unknown index %d\n", idx);
145 }
146
147 return *cpuSidePort[idx];
148 } else {
149 panic("TLBCoalescer::getSlavePort: unknown port %s\n", if_name);
150 }
151 }
152
153 BaseMasterPort&
154 GpuTLB::getMasterPort(const std::string &if_name, PortID idx)
155 {
156 if (if_name == "master") {
157 if (idx >= static_cast<PortID>(memSidePort.size())) {
158 panic("TLBCoalescer::getMasterPort: unknown index %d\n", idx);
159 }
160
161 hasMemSidePort = true;
162
163 return *memSidePort[idx];
164 } else {
165 panic("TLBCoalescer::getMasterPort: unknown port %s\n", if_name);
166 }
167 }
168
169 GpuTlbEntry*
170 GpuTLB::insert(Addr vpn, GpuTlbEntry &entry)
171 {
172 GpuTlbEntry *newEntry = nullptr;
173
174 /**
175 * vpn holds the virtual page address
176 * The least significant bits are simply masked
177 */
178 int set = (vpn >> TheISA::PageShift) & setMask;
179
180 if (!freeList[set].empty()) {
181 newEntry = freeList[set].front();
182 freeList[set].pop_front();
183 } else {
184 newEntry = entryList[set].back();
185 entryList[set].pop_back();
186 }
187
188 *newEntry = entry;
189 newEntry->vaddr = vpn;
190 entryList[set].push_front(newEntry);
191
192 return newEntry;
193 }
194
195 GpuTLB::EntryList::iterator
196 GpuTLB::lookupIt(Addr va, bool update_lru)
197 {
198 int set = (va >> TheISA::PageShift) & setMask;
199
200 if (FA) {
201 assert(!set);
202 }
203
204 auto entry = entryList[set].begin();
205 for (; entry != entryList[set].end(); ++entry) {
206 int page_size = (*entry)->size();
207
208 if ((*entry)->vaddr <= va && (*entry)->vaddr + page_size > va) {
209 DPRINTF(GPUTLB, "Matched vaddr %#x to entry starting at %#x "
210 "with size %#x.\n", va, (*entry)->vaddr, page_size);
211
212 if (update_lru) {
213 entryList[set].push_front(*entry);
214 entryList[set].erase(entry);
215 entry = entryList[set].begin();
216 }
217
218 break;
219 }
220 }
221
222 return entry;
223 }
224
225 GpuTlbEntry*
226 GpuTLB::lookup(Addr va, bool update_lru)
227 {
228 int set = (va >> TheISA::PageShift) & setMask;
229
230 auto entry = lookupIt(va, update_lru);
231
232 if (entry == entryList[set].end())
233 return nullptr;
234 else
235 return *entry;
236 }
237
238 void
239 GpuTLB::invalidateAll()
240 {
241 DPRINTF(GPUTLB, "Invalidating all entries.\n");
242
243 for (int i = 0; i < numSets; ++i) {
244 while (!entryList[i].empty()) {
245 GpuTlbEntry *entry = entryList[i].front();
246 entryList[i].pop_front();
247 freeList[i].push_back(entry);
248 }
249 }
250 }
251
252 void
253 GpuTLB::setConfigAddress(uint32_t addr)
254 {
255 configAddress = addr;
256 }
257
258 void
259 GpuTLB::invalidateNonGlobal()
260 {
261 DPRINTF(GPUTLB, "Invalidating all non global entries.\n");
262
263 for (int i = 0; i < numSets; ++i) {
264 for (auto entryIt = entryList[i].begin();
265 entryIt != entryList[i].end();) {
266 if (!(*entryIt)->global) {
267 freeList[i].push_back(*entryIt);
268 entryList[i].erase(entryIt++);
269 } else {
270 ++entryIt;
271 }
272 }
273 }
274 }
275
276 void
277 GpuTLB::demapPage(Addr va, uint64_t asn)
278 {
279
280 int set = (va >> TheISA::PageShift) & setMask;
281 auto entry = lookupIt(va, false);
282
283 if (entry != entryList[set].end()) {
284 freeList[set].push_back(*entry);
285 entryList[set].erase(entry);
286 }
287 }
288
289 Fault
290 GpuTLB::translateInt(RequestPtr req, ThreadContext *tc)
291 {
292 DPRINTF(GPUTLB, "Addresses references internal memory.\n");
293 Addr vaddr = req->getVaddr();
294 Addr prefix = (vaddr >> 3) & IntAddrPrefixMask;
295
296 if (prefix == IntAddrPrefixCPUID) {
297 panic("CPUID memory space not yet implemented!\n");
298 } else if (prefix == IntAddrPrefixMSR) {
299 vaddr = vaddr >> 3;
300 req->setFlags(Request::MMAPPED_IPR);
301 Addr regNum = 0;
302
303 switch (vaddr & ~IntAddrPrefixMask) {
304 case 0x10:
305 regNum = MISCREG_TSC;
306 break;
307 case 0x1B:
308 regNum = MISCREG_APIC_BASE;
309 break;
310 case 0xFE:
311 regNum = MISCREG_MTRRCAP;
312 break;
313 case 0x174:
314 regNum = MISCREG_SYSENTER_CS;
315 break;
316 case 0x175:
317 regNum = MISCREG_SYSENTER_ESP;
318 break;
319 case 0x176:
320 regNum = MISCREG_SYSENTER_EIP;
321 break;
322 case 0x179:
323 regNum = MISCREG_MCG_CAP;
324 break;
325 case 0x17A:
326 regNum = MISCREG_MCG_STATUS;
327 break;
328 case 0x17B:
329 regNum = MISCREG_MCG_CTL;
330 break;
331 case 0x1D9:
332 regNum = MISCREG_DEBUG_CTL_MSR;
333 break;
334 case 0x1DB:
335 regNum = MISCREG_LAST_BRANCH_FROM_IP;
336 break;
337 case 0x1DC:
338 regNum = MISCREG_LAST_BRANCH_TO_IP;
339 break;
340 case 0x1DD:
341 regNum = MISCREG_LAST_EXCEPTION_FROM_IP;
342 break;
343 case 0x1DE:
344 regNum = MISCREG_LAST_EXCEPTION_TO_IP;
345 break;
346 case 0x200:
347 regNum = MISCREG_MTRR_PHYS_BASE_0;
348 break;
349 case 0x201:
350 regNum = MISCREG_MTRR_PHYS_MASK_0;
351 break;
352 case 0x202:
353 regNum = MISCREG_MTRR_PHYS_BASE_1;
354 break;
355 case 0x203:
356 regNum = MISCREG_MTRR_PHYS_MASK_1;
357 break;
358 case 0x204:
359 regNum = MISCREG_MTRR_PHYS_BASE_2;
360 break;
361 case 0x205:
362 regNum = MISCREG_MTRR_PHYS_MASK_2;
363 break;
364 case 0x206:
365 regNum = MISCREG_MTRR_PHYS_BASE_3;
366 break;
367 case 0x207:
368 regNum = MISCREG_MTRR_PHYS_MASK_3;
369 break;
370 case 0x208:
371 regNum = MISCREG_MTRR_PHYS_BASE_4;
372 break;
373 case 0x209:
374 regNum = MISCREG_MTRR_PHYS_MASK_4;
375 break;
376 case 0x20A:
377 regNum = MISCREG_MTRR_PHYS_BASE_5;
378 break;
379 case 0x20B:
380 regNum = MISCREG_MTRR_PHYS_MASK_5;
381 break;
382 case 0x20C:
383 regNum = MISCREG_MTRR_PHYS_BASE_6;
384 break;
385 case 0x20D:
386 regNum = MISCREG_MTRR_PHYS_MASK_6;
387 break;
388 case 0x20E:
389 regNum = MISCREG_MTRR_PHYS_BASE_7;
390 break;
391 case 0x20F:
392 regNum = MISCREG_MTRR_PHYS_MASK_7;
393 break;
394 case 0x250:
395 regNum = MISCREG_MTRR_FIX_64K_00000;
396 break;
397 case 0x258:
398 regNum = MISCREG_MTRR_FIX_16K_80000;
399 break;
400 case 0x259:
401 regNum = MISCREG_MTRR_FIX_16K_A0000;
402 break;
403 case 0x268:
404 regNum = MISCREG_MTRR_FIX_4K_C0000;
405 break;
406 case 0x269:
407 regNum = MISCREG_MTRR_FIX_4K_C8000;
408 break;
409 case 0x26A:
410 regNum = MISCREG_MTRR_FIX_4K_D0000;
411 break;
412 case 0x26B:
413 regNum = MISCREG_MTRR_FIX_4K_D8000;
414 break;
415 case 0x26C:
416 regNum = MISCREG_MTRR_FIX_4K_E0000;
417 break;
418 case 0x26D:
419 regNum = MISCREG_MTRR_FIX_4K_E8000;
420 break;
421 case 0x26E:
422 regNum = MISCREG_MTRR_FIX_4K_F0000;
423 break;
424 case 0x26F:
425 regNum = MISCREG_MTRR_FIX_4K_F8000;
426 break;
427 case 0x277:
428 regNum = MISCREG_PAT;
429 break;
430 case 0x2FF:
431 regNum = MISCREG_DEF_TYPE;
432 break;
433 case 0x400:
434 regNum = MISCREG_MC0_CTL;
435 break;
436 case 0x404:
437 regNum = MISCREG_MC1_CTL;
438 break;
439 case 0x408:
440 regNum = MISCREG_MC2_CTL;
441 break;
442 case 0x40C:
443 regNum = MISCREG_MC3_CTL;
444 break;
445 case 0x410:
446 regNum = MISCREG_MC4_CTL;
447 break;
448 case 0x414:
449 regNum = MISCREG_MC5_CTL;
450 break;
451 case 0x418:
452 regNum = MISCREG_MC6_CTL;
453 break;
454 case 0x41C:
455 regNum = MISCREG_MC7_CTL;
456 break;
457 case 0x401:
458 regNum = MISCREG_MC0_STATUS;
459 break;
460 case 0x405:
461 regNum = MISCREG_MC1_STATUS;
462 break;
463 case 0x409:
464 regNum = MISCREG_MC2_STATUS;
465 break;
466 case 0x40D:
467 regNum = MISCREG_MC3_STATUS;
468 break;
469 case 0x411:
470 regNum = MISCREG_MC4_STATUS;
471 break;
472 case 0x415:
473 regNum = MISCREG_MC5_STATUS;
474 break;
475 case 0x419:
476 regNum = MISCREG_MC6_STATUS;
477 break;
478 case 0x41D:
479 regNum = MISCREG_MC7_STATUS;
480 break;
481 case 0x402:
482 regNum = MISCREG_MC0_ADDR;
483 break;
484 case 0x406:
485 regNum = MISCREG_MC1_ADDR;
486 break;
487 case 0x40A:
488 regNum = MISCREG_MC2_ADDR;
489 break;
490 case 0x40E:
491 regNum = MISCREG_MC3_ADDR;
492 break;
493 case 0x412:
494 regNum = MISCREG_MC4_ADDR;
495 break;
496 case 0x416:
497 regNum = MISCREG_MC5_ADDR;
498 break;
499 case 0x41A:
500 regNum = MISCREG_MC6_ADDR;
501 break;
502 case 0x41E:
503 regNum = MISCREG_MC7_ADDR;
504 break;
505 case 0x403:
506 regNum = MISCREG_MC0_MISC;
507 break;
508 case 0x407:
509 regNum = MISCREG_MC1_MISC;
510 break;
511 case 0x40B:
512 regNum = MISCREG_MC2_MISC;
513 break;
514 case 0x40F:
515 regNum = MISCREG_MC3_MISC;
516 break;
517 case 0x413:
518 regNum = MISCREG_MC4_MISC;
519 break;
520 case 0x417:
521 regNum = MISCREG_MC5_MISC;
522 break;
523 case 0x41B:
524 regNum = MISCREG_MC6_MISC;
525 break;
526 case 0x41F:
527 regNum = MISCREG_MC7_MISC;
528 break;
529 case 0xC0000080:
530 regNum = MISCREG_EFER;
531 break;
532 case 0xC0000081:
533 regNum = MISCREG_STAR;
534 break;
535 case 0xC0000082:
536 regNum = MISCREG_LSTAR;
537 break;
538 case 0xC0000083:
539 regNum = MISCREG_CSTAR;
540 break;
541 case 0xC0000084:
542 regNum = MISCREG_SF_MASK;
543 break;
544 case 0xC0000100:
545 regNum = MISCREG_FS_BASE;
546 break;
547 case 0xC0000101:
548 regNum = MISCREG_GS_BASE;
549 break;
550 case 0xC0000102:
551 regNum = MISCREG_KERNEL_GS_BASE;
552 break;
553 case 0xC0000103:
554 regNum = MISCREG_TSC_AUX;
555 break;
556 case 0xC0010000:
557 regNum = MISCREG_PERF_EVT_SEL0;
558 break;
559 case 0xC0010001:
560 regNum = MISCREG_PERF_EVT_SEL1;
561 break;
562 case 0xC0010002:
563 regNum = MISCREG_PERF_EVT_SEL2;
564 break;
565 case 0xC0010003:
566 regNum = MISCREG_PERF_EVT_SEL3;
567 break;
568 case 0xC0010004:
569 regNum = MISCREG_PERF_EVT_CTR0;
570 break;
571 case 0xC0010005:
572 regNum = MISCREG_PERF_EVT_CTR1;
573 break;
574 case 0xC0010006:
575 regNum = MISCREG_PERF_EVT_CTR2;
576 break;
577 case 0xC0010007:
578 regNum = MISCREG_PERF_EVT_CTR3;
579 break;
580 case 0xC0010010:
581 regNum = MISCREG_SYSCFG;
582 break;
583 case 0xC0010016:
584 regNum = MISCREG_IORR_BASE0;
585 break;
586 case 0xC0010017:
587 regNum = MISCREG_IORR_BASE1;
588 break;
589 case 0xC0010018:
590 regNum = MISCREG_IORR_MASK0;
591 break;
592 case 0xC0010019:
593 regNum = MISCREG_IORR_MASK1;
594 break;
595 case 0xC001001A:
596 regNum = MISCREG_TOP_MEM;
597 break;
598 case 0xC001001D:
599 regNum = MISCREG_TOP_MEM2;
600 break;
601 case 0xC0010114:
602 regNum = MISCREG_VM_CR;
603 break;
604 case 0xC0010115:
605 regNum = MISCREG_IGNNE;
606 break;
607 case 0xC0010116:
608 regNum = MISCREG_SMM_CTL;
609 break;
610 case 0xC0010117:
611 regNum = MISCREG_VM_HSAVE_PA;
612 break;
613 default:
614 return std::make_shared<GeneralProtection>(0);
615 }
616 //The index is multiplied by the size of a MiscReg so that
617 //any memory dependence calculations will not see these as
618 //overlapping.
619 req->setPaddr(regNum * sizeof(MiscReg));
620 return NoFault;
621 } else if (prefix == IntAddrPrefixIO) {
622 // TODO If CPL > IOPL or in virtual mode, check the I/O permission
623 // bitmap in the TSS.
624
625 Addr IOPort = vaddr & ~IntAddrPrefixMask;
626 // Make sure the address fits in the expected 16 bit IO address
627 // space.
628 assert(!(IOPort & ~0xFFFF));
629
630 if (IOPort == 0xCF8 && req->getSize() == 4) {
631 req->setFlags(Request::MMAPPED_IPR);
632 req->setPaddr(MISCREG_PCI_CONFIG_ADDRESS * sizeof(MiscReg));
633 } else if ((IOPort & ~mask(2)) == 0xCFC) {
634 req->setFlags(Request::UNCACHEABLE);
635
636 Addr configAddress =
637 tc->readMiscRegNoEffect(MISCREG_PCI_CONFIG_ADDRESS);
638
639 if (bits(configAddress, 31, 31)) {
640 req->setPaddr(PhysAddrPrefixPciConfig |
641 mbits(configAddress, 30, 2) |
642 (IOPort & mask(2)));
643 } else {
644 req->setPaddr(PhysAddrPrefixIO | IOPort);
645 }
646 } else {
647 req->setFlags(Request::UNCACHEABLE);
648 req->setPaddr(PhysAddrPrefixIO | IOPort);
649 }
650 return NoFault;
651 } else {
652 panic("Access to unrecognized internal address space %#x.\n",
653 prefix);
654 }
655 }
656
657 /**
658 * TLB_lookup will only perform a TLB lookup returning true on a TLB hit
659 * and false on a TLB miss.
660 * Many of the checks about different modes have been converted to
661 * assertions, since these parts of the code are not really used.
662 * On a hit it will update the LRU stack.
663 */
664 bool
665 GpuTLB::tlbLookup(RequestPtr req, ThreadContext *tc, bool update_stats)
666 {
667 bool tlb_hit = false;
668 #ifndef NDEBUG
669 uint32_t flags = req->getFlags();
670 int seg = flags & SegmentFlagMask;
671 #endif
672
673 assert(seg != SEGMENT_REG_MS);
674 Addr vaddr = req->getVaddr();
675 DPRINTF(GPUTLB, "TLB Lookup for vaddr %#x.\n", vaddr);
676 HandyM5Reg m5Reg = tc->readMiscRegNoEffect(MISCREG_M5_REG);
677
678 if (m5Reg.prot) {
679 DPRINTF(GPUTLB, "In protected mode.\n");
680 // make sure we are in 64-bit mode
681 assert(m5Reg.mode == LongMode);
682
683 // If paging is enabled, do the translation.
684 if (m5Reg.paging) {
685 DPRINTF(GPUTLB, "Paging enabled.\n");
686 //update LRU stack on a hit
687 GpuTlbEntry *entry = lookup(vaddr, true);
688
689 if (entry)
690 tlb_hit = true;
691
692 if (!update_stats) {
693 // functional tlb access for memory initialization
694 // i.e., memory seeding or instr. seeding -> don't update
695 // TLB and stats
696 return tlb_hit;
697 }
698
699 localNumTLBAccesses++;
700
701 if (!entry) {
702 localNumTLBMisses++;
703 } else {
704 localNumTLBHits++;
705 }
706 }
707 }
708
709 return tlb_hit;
710 }
711
712 Fault
713 GpuTLB::translate(RequestPtr req, ThreadContext *tc,
714 Translation *translation, Mode mode,
715 bool &delayedResponse, bool timing, int &latency)
716 {
717 uint32_t flags = req->getFlags();
718 int seg = flags & SegmentFlagMask;
719 bool storeCheck = flags & (StoreCheck << FlagShift);
720
721 // If this is true, we're dealing with a request
722 // to a non-memory address space.
723 if (seg == SEGMENT_REG_MS) {
724 return translateInt(req, tc);
725 }
726
727 delayedResponse = false;
728 Addr vaddr = req->getVaddr();
729 DPRINTF(GPUTLB, "Translating vaddr %#x.\n", vaddr);
730
731 HandyM5Reg m5Reg = tc->readMiscRegNoEffect(MISCREG_M5_REG);
732
733 // If protected mode has been enabled...
734 if (m5Reg.prot) {
735 DPRINTF(GPUTLB, "In protected mode.\n");
736 // If we're not in 64-bit mode, do protection/limit checks
737 if (m5Reg.mode != LongMode) {
738 DPRINTF(GPUTLB, "Not in long mode. Checking segment "
739 "protection.\n");
740
741 // Check for a null segment selector.
742 if (!(seg == SEGMENT_REG_TSG || seg == SYS_SEGMENT_REG_IDTR ||
743 seg == SEGMENT_REG_HS || seg == SEGMENT_REG_LS)
744 && !tc->readMiscRegNoEffect(MISCREG_SEG_SEL(seg))) {
745 return std::make_shared<GeneralProtection>(0);
746 }
747
748 bool expandDown = false;
749 SegAttr attr = tc->readMiscRegNoEffect(MISCREG_SEG_ATTR(seg));
750
751 if (seg >= SEGMENT_REG_ES && seg <= SEGMENT_REG_HS) {
752 if (!attr.writable && (mode == BaseTLB::Write ||
753 storeCheck))
754 return std::make_shared<GeneralProtection>(0);
755
756 if (!attr.readable && mode == BaseTLB::Read)
757 return std::make_shared<GeneralProtection>(0);
758
759 expandDown = attr.expandDown;
760
761 }
762
763 Addr base = tc->readMiscRegNoEffect(MISCREG_SEG_BASE(seg));
764 Addr limit = tc->readMiscRegNoEffect(MISCREG_SEG_LIMIT(seg));
765 // This assumes we're not in 64 bit mode. If we were, the
766 // default address size is 64 bits, overridable to 32.
767 int size = 32;
768 bool sizeOverride = (flags & (AddrSizeFlagBit << FlagShift));
769 SegAttr csAttr = tc->readMiscRegNoEffect(MISCREG_CS_ATTR);
770
771 if ((csAttr.defaultSize && sizeOverride) ||
772 (!csAttr.defaultSize && !sizeOverride)) {
773 size = 16;
774 }
775
776 Addr offset = bits(vaddr - base, size - 1, 0);
777 Addr endOffset = offset + req->getSize() - 1;
778
779 if (expandDown) {
780 DPRINTF(GPUTLB, "Checking an expand down segment.\n");
781 warn_once("Expand down segments are untested.\n");
782
783 if (offset <= limit || endOffset <= limit)
784 return std::make_shared<GeneralProtection>(0);
785 } else {
786 if (offset > limit || endOffset > limit)
787 return std::make_shared<GeneralProtection>(0);
788 }
789 }
790
791 // If paging is enabled, do the translation.
792 if (m5Reg.paging) {
793 DPRINTF(GPUTLB, "Paging enabled.\n");
794 // The vaddr already has the segment base applied.
795 GpuTlbEntry *entry = lookup(vaddr);
796 localNumTLBAccesses++;
797
798 if (!entry) {
799 localNumTLBMisses++;
800 if (timing) {
801 latency = missLatency1;
802 }
803
804 if (FullSystem) {
805 fatal("GpuTLB doesn't support full-system mode\n");
806 } else {
807 DPRINTF(GPUTLB, "Handling a TLB miss for address %#x "
808 "at pc %#x.\n", vaddr, tc->instAddr());
809
810 Process *p = tc->getProcessPtr();
1/*
2 * Copyright (c) 2011-2015 Advanced Micro Devices, Inc.
3 * All rights reserved.
4 *
5 * For use for simulation and test purposes only
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright notice,
14 * this list of conditions and the following disclaimer in the documentation
15 * and/or other materials provided with the distribution.
16 *
17 * 3. Neither the name of the copyright holder nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
25 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Author: Lisa Hsu
34 */
35
36#include "gpu-compute/gpu_tlb.hh"
37
38#include <cmath>
39#include <cstring>
40
41#include "arch/x86/faults.hh"
42#include "arch/x86/insts/microldstop.hh"
43#include "arch/x86/pagetable.hh"
44#include "arch/x86/pagetable_walker.hh"
45#include "arch/x86/regs/misc.hh"
46#include "arch/x86/x86_traits.hh"
47#include "base/bitfield.hh"
48#include "base/output.hh"
49#include "base/trace.hh"
50#include "cpu/base.hh"
51#include "cpu/thread_context.hh"
52#include "debug/GPUPrefetch.hh"
53#include "debug/GPUTLB.hh"
54#include "mem/packet_access.hh"
55#include "mem/page_table.hh"
56#include "mem/request.hh"
57#include "sim/process.hh"
58
59namespace X86ISA
60{
61
62 GpuTLB::GpuTLB(const Params *p)
63 : MemObject(p), configAddress(0), size(p->size),
64 cleanupEvent([this]{ cleanup(); }, name(), false,
65 Event::Maximum_Pri),
66 exitEvent([this]{ exitCallback(); }, name())
67 {
68 assoc = p->assoc;
69 assert(assoc <= size);
70 numSets = size/assoc;
71 allocationPolicy = p->allocationPolicy;
72 hasMemSidePort = false;
73 accessDistance = p->accessDistance;
74 clock = p->clk_domain->clockPeriod();
75
76 tlb.assign(size, GpuTlbEntry());
77
78 freeList.resize(numSets);
79 entryList.resize(numSets);
80
81 for (int set = 0; set < numSets; ++set) {
82 for (int way = 0; way < assoc; ++way) {
83 int x = set * assoc + way;
84 freeList[set].push_back(&tlb.at(x));
85 }
86 }
87
88 FA = (size == assoc);
89
90 /**
91 * @warning: the set-associative version assumes you have a
92 * fixed page size of 4KB.
93 * If the page size is greather than 4KB (as defined in the
94 * TheISA::PageBytes), then there are various issues w/ the current
95 * implementation (you'd have the same 8KB page being replicated in
96 * different sets etc)
97 */
98 setMask = numSets - 1;
99
100 #if 0
101 // GpuTLB doesn't yet support full system
102 walker = p->walker;
103 walker->setTLB(this);
104 #endif
105
106 maxCoalescedReqs = p->maxOutstandingReqs;
107
108 // Do not allow maxCoalescedReqs to be more than the TLB associativity
109 if (maxCoalescedReqs > assoc) {
110 maxCoalescedReqs = assoc;
111 cprintf("Forcing maxCoalescedReqs to %d (TLB assoc.) \n", assoc);
112 }
113
114 outstandingReqs = 0;
115 hitLatency = p->hitLatency;
116 missLatency1 = p->missLatency1;
117 missLatency2 = p->missLatency2;
118
119 // create the slave ports based on the number of connected ports
120 for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
121 cpuSidePort.push_back(new CpuSidePort(csprintf("%s-port%d",
122 name(), i), this, i));
123 }
124
125 // create the master ports based on the number of connected ports
126 for (size_t i = 0; i < p->port_master_connection_count; ++i) {
127 memSidePort.push_back(new MemSidePort(csprintf("%s-port%d",
128 name(), i), this, i));
129 }
130 }
131
132 // fixme: this is never called?
133 GpuTLB::~GpuTLB()
134 {
135 // make sure all the hash-maps are empty
136 assert(translationReturnEvent.empty());
137 }
138
139 BaseSlavePort&
140 GpuTLB::getSlavePort(const std::string &if_name, PortID idx)
141 {
142 if (if_name == "slave") {
143 if (idx >= static_cast<PortID>(cpuSidePort.size())) {
144 panic("TLBCoalescer::getSlavePort: unknown index %d\n", idx);
145 }
146
147 return *cpuSidePort[idx];
148 } else {
149 panic("TLBCoalescer::getSlavePort: unknown port %s\n", if_name);
150 }
151 }
152
153 BaseMasterPort&
154 GpuTLB::getMasterPort(const std::string &if_name, PortID idx)
155 {
156 if (if_name == "master") {
157 if (idx >= static_cast<PortID>(memSidePort.size())) {
158 panic("TLBCoalescer::getMasterPort: unknown index %d\n", idx);
159 }
160
161 hasMemSidePort = true;
162
163 return *memSidePort[idx];
164 } else {
165 panic("TLBCoalescer::getMasterPort: unknown port %s\n", if_name);
166 }
167 }
168
169 GpuTlbEntry*
170 GpuTLB::insert(Addr vpn, GpuTlbEntry &entry)
171 {
172 GpuTlbEntry *newEntry = nullptr;
173
174 /**
175 * vpn holds the virtual page address
176 * The least significant bits are simply masked
177 */
178 int set = (vpn >> TheISA::PageShift) & setMask;
179
180 if (!freeList[set].empty()) {
181 newEntry = freeList[set].front();
182 freeList[set].pop_front();
183 } else {
184 newEntry = entryList[set].back();
185 entryList[set].pop_back();
186 }
187
188 *newEntry = entry;
189 newEntry->vaddr = vpn;
190 entryList[set].push_front(newEntry);
191
192 return newEntry;
193 }
194
195 GpuTLB::EntryList::iterator
196 GpuTLB::lookupIt(Addr va, bool update_lru)
197 {
198 int set = (va >> TheISA::PageShift) & setMask;
199
200 if (FA) {
201 assert(!set);
202 }
203
204 auto entry = entryList[set].begin();
205 for (; entry != entryList[set].end(); ++entry) {
206 int page_size = (*entry)->size();
207
208 if ((*entry)->vaddr <= va && (*entry)->vaddr + page_size > va) {
209 DPRINTF(GPUTLB, "Matched vaddr %#x to entry starting at %#x "
210 "with size %#x.\n", va, (*entry)->vaddr, page_size);
211
212 if (update_lru) {
213 entryList[set].push_front(*entry);
214 entryList[set].erase(entry);
215 entry = entryList[set].begin();
216 }
217
218 break;
219 }
220 }
221
222 return entry;
223 }
224
225 GpuTlbEntry*
226 GpuTLB::lookup(Addr va, bool update_lru)
227 {
228 int set = (va >> TheISA::PageShift) & setMask;
229
230 auto entry = lookupIt(va, update_lru);
231
232 if (entry == entryList[set].end())
233 return nullptr;
234 else
235 return *entry;
236 }
237
238 void
239 GpuTLB::invalidateAll()
240 {
241 DPRINTF(GPUTLB, "Invalidating all entries.\n");
242
243 for (int i = 0; i < numSets; ++i) {
244 while (!entryList[i].empty()) {
245 GpuTlbEntry *entry = entryList[i].front();
246 entryList[i].pop_front();
247 freeList[i].push_back(entry);
248 }
249 }
250 }
251
252 void
253 GpuTLB::setConfigAddress(uint32_t addr)
254 {
255 configAddress = addr;
256 }
257
258 void
259 GpuTLB::invalidateNonGlobal()
260 {
261 DPRINTF(GPUTLB, "Invalidating all non global entries.\n");
262
263 for (int i = 0; i < numSets; ++i) {
264 for (auto entryIt = entryList[i].begin();
265 entryIt != entryList[i].end();) {
266 if (!(*entryIt)->global) {
267 freeList[i].push_back(*entryIt);
268 entryList[i].erase(entryIt++);
269 } else {
270 ++entryIt;
271 }
272 }
273 }
274 }
275
276 void
277 GpuTLB::demapPage(Addr va, uint64_t asn)
278 {
279
280 int set = (va >> TheISA::PageShift) & setMask;
281 auto entry = lookupIt(va, false);
282
283 if (entry != entryList[set].end()) {
284 freeList[set].push_back(*entry);
285 entryList[set].erase(entry);
286 }
287 }
288
289 Fault
290 GpuTLB::translateInt(RequestPtr req, ThreadContext *tc)
291 {
292 DPRINTF(GPUTLB, "Addresses references internal memory.\n");
293 Addr vaddr = req->getVaddr();
294 Addr prefix = (vaddr >> 3) & IntAddrPrefixMask;
295
296 if (prefix == IntAddrPrefixCPUID) {
297 panic("CPUID memory space not yet implemented!\n");
298 } else if (prefix == IntAddrPrefixMSR) {
299 vaddr = vaddr >> 3;
300 req->setFlags(Request::MMAPPED_IPR);
301 Addr regNum = 0;
302
303 switch (vaddr & ~IntAddrPrefixMask) {
304 case 0x10:
305 regNum = MISCREG_TSC;
306 break;
307 case 0x1B:
308 regNum = MISCREG_APIC_BASE;
309 break;
310 case 0xFE:
311 regNum = MISCREG_MTRRCAP;
312 break;
313 case 0x174:
314 regNum = MISCREG_SYSENTER_CS;
315 break;
316 case 0x175:
317 regNum = MISCREG_SYSENTER_ESP;
318 break;
319 case 0x176:
320 regNum = MISCREG_SYSENTER_EIP;
321 break;
322 case 0x179:
323 regNum = MISCREG_MCG_CAP;
324 break;
325 case 0x17A:
326 regNum = MISCREG_MCG_STATUS;
327 break;
328 case 0x17B:
329 regNum = MISCREG_MCG_CTL;
330 break;
331 case 0x1D9:
332 regNum = MISCREG_DEBUG_CTL_MSR;
333 break;
334 case 0x1DB:
335 regNum = MISCREG_LAST_BRANCH_FROM_IP;
336 break;
337 case 0x1DC:
338 regNum = MISCREG_LAST_BRANCH_TO_IP;
339 break;
340 case 0x1DD:
341 regNum = MISCREG_LAST_EXCEPTION_FROM_IP;
342 break;
343 case 0x1DE:
344 regNum = MISCREG_LAST_EXCEPTION_TO_IP;
345 break;
346 case 0x200:
347 regNum = MISCREG_MTRR_PHYS_BASE_0;
348 break;
349 case 0x201:
350 regNum = MISCREG_MTRR_PHYS_MASK_0;
351 break;
352 case 0x202:
353 regNum = MISCREG_MTRR_PHYS_BASE_1;
354 break;
355 case 0x203:
356 regNum = MISCREG_MTRR_PHYS_MASK_1;
357 break;
358 case 0x204:
359 regNum = MISCREG_MTRR_PHYS_BASE_2;
360 break;
361 case 0x205:
362 regNum = MISCREG_MTRR_PHYS_MASK_2;
363 break;
364 case 0x206:
365 regNum = MISCREG_MTRR_PHYS_BASE_3;
366 break;
367 case 0x207:
368 regNum = MISCREG_MTRR_PHYS_MASK_3;
369 break;
370 case 0x208:
371 regNum = MISCREG_MTRR_PHYS_BASE_4;
372 break;
373 case 0x209:
374 regNum = MISCREG_MTRR_PHYS_MASK_4;
375 break;
376 case 0x20A:
377 regNum = MISCREG_MTRR_PHYS_BASE_5;
378 break;
379 case 0x20B:
380 regNum = MISCREG_MTRR_PHYS_MASK_5;
381 break;
382 case 0x20C:
383 regNum = MISCREG_MTRR_PHYS_BASE_6;
384 break;
385 case 0x20D:
386 regNum = MISCREG_MTRR_PHYS_MASK_6;
387 break;
388 case 0x20E:
389 regNum = MISCREG_MTRR_PHYS_BASE_7;
390 break;
391 case 0x20F:
392 regNum = MISCREG_MTRR_PHYS_MASK_7;
393 break;
394 case 0x250:
395 regNum = MISCREG_MTRR_FIX_64K_00000;
396 break;
397 case 0x258:
398 regNum = MISCREG_MTRR_FIX_16K_80000;
399 break;
400 case 0x259:
401 regNum = MISCREG_MTRR_FIX_16K_A0000;
402 break;
403 case 0x268:
404 regNum = MISCREG_MTRR_FIX_4K_C0000;
405 break;
406 case 0x269:
407 regNum = MISCREG_MTRR_FIX_4K_C8000;
408 break;
409 case 0x26A:
410 regNum = MISCREG_MTRR_FIX_4K_D0000;
411 break;
412 case 0x26B:
413 regNum = MISCREG_MTRR_FIX_4K_D8000;
414 break;
415 case 0x26C:
416 regNum = MISCREG_MTRR_FIX_4K_E0000;
417 break;
418 case 0x26D:
419 regNum = MISCREG_MTRR_FIX_4K_E8000;
420 break;
421 case 0x26E:
422 regNum = MISCREG_MTRR_FIX_4K_F0000;
423 break;
424 case 0x26F:
425 regNum = MISCREG_MTRR_FIX_4K_F8000;
426 break;
427 case 0x277:
428 regNum = MISCREG_PAT;
429 break;
430 case 0x2FF:
431 regNum = MISCREG_DEF_TYPE;
432 break;
433 case 0x400:
434 regNum = MISCREG_MC0_CTL;
435 break;
436 case 0x404:
437 regNum = MISCREG_MC1_CTL;
438 break;
439 case 0x408:
440 regNum = MISCREG_MC2_CTL;
441 break;
442 case 0x40C:
443 regNum = MISCREG_MC3_CTL;
444 break;
445 case 0x410:
446 regNum = MISCREG_MC4_CTL;
447 break;
448 case 0x414:
449 regNum = MISCREG_MC5_CTL;
450 break;
451 case 0x418:
452 regNum = MISCREG_MC6_CTL;
453 break;
454 case 0x41C:
455 regNum = MISCREG_MC7_CTL;
456 break;
457 case 0x401:
458 regNum = MISCREG_MC0_STATUS;
459 break;
460 case 0x405:
461 regNum = MISCREG_MC1_STATUS;
462 break;
463 case 0x409:
464 regNum = MISCREG_MC2_STATUS;
465 break;
466 case 0x40D:
467 regNum = MISCREG_MC3_STATUS;
468 break;
469 case 0x411:
470 regNum = MISCREG_MC4_STATUS;
471 break;
472 case 0x415:
473 regNum = MISCREG_MC5_STATUS;
474 break;
475 case 0x419:
476 regNum = MISCREG_MC6_STATUS;
477 break;
478 case 0x41D:
479 regNum = MISCREG_MC7_STATUS;
480 break;
481 case 0x402:
482 regNum = MISCREG_MC0_ADDR;
483 break;
484 case 0x406:
485 regNum = MISCREG_MC1_ADDR;
486 break;
487 case 0x40A:
488 regNum = MISCREG_MC2_ADDR;
489 break;
490 case 0x40E:
491 regNum = MISCREG_MC3_ADDR;
492 break;
493 case 0x412:
494 regNum = MISCREG_MC4_ADDR;
495 break;
496 case 0x416:
497 regNum = MISCREG_MC5_ADDR;
498 break;
499 case 0x41A:
500 regNum = MISCREG_MC6_ADDR;
501 break;
502 case 0x41E:
503 regNum = MISCREG_MC7_ADDR;
504 break;
505 case 0x403:
506 regNum = MISCREG_MC0_MISC;
507 break;
508 case 0x407:
509 regNum = MISCREG_MC1_MISC;
510 break;
511 case 0x40B:
512 regNum = MISCREG_MC2_MISC;
513 break;
514 case 0x40F:
515 regNum = MISCREG_MC3_MISC;
516 break;
517 case 0x413:
518 regNum = MISCREG_MC4_MISC;
519 break;
520 case 0x417:
521 regNum = MISCREG_MC5_MISC;
522 break;
523 case 0x41B:
524 regNum = MISCREG_MC6_MISC;
525 break;
526 case 0x41F:
527 regNum = MISCREG_MC7_MISC;
528 break;
529 case 0xC0000080:
530 regNum = MISCREG_EFER;
531 break;
532 case 0xC0000081:
533 regNum = MISCREG_STAR;
534 break;
535 case 0xC0000082:
536 regNum = MISCREG_LSTAR;
537 break;
538 case 0xC0000083:
539 regNum = MISCREG_CSTAR;
540 break;
541 case 0xC0000084:
542 regNum = MISCREG_SF_MASK;
543 break;
544 case 0xC0000100:
545 regNum = MISCREG_FS_BASE;
546 break;
547 case 0xC0000101:
548 regNum = MISCREG_GS_BASE;
549 break;
550 case 0xC0000102:
551 regNum = MISCREG_KERNEL_GS_BASE;
552 break;
553 case 0xC0000103:
554 regNum = MISCREG_TSC_AUX;
555 break;
556 case 0xC0010000:
557 regNum = MISCREG_PERF_EVT_SEL0;
558 break;
559 case 0xC0010001:
560 regNum = MISCREG_PERF_EVT_SEL1;
561 break;
562 case 0xC0010002:
563 regNum = MISCREG_PERF_EVT_SEL2;
564 break;
565 case 0xC0010003:
566 regNum = MISCREG_PERF_EVT_SEL3;
567 break;
568 case 0xC0010004:
569 regNum = MISCREG_PERF_EVT_CTR0;
570 break;
571 case 0xC0010005:
572 regNum = MISCREG_PERF_EVT_CTR1;
573 break;
574 case 0xC0010006:
575 regNum = MISCREG_PERF_EVT_CTR2;
576 break;
577 case 0xC0010007:
578 regNum = MISCREG_PERF_EVT_CTR3;
579 break;
580 case 0xC0010010:
581 regNum = MISCREG_SYSCFG;
582 break;
583 case 0xC0010016:
584 regNum = MISCREG_IORR_BASE0;
585 break;
586 case 0xC0010017:
587 regNum = MISCREG_IORR_BASE1;
588 break;
589 case 0xC0010018:
590 regNum = MISCREG_IORR_MASK0;
591 break;
592 case 0xC0010019:
593 regNum = MISCREG_IORR_MASK1;
594 break;
595 case 0xC001001A:
596 regNum = MISCREG_TOP_MEM;
597 break;
598 case 0xC001001D:
599 regNum = MISCREG_TOP_MEM2;
600 break;
601 case 0xC0010114:
602 regNum = MISCREG_VM_CR;
603 break;
604 case 0xC0010115:
605 regNum = MISCREG_IGNNE;
606 break;
607 case 0xC0010116:
608 regNum = MISCREG_SMM_CTL;
609 break;
610 case 0xC0010117:
611 regNum = MISCREG_VM_HSAVE_PA;
612 break;
613 default:
614 return std::make_shared<GeneralProtection>(0);
615 }
616 //The index is multiplied by the size of a MiscReg so that
617 //any memory dependence calculations will not see these as
618 //overlapping.
619 req->setPaddr(regNum * sizeof(MiscReg));
620 return NoFault;
621 } else if (prefix == IntAddrPrefixIO) {
622 // TODO If CPL > IOPL or in virtual mode, check the I/O permission
623 // bitmap in the TSS.
624
625 Addr IOPort = vaddr & ~IntAddrPrefixMask;
626 // Make sure the address fits in the expected 16 bit IO address
627 // space.
628 assert(!(IOPort & ~0xFFFF));
629
630 if (IOPort == 0xCF8 && req->getSize() == 4) {
631 req->setFlags(Request::MMAPPED_IPR);
632 req->setPaddr(MISCREG_PCI_CONFIG_ADDRESS * sizeof(MiscReg));
633 } else if ((IOPort & ~mask(2)) == 0xCFC) {
634 req->setFlags(Request::UNCACHEABLE);
635
636 Addr configAddress =
637 tc->readMiscRegNoEffect(MISCREG_PCI_CONFIG_ADDRESS);
638
639 if (bits(configAddress, 31, 31)) {
640 req->setPaddr(PhysAddrPrefixPciConfig |
641 mbits(configAddress, 30, 2) |
642 (IOPort & mask(2)));
643 } else {
644 req->setPaddr(PhysAddrPrefixIO | IOPort);
645 }
646 } else {
647 req->setFlags(Request::UNCACHEABLE);
648 req->setPaddr(PhysAddrPrefixIO | IOPort);
649 }
650 return NoFault;
651 } else {
652 panic("Access to unrecognized internal address space %#x.\n",
653 prefix);
654 }
655 }
656
657 /**
658 * TLB_lookup will only perform a TLB lookup returning true on a TLB hit
659 * and false on a TLB miss.
660 * Many of the checks about different modes have been converted to
661 * assertions, since these parts of the code are not really used.
662 * On a hit it will update the LRU stack.
663 */
664 bool
665 GpuTLB::tlbLookup(RequestPtr req, ThreadContext *tc, bool update_stats)
666 {
667 bool tlb_hit = false;
668 #ifndef NDEBUG
669 uint32_t flags = req->getFlags();
670 int seg = flags & SegmentFlagMask;
671 #endif
672
673 assert(seg != SEGMENT_REG_MS);
674 Addr vaddr = req->getVaddr();
675 DPRINTF(GPUTLB, "TLB Lookup for vaddr %#x.\n", vaddr);
676 HandyM5Reg m5Reg = tc->readMiscRegNoEffect(MISCREG_M5_REG);
677
678 if (m5Reg.prot) {
679 DPRINTF(GPUTLB, "In protected mode.\n");
680 // make sure we are in 64-bit mode
681 assert(m5Reg.mode == LongMode);
682
683 // If paging is enabled, do the translation.
684 if (m5Reg.paging) {
685 DPRINTF(GPUTLB, "Paging enabled.\n");
686 //update LRU stack on a hit
687 GpuTlbEntry *entry = lookup(vaddr, true);
688
689 if (entry)
690 tlb_hit = true;
691
692 if (!update_stats) {
693 // functional tlb access for memory initialization
694 // i.e., memory seeding or instr. seeding -> don't update
695 // TLB and stats
696 return tlb_hit;
697 }
698
699 localNumTLBAccesses++;
700
701 if (!entry) {
702 localNumTLBMisses++;
703 } else {
704 localNumTLBHits++;
705 }
706 }
707 }
708
709 return tlb_hit;
710 }
711
712 Fault
713 GpuTLB::translate(RequestPtr req, ThreadContext *tc,
714 Translation *translation, Mode mode,
715 bool &delayedResponse, bool timing, int &latency)
716 {
717 uint32_t flags = req->getFlags();
718 int seg = flags & SegmentFlagMask;
719 bool storeCheck = flags & (StoreCheck << FlagShift);
720
721 // If this is true, we're dealing with a request
722 // to a non-memory address space.
723 if (seg == SEGMENT_REG_MS) {
724 return translateInt(req, tc);
725 }
726
727 delayedResponse = false;
728 Addr vaddr = req->getVaddr();
729 DPRINTF(GPUTLB, "Translating vaddr %#x.\n", vaddr);
730
731 HandyM5Reg m5Reg = tc->readMiscRegNoEffect(MISCREG_M5_REG);
732
733 // If protected mode has been enabled...
734 if (m5Reg.prot) {
735 DPRINTF(GPUTLB, "In protected mode.\n");
736 // If we're not in 64-bit mode, do protection/limit checks
737 if (m5Reg.mode != LongMode) {
738 DPRINTF(GPUTLB, "Not in long mode. Checking segment "
739 "protection.\n");
740
741 // Check for a null segment selector.
742 if (!(seg == SEGMENT_REG_TSG || seg == SYS_SEGMENT_REG_IDTR ||
743 seg == SEGMENT_REG_HS || seg == SEGMENT_REG_LS)
744 && !tc->readMiscRegNoEffect(MISCREG_SEG_SEL(seg))) {
745 return std::make_shared<GeneralProtection>(0);
746 }
747
748 bool expandDown = false;
749 SegAttr attr = tc->readMiscRegNoEffect(MISCREG_SEG_ATTR(seg));
750
751 if (seg >= SEGMENT_REG_ES && seg <= SEGMENT_REG_HS) {
752 if (!attr.writable && (mode == BaseTLB::Write ||
753 storeCheck))
754 return std::make_shared<GeneralProtection>(0);
755
756 if (!attr.readable && mode == BaseTLB::Read)
757 return std::make_shared<GeneralProtection>(0);
758
759 expandDown = attr.expandDown;
760
761 }
762
763 Addr base = tc->readMiscRegNoEffect(MISCREG_SEG_BASE(seg));
764 Addr limit = tc->readMiscRegNoEffect(MISCREG_SEG_LIMIT(seg));
765 // This assumes we're not in 64 bit mode. If we were, the
766 // default address size is 64 bits, overridable to 32.
767 int size = 32;
768 bool sizeOverride = (flags & (AddrSizeFlagBit << FlagShift));
769 SegAttr csAttr = tc->readMiscRegNoEffect(MISCREG_CS_ATTR);
770
771 if ((csAttr.defaultSize && sizeOverride) ||
772 (!csAttr.defaultSize && !sizeOverride)) {
773 size = 16;
774 }
775
776 Addr offset = bits(vaddr - base, size - 1, 0);
777 Addr endOffset = offset + req->getSize() - 1;
778
779 if (expandDown) {
780 DPRINTF(GPUTLB, "Checking an expand down segment.\n");
781 warn_once("Expand down segments are untested.\n");
782
783 if (offset <= limit || endOffset <= limit)
784 return std::make_shared<GeneralProtection>(0);
785 } else {
786 if (offset > limit || endOffset > limit)
787 return std::make_shared<GeneralProtection>(0);
788 }
789 }
790
791 // If paging is enabled, do the translation.
792 if (m5Reg.paging) {
793 DPRINTF(GPUTLB, "Paging enabled.\n");
794 // The vaddr already has the segment base applied.
795 GpuTlbEntry *entry = lookup(vaddr);
796 localNumTLBAccesses++;
797
798 if (!entry) {
799 localNumTLBMisses++;
800 if (timing) {
801 latency = missLatency1;
802 }
803
804 if (FullSystem) {
805 fatal("GpuTLB doesn't support full-system mode\n");
806 } else {
807 DPRINTF(GPUTLB, "Handling a TLB miss for address %#x "
808 "at pc %#x.\n", vaddr, tc->instAddr());
809
810 Process *p = tc->getProcessPtr();
811 GpuTlbEntry newEntry;
812 bool success = p->pTable->lookup(vaddr, newEntry);
811 TlbEntry *newEntry = p->pTable->lookup(vaddr);
813
812
814 if (!success && mode != BaseTLB::Execute) {
813 if (!newEntry && mode != BaseTLB::Execute) {
815 // penalize a "page fault" more
814 // penalize a "page fault" more
816 if (timing) {
815 if (timing)
817 latency += missLatency2;
816 latency += missLatency2;
818 }
819
820 if (p->fixupStackFault(vaddr))
817
818 if (p->fixupStackFault(vaddr))
821 success = p->pTable->lookup(vaddr, newEntry);
819 newEntry = p->pTable->lookup(vaddr);
822 }
823
820 }
821
824 if (!success) {
822 if (!newEntry) {
825 return std::make_shared<PageFault>(vaddr, true,
826 mode, true,
827 false);
828 } else {
823 return std::make_shared<PageFault>(vaddr, true,
824 mode, true,
825 false);
826 } else {
829 newEntry.valid = success;
830 Addr alignedVaddr = p->pTable->pageAlign(vaddr);
831
832 DPRINTF(GPUTLB, "Mapping %#x to %#x\n",
827 Addr alignedVaddr = p->pTable->pageAlign(vaddr);
828
829 DPRINTF(GPUTLB, "Mapping %#x to %#x\n",
833 alignedVaddr, newEntry.pageStart());
830 alignedVaddr, newEntry->pageStart());
834
831
835 entry = insert(alignedVaddr, newEntry);
832 GpuTlbEntry gpuEntry;
833 *(TlbEntry *)&gpuEntry = *newEntry;
834 gpuEntry.valid = true;
835 entry = insert(alignedVaddr, gpuEntry);
836 }
837
838 DPRINTF(GPUTLB, "Miss was serviced.\n");
839 }
840 } else {
841 localNumTLBHits++;
842
843 if (timing) {
844 latency = hitLatency;
845 }
846 }
847
848 // Do paging protection checks.
849 bool inUser = (m5Reg.cpl == 3 &&
850 !(flags & (CPL0FlagBit << FlagShift)));
851
852 CR0 cr0 = tc->readMiscRegNoEffect(MISCREG_CR0);
853 bool badWrite = (!entry->writable && (inUser || cr0.wp));
854
855 if ((inUser && !entry->user) || (mode == BaseTLB::Write &&
856 badWrite)) {
857 // The page must have been present to get into the TLB in
858 // the first place. We'll assume the reserved bits are
859 // fine even though we're not checking them.
860 return std::make_shared<PageFault>(vaddr, true, mode,
861 inUser, false);
862 }
863
864 if (storeCheck && badWrite) {
865 // This would fault if this were a write, so return a page
866 // fault that reflects that happening.
867 return std::make_shared<PageFault>(vaddr, true,
868 BaseTLB::Write,
869 inUser, false);
870 }
871
872
873 DPRINTF(GPUTLB, "Entry found with paddr %#x, doing protection "
874 "checks.\n", entry->paddr);
875
876 int page_size = entry->size();
877 Addr paddr = entry->paddr | (vaddr & (page_size - 1));
878 DPRINTF(GPUTLB, "Translated %#x -> %#x.\n", vaddr, paddr);
879 req->setPaddr(paddr);
880
881 if (entry->uncacheable)
882 req->setFlags(Request::UNCACHEABLE);
883 } else {
884 //Use the address which already has segmentation applied.
885 DPRINTF(GPUTLB, "Paging disabled.\n");
886 DPRINTF(GPUTLB, "Translated %#x -> %#x.\n", vaddr, vaddr);
887 req->setPaddr(vaddr);
888 }
889 } else {
890 // Real mode
891 DPRINTF(GPUTLB, "In real mode.\n");
892 DPRINTF(GPUTLB, "Translated %#x -> %#x.\n", vaddr, vaddr);
893 req->setPaddr(vaddr);
894 }
895
896 // Check for an access to the local APIC
897 if (FullSystem) {
898 LocalApicBase localApicBase =
899 tc->readMiscRegNoEffect(MISCREG_APIC_BASE);
900
901 Addr baseAddr = localApicBase.base * PageBytes;
902 Addr paddr = req->getPaddr();
903
904 if (baseAddr <= paddr && baseAddr + PageBytes > paddr) {
905 // Force the access to be uncacheable.
906 req->setFlags(Request::UNCACHEABLE);
907 req->setPaddr(x86LocalAPICAddress(tc->contextId(),
908 paddr - baseAddr));
909 }
910 }
911
912 return NoFault;
913 };
914
915 Fault
916 GpuTLB::translateAtomic(RequestPtr req, ThreadContext *tc, Mode mode,
917 int &latency)
918 {
919 bool delayedResponse;
920
921 return GpuTLB::translate(req, tc, nullptr, mode, delayedResponse, false,
922 latency);
923 }
924
925 void
926 GpuTLB::translateTiming(RequestPtr req, ThreadContext *tc,
927 Translation *translation, Mode mode, int &latency)
928 {
929 bool delayedResponse;
930 assert(translation);
931
932 Fault fault = GpuTLB::translate(req, tc, translation, mode,
933 delayedResponse, true, latency);
934
935 if (!delayedResponse)
936 translation->finish(fault, req, tc, mode);
937 }
938
939 Walker*
940 GpuTLB::getWalker()
941 {
942 return walker;
943 }
944
945
946 void
947 GpuTLB::serialize(CheckpointOut &cp) const
948 {
949 }
950
951 void
952 GpuTLB::unserialize(CheckpointIn &cp)
953 {
954 }
955
956 void
957 GpuTLB::regStats()
958 {
959 MemObject::regStats();
960
961 localNumTLBAccesses
962 .name(name() + ".local_TLB_accesses")
963 .desc("Number of TLB accesses")
964 ;
965
966 localNumTLBHits
967 .name(name() + ".local_TLB_hits")
968 .desc("Number of TLB hits")
969 ;
970
971 localNumTLBMisses
972 .name(name() + ".local_TLB_misses")
973 .desc("Number of TLB misses")
974 ;
975
976 localTLBMissRate
977 .name(name() + ".local_TLB_miss_rate")
978 .desc("TLB miss rate")
979 ;
980
981 accessCycles
982 .name(name() + ".access_cycles")
983 .desc("Cycles spent accessing this TLB level")
984 ;
985
986 pageTableCycles
987 .name(name() + ".page_table_cycles")
988 .desc("Cycles spent accessing the page table")
989 ;
990
991 localTLBMissRate = 100 * localNumTLBMisses / localNumTLBAccesses;
992
993 numUniquePages
994 .name(name() + ".unique_pages")
995 .desc("Number of unique pages touched")
996 ;
997
998 localCycles
999 .name(name() + ".local_cycles")
1000 .desc("Number of cycles spent in queue for all incoming reqs")
1001 ;
1002
1003 localLatency
1004 .name(name() + ".local_latency")
1005 .desc("Avg. latency over incoming coalesced reqs")
1006 ;
1007
1008 localLatency = localCycles / localNumTLBAccesses;
1009
1010 globalNumTLBAccesses
1011 .name(name() + ".global_TLB_accesses")
1012 .desc("Number of TLB accesses")
1013 ;
1014
1015 globalNumTLBHits
1016 .name(name() + ".global_TLB_hits")
1017 .desc("Number of TLB hits")
1018 ;
1019
1020 globalNumTLBMisses
1021 .name(name() + ".global_TLB_misses")
1022 .desc("Number of TLB misses")
1023 ;
1024
1025 globalTLBMissRate
1026 .name(name() + ".global_TLB_miss_rate")
1027 .desc("TLB miss rate")
1028 ;
1029
1030 globalTLBMissRate = 100 * globalNumTLBMisses / globalNumTLBAccesses;
1031
1032 avgReuseDistance
1033 .name(name() + ".avg_reuse_distance")
1034 .desc("avg. reuse distance over all pages (in ticks)")
1035 ;
1036
1037 }
1038
1039 /**
1040 * Do the TLB lookup for this coalesced request and schedule
1041 * another event <TLB access latency> cycles later.
1042 */
1043
1044 void
1045 GpuTLB::issueTLBLookup(PacketPtr pkt)
1046 {
1047 assert(pkt);
1048 assert(pkt->senderState);
1049
1050 Addr virt_page_addr = roundDown(pkt->req->getVaddr(),
1051 TheISA::PageBytes);
1052
1053 TranslationState *sender_state =
1054 safe_cast<TranslationState*>(pkt->senderState);
1055
1056 bool update_stats = !sender_state->prefetch;
1057 ThreadContext * tmp_tc = sender_state->tc;
1058
1059 DPRINTF(GPUTLB, "Translation req. for virt. page addr %#x\n",
1060 virt_page_addr);
1061
1062 int req_cnt = sender_state->reqCnt.back();
1063
1064 if (update_stats) {
1065 accessCycles -= (curTick() * req_cnt);
1066 localCycles -= curTick();
1067 updatePageFootprint(virt_page_addr);
1068 globalNumTLBAccesses += req_cnt;
1069 }
1070
1071 tlbOutcome lookup_outcome = TLB_MISS;
1072 RequestPtr tmp_req = pkt->req;
1073
1074 // Access the TLB and figure out if it's a hit or a miss.
1075 bool success = tlbLookup(tmp_req, tmp_tc, update_stats);
1076
1077 if (success) {
1078 lookup_outcome = TLB_HIT;
1079 // Put the entry in SenderState
1080 GpuTlbEntry *entry = lookup(tmp_req->getVaddr(), false);
1081 assert(entry);
1082
1083 sender_state->tlbEntry =
1084 new GpuTlbEntry(0, entry->vaddr, entry->paddr, entry->valid);
1085
1086 if (update_stats) {
1087 // the reqCnt has an entry per level, so its size tells us
1088 // which level we are in
1089 sender_state->hitLevel = sender_state->reqCnt.size();
1090 globalNumTLBHits += req_cnt;
1091 }
1092 } else {
1093 if (update_stats)
1094 globalNumTLBMisses += req_cnt;
1095 }
1096
1097 /*
1098 * We now know the TLB lookup outcome (if it's a hit or a miss), as well
1099 * as the TLB access latency.
1100 *
1101 * We create and schedule a new TLBEvent which will help us take the
1102 * appropriate actions (e.g., update TLB on a hit, send request to lower
1103 * level TLB on a miss, or start a page walk if this was the last-level
1104 * TLB)
1105 */
1106 TLBEvent *tlb_event =
1107 new TLBEvent(this, virt_page_addr, lookup_outcome, pkt);
1108
1109 if (translationReturnEvent.count(virt_page_addr)) {
1110 panic("Virtual Page Address %#x already has a return event\n",
1111 virt_page_addr);
1112 }
1113
1114 translationReturnEvent[virt_page_addr] = tlb_event;
1115 assert(tlb_event);
1116
1117 DPRINTF(GPUTLB, "schedule translationReturnEvent @ curTick %d\n",
1118 curTick() + this->ticks(hitLatency));
1119
1120 schedule(tlb_event, curTick() + this->ticks(hitLatency));
1121 }
1122
1123 GpuTLB::TLBEvent::TLBEvent(GpuTLB* _tlb, Addr _addr, tlbOutcome tlb_outcome,
1124 PacketPtr _pkt)
1125 : Event(CPU_Tick_Pri), tlb(_tlb), virtPageAddr(_addr),
1126 outcome(tlb_outcome), pkt(_pkt)
1127 {
1128 }
1129
1130 /**
1131 * Do Paging protection checks. If we encounter a page fault, then
1132 * an assertion is fired.
1133 */
1134 void
1135 GpuTLB::pagingProtectionChecks(ThreadContext *tc, PacketPtr pkt,
1136 GpuTlbEntry * tlb_entry, Mode mode)
1137 {
1138 HandyM5Reg m5Reg = tc->readMiscRegNoEffect(MISCREG_M5_REG);
1139 uint32_t flags = pkt->req->getFlags();
1140 bool storeCheck = flags & (StoreCheck << FlagShift);
1141
1142 // Do paging protection checks.
1143 bool inUser = (m5Reg.cpl == 3 && !(flags & (CPL0FlagBit << FlagShift)));
1144 CR0 cr0 = tc->readMiscRegNoEffect(MISCREG_CR0);
1145
1146 bool badWrite = (!tlb_entry->writable && (inUser || cr0.wp));
1147
1148 if ((inUser && !tlb_entry->user) ||
1149 (mode == BaseTLB::Write && badWrite)) {
1150 // The page must have been present to get into the TLB in
1151 // the first place. We'll assume the reserved bits are
1152 // fine even though we're not checking them.
1153 assert(false);
1154 }
1155
1156 if (storeCheck && badWrite) {
1157 // This would fault if this were a write, so return a page
1158 // fault that reflects that happening.
1159 assert(false);
1160 }
1161 }
1162
1163 /**
1164 * handleTranslationReturn is called on a TLB hit,
1165 * when a TLB miss returns or when a page fault returns.
1166 * The latter calls handelHit with TLB miss as tlbOutcome.
1167 */
1168 void
1169 GpuTLB::handleTranslationReturn(Addr virt_page_addr, tlbOutcome tlb_outcome,
1170 PacketPtr pkt)
1171 {
1172
1173 assert(pkt);
1174 Addr vaddr = pkt->req->getVaddr();
1175
1176 TranslationState *sender_state =
1177 safe_cast<TranslationState*>(pkt->senderState);
1178
1179 ThreadContext *tc = sender_state->tc;
1180 Mode mode = sender_state->tlbMode;
1181
1182 GpuTlbEntry *local_entry, *new_entry;
1183
1184 if (tlb_outcome == TLB_HIT) {
1185 DPRINTF(GPUTLB, "Translation Done - TLB Hit for addr %#x\n", vaddr);
1186 local_entry = sender_state->tlbEntry;
1187 } else {
1188 DPRINTF(GPUTLB, "Translation Done - TLB Miss for addr %#x\n",
1189 vaddr);
1190
1191 // We are returning either from a page walk or from a hit at a lower
1192 // TLB level. The senderState should be "carrying" a pointer to the
1193 // correct TLBEntry.
1194 new_entry = sender_state->tlbEntry;
1195 assert(new_entry);
1196 local_entry = new_entry;
1197
1198 if (allocationPolicy) {
1199 DPRINTF(GPUTLB, "allocating entry w/ addr %#x\n",
1200 virt_page_addr);
1201
1202 local_entry = insert(virt_page_addr, *new_entry);
1203 }
1204
1205 assert(local_entry);
1206 }
1207
1208 /**
1209 * At this point the packet carries an up-to-date tlbEntry pointer
1210 * in its senderState.
1211 * Next step is to do the paging protection checks.
1212 */
1213 DPRINTF(GPUTLB, "Entry found with vaddr %#x, doing protection checks "
1214 "while paddr was %#x.\n", local_entry->vaddr,
1215 local_entry->paddr);
1216
1217 pagingProtectionChecks(tc, pkt, local_entry, mode);
1218 int page_size = local_entry->size();
1219 Addr paddr = local_entry->paddr | (vaddr & (page_size - 1));
1220 DPRINTF(GPUTLB, "Translated %#x -> %#x.\n", vaddr, paddr);
1221
1222 // Since this packet will be sent through the cpu side slave port,
1223 // it must be converted to a response pkt if it is not one already
1224 if (pkt->isRequest()) {
1225 pkt->makeTimingResponse();
1226 }
1227
1228 pkt->req->setPaddr(paddr);
1229
1230 if (local_entry->uncacheable) {
1231 pkt->req->setFlags(Request::UNCACHEABLE);
1232 }
1233
1234 //send packet back to coalescer
1235 cpuSidePort[0]->sendTimingResp(pkt);
1236 //schedule cleanup event
1237 cleanupQueue.push(virt_page_addr);
1238
1239 // schedule this only once per cycle.
1240 // The check is required because we might have multiple translations
1241 // returning the same cycle
1242 // this is a maximum priority event and must be on the same cycle
1243 // as the cleanup event in TLBCoalescer to avoid a race with
1244 // IssueProbeEvent caused by TLBCoalescer::MemSidePort::recvReqRetry
1245 if (!cleanupEvent.scheduled())
1246 schedule(cleanupEvent, curTick());
1247 }
1248
1249 /**
1250 * Here we take the appropriate actions based on the result of the
1251 * TLB lookup.
1252 */
1253 void
1254 GpuTLB::translationReturn(Addr virtPageAddr, tlbOutcome outcome,
1255 PacketPtr pkt)
1256 {
1257 DPRINTF(GPUTLB, "Triggered TLBEvent for addr %#x\n", virtPageAddr);
1258
1259 assert(translationReturnEvent[virtPageAddr]);
1260 assert(pkt);
1261
1262 TranslationState *tmp_sender_state =
1263 safe_cast<TranslationState*>(pkt->senderState);
1264
1265 int req_cnt = tmp_sender_state->reqCnt.back();
1266 bool update_stats = !tmp_sender_state->prefetch;
1267
1268
1269 if (outcome == TLB_HIT) {
1270 handleTranslationReturn(virtPageAddr, TLB_HIT, pkt);
1271
1272 if (update_stats) {
1273 accessCycles += (req_cnt * curTick());
1274 localCycles += curTick();
1275 }
1276
1277 } else if (outcome == TLB_MISS) {
1278
1279 DPRINTF(GPUTLB, "This is a TLB miss\n");
1280 if (update_stats) {
1281 accessCycles += (req_cnt*curTick());
1282 localCycles += curTick();
1283 }
1284
1285 if (hasMemSidePort) {
1286 // the one cyle added here represent the delay from when we get
1287 // the reply back till when we propagate it to the coalescer
1288 // above.
1289 if (update_stats) {
1290 accessCycles += (req_cnt * 1);
1291 localCycles += 1;
1292 }
1293
1294 /**
1295 * There is a TLB below. Send the coalesced request.
1296 * We actually send the very first packet of all the
1297 * pending packets for this virtual page address.
1298 */
1299 if (!memSidePort[0]->sendTimingReq(pkt)) {
1300 DPRINTF(GPUTLB, "Failed sending translation request to "
1301 "lower level TLB for addr %#x\n", virtPageAddr);
1302
1303 memSidePort[0]->retries.push_back(pkt);
1304 } else {
1305 DPRINTF(GPUTLB, "Sent translation request to lower level "
1306 "TLB for addr %#x\n", virtPageAddr);
1307 }
1308 } else {
1309 //this is the last level TLB. Start a page walk
1310 DPRINTF(GPUTLB, "Last level TLB - start a page walk for "
1311 "addr %#x\n", virtPageAddr);
1312
1313 if (update_stats)
1314 pageTableCycles -= (req_cnt*curTick());
1315
1316 TLBEvent *tlb_event = translationReturnEvent[virtPageAddr];
1317 assert(tlb_event);
1318 tlb_event->updateOutcome(PAGE_WALK);
1319 schedule(tlb_event, curTick() + ticks(missLatency2));
1320 }
1321 } else if (outcome == PAGE_WALK) {
1322 if (update_stats)
1323 pageTableCycles += (req_cnt*curTick());
1324
1325 // Need to access the page table and update the TLB
1326 DPRINTF(GPUTLB, "Doing a page walk for address %#x\n",
1327 virtPageAddr);
1328
1329 TranslationState *sender_state =
1330 safe_cast<TranslationState*>(pkt->senderState);
1331
1332 Process *p = sender_state->tc->getProcessPtr();
836 }
837
838 DPRINTF(GPUTLB, "Miss was serviced.\n");
839 }
840 } else {
841 localNumTLBHits++;
842
843 if (timing) {
844 latency = hitLatency;
845 }
846 }
847
848 // Do paging protection checks.
849 bool inUser = (m5Reg.cpl == 3 &&
850 !(flags & (CPL0FlagBit << FlagShift)));
851
852 CR0 cr0 = tc->readMiscRegNoEffect(MISCREG_CR0);
853 bool badWrite = (!entry->writable && (inUser || cr0.wp));
854
855 if ((inUser && !entry->user) || (mode == BaseTLB::Write &&
856 badWrite)) {
857 // The page must have been present to get into the TLB in
858 // the first place. We'll assume the reserved bits are
859 // fine even though we're not checking them.
860 return std::make_shared<PageFault>(vaddr, true, mode,
861 inUser, false);
862 }
863
864 if (storeCheck && badWrite) {
865 // This would fault if this were a write, so return a page
866 // fault that reflects that happening.
867 return std::make_shared<PageFault>(vaddr, true,
868 BaseTLB::Write,
869 inUser, false);
870 }
871
872
873 DPRINTF(GPUTLB, "Entry found with paddr %#x, doing protection "
874 "checks.\n", entry->paddr);
875
876 int page_size = entry->size();
877 Addr paddr = entry->paddr | (vaddr & (page_size - 1));
878 DPRINTF(GPUTLB, "Translated %#x -> %#x.\n", vaddr, paddr);
879 req->setPaddr(paddr);
880
881 if (entry->uncacheable)
882 req->setFlags(Request::UNCACHEABLE);
883 } else {
884 //Use the address which already has segmentation applied.
885 DPRINTF(GPUTLB, "Paging disabled.\n");
886 DPRINTF(GPUTLB, "Translated %#x -> %#x.\n", vaddr, vaddr);
887 req->setPaddr(vaddr);
888 }
889 } else {
890 // Real mode
891 DPRINTF(GPUTLB, "In real mode.\n");
892 DPRINTF(GPUTLB, "Translated %#x -> %#x.\n", vaddr, vaddr);
893 req->setPaddr(vaddr);
894 }
895
896 // Check for an access to the local APIC
897 if (FullSystem) {
898 LocalApicBase localApicBase =
899 tc->readMiscRegNoEffect(MISCREG_APIC_BASE);
900
901 Addr baseAddr = localApicBase.base * PageBytes;
902 Addr paddr = req->getPaddr();
903
904 if (baseAddr <= paddr && baseAddr + PageBytes > paddr) {
905 // Force the access to be uncacheable.
906 req->setFlags(Request::UNCACHEABLE);
907 req->setPaddr(x86LocalAPICAddress(tc->contextId(),
908 paddr - baseAddr));
909 }
910 }
911
912 return NoFault;
913 };
914
915 Fault
916 GpuTLB::translateAtomic(RequestPtr req, ThreadContext *tc, Mode mode,
917 int &latency)
918 {
919 bool delayedResponse;
920
921 return GpuTLB::translate(req, tc, nullptr, mode, delayedResponse, false,
922 latency);
923 }
924
925 void
926 GpuTLB::translateTiming(RequestPtr req, ThreadContext *tc,
927 Translation *translation, Mode mode, int &latency)
928 {
929 bool delayedResponse;
930 assert(translation);
931
932 Fault fault = GpuTLB::translate(req, tc, translation, mode,
933 delayedResponse, true, latency);
934
935 if (!delayedResponse)
936 translation->finish(fault, req, tc, mode);
937 }
938
939 Walker*
940 GpuTLB::getWalker()
941 {
942 return walker;
943 }
944
945
946 void
947 GpuTLB::serialize(CheckpointOut &cp) const
948 {
949 }
950
951 void
952 GpuTLB::unserialize(CheckpointIn &cp)
953 {
954 }
955
956 void
957 GpuTLB::regStats()
958 {
959 MemObject::regStats();
960
961 localNumTLBAccesses
962 .name(name() + ".local_TLB_accesses")
963 .desc("Number of TLB accesses")
964 ;
965
966 localNumTLBHits
967 .name(name() + ".local_TLB_hits")
968 .desc("Number of TLB hits")
969 ;
970
971 localNumTLBMisses
972 .name(name() + ".local_TLB_misses")
973 .desc("Number of TLB misses")
974 ;
975
976 localTLBMissRate
977 .name(name() + ".local_TLB_miss_rate")
978 .desc("TLB miss rate")
979 ;
980
981 accessCycles
982 .name(name() + ".access_cycles")
983 .desc("Cycles spent accessing this TLB level")
984 ;
985
986 pageTableCycles
987 .name(name() + ".page_table_cycles")
988 .desc("Cycles spent accessing the page table")
989 ;
990
991 localTLBMissRate = 100 * localNumTLBMisses / localNumTLBAccesses;
992
993 numUniquePages
994 .name(name() + ".unique_pages")
995 .desc("Number of unique pages touched")
996 ;
997
998 localCycles
999 .name(name() + ".local_cycles")
1000 .desc("Number of cycles spent in queue for all incoming reqs")
1001 ;
1002
1003 localLatency
1004 .name(name() + ".local_latency")
1005 .desc("Avg. latency over incoming coalesced reqs")
1006 ;
1007
1008 localLatency = localCycles / localNumTLBAccesses;
1009
1010 globalNumTLBAccesses
1011 .name(name() + ".global_TLB_accesses")
1012 .desc("Number of TLB accesses")
1013 ;
1014
1015 globalNumTLBHits
1016 .name(name() + ".global_TLB_hits")
1017 .desc("Number of TLB hits")
1018 ;
1019
1020 globalNumTLBMisses
1021 .name(name() + ".global_TLB_misses")
1022 .desc("Number of TLB misses")
1023 ;
1024
1025 globalTLBMissRate
1026 .name(name() + ".global_TLB_miss_rate")
1027 .desc("TLB miss rate")
1028 ;
1029
1030 globalTLBMissRate = 100 * globalNumTLBMisses / globalNumTLBAccesses;
1031
1032 avgReuseDistance
1033 .name(name() + ".avg_reuse_distance")
1034 .desc("avg. reuse distance over all pages (in ticks)")
1035 ;
1036
1037 }
1038
1039 /**
1040 * Do the TLB lookup for this coalesced request and schedule
1041 * another event <TLB access latency> cycles later.
1042 */
1043
1044 void
1045 GpuTLB::issueTLBLookup(PacketPtr pkt)
1046 {
1047 assert(pkt);
1048 assert(pkt->senderState);
1049
1050 Addr virt_page_addr = roundDown(pkt->req->getVaddr(),
1051 TheISA::PageBytes);
1052
1053 TranslationState *sender_state =
1054 safe_cast<TranslationState*>(pkt->senderState);
1055
1056 bool update_stats = !sender_state->prefetch;
1057 ThreadContext * tmp_tc = sender_state->tc;
1058
1059 DPRINTF(GPUTLB, "Translation req. for virt. page addr %#x\n",
1060 virt_page_addr);
1061
1062 int req_cnt = sender_state->reqCnt.back();
1063
1064 if (update_stats) {
1065 accessCycles -= (curTick() * req_cnt);
1066 localCycles -= curTick();
1067 updatePageFootprint(virt_page_addr);
1068 globalNumTLBAccesses += req_cnt;
1069 }
1070
1071 tlbOutcome lookup_outcome = TLB_MISS;
1072 RequestPtr tmp_req = pkt->req;
1073
1074 // Access the TLB and figure out if it's a hit or a miss.
1075 bool success = tlbLookup(tmp_req, tmp_tc, update_stats);
1076
1077 if (success) {
1078 lookup_outcome = TLB_HIT;
1079 // Put the entry in SenderState
1080 GpuTlbEntry *entry = lookup(tmp_req->getVaddr(), false);
1081 assert(entry);
1082
1083 sender_state->tlbEntry =
1084 new GpuTlbEntry(0, entry->vaddr, entry->paddr, entry->valid);
1085
1086 if (update_stats) {
1087 // the reqCnt has an entry per level, so its size tells us
1088 // which level we are in
1089 sender_state->hitLevel = sender_state->reqCnt.size();
1090 globalNumTLBHits += req_cnt;
1091 }
1092 } else {
1093 if (update_stats)
1094 globalNumTLBMisses += req_cnt;
1095 }
1096
1097 /*
1098 * We now know the TLB lookup outcome (if it's a hit or a miss), as well
1099 * as the TLB access latency.
1100 *
1101 * We create and schedule a new TLBEvent which will help us take the
1102 * appropriate actions (e.g., update TLB on a hit, send request to lower
1103 * level TLB on a miss, or start a page walk if this was the last-level
1104 * TLB)
1105 */
1106 TLBEvent *tlb_event =
1107 new TLBEvent(this, virt_page_addr, lookup_outcome, pkt);
1108
1109 if (translationReturnEvent.count(virt_page_addr)) {
1110 panic("Virtual Page Address %#x already has a return event\n",
1111 virt_page_addr);
1112 }
1113
1114 translationReturnEvent[virt_page_addr] = tlb_event;
1115 assert(tlb_event);
1116
1117 DPRINTF(GPUTLB, "schedule translationReturnEvent @ curTick %d\n",
1118 curTick() + this->ticks(hitLatency));
1119
1120 schedule(tlb_event, curTick() + this->ticks(hitLatency));
1121 }
1122
1123 GpuTLB::TLBEvent::TLBEvent(GpuTLB* _tlb, Addr _addr, tlbOutcome tlb_outcome,
1124 PacketPtr _pkt)
1125 : Event(CPU_Tick_Pri), tlb(_tlb), virtPageAddr(_addr),
1126 outcome(tlb_outcome), pkt(_pkt)
1127 {
1128 }
1129
1130 /**
1131 * Do Paging protection checks. If we encounter a page fault, then
1132 * an assertion is fired.
1133 */
1134 void
1135 GpuTLB::pagingProtectionChecks(ThreadContext *tc, PacketPtr pkt,
1136 GpuTlbEntry * tlb_entry, Mode mode)
1137 {
1138 HandyM5Reg m5Reg = tc->readMiscRegNoEffect(MISCREG_M5_REG);
1139 uint32_t flags = pkt->req->getFlags();
1140 bool storeCheck = flags & (StoreCheck << FlagShift);
1141
1142 // Do paging protection checks.
1143 bool inUser = (m5Reg.cpl == 3 && !(flags & (CPL0FlagBit << FlagShift)));
1144 CR0 cr0 = tc->readMiscRegNoEffect(MISCREG_CR0);
1145
1146 bool badWrite = (!tlb_entry->writable && (inUser || cr0.wp));
1147
1148 if ((inUser && !tlb_entry->user) ||
1149 (mode == BaseTLB::Write && badWrite)) {
1150 // The page must have been present to get into the TLB in
1151 // the first place. We'll assume the reserved bits are
1152 // fine even though we're not checking them.
1153 assert(false);
1154 }
1155
1156 if (storeCheck && badWrite) {
1157 // This would fault if this were a write, so return a page
1158 // fault that reflects that happening.
1159 assert(false);
1160 }
1161 }
1162
1163 /**
1164 * handleTranslationReturn is called on a TLB hit,
1165 * when a TLB miss returns or when a page fault returns.
1166 * The latter calls handelHit with TLB miss as tlbOutcome.
1167 */
1168 void
1169 GpuTLB::handleTranslationReturn(Addr virt_page_addr, tlbOutcome tlb_outcome,
1170 PacketPtr pkt)
1171 {
1172
1173 assert(pkt);
1174 Addr vaddr = pkt->req->getVaddr();
1175
1176 TranslationState *sender_state =
1177 safe_cast<TranslationState*>(pkt->senderState);
1178
1179 ThreadContext *tc = sender_state->tc;
1180 Mode mode = sender_state->tlbMode;
1181
1182 GpuTlbEntry *local_entry, *new_entry;
1183
1184 if (tlb_outcome == TLB_HIT) {
1185 DPRINTF(GPUTLB, "Translation Done - TLB Hit for addr %#x\n", vaddr);
1186 local_entry = sender_state->tlbEntry;
1187 } else {
1188 DPRINTF(GPUTLB, "Translation Done - TLB Miss for addr %#x\n",
1189 vaddr);
1190
1191 // We are returning either from a page walk or from a hit at a lower
1192 // TLB level. The senderState should be "carrying" a pointer to the
1193 // correct TLBEntry.
1194 new_entry = sender_state->tlbEntry;
1195 assert(new_entry);
1196 local_entry = new_entry;
1197
1198 if (allocationPolicy) {
1199 DPRINTF(GPUTLB, "allocating entry w/ addr %#x\n",
1200 virt_page_addr);
1201
1202 local_entry = insert(virt_page_addr, *new_entry);
1203 }
1204
1205 assert(local_entry);
1206 }
1207
1208 /**
1209 * At this point the packet carries an up-to-date tlbEntry pointer
1210 * in its senderState.
1211 * Next step is to do the paging protection checks.
1212 */
1213 DPRINTF(GPUTLB, "Entry found with vaddr %#x, doing protection checks "
1214 "while paddr was %#x.\n", local_entry->vaddr,
1215 local_entry->paddr);
1216
1217 pagingProtectionChecks(tc, pkt, local_entry, mode);
1218 int page_size = local_entry->size();
1219 Addr paddr = local_entry->paddr | (vaddr & (page_size - 1));
1220 DPRINTF(GPUTLB, "Translated %#x -> %#x.\n", vaddr, paddr);
1221
1222 // Since this packet will be sent through the cpu side slave port,
1223 // it must be converted to a response pkt if it is not one already
1224 if (pkt->isRequest()) {
1225 pkt->makeTimingResponse();
1226 }
1227
1228 pkt->req->setPaddr(paddr);
1229
1230 if (local_entry->uncacheable) {
1231 pkt->req->setFlags(Request::UNCACHEABLE);
1232 }
1233
1234 //send packet back to coalescer
1235 cpuSidePort[0]->sendTimingResp(pkt);
1236 //schedule cleanup event
1237 cleanupQueue.push(virt_page_addr);
1238
1239 // schedule this only once per cycle.
1240 // The check is required because we might have multiple translations
1241 // returning the same cycle
1242 // this is a maximum priority event and must be on the same cycle
1243 // as the cleanup event in TLBCoalescer to avoid a race with
1244 // IssueProbeEvent caused by TLBCoalescer::MemSidePort::recvReqRetry
1245 if (!cleanupEvent.scheduled())
1246 schedule(cleanupEvent, curTick());
1247 }
1248
1249 /**
1250 * Here we take the appropriate actions based on the result of the
1251 * TLB lookup.
1252 */
1253 void
1254 GpuTLB::translationReturn(Addr virtPageAddr, tlbOutcome outcome,
1255 PacketPtr pkt)
1256 {
1257 DPRINTF(GPUTLB, "Triggered TLBEvent for addr %#x\n", virtPageAddr);
1258
1259 assert(translationReturnEvent[virtPageAddr]);
1260 assert(pkt);
1261
1262 TranslationState *tmp_sender_state =
1263 safe_cast<TranslationState*>(pkt->senderState);
1264
1265 int req_cnt = tmp_sender_state->reqCnt.back();
1266 bool update_stats = !tmp_sender_state->prefetch;
1267
1268
1269 if (outcome == TLB_HIT) {
1270 handleTranslationReturn(virtPageAddr, TLB_HIT, pkt);
1271
1272 if (update_stats) {
1273 accessCycles += (req_cnt * curTick());
1274 localCycles += curTick();
1275 }
1276
1277 } else if (outcome == TLB_MISS) {
1278
1279 DPRINTF(GPUTLB, "This is a TLB miss\n");
1280 if (update_stats) {
1281 accessCycles += (req_cnt*curTick());
1282 localCycles += curTick();
1283 }
1284
1285 if (hasMemSidePort) {
1286 // the one cyle added here represent the delay from when we get
1287 // the reply back till when we propagate it to the coalescer
1288 // above.
1289 if (update_stats) {
1290 accessCycles += (req_cnt * 1);
1291 localCycles += 1;
1292 }
1293
1294 /**
1295 * There is a TLB below. Send the coalesced request.
1296 * We actually send the very first packet of all the
1297 * pending packets for this virtual page address.
1298 */
1299 if (!memSidePort[0]->sendTimingReq(pkt)) {
1300 DPRINTF(GPUTLB, "Failed sending translation request to "
1301 "lower level TLB for addr %#x\n", virtPageAddr);
1302
1303 memSidePort[0]->retries.push_back(pkt);
1304 } else {
1305 DPRINTF(GPUTLB, "Sent translation request to lower level "
1306 "TLB for addr %#x\n", virtPageAddr);
1307 }
1308 } else {
1309 //this is the last level TLB. Start a page walk
1310 DPRINTF(GPUTLB, "Last level TLB - start a page walk for "
1311 "addr %#x\n", virtPageAddr);
1312
1313 if (update_stats)
1314 pageTableCycles -= (req_cnt*curTick());
1315
1316 TLBEvent *tlb_event = translationReturnEvent[virtPageAddr];
1317 assert(tlb_event);
1318 tlb_event->updateOutcome(PAGE_WALK);
1319 schedule(tlb_event, curTick() + ticks(missLatency2));
1320 }
1321 } else if (outcome == PAGE_WALK) {
1322 if (update_stats)
1323 pageTableCycles += (req_cnt*curTick());
1324
1325 // Need to access the page table and update the TLB
1326 DPRINTF(GPUTLB, "Doing a page walk for address %#x\n",
1327 virtPageAddr);
1328
1329 TranslationState *sender_state =
1330 safe_cast<TranslationState*>(pkt->senderState);
1331
1332 Process *p = sender_state->tc->getProcessPtr();
1333 TlbEntry newEntry;
1334 Addr vaddr = pkt->req->getVaddr();
1335 #ifndef NDEBUG
1336 Addr alignedVaddr = p->pTable->pageAlign(vaddr);
1337 assert(alignedVaddr == virtPageAddr);
1338 #endif
1333 Addr vaddr = pkt->req->getVaddr();
1334 #ifndef NDEBUG
1335 Addr alignedVaddr = p->pTable->pageAlign(vaddr);
1336 assert(alignedVaddr == virtPageAddr);
1337 #endif
1339 bool success;
1340 success = p->pTable->lookup(vaddr, newEntry);
1341 if (!success && sender_state->tlbMode != BaseTLB::Execute) {
1342 if (p->fixupStackFault(vaddr)) {
1343 success = p->pTable->lookup(vaddr, newEntry);
1344 }
1338 TlbEntry *newEntry = p->pTable->lookup(vaddr);
1339 if (!newEntry && sender_state->tlbMode != BaseTLB::Execute &&
1340 p->fixupStackFault(vaddr)) {
1341 newEntry = p->pTable->lookup(vaddr);
1345 }
1346
1342 }
1343
1347 DPRINTF(GPUTLB, "Mapping %#x to %#x\n", alignedVaddr,
1348 newEntry.pageStart());
1344 if (newEntry) {
1345 DPRINTF(GPUTLB, "Mapping %#x to %#x\n", alignedVaddr,
1346 newEntry->pageStart());
1349
1347
1350 sender_state->tlbEntry =
1351 new GpuTlbEntry(0, newEntry.vaddr, newEntry.paddr, success);
1348 sender_state->tlbEntry =
1349 new GpuTlbEntry(0, newEntry->vaddr, newEntry->paddr, true);
1350 } else {
1351 sender_state->tlbEntry =
1352 new GpuTlbEntry(0, 0, 0, false);
1353 }
1352
1353 handleTranslationReturn(virtPageAddr, TLB_MISS, pkt);
1354 } else if (outcome == MISS_RETURN) {
1355 /** we add an extra cycle in the return path of the translation
1356 * requests in between the various TLB levels.
1357 */
1358 handleTranslationReturn(virtPageAddr, TLB_MISS, pkt);
1359 } else {
1360 assert(false);
1361 }
1362 }
1363
1364 void
1365 GpuTLB::TLBEvent::process()
1366 {
1367 tlb->translationReturn(virtPageAddr, outcome, pkt);
1368 }
1369
1370 const char*
1371 GpuTLB::TLBEvent::description() const
1372 {
1373 return "trigger translationDoneEvent";
1374 }
1375
1376 void
1377 GpuTLB::TLBEvent::updateOutcome(tlbOutcome _outcome)
1378 {
1379 outcome = _outcome;
1380 }
1381
1382 Addr
1383 GpuTLB::TLBEvent::getTLBEventVaddr()
1384 {
1385 return virtPageAddr;
1386 }
1387
1388 /*
1389 * recvTiming receives a coalesced timing request from a TLBCoalescer
1390 * and it calls issueTLBLookup()
1391 * It only rejects the packet if we have exceeded the max
1392 * outstanding number of requests for the TLB
1393 */
1394 bool
1395 GpuTLB::CpuSidePort::recvTimingReq(PacketPtr pkt)
1396 {
1397 if (tlb->outstandingReqs < tlb->maxCoalescedReqs) {
1398 tlb->issueTLBLookup(pkt);
1399 // update number of outstanding translation requests
1400 tlb->outstandingReqs++;
1401 return true;
1402 } else {
1403 DPRINTF(GPUTLB, "Reached maxCoalescedReqs number %d\n",
1404 tlb->outstandingReqs);
1405 return false;
1406 }
1407 }
1408
1409 /**
1410 * handleFuncTranslationReturn is called on a TLB hit,
1411 * when a TLB miss returns or when a page fault returns.
1412 * It updates LRU, inserts the TLB entry on a miss
1413 * depending on the allocation policy and does the required
1414 * protection checks. It does NOT create a new packet to
1415 * update the packet's addr; this is done in hsail-gpu code.
1416 */
1417 void
1418 GpuTLB::handleFuncTranslationReturn(PacketPtr pkt, tlbOutcome tlb_outcome)
1419 {
1420 TranslationState *sender_state =
1421 safe_cast<TranslationState*>(pkt->senderState);
1422
1423 ThreadContext *tc = sender_state->tc;
1424 Mode mode = sender_state->tlbMode;
1425 Addr vaddr = pkt->req->getVaddr();
1426
1427 GpuTlbEntry *local_entry, *new_entry;
1428
1429 if (tlb_outcome == TLB_HIT) {
1430 DPRINTF(GPUTLB, "Functional Translation Done - TLB hit for addr "
1431 "%#x\n", vaddr);
1432
1433 local_entry = sender_state->tlbEntry;
1434 } else {
1435 DPRINTF(GPUTLB, "Functional Translation Done - TLB miss for addr "
1436 "%#x\n", vaddr);
1437
1438 // We are returning either from a page walk or from a hit at a lower
1439 // TLB level. The senderState should be "carrying" a pointer to the
1440 // correct TLBEntry.
1441 new_entry = sender_state->tlbEntry;
1442 assert(new_entry);
1443 local_entry = new_entry;
1444
1445 if (allocationPolicy) {
1446 Addr virt_page_addr = roundDown(vaddr, TheISA::PageBytes);
1447
1448 DPRINTF(GPUTLB, "allocating entry w/ addr %#x\n",
1449 virt_page_addr);
1450
1451 local_entry = insert(virt_page_addr, *new_entry);
1452 }
1453
1454 assert(local_entry);
1455 }
1456
1457 DPRINTF(GPUTLB, "Entry found with vaddr %#x, doing protection checks "
1458 "while paddr was %#x.\n", local_entry->vaddr,
1459 local_entry->paddr);
1460
1461 // Do paging checks if it's a normal functional access. If it's for a
1462 // prefetch, then sometimes you can try to prefetch something that won't
1463 // pass protection. We don't actually want to fault becuase there is no
1464 // demand access to deem this a violation. Just put it in the TLB and
1465 // it will fault if indeed a future demand access touches it in
1466 // violation.
1467 if (!sender_state->prefetch && sender_state->tlbEntry->valid)
1468 pagingProtectionChecks(tc, pkt, local_entry, mode);
1469
1470 int page_size = local_entry->size();
1471 Addr paddr = local_entry->paddr | (vaddr & (page_size - 1));
1472 DPRINTF(GPUTLB, "Translated %#x -> %#x.\n", vaddr, paddr);
1473
1474 pkt->req->setPaddr(paddr);
1475
1476 if (local_entry->uncacheable)
1477 pkt->req->setFlags(Request::UNCACHEABLE);
1478 }
1479
1480 // This is used for atomic translations. Need to
1481 // make it all happen during the same cycle.
1482 void
1483 GpuTLB::CpuSidePort::recvFunctional(PacketPtr pkt)
1484 {
1485 TranslationState *sender_state =
1486 safe_cast<TranslationState*>(pkt->senderState);
1487
1488 ThreadContext *tc = sender_state->tc;
1489 bool update_stats = !sender_state->prefetch;
1490
1491 Addr virt_page_addr = roundDown(pkt->req->getVaddr(),
1492 TheISA::PageBytes);
1493
1494 if (update_stats)
1495 tlb->updatePageFootprint(virt_page_addr);
1496
1497 // do the TLB lookup without updating the stats
1498 bool success = tlb->tlbLookup(pkt->req, tc, update_stats);
1499 tlbOutcome tlb_outcome = success ? TLB_HIT : TLB_MISS;
1500
1501 // functional mode means no coalescing
1502 // global metrics are the same as the local metrics
1503 if (update_stats) {
1504 tlb->globalNumTLBAccesses++;
1505
1506 if (success) {
1507 sender_state->hitLevel = sender_state->reqCnt.size();
1508 tlb->globalNumTLBHits++;
1509 }
1510 }
1511
1512 if (!success) {
1513 if (update_stats)
1514 tlb->globalNumTLBMisses++;
1515 if (tlb->hasMemSidePort) {
1516 // there is a TLB below -> propagate down the TLB hierarchy
1517 tlb->memSidePort[0]->sendFunctional(pkt);
1518 // If no valid translation from a prefetch, then just return
1519 if (sender_state->prefetch && !pkt->req->hasPaddr())
1520 return;
1521 } else {
1522 // Need to access the page table and update the TLB
1523 DPRINTF(GPUTLB, "Doing a page walk for address %#x\n",
1524 virt_page_addr);
1525
1526 Process *p = tc->getProcessPtr();
1354
1355 handleTranslationReturn(virtPageAddr, TLB_MISS, pkt);
1356 } else if (outcome == MISS_RETURN) {
1357 /** we add an extra cycle in the return path of the translation
1358 * requests in between the various TLB levels.
1359 */
1360 handleTranslationReturn(virtPageAddr, TLB_MISS, pkt);
1361 } else {
1362 assert(false);
1363 }
1364 }
1365
1366 void
1367 GpuTLB::TLBEvent::process()
1368 {
1369 tlb->translationReturn(virtPageAddr, outcome, pkt);
1370 }
1371
1372 const char*
1373 GpuTLB::TLBEvent::description() const
1374 {
1375 return "trigger translationDoneEvent";
1376 }
1377
1378 void
1379 GpuTLB::TLBEvent::updateOutcome(tlbOutcome _outcome)
1380 {
1381 outcome = _outcome;
1382 }
1383
1384 Addr
1385 GpuTLB::TLBEvent::getTLBEventVaddr()
1386 {
1387 return virtPageAddr;
1388 }
1389
1390 /*
1391 * recvTiming receives a coalesced timing request from a TLBCoalescer
1392 * and it calls issueTLBLookup()
1393 * It only rejects the packet if we have exceeded the max
1394 * outstanding number of requests for the TLB
1395 */
1396 bool
1397 GpuTLB::CpuSidePort::recvTimingReq(PacketPtr pkt)
1398 {
1399 if (tlb->outstandingReqs < tlb->maxCoalescedReqs) {
1400 tlb->issueTLBLookup(pkt);
1401 // update number of outstanding translation requests
1402 tlb->outstandingReqs++;
1403 return true;
1404 } else {
1405 DPRINTF(GPUTLB, "Reached maxCoalescedReqs number %d\n",
1406 tlb->outstandingReqs);
1407 return false;
1408 }
1409 }
1410
1411 /**
1412 * handleFuncTranslationReturn is called on a TLB hit,
1413 * when a TLB miss returns or when a page fault returns.
1414 * It updates LRU, inserts the TLB entry on a miss
1415 * depending on the allocation policy and does the required
1416 * protection checks. It does NOT create a new packet to
1417 * update the packet's addr; this is done in hsail-gpu code.
1418 */
1419 void
1420 GpuTLB::handleFuncTranslationReturn(PacketPtr pkt, tlbOutcome tlb_outcome)
1421 {
1422 TranslationState *sender_state =
1423 safe_cast<TranslationState*>(pkt->senderState);
1424
1425 ThreadContext *tc = sender_state->tc;
1426 Mode mode = sender_state->tlbMode;
1427 Addr vaddr = pkt->req->getVaddr();
1428
1429 GpuTlbEntry *local_entry, *new_entry;
1430
1431 if (tlb_outcome == TLB_HIT) {
1432 DPRINTF(GPUTLB, "Functional Translation Done - TLB hit for addr "
1433 "%#x\n", vaddr);
1434
1435 local_entry = sender_state->tlbEntry;
1436 } else {
1437 DPRINTF(GPUTLB, "Functional Translation Done - TLB miss for addr "
1438 "%#x\n", vaddr);
1439
1440 // We are returning either from a page walk or from a hit at a lower
1441 // TLB level. The senderState should be "carrying" a pointer to the
1442 // correct TLBEntry.
1443 new_entry = sender_state->tlbEntry;
1444 assert(new_entry);
1445 local_entry = new_entry;
1446
1447 if (allocationPolicy) {
1448 Addr virt_page_addr = roundDown(vaddr, TheISA::PageBytes);
1449
1450 DPRINTF(GPUTLB, "allocating entry w/ addr %#x\n",
1451 virt_page_addr);
1452
1453 local_entry = insert(virt_page_addr, *new_entry);
1454 }
1455
1456 assert(local_entry);
1457 }
1458
1459 DPRINTF(GPUTLB, "Entry found with vaddr %#x, doing protection checks "
1460 "while paddr was %#x.\n", local_entry->vaddr,
1461 local_entry->paddr);
1462
1463 // Do paging checks if it's a normal functional access. If it's for a
1464 // prefetch, then sometimes you can try to prefetch something that won't
1465 // pass protection. We don't actually want to fault becuase there is no
1466 // demand access to deem this a violation. Just put it in the TLB and
1467 // it will fault if indeed a future demand access touches it in
1468 // violation.
1469 if (!sender_state->prefetch && sender_state->tlbEntry->valid)
1470 pagingProtectionChecks(tc, pkt, local_entry, mode);
1471
1472 int page_size = local_entry->size();
1473 Addr paddr = local_entry->paddr | (vaddr & (page_size - 1));
1474 DPRINTF(GPUTLB, "Translated %#x -> %#x.\n", vaddr, paddr);
1475
1476 pkt->req->setPaddr(paddr);
1477
1478 if (local_entry->uncacheable)
1479 pkt->req->setFlags(Request::UNCACHEABLE);
1480 }
1481
1482 // This is used for atomic translations. Need to
1483 // make it all happen during the same cycle.
1484 void
1485 GpuTLB::CpuSidePort::recvFunctional(PacketPtr pkt)
1486 {
1487 TranslationState *sender_state =
1488 safe_cast<TranslationState*>(pkt->senderState);
1489
1490 ThreadContext *tc = sender_state->tc;
1491 bool update_stats = !sender_state->prefetch;
1492
1493 Addr virt_page_addr = roundDown(pkt->req->getVaddr(),
1494 TheISA::PageBytes);
1495
1496 if (update_stats)
1497 tlb->updatePageFootprint(virt_page_addr);
1498
1499 // do the TLB lookup without updating the stats
1500 bool success = tlb->tlbLookup(pkt->req, tc, update_stats);
1501 tlbOutcome tlb_outcome = success ? TLB_HIT : TLB_MISS;
1502
1503 // functional mode means no coalescing
1504 // global metrics are the same as the local metrics
1505 if (update_stats) {
1506 tlb->globalNumTLBAccesses++;
1507
1508 if (success) {
1509 sender_state->hitLevel = sender_state->reqCnt.size();
1510 tlb->globalNumTLBHits++;
1511 }
1512 }
1513
1514 if (!success) {
1515 if (update_stats)
1516 tlb->globalNumTLBMisses++;
1517 if (tlb->hasMemSidePort) {
1518 // there is a TLB below -> propagate down the TLB hierarchy
1519 tlb->memSidePort[0]->sendFunctional(pkt);
1520 // If no valid translation from a prefetch, then just return
1521 if (sender_state->prefetch && !pkt->req->hasPaddr())
1522 return;
1523 } else {
1524 // Need to access the page table and update the TLB
1525 DPRINTF(GPUTLB, "Doing a page walk for address %#x\n",
1526 virt_page_addr);
1527
1528 Process *p = tc->getProcessPtr();
1527 TlbEntry newEntry;
1528
1529 Addr vaddr = pkt->req->getVaddr();
1530 #ifndef NDEBUG
1531 Addr alignedVaddr = p->pTable->pageAlign(vaddr);
1532 assert(alignedVaddr == virt_page_addr);
1533 #endif
1534
1529
1530 Addr vaddr = pkt->req->getVaddr();
1531 #ifndef NDEBUG
1532 Addr alignedVaddr = p->pTable->pageAlign(vaddr);
1533 assert(alignedVaddr == virt_page_addr);
1534 #endif
1535
1535 bool success = p->pTable->lookup(vaddr, newEntry);
1536 if (!success && sender_state->tlbMode != BaseTLB::Execute) {
1537 if (p->fixupStackFault(vaddr))
1538 success = p->pTable->lookup(vaddr, newEntry);
1536 TlbEntry *newEntry = p->pTable->lookup(vaddr);
1537 if (!newEntry && sender_state->tlbMode != BaseTLB::Execute &&
1538 p->fixupStackFault(vaddr)) {
1539 newEntry = p->pTable->lookup(vaddr);
1539 }
1540
1541 if (!sender_state->prefetch) {
1542 // no PageFaults are permitted after
1543 // the second page table lookup
1544 assert(success);
1545
1546 DPRINTF(GPUTLB, "Mapping %#x to %#x\n", alignedVaddr,
1540 }
1541
1542 if (!sender_state->prefetch) {
1543 // no PageFaults are permitted after
1544 // the second page table lookup
1545 assert(success);
1546
1547 DPRINTF(GPUTLB, "Mapping %#x to %#x\n", alignedVaddr,
1547 newEntry.pageStart());
1548 newEntry->pageStart());
1548
1549
1549 sender_state->tlbEntry = new GpuTlbEntry(0, newEntry.vaddr,
1550 newEntry.paddr,
1551 success);
1550 sender_state->tlbEntry =
1551 new GpuTlbEntry(0, newEntry->vaddr,
1552 newEntry->paddr, success);
1552 } else {
1553 // If this was a prefetch, then do the normal thing if it
1554 // was a successful translation. Otherwise, send an empty
1555 // TLB entry back so that it can be figured out as empty and
1556 // handled accordingly.
1553 } else {
1554 // If this was a prefetch, then do the normal thing if it
1555 // was a successful translation. Otherwise, send an empty
1556 // TLB entry back so that it can be figured out as empty and
1557 // handled accordingly.
1557 if (success) {
1558 if (newEntry) {
1558 DPRINTF(GPUTLB, "Mapping %#x to %#x\n", alignedVaddr,
1559 DPRINTF(GPUTLB, "Mapping %#x to %#x\n", alignedVaddr,
1559 newEntry.pageStart());
1560 newEntry->pageStart());
1560
1561
1561 sender_state->tlbEntry = new GpuTlbEntry(0,
1562 newEntry.vaddr,
1563 newEntry.paddr,
1564 success);
1562 sender_state->tlbEntry =
1563 new GpuTlbEntry(0, newEntry->vaddr,
1564 newEntry->paddr, success);
1565 } else {
1566 DPRINTF(GPUPrefetch, "Prefetch failed %#x\n",
1567 alignedVaddr);
1568
1569 sender_state->tlbEntry = new GpuTlbEntry();
1570
1571 return;
1572 }
1573 }
1574 }
1575 } else {
1576 DPRINTF(GPUPrefetch, "Functional Hit for vaddr %#x\n",
1577 tlb->lookup(pkt->req->getVaddr()));
1578
1579 GpuTlbEntry *entry = tlb->lookup(pkt->req->getVaddr(),
1580 update_stats);
1581
1582 assert(entry);
1583
1584 sender_state->tlbEntry =
1585 new GpuTlbEntry(0, entry->vaddr, entry->paddr, entry->valid);
1586 }
1587 // This is the function that would populate pkt->req with the paddr of
1588 // the translation. But if no translation happens (i.e Prefetch fails)
1589 // then the early returns in the above code wiill keep this function
1590 // from executing.
1591 tlb->handleFuncTranslationReturn(pkt, tlb_outcome);
1592 }
1593
1594 void
1595 GpuTLB::CpuSidePort::recvReqRetry()
1596 {
1597 // The CPUSidePort never sends anything but replies. No retries
1598 // expected.
1599 assert(false);
1600 }
1601
1602 AddrRangeList
1603 GpuTLB::CpuSidePort::getAddrRanges() const
1604 {
1605 // currently not checked by the master
1606 AddrRangeList ranges;
1607
1608 return ranges;
1609 }
1610
1611 /**
1612 * MemSidePort receives the packet back.
1613 * We need to call the handleTranslationReturn
1614 * and propagate up the hierarchy.
1615 */
1616 bool
1617 GpuTLB::MemSidePort::recvTimingResp(PacketPtr pkt)
1618 {
1619 Addr virt_page_addr = roundDown(pkt->req->getVaddr(),
1620 TheISA::PageBytes);
1621
1622 DPRINTF(GPUTLB, "MemSidePort recvTiming for virt_page_addr %#x\n",
1623 virt_page_addr);
1624
1625 TLBEvent *tlb_event = tlb->translationReturnEvent[virt_page_addr];
1626 assert(tlb_event);
1627 assert(virt_page_addr == tlb_event->getTLBEventVaddr());
1628
1629 tlb_event->updateOutcome(MISS_RETURN);
1630 tlb->schedule(tlb_event, curTick()+tlb->ticks(1));
1631
1632 return true;
1633 }
1634
1635 void
1636 GpuTLB::MemSidePort::recvReqRetry()
1637 {
1638 // No retries should reach the TLB. The retries
1639 // should only reach the TLBCoalescer.
1640 assert(false);
1641 }
1642
1643 void
1644 GpuTLB::cleanup()
1645 {
1646 while (!cleanupQueue.empty()) {
1647 Addr cleanup_addr = cleanupQueue.front();
1648 cleanupQueue.pop();
1649
1650 // delete TLBEvent
1651 TLBEvent * old_tlb_event = translationReturnEvent[cleanup_addr];
1652 delete old_tlb_event;
1653 translationReturnEvent.erase(cleanup_addr);
1654
1655 // update number of outstanding requests
1656 outstandingReqs--;
1657 }
1658
1659 /** the higher level coalescer should retry if it has
1660 * any pending requests.
1661 */
1662 for (int i = 0; i < cpuSidePort.size(); ++i) {
1663 cpuSidePort[i]->sendRetryReq();
1664 }
1665 }
1666
1667 void
1668 GpuTLB::updatePageFootprint(Addr virt_page_addr)
1669 {
1670
1671 std::pair<AccessPatternTable::iterator, bool> ret;
1672
1673 AccessInfo tmp_access_info;
1674 tmp_access_info.lastTimeAccessed = 0;
1675 tmp_access_info.accessesPerPage = 0;
1676 tmp_access_info.totalReuseDistance = 0;
1677 tmp_access_info.sumDistance = 0;
1678 tmp_access_info.meanDistance = 0;
1679
1680 ret = TLBFootprint.insert(AccessPatternTable::value_type(virt_page_addr,
1681 tmp_access_info));
1682
1683 bool first_page_access = ret.second;
1684
1685 if (first_page_access) {
1686 numUniquePages++;
1687 } else {
1688 int accessed_before;
1689 accessed_before = curTick() - ret.first->second.lastTimeAccessed;
1690 ret.first->second.totalReuseDistance += accessed_before;
1691 }
1692
1693 ret.first->second.accessesPerPage++;
1694 ret.first->second.lastTimeAccessed = curTick();
1695
1696 if (accessDistance) {
1697 ret.first->second.localTLBAccesses
1698 .push_back(localNumTLBAccesses.value());
1699 }
1700 }
1701
1702 void
1703 GpuTLB::exitCallback()
1704 {
1705 std::ostream *page_stat_file = nullptr;
1706
1707 if (accessDistance) {
1708
1709 // print per page statistics to a separate file (.csv format)
1710 // simout is the gem5 output directory (default is m5out or the one
1711 // specified with -d
1712 page_stat_file = simout.create(name().c_str())->stream();
1713
1714 // print header
1715 *page_stat_file << "page,max_access_distance,mean_access_distance, "
1716 << "stddev_distance" << std::endl;
1717 }
1718
1719 // update avg. reuse distance footprint
1720 AccessPatternTable::iterator iter, iter_begin, iter_end;
1721 unsigned int sum_avg_reuse_distance_per_page = 0;
1722
1723 // iterate through all pages seen by this TLB
1724 for (iter = TLBFootprint.begin(); iter != TLBFootprint.end(); iter++) {
1725 sum_avg_reuse_distance_per_page += iter->second.totalReuseDistance /
1726 iter->second.accessesPerPage;
1727
1728 if (accessDistance) {
1729 unsigned int tmp = iter->second.localTLBAccesses[0];
1730 unsigned int prev = tmp;
1731
1732 for (int i = 0; i < iter->second.localTLBAccesses.size(); ++i) {
1733 if (i) {
1734 tmp = prev + 1;
1735 }
1736
1737 prev = iter->second.localTLBAccesses[i];
1738 // update the localTLBAccesses value
1739 // with the actual differece
1740 iter->second.localTLBAccesses[i] -= tmp;
1741 // compute the sum of AccessDistance per page
1742 // used later for mean
1743 iter->second.sumDistance +=
1744 iter->second.localTLBAccesses[i];
1745 }
1746
1747 iter->second.meanDistance =
1748 iter->second.sumDistance / iter->second.accessesPerPage;
1749
1750 // compute std_dev and max (we need a second round because we
1751 // need to know the mean value
1752 unsigned int max_distance = 0;
1753 unsigned int stddev_distance = 0;
1754
1755 for (int i = 0; i < iter->second.localTLBAccesses.size(); ++i) {
1756 unsigned int tmp_access_distance =
1757 iter->second.localTLBAccesses[i];
1758
1759 if (tmp_access_distance > max_distance) {
1760 max_distance = tmp_access_distance;
1761 }
1762
1763 unsigned int diff =
1764 tmp_access_distance - iter->second.meanDistance;
1765 stddev_distance += pow(diff, 2);
1766
1767 }
1768
1769 stddev_distance =
1770 sqrt(stddev_distance/iter->second.accessesPerPage);
1771
1772 if (page_stat_file) {
1773 *page_stat_file << std::hex << iter->first << ",";
1774 *page_stat_file << std::dec << max_distance << ",";
1775 *page_stat_file << std::dec << iter->second.meanDistance
1776 << ",";
1777 *page_stat_file << std::dec << stddev_distance;
1778 *page_stat_file << std::endl;
1779 }
1780
1781 // erase the localTLBAccesses array
1782 iter->second.localTLBAccesses.clear();
1783 }
1784 }
1785
1786 if (!TLBFootprint.empty()) {
1787 avgReuseDistance =
1788 sum_avg_reuse_distance_per_page / TLBFootprint.size();
1789 }
1790
1791 //clear the TLBFootprint map
1792 TLBFootprint.clear();
1793 }
1794} // namespace X86ISA
1795
1796X86ISA::GpuTLB*
1797X86GPUTLBParams::create()
1798{
1799 return new X86ISA::GpuTLB(this);
1800}
1801
1565 } else {
1566 DPRINTF(GPUPrefetch, "Prefetch failed %#x\n",
1567 alignedVaddr);
1568
1569 sender_state->tlbEntry = new GpuTlbEntry();
1570
1571 return;
1572 }
1573 }
1574 }
1575 } else {
1576 DPRINTF(GPUPrefetch, "Functional Hit for vaddr %#x\n",
1577 tlb->lookup(pkt->req->getVaddr()));
1578
1579 GpuTlbEntry *entry = tlb->lookup(pkt->req->getVaddr(),
1580 update_stats);
1581
1582 assert(entry);
1583
1584 sender_state->tlbEntry =
1585 new GpuTlbEntry(0, entry->vaddr, entry->paddr, entry->valid);
1586 }
1587 // This is the function that would populate pkt->req with the paddr of
1588 // the translation. But if no translation happens (i.e Prefetch fails)
1589 // then the early returns in the above code wiill keep this function
1590 // from executing.
1591 tlb->handleFuncTranslationReturn(pkt, tlb_outcome);
1592 }
1593
1594 void
1595 GpuTLB::CpuSidePort::recvReqRetry()
1596 {
1597 // The CPUSidePort never sends anything but replies. No retries
1598 // expected.
1599 assert(false);
1600 }
1601
1602 AddrRangeList
1603 GpuTLB::CpuSidePort::getAddrRanges() const
1604 {
1605 // currently not checked by the master
1606 AddrRangeList ranges;
1607
1608 return ranges;
1609 }
1610
1611 /**
1612 * MemSidePort receives the packet back.
1613 * We need to call the handleTranslationReturn
1614 * and propagate up the hierarchy.
1615 */
1616 bool
1617 GpuTLB::MemSidePort::recvTimingResp(PacketPtr pkt)
1618 {
1619 Addr virt_page_addr = roundDown(pkt->req->getVaddr(),
1620 TheISA::PageBytes);
1621
1622 DPRINTF(GPUTLB, "MemSidePort recvTiming for virt_page_addr %#x\n",
1623 virt_page_addr);
1624
1625 TLBEvent *tlb_event = tlb->translationReturnEvent[virt_page_addr];
1626 assert(tlb_event);
1627 assert(virt_page_addr == tlb_event->getTLBEventVaddr());
1628
1629 tlb_event->updateOutcome(MISS_RETURN);
1630 tlb->schedule(tlb_event, curTick()+tlb->ticks(1));
1631
1632 return true;
1633 }
1634
1635 void
1636 GpuTLB::MemSidePort::recvReqRetry()
1637 {
1638 // No retries should reach the TLB. The retries
1639 // should only reach the TLBCoalescer.
1640 assert(false);
1641 }
1642
1643 void
1644 GpuTLB::cleanup()
1645 {
1646 while (!cleanupQueue.empty()) {
1647 Addr cleanup_addr = cleanupQueue.front();
1648 cleanupQueue.pop();
1649
1650 // delete TLBEvent
1651 TLBEvent * old_tlb_event = translationReturnEvent[cleanup_addr];
1652 delete old_tlb_event;
1653 translationReturnEvent.erase(cleanup_addr);
1654
1655 // update number of outstanding requests
1656 outstandingReqs--;
1657 }
1658
1659 /** the higher level coalescer should retry if it has
1660 * any pending requests.
1661 */
1662 for (int i = 0; i < cpuSidePort.size(); ++i) {
1663 cpuSidePort[i]->sendRetryReq();
1664 }
1665 }
1666
1667 void
1668 GpuTLB::updatePageFootprint(Addr virt_page_addr)
1669 {
1670
1671 std::pair<AccessPatternTable::iterator, bool> ret;
1672
1673 AccessInfo tmp_access_info;
1674 tmp_access_info.lastTimeAccessed = 0;
1675 tmp_access_info.accessesPerPage = 0;
1676 tmp_access_info.totalReuseDistance = 0;
1677 tmp_access_info.sumDistance = 0;
1678 tmp_access_info.meanDistance = 0;
1679
1680 ret = TLBFootprint.insert(AccessPatternTable::value_type(virt_page_addr,
1681 tmp_access_info));
1682
1683 bool first_page_access = ret.second;
1684
1685 if (first_page_access) {
1686 numUniquePages++;
1687 } else {
1688 int accessed_before;
1689 accessed_before = curTick() - ret.first->second.lastTimeAccessed;
1690 ret.first->second.totalReuseDistance += accessed_before;
1691 }
1692
1693 ret.first->second.accessesPerPage++;
1694 ret.first->second.lastTimeAccessed = curTick();
1695
1696 if (accessDistance) {
1697 ret.first->second.localTLBAccesses
1698 .push_back(localNumTLBAccesses.value());
1699 }
1700 }
1701
1702 void
1703 GpuTLB::exitCallback()
1704 {
1705 std::ostream *page_stat_file = nullptr;
1706
1707 if (accessDistance) {
1708
1709 // print per page statistics to a separate file (.csv format)
1710 // simout is the gem5 output directory (default is m5out or the one
1711 // specified with -d
1712 page_stat_file = simout.create(name().c_str())->stream();
1713
1714 // print header
1715 *page_stat_file << "page,max_access_distance,mean_access_distance, "
1716 << "stddev_distance" << std::endl;
1717 }
1718
1719 // update avg. reuse distance footprint
1720 AccessPatternTable::iterator iter, iter_begin, iter_end;
1721 unsigned int sum_avg_reuse_distance_per_page = 0;
1722
1723 // iterate through all pages seen by this TLB
1724 for (iter = TLBFootprint.begin(); iter != TLBFootprint.end(); iter++) {
1725 sum_avg_reuse_distance_per_page += iter->second.totalReuseDistance /
1726 iter->second.accessesPerPage;
1727
1728 if (accessDistance) {
1729 unsigned int tmp = iter->second.localTLBAccesses[0];
1730 unsigned int prev = tmp;
1731
1732 for (int i = 0; i < iter->second.localTLBAccesses.size(); ++i) {
1733 if (i) {
1734 tmp = prev + 1;
1735 }
1736
1737 prev = iter->second.localTLBAccesses[i];
1738 // update the localTLBAccesses value
1739 // with the actual differece
1740 iter->second.localTLBAccesses[i] -= tmp;
1741 // compute the sum of AccessDistance per page
1742 // used later for mean
1743 iter->second.sumDistance +=
1744 iter->second.localTLBAccesses[i];
1745 }
1746
1747 iter->second.meanDistance =
1748 iter->second.sumDistance / iter->second.accessesPerPage;
1749
1750 // compute std_dev and max (we need a second round because we
1751 // need to know the mean value
1752 unsigned int max_distance = 0;
1753 unsigned int stddev_distance = 0;
1754
1755 for (int i = 0; i < iter->second.localTLBAccesses.size(); ++i) {
1756 unsigned int tmp_access_distance =
1757 iter->second.localTLBAccesses[i];
1758
1759 if (tmp_access_distance > max_distance) {
1760 max_distance = tmp_access_distance;
1761 }
1762
1763 unsigned int diff =
1764 tmp_access_distance - iter->second.meanDistance;
1765 stddev_distance += pow(diff, 2);
1766
1767 }
1768
1769 stddev_distance =
1770 sqrt(stddev_distance/iter->second.accessesPerPage);
1771
1772 if (page_stat_file) {
1773 *page_stat_file << std::hex << iter->first << ",";
1774 *page_stat_file << std::dec << max_distance << ",";
1775 *page_stat_file << std::dec << iter->second.meanDistance
1776 << ",";
1777 *page_stat_file << std::dec << stddev_distance;
1778 *page_stat_file << std::endl;
1779 }
1780
1781 // erase the localTLBAccesses array
1782 iter->second.localTLBAccesses.clear();
1783 }
1784 }
1785
1786 if (!TLBFootprint.empty()) {
1787 avgReuseDistance =
1788 sum_avg_reuse_distance_per_page / TLBFootprint.size();
1789 }
1790
1791 //clear the TLBFootprint map
1792 TLBFootprint.clear();
1793 }
1794} // namespace X86ISA
1795
1796X86ISA::GpuTLB*
1797X86GPUTLBParams::create()
1798{
1799 return new X86ISA::GpuTLB(this);
1800}
1801