global_memory_pipeline.cc (11692:e772fdcd3809) global_memory_pipeline.cc (11693:bc1f702c25b9)
1/*
2 * Copyright (c) 2014-2015 Advanced Micro Devices, Inc.
3 * All rights reserved.
4 *
5 * For use for simulation and test purposes only
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are met:

--- 51 unchanged lines hidden (view full) ---

60void
61GlobalMemPipeline::exec()
62{
63 // apply any returned global memory operations
64 GPUDynInstPtr m = !gmReturnedLoads.empty() ? gmReturnedLoads.front() :
65 !gmReturnedStores.empty() ? gmReturnedStores.front() : nullptr;
66
67 bool accessVrf = true;
1/*
2 * Copyright (c) 2014-2015 Advanced Micro Devices, Inc.
3 * All rights reserved.
4 *
5 * For use for simulation and test purposes only
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are met:

--- 51 unchanged lines hidden (view full) ---

60void
61GlobalMemPipeline::exec()
62{
63 // apply any returned global memory operations
64 GPUDynInstPtr m = !gmReturnedLoads.empty() ? gmReturnedLoads.front() :
65 !gmReturnedStores.empty() ? gmReturnedStores.front() : nullptr;
66
67 bool accessVrf = true;
68 Wavefront *w = nullptr;
69
68 // check the VRF to see if the operands of a load (or load component
69 // of an atomic) are accessible
70 if ((m) && (m->isLoad() || m->isAtomicRet())) {
70 // check the VRF to see if the operands of a load (or load component
71 // of an atomic) are accessible
72 if ((m) && (m->isLoad() || m->isAtomicRet())) {
71 Wavefront *w = computeUnit->wfList[m->simdId][m->wfSlotId];
73 w = m->wavefront();
72
73 accessVrf =
74
75 accessVrf =
74 w->computeUnit->vrf[m->simdId]->
76 w->computeUnit->vrf[w->simdId]->
75 vrfOperandAccessReady(m->seqNum(), w, m,
76 VrfAccessType::WRITE);
77 }
78
79 if ((!gmReturnedStores.empty() || !gmReturnedLoads.empty()) &&
80 m->latency.rdy() && computeUnit->glbMemToVrfBus.rdy() &&
81 accessVrf && m->statusBitVector == VectorMask(0) &&
82 (computeUnit->shader->coissue_return ||
83 computeUnit->wfWait.at(m->pipeId).rdy())) {
84
77 vrfOperandAccessReady(m->seqNum(), w, m,
78 VrfAccessType::WRITE);
79 }
80
81 if ((!gmReturnedStores.empty() || !gmReturnedLoads.empty()) &&
82 m->latency.rdy() && computeUnit->glbMemToVrfBus.rdy() &&
83 accessVrf && m->statusBitVector == VectorMask(0) &&
84 (computeUnit->shader->coissue_return ||
85 computeUnit->wfWait.at(m->pipeId).rdy())) {
86
85 if (m->v_type == VT_32 && m->m_type == Enums::M_U8)
86 doGmReturn<uint32_t, uint8_t>(m);
87 else if (m->v_type == VT_32 && m->m_type == Enums::M_U16)
88 doGmReturn<uint32_t, uint16_t>(m);
89 else if (m->v_type == VT_32 && m->m_type == Enums::M_U32)
90 doGmReturn<uint32_t, uint32_t>(m);
91 else if (m->v_type == VT_32 && m->m_type == Enums::M_S8)
92 doGmReturn<int32_t, int8_t>(m);
93 else if (m->v_type == VT_32 && m->m_type == Enums::M_S16)
94 doGmReturn<int32_t, int16_t>(m);
95 else if (m->v_type == VT_32 && m->m_type == Enums::M_S32)
96 doGmReturn<int32_t, int32_t>(m);
97 else if (m->v_type == VT_32 && m->m_type == Enums::M_F16)
98 doGmReturn<float, Float16>(m);
99 else if (m->v_type == VT_32 && m->m_type == Enums::M_F32)
100 doGmReturn<float, float>(m);
101 else if (m->v_type == VT_64 && m->m_type == Enums::M_U8)
102 doGmReturn<uint64_t, uint8_t>(m);
103 else if (m->v_type == VT_64 && m->m_type == Enums::M_U16)
104 doGmReturn<uint64_t, uint16_t>(m);
105 else if (m->v_type == VT_64 && m->m_type == Enums::M_U32)
106 doGmReturn<uint64_t, uint32_t>(m);
107 else if (m->v_type == VT_64 && m->m_type == Enums::M_U64)
108 doGmReturn<uint64_t, uint64_t>(m);
109 else if (m->v_type == VT_64 && m->m_type == Enums::M_S8)
110 doGmReturn<int64_t, int8_t>(m);
111 else if (m->v_type == VT_64 && m->m_type == Enums::M_S16)
112 doGmReturn<int64_t, int16_t>(m);
113 else if (m->v_type == VT_64 && m->m_type == Enums::M_S32)
114 doGmReturn<int64_t, int32_t>(m);
115 else if (m->v_type == VT_64 && m->m_type == Enums::M_S64)
116 doGmReturn<int64_t, int64_t>(m);
117 else if (m->v_type == VT_64 && m->m_type == Enums::M_F16)
118 doGmReturn<double, Float16>(m);
119 else if (m->v_type == VT_64 && m->m_type == Enums::M_F32)
120 doGmReturn<double, float>(m);
121 else if (m->v_type == VT_64 && m->m_type == Enums::M_F64)
122 doGmReturn<double, double>(m);
87 w = m->wavefront();
88
89 m->completeAcc(m);
90
91 if (m->isLoad() || m->isAtomic()) {
92 gmReturnedLoads.pop();
93 assert(inflightLoads > 0);
94 --inflightLoads;
95 } else {
96 assert(m->isStore());
97 gmReturnedStores.pop();
98 assert(inflightStores > 0);
99 --inflightStores;
100 }
101
102 // Decrement outstanding register count
103 computeUnit->shader->ScheduleAdd(&w->outstandingReqs, m->time, -1);
104
105 if (m->isStore() || m->isAtomic()) {
106 computeUnit->shader->ScheduleAdd(&w->outstandingReqsWrGm,
107 m->time, -1);
108 }
109
110 if (m->isLoad() || m->isAtomic()) {
111 computeUnit->shader->ScheduleAdd(&w->outstandingReqsRdGm,
112 m->time, -1);
113 }
114
115 // Mark write bus busy for appropriate amount of time
116 computeUnit->glbMemToVrfBus.set(m->time);
117 if (!computeUnit->shader->coissue_return)
118 w->computeUnit->wfWait.at(m->pipeId).set(m->time);
123 }
124
125 // If pipeline has executed a global memory instruction
126 // execute global memory packets and issue global
127 // memory packets to DTLB
128 if (!gmIssuedRequests.empty()) {
129 GPUDynInstPtr mp = gmIssuedRequests.front();
130 if (mp->isLoad() || mp->isAtomic()) {

--- 13 unchanged lines hidden (view full) ---

144 mp->initiateAcc(mp);
145 gmIssuedRequests.pop();
146
147 DPRINTF(GPUMem, "CU%d: WF[%d][%d] Popping 0 mem_op = \n",
148 computeUnit->cu_id, mp->simdId, mp->wfSlotId);
149 }
150}
151
119 }
120
121 // If pipeline has executed a global memory instruction
122 // execute global memory packets and issue global
123 // memory packets to DTLB
124 if (!gmIssuedRequests.empty()) {
125 GPUDynInstPtr mp = gmIssuedRequests.front();
126 if (mp->isLoad() || mp->isAtomic()) {

--- 13 unchanged lines hidden (view full) ---

140 mp->initiateAcc(mp);
141 gmIssuedRequests.pop();
142
143 DPRINTF(GPUMem, "CU%d: WF[%d][%d] Popping 0 mem_op = \n",
144 computeUnit->cu_id, mp->simdId, mp->wfSlotId);
145 }
146}
147
152template<typename c0, typename c1>
153void
148void
154GlobalMemPipeline::doGmReturn(GPUDynInstPtr m)
155{
156 Wavefront *w = computeUnit->wfList[m->simdId][m->wfSlotId];
157
158 // Return data to registers
159 if (m->isLoad() || m->isAtomic()) {
160 gmReturnedLoads.pop();
161 assert(inflightLoads > 0);
162 --inflightLoads;
163
164 if (m->isLoad() || m->isAtomicRet()) {
165 std::vector<uint32_t> regVec;
166 // iterate over number of destination register operands since
167 // this is a load or atomic operation
168 for (int k = 0; k < m->n_reg; ++k) {
169 assert((sizeof(c1) * m->n_reg) <= MAX_WIDTH_FOR_MEM_INST);
170 int dst = m->dst_reg + k;
171
172 if (m->n_reg > MAX_REGS_FOR_NON_VEC_MEM_INST)
173 dst = m->dst_reg_vec[k];
174 // virtual->physical VGPR mapping
175 int physVgpr = w->remap(dst, sizeof(c0), 1);
176 // save the physical VGPR index
177 regVec.push_back(physVgpr);
178 c1 *p1 = &((c1 *)m->d_data)[k * w->computeUnit->wfSize()];
179
180 for (int i = 0; i < w->computeUnit->wfSize(); ++i) {
181 if (m->exec_mask[i]) {
182 DPRINTF(GPUReg, "CU%d, WF[%d][%d], lane %d: "
183 "$%s%d <- %d global ld done (src = wavefront "
184 "ld inst)\n", w->computeUnit->cu_id, w->simdId,
185 w->wfSlotId, i, sizeof(c0) == 4 ? "s" : "d",
186 dst, *p1);
187 // write the value into the physical VGPR. This is a
188 // purely functional operation. No timing is modeled.
189 w->computeUnit->vrf[w->simdId]->write<c0>(physVgpr,
190 *p1, i);
191 }
192 ++p1;
193 }
194 }
195
196 // Schedule the write operation of the load data on the VRF.
197 // This simply models the timing aspect of the VRF write operation.
198 // It does not modify the physical VGPR.
199 loadVrfBankConflictCycles +=
200 w->computeUnit->vrf[w->simdId]->exec(m->seqNum(),
201 w, regVec, sizeof(c0),
202 m->time);
203 }
204 } else {
205 gmReturnedStores.pop();
206 assert(inflightStores > 0);
207 --inflightStores;
208 }
209
210 // Decrement outstanding register count
211 computeUnit->shader->ScheduleAdd(&w->outstandingReqs, m->time, -1);
212
213 if (m->isStore() || m->isAtomic()) {
214 computeUnit->shader->ScheduleAdd(&w->outstandingReqsWrGm, m->time,
215 -1);
216 }
217
218 if (m->isLoad() || m->isAtomic()) {
219 computeUnit->shader->ScheduleAdd(&w->outstandingReqsRdGm, m->time,
220 -1);
221 }
222
223 // Mark write bus busy for appropriate amount of time
224 computeUnit->glbMemToVrfBus.set(m->time);
225 if (!computeUnit->shader->coissue_return)
226 w->computeUnit->wfWait.at(m->pipeId).set(m->time);
227}
228
229void
230GlobalMemPipeline::regStats()
231{
232 loadVrfBankConflictCycles
233 .name(name() + ".load_vrf_bank_conflict_cycles")
234 .desc("total number of cycles GM data are delayed before updating "
235 "the VRF")
236 ;
237}
149GlobalMemPipeline::regStats()
150{
151 loadVrfBankConflictCycles
152 .name(name() + ".load_vrf_bank_conflict_cycles")
153 .desc("total number of cycles GM data are delayed before updating "
154 "the VRF")
155 ;
156}