ufs_device.cc (11430:bd1c6789c33f) ufs_device.cc (11523:81332eb10367)
1/*
2 * Copyright (c) 2013-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Rene de Jong
38 */
39
40/** @file
41 * This is a simulation model for a UFS interface
42 * The UFS interface consists of a host controller and (at least) one device.
43 * The device can contain multiple logic units.
44 * To make this interface as usefull as possible for future development, the
45 * decision has been made to split the UFS functionality from the SCSI
46 * functionality. The class UFS SCSIDevice can therefor be used as a starting
47 * point for creating a more generic SCSI device. This has as a consequence
48 * that the UFSHostDevice class contains functionality from both the host
49 * controller and the device. The current UFS standard (1.1) allows only one
50 * device, and up to 8 logic units. the logic units only handle the SCSI part
51 * of the command, and the device mainly the UFS part. Yet the split between
52 * the SCSIresume function and the SCSICMDHandle might seem a bit awkward.
53 * The SCSICMDHandle function is in essence a SCSI reply generator, and it
54 * distils the essential information from the command. A disktransfer cannot
55 * be made from this position because the scatter gather list is not included
56 * in the SCSI command, but in the Transfer Request descriptor. The device
57 * needs to manage the data transfer. This file is build up as follows: first
58 * the UFSSCSIDevice functions will be presented; then the UFSHostDevice
59 * functions. The UFSHostDevice functions are split in three parts: UFS
60 * transaction flow, data write transfer and data read transfer. The
61 * functions are then ordered in the order in which a transfer takes place.
62 */
63
64/**
65 * Reference material can be found at the JEDEC website:
66 * UFS standard
67 * http://www.jedec.org/standards-documents/results/jesd220
68 * UFS HCI specification
69 * http://www.jedec.org/standards-documents/results/jesd223
70 */
71
72#include "dev/arm/ufs_device.hh"
73
74/**
75 * Constructor and destructor functions of UFSHCM device
76 */
77UFSHostDevice::UFSSCSIDevice::UFSSCSIDevice(const UFSHostDeviceParams* p,
78 uint32_t lun_id, Callback *transfer_cb,
79 Callback *read_cb):
80 SimObject(p),
81 flashDisk(p->image[lun_id]),
82 flashDevice(p->internalflash[lun_id]),
83 blkSize(p->img_blk_size),
84 lunAvail(p->image.size()),
85 diskSize(flashDisk->size()),
86 capacityLower((diskSize - 1) & 0xffffffff),
87 capacityUpper((diskSize - SectorSize) >> 32),
88 lunID(lun_id),
89 transferCompleted(false),
90 readCompleted(false),
91 totalRead(0),
92 totalWrite(0),
93 amountOfWriteTransfers(0),
94 amountOfReadTransfers(0)
95{
96 /**
97 * These callbacks are used to communicate the events that are
98 * triggered upstream; e.g. from the Memory Device to the UFS SCSI Device
99 * or from the UFS SCSI device to the UFS host.
100 */
101 signalDone = transfer_cb;
102 memReadCallback = new MakeCallback<UFSSCSIDevice,
103 &UFSHostDevice::UFSSCSIDevice::readCallback>(this);
104 deviceReadCallback = read_cb;
105 memWriteCallback = new MakeCallback<UFSSCSIDevice,
106 &UFSHostDevice::UFSSCSIDevice::SSDWriteDone>(this);
107
108 /**
109 * make ascii out of lun_id (and add more characters)
110 * UFS allows up to 8 logic units, so the numbering should work out
111 */
112 uint32_t temp_id = ((lun_id | 0x30) << 24) | 0x3A4449;
113 lunInfo.dWord0 = 0x02060000; //data
114 lunInfo.dWord1 = 0x0200001F;
115 lunInfo.vendor0 = 0x484D5241; //ARMH (HMRA)
116 lunInfo.vendor1 = 0x424D4143; //CAMB (BMAC)
117 lunInfo.product0 = 0x356D6567; //gem5 (5meg)
118 lunInfo.product1 = 0x4D534655; //UFSM (MSFU)
119 lunInfo.product2 = 0x4C45444F; //ODEL (LEDO)
120 lunInfo.product3 = temp_id; // ID:"lun_id" ("lun_id":DI)
121 lunInfo.productRevision = 0x01000000; //0x01
122
123 DPRINTF(UFSHostDevice, "Logic unit %d assumes that %d logic units are"
124 " present in the system\n", lunID, lunAvail);
125 DPRINTF(UFSHostDevice,"The disksize of lun: %d should be %d blocks\n",
126 lunID, diskSize);
127 flashDevice->initializeMemory(diskSize, SectorSize);
128}
129
130
131/**
132 * These pages are SCSI specific. For more information refer to:
133 * Universal Flash Storage (UFS) JESD220 FEB 2011 (JEDEC)
134 * http://www.jedec.org/standards-documents/results/jesd220
135 */
136const unsigned int UFSHostDevice::UFSSCSIDevice::controlPage[3] =
137 {0x01400A0A, 0x00000000,
138 0x0000FFFF};
139const unsigned int UFSHostDevice::UFSSCSIDevice::recoveryPage[3] =
140 {0x03800A01, 0x00000000,
141 0xFFFF0003};
142const unsigned int UFSHostDevice::UFSSCSIDevice::cachingPage[5] =
143 {0x00011208, 0x00000000,
144 0x00000000, 0x00000020,
145 0x00000000};
146
147UFSHostDevice::UFSSCSIDevice::~UFSSCSIDevice() {}
148
149/**
150 * UFS specific SCSI handling function.
151 * The following attributes may still be added: SCSI format unit,
152 * Send diagnostic and UNMAP;
153 * Synchronize Cache and buffer read/write could not be tested yet
154 * All parameters can be found in:
155 * Universal Flash Storage (UFS) JESD220 FEB 2011 (JEDEC)
156 * http://www.jedec.org/standards-documents/results/jesd220
157 * (a JEDEC acount may be required {free of charge})
158 */
159
160struct UFSHostDevice::SCSIReply
161UFSHostDevice::UFSSCSIDevice::SCSICMDHandle(uint32_t* SCSI_msg)
162{
163 struct SCSIReply scsi_out;
164 memset(&scsi_out, 0, sizeof(struct SCSIReply));
165
166 /**
167 * Create the standard SCSI reponse information
168 * These values might changes over the course of a transfer
169 */
170 scsi_out.message.header.dWord0 = UPIUHeaderDataIndWord0 |
171 lunID << 16;
172 scsi_out.message.header.dWord1 = UPIUHeaderDataIndWord1;
173 scsi_out.message.header.dWord2 = UPIUHeaderDataIndWord2;
174 statusCheck(SCSIGood, scsi_out.senseCode);
175 scsi_out.senseSize = scsi_out.senseCode[0];
176 scsi_out.LUN = lunID;
177 scsi_out.status = SCSIGood;
178
179 DPRINTF(UFSHostDevice, "SCSI command:%2x\n", SCSI_msg[4]);
180 /**Determine what the message is and fill the response packet*/
181
182 switch (SCSI_msg[4] & 0xFF) {
183
184 case SCSIInquiry: {
185 /**
186 * SCSI inquiry: tell about this specific logic unit
187 */
188 scsi_out.msgSize = 36;
189 scsi_out.message.dataMsg.resize(9);
190
191 for (uint8_t count = 0; count < 9; count++)
192 scsi_out.message.dataMsg[count] =
193 (reinterpret_cast<uint32_t*> (&lunInfo))[count];
194 } break;
195
196 case SCSIRead6: {
197 /**
198 * Read command. Number indicates the length of the command.
199 */
200 scsi_out.expectMore = 0x02;
201 scsi_out.msgSize = 0;
202
203 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
204
205 /**BE and not nicely aligned. Apart from that it only has
206 * information in five bits of the first byte that is relevant
207 * for this field.
208 */
209 uint32_t tmp = *reinterpret_cast<uint32_t*>(tempptr);
210 uint64_t read_offset = betoh(tmp) & 0x1FFFFF;
211
212 uint32_t read_size = tempptr[4];
213
214
215 scsi_out.msgSize = read_size * blkSize;
216 scsi_out.offset = read_offset * blkSize;
217
218 if ((read_offset + read_size) > diskSize)
219 scsi_out.status = SCSIIllegalRequest;
220
221 DPRINTF(UFSHostDevice, "Read6 offset: 0x%8x, for %d blocks\n",
222 read_offset, read_size);
223
224 /**
225 * Renew status check, for the request may have been illegal
226 */
227 statusCheck(scsi_out.status, scsi_out.senseCode);
228 scsi_out.senseSize = scsi_out.senseCode[0];
229 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
230 SCSICheckCondition;
231
232 } break;
233
234 case SCSIRead10: {
235 scsi_out.expectMore = 0x02;
236 scsi_out.msgSize = 0;
237
238 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
239
240 /**BE and not nicely aligned.*/
241 uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
242 uint64_t read_offset = betoh(tmp);
243
244 uint16_t tmpsize = *reinterpret_cast<uint16_t*>(&tempptr[7]);
245 uint32_t read_size = betoh(tmpsize);
246
247 scsi_out.msgSize = read_size * blkSize;
248 scsi_out.offset = read_offset * blkSize;
249
250 if ((read_offset + read_size) > diskSize)
251 scsi_out.status = SCSIIllegalRequest;
252
253 DPRINTF(UFSHostDevice, "Read10 offset: 0x%8x, for %d blocks\n",
254 read_offset, read_size);
255
256 /**
257 * Renew status check, for the request may have been illegal
258 */
259 statusCheck(scsi_out.status, scsi_out.senseCode);
260 scsi_out.senseSize = scsi_out.senseCode[0];
261 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
262 SCSICheckCondition;
263
264 } break;
265
266 case SCSIRead16: {
267 scsi_out.expectMore = 0x02;
268 scsi_out.msgSize = 0;
269
270 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
271
272 /**BE and not nicely aligned.*/
273 uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
274 uint64_t read_offset = betoh(tmp);
275
276 tmp = *reinterpret_cast<uint32_t*>(&tempptr[6]);
277 read_offset = (read_offset << 32) | betoh(tmp);
278
279 tmp = *reinterpret_cast<uint32_t*>(&tempptr[10]);
280 uint32_t read_size = betoh(tmp);
281
282 scsi_out.msgSize = read_size * blkSize;
283 scsi_out.offset = read_offset * blkSize;
284
285 if ((read_offset + read_size) > diskSize)
286 scsi_out.status = SCSIIllegalRequest;
287
288 DPRINTF(UFSHostDevice, "Read16 offset: 0x%8x, for %d blocks\n",
289 read_offset, read_size);
290
291 /**
292 * Renew status check, for the request may have been illegal
293 */
294 statusCheck(scsi_out.status, scsi_out.senseCode);
295 scsi_out.senseSize = scsi_out.senseCode[0];
296 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
297 SCSICheckCondition;
298
299 } break;
300
301 case SCSIReadCapacity10: {
302 /**
303 * read the capacity of the device
304 */
305 scsi_out.msgSize = 8;
306 scsi_out.message.dataMsg.resize(2);
307 scsi_out.message.dataMsg[0] =
308 betoh(capacityLower);//last block
309 scsi_out.message.dataMsg[1] = betoh(blkSize);//blocksize
310
311 } break;
312 case SCSIReadCapacity16: {
313 scsi_out.msgSize = 32;
314 scsi_out.message.dataMsg.resize(8);
315 scsi_out.message.dataMsg[0] =
316 betoh(capacityUpper);//last block
317 scsi_out.message.dataMsg[1] =
318 betoh(capacityLower);//last block
319 scsi_out.message.dataMsg[2] = betoh(blkSize);//blocksize
320 scsi_out.message.dataMsg[3] = 0x00;//
321 scsi_out.message.dataMsg[4] = 0x00;//reserved
322 scsi_out.message.dataMsg[5] = 0x00;//reserved
323 scsi_out.message.dataMsg[6] = 0x00;//reserved
324 scsi_out.message.dataMsg[7] = 0x00;//reserved
325
326 } break;
327
328 case SCSIReportLUNs: {
329 /**
330 * Find out how many Logic Units this device has.
331 */
332 scsi_out.msgSize = (lunAvail * 8) + 8;//list + overhead
333 scsi_out.message.dataMsg.resize(2 * lunAvail + 2);
334 scsi_out.message.dataMsg[0] = (lunAvail * 8) << 24;//LUN listlength
335 scsi_out.message.dataMsg[1] = 0x00;
336
337 for (uint8_t count = 0; count < lunAvail; count++) {
338 //LUN "count"
339 scsi_out.message.dataMsg[2 + 2 * count] = (count & 0x7F) << 8;
340 scsi_out.message.dataMsg[3 + 2 * count] = 0x00;
341 }
342
343 } break;
344
345 case SCSIStartStop: {
346 //Just acknowledge; not deemed relevant ATM
347 scsi_out.msgSize = 0;
348
349 } break;
350
351 case SCSITestUnitReady: {
352 //Just acknowledge; not deemed relevant ATM
353 scsi_out.msgSize = 0;
354
355 } break;
356
357 case SCSIVerify10: {
358 /**
359 * See if the blocks that the host plans to request are in range of
360 * the device.
361 */
362 scsi_out.msgSize = 0;
363
364 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
365
366 /**BE and not nicely aligned.*/
367 uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
368 uint64_t read_offset = betoh(tmp);
369
370 uint16_t tmpsize = *reinterpret_cast<uint16_t*>(&tempptr[7]);
371 uint32_t read_size = betoh(tmpsize);
372
373 if ((read_offset + read_size) > diskSize)
374 scsi_out.status = SCSIIllegalRequest;
375
376 /**
377 * Renew status check, for the request may have been illegal
378 */
379 statusCheck(scsi_out.status, scsi_out.senseCode);
380 scsi_out.senseSize = scsi_out.senseCode[0];
381 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
382 SCSICheckCondition;
383
384 } break;
385
386 case SCSIWrite6: {
387 /**
388 * Write command.
389 */
390
391 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
392
393 /**BE and not nicely aligned. Apart from that it only has
394 * information in five bits of the first byte that is relevant
395 * for this field.
396 */
397 uint32_t tmp = *reinterpret_cast<uint32_t*>(tempptr);
398 uint64_t write_offset = betoh(tmp) & 0x1FFFFF;
399
400 uint32_t write_size = tempptr[4];
401
402 scsi_out.msgSize = write_size * blkSize;
403 scsi_out.offset = write_offset * blkSize;
404 scsi_out.expectMore = 0x01;
405
406 if ((write_offset + write_size) > diskSize)
407 scsi_out.status = SCSIIllegalRequest;
408
409 DPRINTF(UFSHostDevice, "Write6 offset: 0x%8x, for %d blocks\n",
410 write_offset, write_size);
411
412 /**
413 * Renew status check, for the request may have been illegal
414 */
415 statusCheck(scsi_out.status, scsi_out.senseCode);
416 scsi_out.senseSize = scsi_out.senseCode[0];
417 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
418 SCSICheckCondition;
419
420 } break;
421
422 case SCSIWrite10: {
423 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
424
425 /**BE and not nicely aligned.*/
426 uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
427 uint64_t write_offset = betoh(tmp);
428
429 uint16_t tmpsize = *reinterpret_cast<uint16_t*>(&tempptr[7]);
430 uint32_t write_size = betoh(tmpsize);
431
432 scsi_out.msgSize = write_size * blkSize;
433 scsi_out.offset = write_offset * blkSize;
434 scsi_out.expectMore = 0x01;
435
436 if ((write_offset + write_size) > diskSize)
437 scsi_out.status = SCSIIllegalRequest;
438
439 DPRINTF(UFSHostDevice, "Write10 offset: 0x%8x, for %d blocks\n",
440 write_offset, write_size);
441
442 /**
443 * Renew status check, for the request may have been illegal
444 */
445 statusCheck(scsi_out.status, scsi_out.senseCode);
446 scsi_out.senseSize = scsi_out.senseCode[0];
447 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
448 SCSICheckCondition;
449
450 } break;
451
452 case SCSIWrite16: {
453 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
454
455 /**BE and not nicely aligned.*/
456 uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
457 uint64_t write_offset = betoh(tmp);
458
459 tmp = *reinterpret_cast<uint32_t*>(&tempptr[6]);
460 write_offset = (write_offset << 32) | betoh(tmp);
461
462 tmp = *reinterpret_cast<uint32_t*>(&tempptr[10]);
463 uint32_t write_size = betoh(tmp);
464
465 scsi_out.msgSize = write_size * blkSize;
466 scsi_out.offset = write_offset * blkSize;
467 scsi_out.expectMore = 0x01;
468
469 if ((write_offset + write_size) > diskSize)
470 scsi_out.status = SCSIIllegalRequest;
471
472 DPRINTF(UFSHostDevice, "Write16 offset: 0x%8x, for %d blocks\n",
473 write_offset, write_size);
474
475 /**
476 * Renew status check, for the request may have been illegal
477 */
478 statusCheck(scsi_out.status, scsi_out.senseCode);
479 scsi_out.senseSize = scsi_out.senseCode[0];
480 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
481 SCSICheckCondition;
482
483 } break;
484
485 case SCSIFormatUnit: {//not yet verified
486 scsi_out.msgSize = 0;
487 scsi_out.expectMore = 0x01;
488
489 } break;
490
491 case SCSISendDiagnostic: {//not yet verified
492 scsi_out.msgSize = 0;
493
494 } break;
495
496 case SCSISynchronizeCache: {
497 //do we have cache (we don't have cache at this moment)
498 //TODO: here will synchronization happen when cache is modelled
499 scsi_out.msgSize = 0;
500
501 } break;
502
503 //UFS SCSI additional command set for full functionality
504 case SCSIModeSelect10:
505 //TODO:
506 //scsi_out.expectMore = 0x01;//not supported due to modepage support
507 //code isn't dead, code suggest what is to be done when implemented
508 break;
509
510 case SCSIModeSense6: case SCSIModeSense10: {
511 /**
512 * Get more discriptive information about the SCSI functionality
513 * within this logic unit.
514 */
515 if ((SCSI_msg[4] & 0x3F0000) >> 16 == 0x0A) {//control page
516 scsi_out.message.dataMsg.resize((sizeof(controlPage) >> 2) + 2);
517 scsi_out.message.dataMsg[0] = 0x00000A00;//control page code
518 scsi_out.message.dataMsg[1] = 0x00000000;//See JEDEC220 ch8
519
520 for (uint8_t count = 0; count < 3; count++)
521 scsi_out.message.dataMsg[2 + count] = controlPage[count];
522
523 scsi_out.msgSize = 20;
524 DPRINTF(UFSHostDevice, "CONTROL page\n");
525
526 } else if ((SCSI_msg[4] & 0x3F0000) >> 16 == 0x01) {//recovery page
527 scsi_out.message.dataMsg.resize((sizeof(recoveryPage) >> 2)
528 + 2);
529
530 scsi_out.message.dataMsg[0] = 0x00000100;//recovery page code
531 scsi_out.message.dataMsg[1] = 0x00000000;//See JEDEC220 ch8
532
533 for (uint8_t count = 0; count < 3; count++)
534 scsi_out.message.dataMsg[2 + count] = recoveryPage[count];
535
536 scsi_out.msgSize = 20;
537 DPRINTF(UFSHostDevice, "RECOVERY page\n");
538
539 } else if ((SCSI_msg[4] & 0x3F0000) >> 16 == 0x08) {//caching page
540
541 scsi_out.message.dataMsg.resize((sizeof(cachingPage) >> 2) + 2);
542 scsi_out.message.dataMsg[0] = 0x00001200;//caching page code
543 scsi_out.message.dataMsg[1] = 0x00000000;//See JEDEC220 ch8
544
545 for (uint8_t count = 0; count < 5; count++)
546 scsi_out.message.dataMsg[2 + count] = cachingPage[count];
547
548 scsi_out.msgSize = 20;
549 DPRINTF(UFSHostDevice, "CACHE page\n");
550
551 } else if ((SCSI_msg[4] & 0x3F0000) >> 16 == 0x3F) {//ALL the pages!
552
553 scsi_out.message.dataMsg.resize(((sizeof(controlPage) +
554 sizeof(recoveryPage) +
555 sizeof(cachingPage)) >> 2)
556 + 2);
557 scsi_out.message.dataMsg[0] = 0x00003200;//all page code
558 scsi_out.message.dataMsg[1] = 0x00000000;//See JEDEC220 ch8
559
560 for (uint8_t count = 0; count < 3; count++)
561 scsi_out.message.dataMsg[2 + count] = recoveryPage[count];
562
563 for (uint8_t count = 0; count < 5; count++)
564 scsi_out.message.dataMsg[5 + count] = cachingPage[count];
565
566 for (uint8_t count = 0; count < 3; count++)
567 scsi_out.message.dataMsg[10 + count] = controlPage[count];
568
569 scsi_out.msgSize = 52;
570 DPRINTF(UFSHostDevice, "Return ALL the pages!!!\n");
571
572 } else inform("Wrong mode page requested\n");
573
574 scsi_out.message.dataCount = scsi_out.msgSize << 24;
575 } break;
576
577 case SCSIRequestSense: {
578 scsi_out.msgSize = 0;
579
580 } break;
581
582 case SCSIUnmap:break;//not yet verified
583
584 case SCSIWriteBuffer: {
585 scsi_out.expectMore = 0x01;
586
587 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
588
589 /**BE and not nicely aligned.*/
590 uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
591 uint64_t write_offset = betoh(tmp) & 0xFFFFFF;
592
593 tmp = *reinterpret_cast<uint32_t*>(&tempptr[5]);
594 uint32_t write_size = betoh(tmp) & 0xFFFFFF;
595
596 scsi_out.msgSize = write_size;
597 scsi_out.offset = write_offset;
598
599 } break;
600
601 case SCSIReadBuffer: {
602 /**
603 * less trivial than normal read. Size is in bytes instead
604 * of blocks, and it is assumed (though not guaranteed) that
605 * reading is from cache.
606 */
607 scsi_out.expectMore = 0x02;
608
609 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
610
611 /**BE and not nicely aligned.*/
612 uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
613 uint64_t read_offset = betoh(tmp) & 0xFFFFFF;
614
615 tmp = *reinterpret_cast<uint32_t*>(&tempptr[5]);
616 uint32_t read_size = betoh(tmp) & 0xFFFFFF;
617
618 scsi_out.msgSize = read_size;
619 scsi_out.offset = read_offset;
620
621 if ((read_offset + read_size) > capacityLower * blkSize)
622 scsi_out.status = SCSIIllegalRequest;
623
624 DPRINTF(UFSHostDevice, "Read buffer location: 0x%8x\n",
625 read_offset);
626 DPRINTF(UFSHostDevice, "Number of bytes: 0x%8x\n", read_size);
627
628 statusCheck(scsi_out.status, scsi_out.senseCode);
629 scsi_out.senseSize = scsi_out.senseCode[0];
630 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
631 SCSICheckCondition;
632
633 } break;
634
635 case SCSIMaintenanceIn: {
636 /**
637 * linux sends this command three times from kernel 3.9 onwards,
638 * UFS does not support it, nor does this model. Linux knows this,
639 * but tries anyway (useful for some SD card types).
640 * Lets make clear we don't want it and just ignore it.
641 */
642 DPRINTF(UFSHostDevice, "Ignoring Maintenance In command\n");
643 statusCheck(SCSIIllegalRequest, scsi_out.senseCode);
644 scsi_out.senseSize = scsi_out.senseCode[0];
645 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
646 SCSICheckCondition;
647 scsi_out.msgSize = 0;
648 } break;
649
650 default: {
651 statusCheck(SCSIIllegalRequest, scsi_out.senseCode);
652 scsi_out.senseSize = scsi_out.senseCode[0];
653 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
654 SCSICheckCondition;
655 scsi_out.msgSize = 0;
656 inform("Unsupported scsi message type: %2x\n", SCSI_msg[4] & 0xFF);
657 inform("0x%8x\n", SCSI_msg[0]);
658 inform("0x%8x\n", SCSI_msg[1]);
659 inform("0x%8x\n", SCSI_msg[2]);
660 inform("0x%8x\n", SCSI_msg[3]);
661 inform("0x%8x\n", SCSI_msg[4]);
662 } break;
663 }
664
665 return scsi_out;
666}
667
668/**
669 * SCSI status check function. generic device test, creates sense codes
670 * Future versions may include TODO: device checks, which is why this is
671 * in a separate function.
672 */
673
674void
675UFSHostDevice::UFSSCSIDevice::statusCheck(uint8_t status,
676 uint8_t* sensecodelist)
677{
678 for (uint8_t count = 0; count < 19; count++)
679 sensecodelist[count] = 0;
680
681 sensecodelist[0] = 18; //sense length
682 sensecodelist[1] = 0x70; //we send a valid frame
683 sensecodelist[3] = status & 0xF; //mask to be sure + sensecode
684 sensecodelist[8] = 0x1F; //data length
685}
686
687/**
688 * read from the flashdisk
689 */
690
691void
692UFSHostDevice::UFSSCSIDevice::readFlash(uint8_t* readaddr, uint64_t offset,
693 uint32_t size)
694{
695 /** read from image, and get to memory */
696 for (int count = 0; count < (size / SectorSize); count++)
697 flashDisk->read(&(readaddr[SectorSize*count]), (offset /
698 SectorSize) + count);
699}
700
701/**
702 * Write to the flashdisk
703 */
704
705void
706UFSHostDevice::UFSSCSIDevice::writeFlash(uint8_t* writeaddr, uint64_t offset,
707 uint32_t size)
708{
709 /** Get from fifo and write to image*/
710 for (int count = 0; count < (size / SectorSize); count++)
711 flashDisk->write(&(writeaddr[SectorSize * count]),
712 (offset / SectorSize) + count);
713}
714
715/**
716 * Constructor for the UFS Host device
717 */
718
719UFSHostDevice::UFSHostDevice(const UFSHostDeviceParams* p) :
720 DmaDevice(p),
721 pioAddr(p->pio_addr),
722 pioSize(0x0FFF),
723 pioDelay(p->pio_latency),
724 intNum(p->int_num),
725 gic(p->gic),
726 lunAvail(p->image.size()),
727 UFSSlots(p->ufs_slots - 1),
728 readPendingNum(0),
729 writePendingNum(0),
730 activeDoorbells(0),
731 pendingDoorbells(0),
732 countInt(0),
733 transferTrack(0),
734 taskCommandTrack(0),
735 idlePhaseStart(0),
736 SCSIResumeEvent(this),
737 UTPEvent(this)
738{
739 DPRINTF(UFSHostDevice, "The hostcontroller hosts %d Logic units\n",
740 lunAvail);
741 UFSDevice.resize(lunAvail);
742
743 transferDoneCallback = new MakeCallback<UFSHostDevice,
744 &UFSHostDevice::LUNSignal>(this);
745 memReadCallback = new MakeCallback<UFSHostDevice,
746 &UFSHostDevice::readCallback>(this);
747
748 for (int count = 0; count < lunAvail; count++) {
749 UFSDevice[count] = new UFSSCSIDevice(p, count, transferDoneCallback,
750 memReadCallback);
751 }
752
753 if (UFSSlots > 31)
754 warn("UFSSlots = %d, this will results in %d command slots",
755 UFSSlots, (UFSSlots & 0x1F));
756
757 if ((UFSSlots & 0x1F) == 0)
758 fatal("Number of UFS command slots should be between 1 and 32.");
759
760 setValues();
761}
762
763/**
764 * Create the parameters of this device
765 */
766
767UFSHostDevice*
768UFSHostDeviceParams::create()
769{
770 return new UFSHostDevice(this);
771}
772
773
774void
775UFSHostDevice::regStats()
776{
1/*
2 * Copyright (c) 2013-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Rene de Jong
38 */
39
40/** @file
41 * This is a simulation model for a UFS interface
42 * The UFS interface consists of a host controller and (at least) one device.
43 * The device can contain multiple logic units.
44 * To make this interface as usefull as possible for future development, the
45 * decision has been made to split the UFS functionality from the SCSI
46 * functionality. The class UFS SCSIDevice can therefor be used as a starting
47 * point for creating a more generic SCSI device. This has as a consequence
48 * that the UFSHostDevice class contains functionality from both the host
49 * controller and the device. The current UFS standard (1.1) allows only one
50 * device, and up to 8 logic units. the logic units only handle the SCSI part
51 * of the command, and the device mainly the UFS part. Yet the split between
52 * the SCSIresume function and the SCSICMDHandle might seem a bit awkward.
53 * The SCSICMDHandle function is in essence a SCSI reply generator, and it
54 * distils the essential information from the command. A disktransfer cannot
55 * be made from this position because the scatter gather list is not included
56 * in the SCSI command, but in the Transfer Request descriptor. The device
57 * needs to manage the data transfer. This file is build up as follows: first
58 * the UFSSCSIDevice functions will be presented; then the UFSHostDevice
59 * functions. The UFSHostDevice functions are split in three parts: UFS
60 * transaction flow, data write transfer and data read transfer. The
61 * functions are then ordered in the order in which a transfer takes place.
62 */
63
64/**
65 * Reference material can be found at the JEDEC website:
66 * UFS standard
67 * http://www.jedec.org/standards-documents/results/jesd220
68 * UFS HCI specification
69 * http://www.jedec.org/standards-documents/results/jesd223
70 */
71
72#include "dev/arm/ufs_device.hh"
73
74/**
75 * Constructor and destructor functions of UFSHCM device
76 */
77UFSHostDevice::UFSSCSIDevice::UFSSCSIDevice(const UFSHostDeviceParams* p,
78 uint32_t lun_id, Callback *transfer_cb,
79 Callback *read_cb):
80 SimObject(p),
81 flashDisk(p->image[lun_id]),
82 flashDevice(p->internalflash[lun_id]),
83 blkSize(p->img_blk_size),
84 lunAvail(p->image.size()),
85 diskSize(flashDisk->size()),
86 capacityLower((diskSize - 1) & 0xffffffff),
87 capacityUpper((diskSize - SectorSize) >> 32),
88 lunID(lun_id),
89 transferCompleted(false),
90 readCompleted(false),
91 totalRead(0),
92 totalWrite(0),
93 amountOfWriteTransfers(0),
94 amountOfReadTransfers(0)
95{
96 /**
97 * These callbacks are used to communicate the events that are
98 * triggered upstream; e.g. from the Memory Device to the UFS SCSI Device
99 * or from the UFS SCSI device to the UFS host.
100 */
101 signalDone = transfer_cb;
102 memReadCallback = new MakeCallback<UFSSCSIDevice,
103 &UFSHostDevice::UFSSCSIDevice::readCallback>(this);
104 deviceReadCallback = read_cb;
105 memWriteCallback = new MakeCallback<UFSSCSIDevice,
106 &UFSHostDevice::UFSSCSIDevice::SSDWriteDone>(this);
107
108 /**
109 * make ascii out of lun_id (and add more characters)
110 * UFS allows up to 8 logic units, so the numbering should work out
111 */
112 uint32_t temp_id = ((lun_id | 0x30) << 24) | 0x3A4449;
113 lunInfo.dWord0 = 0x02060000; //data
114 lunInfo.dWord1 = 0x0200001F;
115 lunInfo.vendor0 = 0x484D5241; //ARMH (HMRA)
116 lunInfo.vendor1 = 0x424D4143; //CAMB (BMAC)
117 lunInfo.product0 = 0x356D6567; //gem5 (5meg)
118 lunInfo.product1 = 0x4D534655; //UFSM (MSFU)
119 lunInfo.product2 = 0x4C45444F; //ODEL (LEDO)
120 lunInfo.product3 = temp_id; // ID:"lun_id" ("lun_id":DI)
121 lunInfo.productRevision = 0x01000000; //0x01
122
123 DPRINTF(UFSHostDevice, "Logic unit %d assumes that %d logic units are"
124 " present in the system\n", lunID, lunAvail);
125 DPRINTF(UFSHostDevice,"The disksize of lun: %d should be %d blocks\n",
126 lunID, diskSize);
127 flashDevice->initializeMemory(diskSize, SectorSize);
128}
129
130
131/**
132 * These pages are SCSI specific. For more information refer to:
133 * Universal Flash Storage (UFS) JESD220 FEB 2011 (JEDEC)
134 * http://www.jedec.org/standards-documents/results/jesd220
135 */
136const unsigned int UFSHostDevice::UFSSCSIDevice::controlPage[3] =
137 {0x01400A0A, 0x00000000,
138 0x0000FFFF};
139const unsigned int UFSHostDevice::UFSSCSIDevice::recoveryPage[3] =
140 {0x03800A01, 0x00000000,
141 0xFFFF0003};
142const unsigned int UFSHostDevice::UFSSCSIDevice::cachingPage[5] =
143 {0x00011208, 0x00000000,
144 0x00000000, 0x00000020,
145 0x00000000};
146
147UFSHostDevice::UFSSCSIDevice::~UFSSCSIDevice() {}
148
149/**
150 * UFS specific SCSI handling function.
151 * The following attributes may still be added: SCSI format unit,
152 * Send diagnostic and UNMAP;
153 * Synchronize Cache and buffer read/write could not be tested yet
154 * All parameters can be found in:
155 * Universal Flash Storage (UFS) JESD220 FEB 2011 (JEDEC)
156 * http://www.jedec.org/standards-documents/results/jesd220
157 * (a JEDEC acount may be required {free of charge})
158 */
159
160struct UFSHostDevice::SCSIReply
161UFSHostDevice::UFSSCSIDevice::SCSICMDHandle(uint32_t* SCSI_msg)
162{
163 struct SCSIReply scsi_out;
164 memset(&scsi_out, 0, sizeof(struct SCSIReply));
165
166 /**
167 * Create the standard SCSI reponse information
168 * These values might changes over the course of a transfer
169 */
170 scsi_out.message.header.dWord0 = UPIUHeaderDataIndWord0 |
171 lunID << 16;
172 scsi_out.message.header.dWord1 = UPIUHeaderDataIndWord1;
173 scsi_out.message.header.dWord2 = UPIUHeaderDataIndWord2;
174 statusCheck(SCSIGood, scsi_out.senseCode);
175 scsi_out.senseSize = scsi_out.senseCode[0];
176 scsi_out.LUN = lunID;
177 scsi_out.status = SCSIGood;
178
179 DPRINTF(UFSHostDevice, "SCSI command:%2x\n", SCSI_msg[4]);
180 /**Determine what the message is and fill the response packet*/
181
182 switch (SCSI_msg[4] & 0xFF) {
183
184 case SCSIInquiry: {
185 /**
186 * SCSI inquiry: tell about this specific logic unit
187 */
188 scsi_out.msgSize = 36;
189 scsi_out.message.dataMsg.resize(9);
190
191 for (uint8_t count = 0; count < 9; count++)
192 scsi_out.message.dataMsg[count] =
193 (reinterpret_cast<uint32_t*> (&lunInfo))[count];
194 } break;
195
196 case SCSIRead6: {
197 /**
198 * Read command. Number indicates the length of the command.
199 */
200 scsi_out.expectMore = 0x02;
201 scsi_out.msgSize = 0;
202
203 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
204
205 /**BE and not nicely aligned. Apart from that it only has
206 * information in five bits of the first byte that is relevant
207 * for this field.
208 */
209 uint32_t tmp = *reinterpret_cast<uint32_t*>(tempptr);
210 uint64_t read_offset = betoh(tmp) & 0x1FFFFF;
211
212 uint32_t read_size = tempptr[4];
213
214
215 scsi_out.msgSize = read_size * blkSize;
216 scsi_out.offset = read_offset * blkSize;
217
218 if ((read_offset + read_size) > diskSize)
219 scsi_out.status = SCSIIllegalRequest;
220
221 DPRINTF(UFSHostDevice, "Read6 offset: 0x%8x, for %d blocks\n",
222 read_offset, read_size);
223
224 /**
225 * Renew status check, for the request may have been illegal
226 */
227 statusCheck(scsi_out.status, scsi_out.senseCode);
228 scsi_out.senseSize = scsi_out.senseCode[0];
229 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
230 SCSICheckCondition;
231
232 } break;
233
234 case SCSIRead10: {
235 scsi_out.expectMore = 0x02;
236 scsi_out.msgSize = 0;
237
238 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
239
240 /**BE and not nicely aligned.*/
241 uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
242 uint64_t read_offset = betoh(tmp);
243
244 uint16_t tmpsize = *reinterpret_cast<uint16_t*>(&tempptr[7]);
245 uint32_t read_size = betoh(tmpsize);
246
247 scsi_out.msgSize = read_size * blkSize;
248 scsi_out.offset = read_offset * blkSize;
249
250 if ((read_offset + read_size) > diskSize)
251 scsi_out.status = SCSIIllegalRequest;
252
253 DPRINTF(UFSHostDevice, "Read10 offset: 0x%8x, for %d blocks\n",
254 read_offset, read_size);
255
256 /**
257 * Renew status check, for the request may have been illegal
258 */
259 statusCheck(scsi_out.status, scsi_out.senseCode);
260 scsi_out.senseSize = scsi_out.senseCode[0];
261 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
262 SCSICheckCondition;
263
264 } break;
265
266 case SCSIRead16: {
267 scsi_out.expectMore = 0x02;
268 scsi_out.msgSize = 0;
269
270 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
271
272 /**BE and not nicely aligned.*/
273 uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
274 uint64_t read_offset = betoh(tmp);
275
276 tmp = *reinterpret_cast<uint32_t*>(&tempptr[6]);
277 read_offset = (read_offset << 32) | betoh(tmp);
278
279 tmp = *reinterpret_cast<uint32_t*>(&tempptr[10]);
280 uint32_t read_size = betoh(tmp);
281
282 scsi_out.msgSize = read_size * blkSize;
283 scsi_out.offset = read_offset * blkSize;
284
285 if ((read_offset + read_size) > diskSize)
286 scsi_out.status = SCSIIllegalRequest;
287
288 DPRINTF(UFSHostDevice, "Read16 offset: 0x%8x, for %d blocks\n",
289 read_offset, read_size);
290
291 /**
292 * Renew status check, for the request may have been illegal
293 */
294 statusCheck(scsi_out.status, scsi_out.senseCode);
295 scsi_out.senseSize = scsi_out.senseCode[0];
296 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
297 SCSICheckCondition;
298
299 } break;
300
301 case SCSIReadCapacity10: {
302 /**
303 * read the capacity of the device
304 */
305 scsi_out.msgSize = 8;
306 scsi_out.message.dataMsg.resize(2);
307 scsi_out.message.dataMsg[0] =
308 betoh(capacityLower);//last block
309 scsi_out.message.dataMsg[1] = betoh(blkSize);//blocksize
310
311 } break;
312 case SCSIReadCapacity16: {
313 scsi_out.msgSize = 32;
314 scsi_out.message.dataMsg.resize(8);
315 scsi_out.message.dataMsg[0] =
316 betoh(capacityUpper);//last block
317 scsi_out.message.dataMsg[1] =
318 betoh(capacityLower);//last block
319 scsi_out.message.dataMsg[2] = betoh(blkSize);//blocksize
320 scsi_out.message.dataMsg[3] = 0x00;//
321 scsi_out.message.dataMsg[4] = 0x00;//reserved
322 scsi_out.message.dataMsg[5] = 0x00;//reserved
323 scsi_out.message.dataMsg[6] = 0x00;//reserved
324 scsi_out.message.dataMsg[7] = 0x00;//reserved
325
326 } break;
327
328 case SCSIReportLUNs: {
329 /**
330 * Find out how many Logic Units this device has.
331 */
332 scsi_out.msgSize = (lunAvail * 8) + 8;//list + overhead
333 scsi_out.message.dataMsg.resize(2 * lunAvail + 2);
334 scsi_out.message.dataMsg[0] = (lunAvail * 8) << 24;//LUN listlength
335 scsi_out.message.dataMsg[1] = 0x00;
336
337 for (uint8_t count = 0; count < lunAvail; count++) {
338 //LUN "count"
339 scsi_out.message.dataMsg[2 + 2 * count] = (count & 0x7F) << 8;
340 scsi_out.message.dataMsg[3 + 2 * count] = 0x00;
341 }
342
343 } break;
344
345 case SCSIStartStop: {
346 //Just acknowledge; not deemed relevant ATM
347 scsi_out.msgSize = 0;
348
349 } break;
350
351 case SCSITestUnitReady: {
352 //Just acknowledge; not deemed relevant ATM
353 scsi_out.msgSize = 0;
354
355 } break;
356
357 case SCSIVerify10: {
358 /**
359 * See if the blocks that the host plans to request are in range of
360 * the device.
361 */
362 scsi_out.msgSize = 0;
363
364 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
365
366 /**BE and not nicely aligned.*/
367 uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
368 uint64_t read_offset = betoh(tmp);
369
370 uint16_t tmpsize = *reinterpret_cast<uint16_t*>(&tempptr[7]);
371 uint32_t read_size = betoh(tmpsize);
372
373 if ((read_offset + read_size) > diskSize)
374 scsi_out.status = SCSIIllegalRequest;
375
376 /**
377 * Renew status check, for the request may have been illegal
378 */
379 statusCheck(scsi_out.status, scsi_out.senseCode);
380 scsi_out.senseSize = scsi_out.senseCode[0];
381 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
382 SCSICheckCondition;
383
384 } break;
385
386 case SCSIWrite6: {
387 /**
388 * Write command.
389 */
390
391 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
392
393 /**BE and not nicely aligned. Apart from that it only has
394 * information in five bits of the first byte that is relevant
395 * for this field.
396 */
397 uint32_t tmp = *reinterpret_cast<uint32_t*>(tempptr);
398 uint64_t write_offset = betoh(tmp) & 0x1FFFFF;
399
400 uint32_t write_size = tempptr[4];
401
402 scsi_out.msgSize = write_size * blkSize;
403 scsi_out.offset = write_offset * blkSize;
404 scsi_out.expectMore = 0x01;
405
406 if ((write_offset + write_size) > diskSize)
407 scsi_out.status = SCSIIllegalRequest;
408
409 DPRINTF(UFSHostDevice, "Write6 offset: 0x%8x, for %d blocks\n",
410 write_offset, write_size);
411
412 /**
413 * Renew status check, for the request may have been illegal
414 */
415 statusCheck(scsi_out.status, scsi_out.senseCode);
416 scsi_out.senseSize = scsi_out.senseCode[0];
417 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
418 SCSICheckCondition;
419
420 } break;
421
422 case SCSIWrite10: {
423 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
424
425 /**BE and not nicely aligned.*/
426 uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
427 uint64_t write_offset = betoh(tmp);
428
429 uint16_t tmpsize = *reinterpret_cast<uint16_t*>(&tempptr[7]);
430 uint32_t write_size = betoh(tmpsize);
431
432 scsi_out.msgSize = write_size * blkSize;
433 scsi_out.offset = write_offset * blkSize;
434 scsi_out.expectMore = 0x01;
435
436 if ((write_offset + write_size) > diskSize)
437 scsi_out.status = SCSIIllegalRequest;
438
439 DPRINTF(UFSHostDevice, "Write10 offset: 0x%8x, for %d blocks\n",
440 write_offset, write_size);
441
442 /**
443 * Renew status check, for the request may have been illegal
444 */
445 statusCheck(scsi_out.status, scsi_out.senseCode);
446 scsi_out.senseSize = scsi_out.senseCode[0];
447 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
448 SCSICheckCondition;
449
450 } break;
451
452 case SCSIWrite16: {
453 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
454
455 /**BE and not nicely aligned.*/
456 uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
457 uint64_t write_offset = betoh(tmp);
458
459 tmp = *reinterpret_cast<uint32_t*>(&tempptr[6]);
460 write_offset = (write_offset << 32) | betoh(tmp);
461
462 tmp = *reinterpret_cast<uint32_t*>(&tempptr[10]);
463 uint32_t write_size = betoh(tmp);
464
465 scsi_out.msgSize = write_size * blkSize;
466 scsi_out.offset = write_offset * blkSize;
467 scsi_out.expectMore = 0x01;
468
469 if ((write_offset + write_size) > diskSize)
470 scsi_out.status = SCSIIllegalRequest;
471
472 DPRINTF(UFSHostDevice, "Write16 offset: 0x%8x, for %d blocks\n",
473 write_offset, write_size);
474
475 /**
476 * Renew status check, for the request may have been illegal
477 */
478 statusCheck(scsi_out.status, scsi_out.senseCode);
479 scsi_out.senseSize = scsi_out.senseCode[0];
480 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
481 SCSICheckCondition;
482
483 } break;
484
485 case SCSIFormatUnit: {//not yet verified
486 scsi_out.msgSize = 0;
487 scsi_out.expectMore = 0x01;
488
489 } break;
490
491 case SCSISendDiagnostic: {//not yet verified
492 scsi_out.msgSize = 0;
493
494 } break;
495
496 case SCSISynchronizeCache: {
497 //do we have cache (we don't have cache at this moment)
498 //TODO: here will synchronization happen when cache is modelled
499 scsi_out.msgSize = 0;
500
501 } break;
502
503 //UFS SCSI additional command set for full functionality
504 case SCSIModeSelect10:
505 //TODO:
506 //scsi_out.expectMore = 0x01;//not supported due to modepage support
507 //code isn't dead, code suggest what is to be done when implemented
508 break;
509
510 case SCSIModeSense6: case SCSIModeSense10: {
511 /**
512 * Get more discriptive information about the SCSI functionality
513 * within this logic unit.
514 */
515 if ((SCSI_msg[4] & 0x3F0000) >> 16 == 0x0A) {//control page
516 scsi_out.message.dataMsg.resize((sizeof(controlPage) >> 2) + 2);
517 scsi_out.message.dataMsg[0] = 0x00000A00;//control page code
518 scsi_out.message.dataMsg[1] = 0x00000000;//See JEDEC220 ch8
519
520 for (uint8_t count = 0; count < 3; count++)
521 scsi_out.message.dataMsg[2 + count] = controlPage[count];
522
523 scsi_out.msgSize = 20;
524 DPRINTF(UFSHostDevice, "CONTROL page\n");
525
526 } else if ((SCSI_msg[4] & 0x3F0000) >> 16 == 0x01) {//recovery page
527 scsi_out.message.dataMsg.resize((sizeof(recoveryPage) >> 2)
528 + 2);
529
530 scsi_out.message.dataMsg[0] = 0x00000100;//recovery page code
531 scsi_out.message.dataMsg[1] = 0x00000000;//See JEDEC220 ch8
532
533 for (uint8_t count = 0; count < 3; count++)
534 scsi_out.message.dataMsg[2 + count] = recoveryPage[count];
535
536 scsi_out.msgSize = 20;
537 DPRINTF(UFSHostDevice, "RECOVERY page\n");
538
539 } else if ((SCSI_msg[4] & 0x3F0000) >> 16 == 0x08) {//caching page
540
541 scsi_out.message.dataMsg.resize((sizeof(cachingPage) >> 2) + 2);
542 scsi_out.message.dataMsg[0] = 0x00001200;//caching page code
543 scsi_out.message.dataMsg[1] = 0x00000000;//See JEDEC220 ch8
544
545 for (uint8_t count = 0; count < 5; count++)
546 scsi_out.message.dataMsg[2 + count] = cachingPage[count];
547
548 scsi_out.msgSize = 20;
549 DPRINTF(UFSHostDevice, "CACHE page\n");
550
551 } else if ((SCSI_msg[4] & 0x3F0000) >> 16 == 0x3F) {//ALL the pages!
552
553 scsi_out.message.dataMsg.resize(((sizeof(controlPage) +
554 sizeof(recoveryPage) +
555 sizeof(cachingPage)) >> 2)
556 + 2);
557 scsi_out.message.dataMsg[0] = 0x00003200;//all page code
558 scsi_out.message.dataMsg[1] = 0x00000000;//See JEDEC220 ch8
559
560 for (uint8_t count = 0; count < 3; count++)
561 scsi_out.message.dataMsg[2 + count] = recoveryPage[count];
562
563 for (uint8_t count = 0; count < 5; count++)
564 scsi_out.message.dataMsg[5 + count] = cachingPage[count];
565
566 for (uint8_t count = 0; count < 3; count++)
567 scsi_out.message.dataMsg[10 + count] = controlPage[count];
568
569 scsi_out.msgSize = 52;
570 DPRINTF(UFSHostDevice, "Return ALL the pages!!!\n");
571
572 } else inform("Wrong mode page requested\n");
573
574 scsi_out.message.dataCount = scsi_out.msgSize << 24;
575 } break;
576
577 case SCSIRequestSense: {
578 scsi_out.msgSize = 0;
579
580 } break;
581
582 case SCSIUnmap:break;//not yet verified
583
584 case SCSIWriteBuffer: {
585 scsi_out.expectMore = 0x01;
586
587 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
588
589 /**BE and not nicely aligned.*/
590 uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
591 uint64_t write_offset = betoh(tmp) & 0xFFFFFF;
592
593 tmp = *reinterpret_cast<uint32_t*>(&tempptr[5]);
594 uint32_t write_size = betoh(tmp) & 0xFFFFFF;
595
596 scsi_out.msgSize = write_size;
597 scsi_out.offset = write_offset;
598
599 } break;
600
601 case SCSIReadBuffer: {
602 /**
603 * less trivial than normal read. Size is in bytes instead
604 * of blocks, and it is assumed (though not guaranteed) that
605 * reading is from cache.
606 */
607 scsi_out.expectMore = 0x02;
608
609 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
610
611 /**BE and not nicely aligned.*/
612 uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
613 uint64_t read_offset = betoh(tmp) & 0xFFFFFF;
614
615 tmp = *reinterpret_cast<uint32_t*>(&tempptr[5]);
616 uint32_t read_size = betoh(tmp) & 0xFFFFFF;
617
618 scsi_out.msgSize = read_size;
619 scsi_out.offset = read_offset;
620
621 if ((read_offset + read_size) > capacityLower * blkSize)
622 scsi_out.status = SCSIIllegalRequest;
623
624 DPRINTF(UFSHostDevice, "Read buffer location: 0x%8x\n",
625 read_offset);
626 DPRINTF(UFSHostDevice, "Number of bytes: 0x%8x\n", read_size);
627
628 statusCheck(scsi_out.status, scsi_out.senseCode);
629 scsi_out.senseSize = scsi_out.senseCode[0];
630 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
631 SCSICheckCondition;
632
633 } break;
634
635 case SCSIMaintenanceIn: {
636 /**
637 * linux sends this command three times from kernel 3.9 onwards,
638 * UFS does not support it, nor does this model. Linux knows this,
639 * but tries anyway (useful for some SD card types).
640 * Lets make clear we don't want it and just ignore it.
641 */
642 DPRINTF(UFSHostDevice, "Ignoring Maintenance In command\n");
643 statusCheck(SCSIIllegalRequest, scsi_out.senseCode);
644 scsi_out.senseSize = scsi_out.senseCode[0];
645 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
646 SCSICheckCondition;
647 scsi_out.msgSize = 0;
648 } break;
649
650 default: {
651 statusCheck(SCSIIllegalRequest, scsi_out.senseCode);
652 scsi_out.senseSize = scsi_out.senseCode[0];
653 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
654 SCSICheckCondition;
655 scsi_out.msgSize = 0;
656 inform("Unsupported scsi message type: %2x\n", SCSI_msg[4] & 0xFF);
657 inform("0x%8x\n", SCSI_msg[0]);
658 inform("0x%8x\n", SCSI_msg[1]);
659 inform("0x%8x\n", SCSI_msg[2]);
660 inform("0x%8x\n", SCSI_msg[3]);
661 inform("0x%8x\n", SCSI_msg[4]);
662 } break;
663 }
664
665 return scsi_out;
666}
667
668/**
669 * SCSI status check function. generic device test, creates sense codes
670 * Future versions may include TODO: device checks, which is why this is
671 * in a separate function.
672 */
673
674void
675UFSHostDevice::UFSSCSIDevice::statusCheck(uint8_t status,
676 uint8_t* sensecodelist)
677{
678 for (uint8_t count = 0; count < 19; count++)
679 sensecodelist[count] = 0;
680
681 sensecodelist[0] = 18; //sense length
682 sensecodelist[1] = 0x70; //we send a valid frame
683 sensecodelist[3] = status & 0xF; //mask to be sure + sensecode
684 sensecodelist[8] = 0x1F; //data length
685}
686
687/**
688 * read from the flashdisk
689 */
690
691void
692UFSHostDevice::UFSSCSIDevice::readFlash(uint8_t* readaddr, uint64_t offset,
693 uint32_t size)
694{
695 /** read from image, and get to memory */
696 for (int count = 0; count < (size / SectorSize); count++)
697 flashDisk->read(&(readaddr[SectorSize*count]), (offset /
698 SectorSize) + count);
699}
700
701/**
702 * Write to the flashdisk
703 */
704
705void
706UFSHostDevice::UFSSCSIDevice::writeFlash(uint8_t* writeaddr, uint64_t offset,
707 uint32_t size)
708{
709 /** Get from fifo and write to image*/
710 for (int count = 0; count < (size / SectorSize); count++)
711 flashDisk->write(&(writeaddr[SectorSize * count]),
712 (offset / SectorSize) + count);
713}
714
715/**
716 * Constructor for the UFS Host device
717 */
718
719UFSHostDevice::UFSHostDevice(const UFSHostDeviceParams* p) :
720 DmaDevice(p),
721 pioAddr(p->pio_addr),
722 pioSize(0x0FFF),
723 pioDelay(p->pio_latency),
724 intNum(p->int_num),
725 gic(p->gic),
726 lunAvail(p->image.size()),
727 UFSSlots(p->ufs_slots - 1),
728 readPendingNum(0),
729 writePendingNum(0),
730 activeDoorbells(0),
731 pendingDoorbells(0),
732 countInt(0),
733 transferTrack(0),
734 taskCommandTrack(0),
735 idlePhaseStart(0),
736 SCSIResumeEvent(this),
737 UTPEvent(this)
738{
739 DPRINTF(UFSHostDevice, "The hostcontroller hosts %d Logic units\n",
740 lunAvail);
741 UFSDevice.resize(lunAvail);
742
743 transferDoneCallback = new MakeCallback<UFSHostDevice,
744 &UFSHostDevice::LUNSignal>(this);
745 memReadCallback = new MakeCallback<UFSHostDevice,
746 &UFSHostDevice::readCallback>(this);
747
748 for (int count = 0; count < lunAvail; count++) {
749 UFSDevice[count] = new UFSSCSIDevice(p, count, transferDoneCallback,
750 memReadCallback);
751 }
752
753 if (UFSSlots > 31)
754 warn("UFSSlots = %d, this will results in %d command slots",
755 UFSSlots, (UFSSlots & 0x1F));
756
757 if ((UFSSlots & 0x1F) == 0)
758 fatal("Number of UFS command slots should be between 1 and 32.");
759
760 setValues();
761}
762
763/**
764 * Create the parameters of this device
765 */
766
767UFSHostDevice*
768UFSHostDeviceParams::create()
769{
770 return new UFSHostDevice(this);
771}
772
773
774void
775UFSHostDevice::regStats()
776{
777 DmaDevice::regStats();
778
777 using namespace Stats;
778
779 std::string UFSHost_name = name() + ".UFSDiskHost";
780
781 // Register the stats
782 /** Queue lengths */
783 stats.currentSCSIQueue
784 .name(UFSHost_name + ".currentSCSIQueue")
785 .desc("Most up to date length of the command queue")
786 .flags(none);
787 stats.currentReadSSDQueue
788 .name(UFSHost_name + ".currentReadSSDQueue")
789 .desc("Most up to date length of the read SSD queue")
790 .flags(none);
791 stats.currentWriteSSDQueue
792 .name(UFSHost_name + ".currentWriteSSDQueue")
793 .desc("Most up to date length of the write SSD queue")
794 .flags(none);
795
796 /** Amount of data read/written */
797 stats.totalReadSSD
798 .name(UFSHost_name + ".totalReadSSD")
799 .desc("Number of bytes read from SSD")
800 .flags(none);
801
802 stats.totalWrittenSSD
803 .name(UFSHost_name + ".totalWrittenSSD")
804 .desc("Number of bytes written to SSD")
805 .flags(none);
806
807 stats.totalReadDiskTransactions
808 .name(UFSHost_name + ".totalReadDiskTransactions")
809 .desc("Number of transactions from disk")
810 .flags(none);
811 stats.totalWriteDiskTransactions
812 .name(UFSHost_name + ".totalWriteDiskTransactions")
813 .desc("Number of transactions to disk")
814 .flags(none);
815 stats.totalReadUFSTransactions
816 .name(UFSHost_name + ".totalReadUFSTransactions")
817 .desc("Number of transactions from device")
818 .flags(none);
819 stats.totalWriteUFSTransactions
820 .name(UFSHost_name + ".totalWriteUFSTransactions")
821 .desc("Number of transactions to device")
822 .flags(none);
823
824 /** Average bandwidth for reads and writes */
825 stats.averageReadSSDBW
826 .name(UFSHost_name + ".averageReadSSDBandwidth")
827 .desc("Average read bandwidth (bytes/s)")
828 .flags(nozero);
829
830 stats.averageReadSSDBW = stats.totalReadSSD / simSeconds;
831
832 stats.averageWriteSSDBW
833 .name(UFSHost_name + ".averageWriteSSDBandwidth")
834 .desc("Average write bandwidth (bytes/s)")
835 .flags(nozero);
836
837 stats.averageWriteSSDBW = stats.totalWrittenSSD / simSeconds;
838
839 stats.averageSCSIQueue
840 .name(UFSHost_name + ".averageSCSIQueueLength")
841 .desc("Average command queue length")
842 .flags(nozero);
843 stats.averageReadSSDQueue
844 .name(UFSHost_name + ".averageReadSSDQueueLength")
845 .desc("Average read queue length")
846 .flags(nozero);
847 stats.averageWriteSSDQueue
848 .name(UFSHost_name + ".averageWriteSSDQueueLength")
849 .desc("Average write queue length")
850 .flags(nozero);
851
852 /** Number of doorbells rung*/
853 stats.curDoorbell
854 .name(UFSHost_name + ".curDoorbell")
855 .desc("Most up to date number of doorbells used")
856 .flags(none);
857
858 stats.curDoorbell = activeDoorbells;
859
860 stats.maxDoorbell
861 .name(UFSHost_name + ".maxDoorbell")
862 .desc("Maximum number of doorbells utilized")
863 .flags(none);
864 stats.averageDoorbell
865 .name(UFSHost_name + ".averageDoorbell")
866 .desc("Average number of Doorbells used")
867 .flags(nozero);
868
869 /** Latency*/
870 stats.transactionLatency
871 .init(100)
872 .name(UFSHost_name + ".transactionLatency")
873 .desc("Histogram of transaction times")
874 .flags(pdf);
875
876 stats.idleTimes
877 .init(100)
878 .name(UFSHost_name + ".idlePeriods")
879 .desc("Histogram of idle times")
880 .flags(pdf);
881
882}
883
884/**
885 * Register init
886 */
887void UFSHostDevice::setValues()
888{
889 /**
890 * The capability register is built up as follows:
891 * 31-29 RES; Testmode support; O3 delivery; 64 bit addr;
892 * 23-19 RES; 18-16 #TM Req slots; 15-5 RES;4-0 # TR slots
893 */
894 UFSHCIMem.HCCAP = 0x06070000 | (UFSSlots & 0x1F);
895 UFSHCIMem.HCversion = 0x00010000; //version is 1.0
896 UFSHCIMem.HCHCDDID = 0xAA003C3C;// Arbitrary number
897 UFSHCIMem.HCHCPMID = 0x41524D48; //ARMH (not an official MIPI number)
898 UFSHCIMem.TRUTRLDBR = 0x00;
899 UFSHCIMem.TMUTMRLDBR = 0x00;
900 UFSHCIMem.CMDUICCMDR = 0x00;
901 // We can process CMD, TM, TR, device present
902 UFSHCIMem.ORHostControllerStatus = 0x08;
903 UFSHCIMem.TRUTRLBA = 0x00;
904 UFSHCIMem.TRUTRLBAU = 0x00;
905 UFSHCIMem.TMUTMRLBA = 0x00;
906 UFSHCIMem.TMUTMRLBAU = 0x00;
907}
908
909/**
910 * Determine address ranges
911 */
912
913AddrRangeList
914UFSHostDevice::getAddrRanges() const
915{
916 AddrRangeList ranges;
917 ranges.push_back(RangeSize(pioAddr, pioSize));
918 return ranges;
919}
920
921/**
922 * UFSHCD read register. This function allows the system to read the
923 * register entries
924 */
925
926Tick
927UFSHostDevice::read(PacketPtr pkt)
928{
929 uint32_t data = 0;
930
931 switch (pkt->getAddr() & 0xFF)
932 {
933
934 case regControllerCapabilities:
935 data = UFSHCIMem.HCCAP;
936 break;
937
938 case regUFSVersion:
939 data = UFSHCIMem.HCversion;
940 break;
941
942 case regControllerDEVID:
943 data = UFSHCIMem.HCHCDDID;
944 break;
945
946 case regControllerPRODID:
947 data = UFSHCIMem.HCHCPMID;
948 break;
949
950 case regInterruptStatus:
951 data = UFSHCIMem.ORInterruptStatus;
952 UFSHCIMem.ORInterruptStatus = 0x00;
953 //TODO: Revise and extend
954 clearInterrupt();
955 break;
956
957 case regInterruptEnable:
958 data = UFSHCIMem.ORInterruptEnable;
959 break;
960
961 case regControllerStatus:
962 data = UFSHCIMem.ORHostControllerStatus;
963 break;
964
965 case regControllerEnable:
966 data = UFSHCIMem.ORHostControllerEnable;
967 break;
968
969 case regUICErrorCodePHYAdapterLayer:
970 data = UFSHCIMem.ORUECPA;
971 break;
972
973 case regUICErrorCodeDataLinkLayer:
974 data = UFSHCIMem.ORUECDL;
975 break;
976
977 case regUICErrorCodeNetworkLayer:
978 data = UFSHCIMem.ORUECN;
979 break;
980
981 case regUICErrorCodeTransportLayer:
982 data = UFSHCIMem.ORUECT;
983 break;
984
985 case regUICErrorCodeDME:
986 data = UFSHCIMem.ORUECDME;
987 break;
988
989 case regUTPTransferREQINTAGGControl:
990 data = UFSHCIMem.ORUTRIACR;
991 break;
992
993 case regUTPTransferREQListBaseL:
994 data = UFSHCIMem.TRUTRLBA;
995 break;
996
997 case regUTPTransferREQListBaseH:
998 data = UFSHCIMem.TRUTRLBAU;
999 break;
1000
1001 case regUTPTransferREQDoorbell:
1002 data = UFSHCIMem.TRUTRLDBR;
1003 break;
1004
1005 case regUTPTransferREQListClear:
1006 data = UFSHCIMem.TRUTRLCLR;
1007 break;
1008
1009 case regUTPTransferREQListRunStop:
1010 data = UFSHCIMem.TRUTRLRSR;
1011 break;
1012
1013 case regUTPTaskREQListBaseL:
1014 data = UFSHCIMem.TMUTMRLBA;
1015 break;
1016
1017 case regUTPTaskREQListBaseH:
1018 data = UFSHCIMem.TMUTMRLBAU;
1019 break;
1020
1021 case regUTPTaskREQDoorbell:
1022 data = UFSHCIMem.TMUTMRLDBR;
1023 break;
1024
1025 case regUTPTaskREQListClear:
1026 data = UFSHCIMem.TMUTMRLCLR;
1027 break;
1028
1029 case regUTPTaskREQListRunStop:
1030 data = UFSHCIMem.TMUTMRLRSR;
1031 break;
1032
1033 case regUICCommand:
1034 data = UFSHCIMem.CMDUICCMDR;
1035 break;
1036
1037 case regUICCommandArg1:
1038 data = UFSHCIMem.CMDUCMDARG1;
1039 break;
1040
1041 case regUICCommandArg2:
1042 data = UFSHCIMem.CMDUCMDARG2;
1043 break;
1044
1045 case regUICCommandArg3:
1046 data = UFSHCIMem.CMDUCMDARG3;
1047 break;
1048
1049 default:
1050 data = 0x00;
1051 break;
1052 }
1053
1054 pkt->set<uint32_t>(data);
1055 pkt->makeResponse();
1056 return pioDelay;
1057}
1058
1059/**
1060 * UFSHCD write function. This function allows access to the writeable
1061 * registers. If any function attempts to write value to an unwriteable
1062 * register entry, then the value will not be written.
1063 */
1064Tick
1065UFSHostDevice::write(PacketPtr pkt)
1066{
1067 uint32_t data = 0;
1068
1069 switch (pkt->getSize()) {
1070
1071 case 1:
1072 data = pkt->get<uint8_t>();
1073 break;
1074
1075 case 2:
1076 data = pkt->get<uint16_t>();
1077 break;
1078
1079 case 4:
1080 data = pkt->get<uint32_t>();
1081 break;
1082
1083 default:
1084 panic("Undefined UFSHCD controller write size!\n");
1085 break;
1086 }
1087
1088 switch (pkt->getAddr() & 0xFF)
1089 {
1090 case regControllerCapabilities://you shall not write to this
1091 break;
1092
1093 case regUFSVersion://you shall not write to this
1094 break;
1095
1096 case regControllerDEVID://you shall not write to this
1097 break;
1098
1099 case regControllerPRODID://you shall not write to this
1100 break;
1101
1102 case regInterruptStatus://you shall not write to this
1103 break;
1104
1105 case regInterruptEnable:
1106 UFSHCIMem.ORInterruptEnable = data;
1107 break;
1108
1109 case regControllerStatus:
1110 UFSHCIMem.ORHostControllerStatus = data;
1111 break;
1112
1113 case regControllerEnable:
1114 UFSHCIMem.ORHostControllerEnable = data;
1115 break;
1116
1117 case regUICErrorCodePHYAdapterLayer:
1118 UFSHCIMem.ORUECPA = data;
1119 break;
1120
1121 case regUICErrorCodeDataLinkLayer:
1122 UFSHCIMem.ORUECDL = data;
1123 break;
1124
1125 case regUICErrorCodeNetworkLayer:
1126 UFSHCIMem.ORUECN = data;
1127 break;
1128
1129 case regUICErrorCodeTransportLayer:
1130 UFSHCIMem.ORUECT = data;
1131 break;
1132
1133 case regUICErrorCodeDME:
1134 UFSHCIMem.ORUECDME = data;
1135 break;
1136
1137 case regUTPTransferREQINTAGGControl:
1138 UFSHCIMem.ORUTRIACR = data;
1139 break;
1140
1141 case regUTPTransferREQListBaseL:
1142 UFSHCIMem.TRUTRLBA = data;
1143 if (((UFSHCIMem.TRUTRLBA | UFSHCIMem.TRUTRLBAU) != 0x00) &&
1144 ((UFSHCIMem.TMUTMRLBA | UFSHCIMem.TMUTMRLBAU)!= 0x00))
1145 UFSHCIMem.ORHostControllerStatus |= UICCommandReady;
1146 break;
1147
1148 case regUTPTransferREQListBaseH:
1149 UFSHCIMem.TRUTRLBAU = data;
1150 if (((UFSHCIMem.TRUTRLBA | UFSHCIMem.TRUTRLBAU) != 0x00) &&
1151 ((UFSHCIMem.TMUTMRLBA | UFSHCIMem.TMUTMRLBAU) != 0x00))
1152 UFSHCIMem.ORHostControllerStatus |= UICCommandReady;
1153 break;
1154
1155 case regUTPTransferREQDoorbell:
1156 if (!(UFSHCIMem.TRUTRLDBR) && data)
1157 stats.idleTimes.sample(curTick() - idlePhaseStart);
1158 UFSHCIMem.TRUTRLDBR |= data;
1159 requestHandler();
1160 break;
1161
1162 case regUTPTransferREQListClear:
1163 UFSHCIMem.TRUTRLCLR = data;
1164 break;
1165
1166 case regUTPTransferREQListRunStop:
1167 UFSHCIMem.TRUTRLRSR = data;
1168 break;
1169
1170 case regUTPTaskREQListBaseL:
1171 UFSHCIMem.TMUTMRLBA = data;
1172 if (((UFSHCIMem.TRUTRLBA | UFSHCIMem.TRUTRLBAU) != 0x00) &&
1173 ((UFSHCIMem.TMUTMRLBA | UFSHCIMem.TMUTMRLBAU) != 0x00))
1174 UFSHCIMem.ORHostControllerStatus |= UICCommandReady;
1175 break;
1176
1177 case regUTPTaskREQListBaseH:
1178 UFSHCIMem.TMUTMRLBAU = data;
1179 if (((UFSHCIMem.TRUTRLBA | UFSHCIMem.TRUTRLBAU) != 0x00) &&
1180 ((UFSHCIMem.TMUTMRLBA | UFSHCIMem.TMUTMRLBAU) != 0x00))
1181 UFSHCIMem.ORHostControllerStatus |= UICCommandReady;
1182 break;
1183
1184 case regUTPTaskREQDoorbell:
1185 UFSHCIMem.TMUTMRLDBR |= data;
1186 requestHandler();
1187 break;
1188
1189 case regUTPTaskREQListClear:
1190 UFSHCIMem.TMUTMRLCLR = data;
1191 break;
1192
1193 case regUTPTaskREQListRunStop:
1194 UFSHCIMem.TMUTMRLRSR = data;
1195 break;
1196
1197 case regUICCommand:
1198 UFSHCIMem.CMDUICCMDR = data;
1199 requestHandler();
1200 break;
1201
1202 case regUICCommandArg1:
1203 UFSHCIMem.CMDUCMDARG1 = data;
1204 break;
1205
1206 case regUICCommandArg2:
1207 UFSHCIMem.CMDUCMDARG2 = data;
1208 break;
1209
1210 case regUICCommandArg3:
1211 UFSHCIMem.CMDUCMDARG3 = data;
1212 break;
1213
1214 default:break;//nothing happens, you try to access a register that
1215 //does not exist
1216
1217 }
1218
1219 pkt->makeResponse();
1220 return pioDelay;
1221}
1222
1223/**
1224 * Request handler. Determines where the request comes from and initiates the
1225 * appropriate actions accordingly.
1226 */
1227
1228void
1229UFSHostDevice::requestHandler()
1230{
1231 Addr address = 0x00;
1232 int mask = 0x01;
1233 int size;
1234 int count = 0;
1235 struct taskStart task_info;
1236 struct transferStart transferstart_info;
1237 transferstart_info.done = 0;
1238
1239 /**
1240 * step1 determine what called us
1241 * step2 determine where to get it
1242 * Look for any request of which we where not yet aware
1243 */
1244 while (((UFSHCIMem.CMDUICCMDR > 0x00) |
1245 ((UFSHCIMem.TMUTMRLDBR ^ taskCommandTrack) > 0x00) |
1246 ((UFSHCIMem.TRUTRLDBR ^ transferTrack) > 0x00)) ) {
1247
1248 if (UFSHCIMem.CMDUICCMDR > 0x00) {
1249 /**
1250 * Command; general control of the Host controller.
1251 * no DMA transfer needed
1252 */
1253 commandHandler();
1254 UFSHCIMem.ORInterruptStatus |= UICCommandCOMPL;
1255 generateInterrupt();
1256 UFSHCIMem.CMDUICCMDR = 0x00;
1257 return; //command, nothing more we can do
1258
1259 } else if ((UFSHCIMem.TMUTMRLDBR ^ taskCommandTrack) > 0x00) {
1260 /**
1261 * Task; flow control, meant for the device/Logic unit
1262 * DMA transfer is needed, flash will not be approached
1263 */
1264 size = sizeof(UTPUPIUTaskReq);
1265 /**Find the position that is not handled yet*/
1266 count = findLsbSet((UFSHCIMem.TMUTMRLDBR ^ taskCommandTrack));
1267 address = UFSHCIMem.TMUTMRLBAU;
1268 //<-64 bit
1269 address = (count * size) + (address << 32) +
1270 UFSHCIMem.TMUTMRLBA;
1271 taskCommandTrack |= mask << count;
1272
1273 inform("UFSmodel received a task from the system; this might"
1274 " lead to untested behaviour.\n");
1275
1276 task_info.mask = mask << count;
1277 task_info.address = address;
1278 task_info.size = size;
1279 task_info.done = UFSHCIMem.TMUTMRLDBR;
1280 taskInfo.push_back(task_info);
1281 taskEventQueue.push_back(this);
1282 writeDevice(&taskEventQueue.back(), false, address, size,
1283 reinterpret_cast<uint8_t*>
1284 (&taskInfo.back().destination), 0, 0);
1285
1286 } else if ((UFSHCIMem.TRUTRLDBR ^ transferTrack) > 0x00) {
1287 /**
1288 * Transfer; Data transfer from or to the disk. There will be DMA
1289 * transfers, and the flash might be approached. Further
1290 * commands, are needed to specify the exact command.
1291 */
1292 size = sizeof(UTPTransferReqDesc);
1293 /**Find the position that is not handled yet*/
1294 count = findLsbSet((UFSHCIMem.TRUTRLDBR ^ transferTrack));
1295 address = UFSHCIMem.TRUTRLBAU;
1296 //<-64 bit
1297 address = (count * size) + (address << 32) + UFSHCIMem.TRUTRLBA;
1298
1299 transferTrack |= mask << count;
1300 DPRINTF(UFSHostDevice, "Doorbell register: 0x%8x select #:"
1301 " 0x%8x completion info: 0x%8x\n", UFSHCIMem.TRUTRLDBR,
1302 count, transferstart_info.done);
1303
1304 transferstart_info.done = UFSHCIMem.TRUTRLDBR;
1305
1306 /**stats**/
1307 transactionStart[count] = curTick(); //note the start time
1308 ++activeDoorbells;
1309 stats.maxDoorbell = (stats.maxDoorbell.value() < activeDoorbells)
1310 ? activeDoorbells : stats.maxDoorbell.value();
1311 stats.averageDoorbell = stats.maxDoorbell.value();
1312
1313 /**
1314 * step3 start transfer
1315 * step4 register information; allowing the host to respond in
1316 * the end
1317 */
1318 transferstart_info.mask = mask << count;
1319 transferstart_info.address = address;
1320 transferstart_info.size = size;
1321 transferstart_info.done = UFSHCIMem.TRUTRLDBR;
1322 transferStartInfo.push_back(transferstart_info);
1323
1324 /**Deleted in readDone, queued in finalUTP*/
1325 transferStartInfo.back().destination = new struct
1326 UTPTransferReqDesc;
1327 DPRINTF(UFSHostDevice, "Initial transfer start: 0x%8x\n",
1328 transferstart_info.done);
1329 transferEventQueue.push_back(this);
1330
1331 if (transferEventQueue.size() < 2) {
1332 writeDevice(&transferEventQueue.front(), false,
1333 address, size, reinterpret_cast<uint8_t*>
1334 (transferStartInfo.front().destination),0, 0);
1335 DPRINTF(UFSHostDevice, "Transfer scheduled\n");
1336 }
1337 }
1338 }
1339}
1340
1341/**
1342 * Task start event
1343 */
1344
1345void
1346UFSHostDevice::taskStart()
1347{
1348 DPRINTF(UFSHostDevice, "Task start");
1349 taskHandler(&taskInfo.front().destination, taskInfo.front().mask,
1350 taskInfo.front().address, taskInfo.front().size);
1351 taskInfo.pop_front();
1352 taskEventQueue.pop_front();
1353}
1354
1355/**
1356 * Transfer start event
1357 */
1358
1359void
1360UFSHostDevice::transferStart()
1361{
1362 DPRINTF(UFSHostDevice, "Enter transfer event\n");
1363 transferHandler(transferStartInfo.front().destination,
1364 transferStartInfo.front().mask,
1365 transferStartInfo.front().address,
1366 transferStartInfo.front().size,
1367 transferStartInfo.front().done);
1368
1369 transferStartInfo.pop_front();
1370 DPRINTF(UFSHostDevice, "Transfer queue size at end of event: "
1371 "0x%8x\n", transferEventQueue.size());
1372}
1373
1374/**
1375 * Handles the commands that are given. At this point in time, not many
1376 * commands have been implemented in the driver.
1377 */
1378
1379void
1380UFSHostDevice::commandHandler()
1381{
1382 if (UFSHCIMem.CMDUICCMDR == 0x16) {
1383 UFSHCIMem.ORHostControllerStatus |= 0x0F;//link startup
1384 }
1385
1386}
1387
1388/**
1389 * Handles the tasks that are given. At this point in time, not many tasks
1390 * have been implemented in the driver.
1391 */
1392
1393void
1394UFSHostDevice::taskHandler(struct UTPUPIUTaskReq* request_in,
1395 uint32_t req_pos, Addr finaladdress, uint32_t
1396 finalsize)
1397{
1398 /**
1399 * For now, just unpack and acknowledge the task without doing anything.
1400 * TODO Implement UFS tasks.
1401 */
1402 inform("taskHandler\n");
1403 inform("%8x\n", request_in->header.dWord0);
1404 inform("%8x\n", request_in->header.dWord1);
1405 inform("%8x\n", request_in->header.dWord2);
1406
1407 request_in->header.dWord2 &= 0xffffff00;
1408
1409 UFSHCIMem.TMUTMRLDBR &= ~(req_pos);
1410 taskCommandTrack &= ~(req_pos);
1411 UFSHCIMem.ORInterruptStatus |= UTPTaskREQCOMPL;
1412
1413 readDevice(true, finaladdress, finalsize, reinterpret_cast<uint8_t*>
1414 (request_in), true, NULL);
1415
1416}
1417
1418/**
1419 * Obtains the SCSI command (if any)
1420 * Two possibilities: if it contains a SCSI command, then it is a usable
1421 * message; if it doesnt contain a SCSI message, then it can't be handeld
1422 * by this code.
1423 * This is the second stage of the transfer. We have the information about
1424 * where the next command can be found and what the type of command is. The
1425 * actions that are needed from the device its side are: get the information
1426 * and store the information such that we can reply.
1427 */
1428
1429void
1430UFSHostDevice::transferHandler(struct UTPTransferReqDesc* request_in,
1431 int req_pos, Addr finaladdress, uint32_t
1432 finalsize, uint32_t done)
1433{
1434
1435 Addr cmd_desc_addr = 0x00;
1436
1437
1438 //acknowledge handling of the message
1439 DPRINTF(UFSHostDevice, "SCSI message detected\n");
1440 request_in->header.dWord2 &= 0xffffff00;
1441 SCSIInfo.RequestIn = request_in;
1442 SCSIInfo.reqPos = req_pos;
1443 SCSIInfo.finalAddress = finaladdress;
1444 SCSIInfo.finalSize = finalsize;
1445 SCSIInfo.destination.resize(request_in->PRDTableOffset * 4
1446 + request_in->PRDTableLength * sizeof(UFSHCDSGEntry));
1447 SCSIInfo.done = done;
1448
1449 assert(!SCSIResumeEvent.scheduled());
1450 /**
1451 *Get the UTP command that has the SCSI command
1452 */
1453 cmd_desc_addr = request_in->commandDescBaseAddrHi;
1454 cmd_desc_addr = (cmd_desc_addr << 32) |
1455 (request_in->commandDescBaseAddrLo & 0xffffffff);
1456
1457 writeDevice(&SCSIResumeEvent, false, cmd_desc_addr,
1458 SCSIInfo.destination.size(), &SCSIInfo.destination[0],0, 0);
1459
1460 DPRINTF(UFSHostDevice, "SCSI scheduled\n");
1461
1462 transferEventQueue.pop_front();
1463}
1464
1465/**
1466 * Obtain LUN and put it in the right LUN queue. Each LUN has its own queue
1467 * of commands that need to be executed. This is the first instance where it
1468 * can be determined which Logic unit should handle the transfer. Then check
1469 * wether it should wait and queue or if it can continue.
1470 */
1471
1472void
1473UFSHostDevice::SCSIStart()
1474{
1475 DPRINTF(UFSHostDevice, "SCSI message on hold until ready\n");
1476 uint32_t LUN = SCSIInfo.destination[2];
1477 UFSDevice[LUN]->SCSIInfoQueue.push_back(SCSIInfo);
1478
1479 DPRINTF(UFSHostDevice, "SCSI queue %d has %d elements\n", LUN,
1480 UFSDevice[LUN]->SCSIInfoQueue.size());
1481
1482 /**There are 32 doorbells, so at max there can be 32 transactions*/
1483 if (UFSDevice[LUN]->SCSIInfoQueue.size() < 2) //LUN is available
1484 SCSIResume(LUN);
1485
1486 else if (UFSDevice[LUN]->SCSIInfoQueue.size() > 32)
1487 panic("SCSI queue is getting too big %d\n", UFSDevice[LUN]->
1488 SCSIInfoQueue.size());
1489
1490 /**
1491 * First transfer is done, fetch the next;
1492 * At this point, the device is busy, not the HC
1493 */
1494 if (!transferEventQueue.empty()) {
1495
1496 /**
1497 * loading next data packet in case Another LUN
1498 * is approached in the mean time
1499 */
1500 writeDevice(&transferEventQueue.front(), false,
1501 transferStartInfo.front().address,
1502 transferStartInfo.front().size, reinterpret_cast<uint8_t*>
1503 (transferStartInfo.front().destination), 0, 0);
1504
1505 DPRINTF(UFSHostDevice, "Transfer scheduled");
1506 }
1507}
1508
1509/**
1510 * Handles the transfer requests that are given.
1511 * There can be three types of transfer. SCSI specific, Reads and writes
1512 * apart from the data transfer, this also generates its own reply (UPIU
1513 * response). Information for this reply is stored in transferInfo and will
1514 * be used in transferDone
1515 */
1516
1517void
1518UFSHostDevice::SCSIResume(uint32_t lun_id)
1519{
1520 DPRINTF(UFSHostDevice, "SCSIresume\n");
1521 if (UFSDevice[lun_id]->SCSIInfoQueue.empty())
1522 panic("No SCSI message scheduled lun:%d Doorbell: 0x%8x", lun_id,
1523 UFSHCIMem.TRUTRLDBR);
1524
1525 /**old info, lets form it such that we can understand it*/
1526 struct UTPTransferReqDesc* request_in = UFSDevice[lun_id]->
1527 SCSIInfoQueue.front().RequestIn;
1528
1529 uint32_t req_pos = UFSDevice[lun_id]->SCSIInfoQueue.front().reqPos;
1530
1531 Addr finaladdress = UFSDevice[lun_id]->SCSIInfoQueue.front().
1532 finalAddress;
1533
1534 uint32_t finalsize = UFSDevice[lun_id]->SCSIInfoQueue.front().finalSize;
1535
1536 uint32_t* transfercommand = reinterpret_cast<uint32_t*>
1537 (&(UFSDevice[lun_id]->SCSIInfoQueue.front().destination[0]));
1538
1539 DPRINTF(UFSHostDevice, "Task tag: 0x%8x\n", transfercommand[0]>>24);
1540 /**call logic unit to handle SCSI command*/
1541 request_out_datain = UFSDevice[(transfercommand[0] & 0xFF0000) >> 16]->
1542 SCSICMDHandle(transfercommand);
1543
1544 DPRINTF(UFSHostDevice, "LUN: %d\n", request_out_datain.LUN);
1545
1546 /**
1547 * build response stating that it was succesful
1548 * command completion, Logic unit number, and Task tag
1549 */
1550 request_in->header.dWord0 = ((request_in->header.dWord0 >> 24) == 0x21)
1551 ? 0x36 : 0x21;
1552 UFSDevice[lun_id]->transferInfo.requestOut.header.dWord0 =
1553 request_in->header.dWord0 | (request_out_datain.LUN << 8)
1554 | (transfercommand[0] & 0xFF000000);
1555 /**SCSI status reply*/
1556 UFSDevice[lun_id]->transferInfo.requestOut.header.dWord1 = 0x00000000 |
1557 (request_out_datain.status << 24);
1558 /**segment size + EHS length (see UFS standard ch7)*/
1559 UFSDevice[lun_id]->transferInfo.requestOut.header.dWord2 = 0x00000000 |
1560 ((request_out_datain.senseSize + 2) << 24) | 0x05;
1561 /**amount of data that will follow*/
1562 UFSDevice[lun_id]->transferInfo.requestOut.senseDataLen =
1563 request_out_datain.senseSize;
1564
1565 //data
1566 for (uint8_t count = 0; count<request_out_datain.senseSize; count++) {
1567 UFSDevice[lun_id]->transferInfo.requestOut.senseData[count] =
1568 request_out_datain.senseCode[count + 1];
1569 }
1570
1571 /*
1572 * At position defined by "request_in->PRDTableOffset" (counting 32 bit
1573 * words) in array "transfercommand" we have a scatter gather list, which
1574 * is usefull to us if we interpreted it as a UFSHCDSGEntry structure.
1575 */
1576 struct UFSHCDSGEntry* sglist = reinterpret_cast<UFSHCDSGEntry*>
1577 (&(transfercommand[(request_in->PRDTableOffset)]));
1578
1579 uint32_t length = request_in->PRDTableLength;
1580 DPRINTF(UFSHostDevice, "# PRDT entries: %d\n", length);
1581
1582 Addr response_addr = request_in->commandDescBaseAddrHi;
1583 response_addr = (response_addr << 32) |
1584 ((request_in->commandDescBaseAddrLo +
1585 (request_in->responseUPIULength << 2)) & 0xffffffff);
1586
1587 /**transferdone information packet filling*/
1588 UFSDevice[lun_id]->transferInfo.responseStartAddr = response_addr;
1589 UFSDevice[lun_id]->transferInfo.reqPos = req_pos;
1590 UFSDevice[lun_id]->transferInfo.size = finalsize;
1591 UFSDevice[lun_id]->transferInfo.address = finaladdress;
1592 UFSDevice[lun_id]->transferInfo.destination = reinterpret_cast<uint8_t*>
1593 (UFSDevice[lun_id]->SCSIInfoQueue.front().RequestIn);
1594 UFSDevice[lun_id]->transferInfo.finished = true;
1595 UFSDevice[lun_id]->transferInfo.lunID = request_out_datain.LUN;
1596
1597 /**
1598 * In this part the data that needs to be transfered will be initiated
1599 * and the chain of DMA (and potentially) disk transactions will be
1600 * started.
1601 */
1602 if (request_out_datain.expectMore == 0x01) {
1603 /**write transfer*/
1604 manageWriteTransfer(request_out_datain.LUN, request_out_datain.offset,
1605 length, sglist);
1606
1607 } else if (request_out_datain.expectMore == 0x02) {
1608 /**read transfer*/
1609 manageReadTransfer(request_out_datain.msgSize, request_out_datain.LUN,
1610 request_out_datain.offset, length, sglist);
1611
1612 } else {
1613 /**not disk related transfer, SCSI maintanance*/
1614 uint32_t count = 0;
1615 uint32_t size_accum = 0;
1616 DPRINTF(UFSHostDevice, "Data DMA size: 0x%8x\n",
1617 request_out_datain.msgSize);
1618
1619 /**Transport the SCSI reponse data according to the SG list*/
1620 while ((length > count) && size_accum
1621 < (request_out_datain.msgSize - 1) &&
1622 (request_out_datain.msgSize != 0x00)) {
1623 Addr SCSI_start = sglist[count].upperAddr;
1624 SCSI_start = (SCSI_start << 32) |
1625 (sglist[count].baseAddr & 0xFFFFFFFF);
1626 DPRINTF(UFSHostDevice, "Data DMA start: 0x%8x\n", SCSI_start);
1627 DPRINTF(UFSHostDevice, "Data DMA size: 0x%8x\n",
1628 (sglist[count].size + 1));
1629 /**
1630 * safetynet; it has been shown that sg list may be optimistic in
1631 * the amount of data allocated, which can potentially lead to
1632 * some garbage data being send over. Hence this construction
1633 * that finds the least amount of data that needs to be
1634 * transfered.
1635 */
1636 uint32_t size_to_send = sglist[count].size + 1;
1637
1638 if (request_out_datain.msgSize < (size_to_send + size_accum))
1639 size_to_send = request_out_datain.msgSize - size_accum;
1640
1641 readDevice(false, SCSI_start, size_to_send,
1642 reinterpret_cast<uint8_t*>
1643 (&(request_out_datain.message.dataMsg[size_accum])),
1644 false, NULL);
1645
1646 size_accum += size_to_send;
1647 DPRINTF(UFSHostDevice, "Total remaining: 0x%8x,accumulated so far"
1648 " : 0x%8x\n", (request_out_datain.msgSize - size_accum),
1649 size_accum);
1650
1651 ++count;
1652 DPRINTF(UFSHostDevice, "Transfer #: %d\n", count);
1653 }
1654
1655 /**Go to the next stage of the answering process*/
1656 transferDone(response_addr, req_pos, UFSDevice[lun_id]->
1657 transferInfo.requestOut, finalsize, finaladdress,
1658 reinterpret_cast<uint8_t*>(request_in), true, lun_id);
1659 }
1660
1661 DPRINTF(UFSHostDevice, "SCSI resume done\n");
1662}
1663
1664/**
1665 * Find finished transfer. Callback function. One of the LUNs is done with
1666 * the disk transfer and reports back to the controller. This function finds
1667 * out who it was, and calls transferDone.
1668 */
1669void
1670UFSHostDevice::LUNSignal()
1671{
1672 uint8_t this_lun = 0;
1673
1674 //while we haven't found the right lun, keep searching
1675 while ((this_lun < lunAvail) && !UFSDevice[this_lun]->finishedCommand())
1676 ++this_lun;
1677
1678 if (this_lun < lunAvail) {
1679 //Clear signal.
1680 UFSDevice[this_lun]->clearSignal();
1681 //found it; call transferDone
1682 transferDone(UFSDevice[this_lun]->transferInfo.responseStartAddr,
1683 UFSDevice[this_lun]->transferInfo.reqPos,
1684 UFSDevice[this_lun]->transferInfo.requestOut,
1685 UFSDevice[this_lun]->transferInfo.size,
1686 UFSDevice[this_lun]->transferInfo.address,
1687 UFSDevice[this_lun]->transferInfo.destination,
1688 UFSDevice[this_lun]->transferInfo.finished,
1689 UFSDevice[this_lun]->transferInfo.lunID);
1690 }
1691
1692 else
1693 panic("no LUN finished in tick %d\n", curTick());
1694}
1695
1696/**
1697 * Transfer done. When the data transfer is done, this function ensures
1698 * that the application is notified.
1699 */
1700
1701void
1702UFSHostDevice::transferDone(Addr responseStartAddr, uint32_t req_pos,
1703 struct UTPUPIURSP request_out, uint32_t size,
1704 Addr address, uint8_t* destination,
1705 bool finished, uint32_t lun_id)
1706{
1707 /**Test whether SCSI queue hasn't popped prematurely*/
1708 if (UFSDevice[lun_id]->SCSIInfoQueue.empty())
1709 panic("No SCSI message scheduled lun:%d Doorbell: 0x%8x", lun_id,
1710 UFSHCIMem.TRUTRLDBR);
1711
1712 DPRINTF(UFSHostDevice, "DMA start: 0x%8x; DMA size: 0x%8x\n",
1713 responseStartAddr, sizeof(request_out));
1714
1715 struct transferStart lastinfo;
1716 lastinfo.mask = req_pos;
1717 lastinfo.done = finished;
1718 lastinfo.address = address;
1719 lastinfo.size = size;
1720 lastinfo.destination = reinterpret_cast<UTPTransferReqDesc*>
1721 (destination);
1722 lastinfo.lun_id = lun_id;
1723
1724 transferEnd.push_back(lastinfo);
1725
1726 DPRINTF(UFSHostDevice, "Transfer done start\n");
1727
1728 readDevice(false, responseStartAddr, sizeof(request_out),
1729 reinterpret_cast<uint8_t*>
1730 (&(UFSDevice[lun_id]->transferInfo.requestOut)),
1731 true, &UTPEvent);
1732}
1733
1734/**
1735 * finalUTP. Second part of the transfer done event.
1736 * this sends the final response: the UTP response. After this transaction
1737 * the doorbell shall be cleared, and the interupt shall be set.
1738 */
1739
1740void
1741UFSHostDevice::finalUTP()
1742{
1743 uint32_t lun_id = transferEnd.front().lun_id;
1744
1745 UFSDevice[lun_id]->SCSIInfoQueue.pop_front();
1746 DPRINTF(UFSHostDevice, "SCSIInfoQueue size: %d, lun: %d\n",
1747 UFSDevice[lun_id]->SCSIInfoQueue.size(), lun_id);
1748
1749 /**stats**/
1750 if (UFSHCIMem.TRUTRLDBR & transferEnd.front().mask) {
1751 uint8_t count = 0;
1752 while (!(transferEnd.front().mask & (0x1 << count)))
1753 ++count;
1754 stats.transactionLatency.sample(curTick() -
1755 transactionStart[count]);
1756 }
1757
1758 /**Last message that will be transfered*/
1759 readDevice(true, transferEnd.front().address,
1760 transferEnd.front().size, reinterpret_cast<uint8_t*>
1761 (transferEnd.front().destination), true, NULL);
1762
1763 /**clean and ensure that the tracker is updated*/
1764 transferTrack &= ~(transferEnd.front().mask);
1765 --activeDoorbells;
1766 ++pendingDoorbells;
1767 garbage.push_back(transferEnd.front().destination);
1768 transferEnd.pop_front();
1769 DPRINTF(UFSHostDevice, "UTP handled\n");
1770
1771 /**stats**/
1772 stats.averageDoorbell = stats.maxDoorbell.value();
1773
1774 DPRINTF(UFSHostDevice, "activeDoorbells: %d, pendingDoorbells: %d,"
1775 " garbage: %d, TransferEvent: %d\n", activeDoorbells,
1776 pendingDoorbells, garbage.size(), transferEventQueue.size());
1777
1778 /**This is the moment that the device is available again*/
1779 if (!UFSDevice[lun_id]->SCSIInfoQueue.empty())
1780 SCSIResume(lun_id);
1781}
1782
1783/**
1784 * Read done handling function, is only initiated at the end of a transaction
1785 */
1786void
1787UFSHostDevice::readDone()
1788{
1789 DPRINTF(UFSHostDevice, "Read done start\n");
1790 --readPendingNum;
1791
1792 /**Garbage collection; sort out the allocated UTP descriptor*/
1793 if (garbage.size() > 0) {
1794 delete garbage.front();
1795 garbage.pop_front();
1796 }
1797
1798 /**done, generate interrupt if we havent got one already*/
1799 if (!(UFSHCIMem.ORInterruptStatus & 0x01)) {
1800 UFSHCIMem.ORInterruptStatus |= UTPTransferREQCOMPL;
1801 generateInterrupt();
1802 }
1803
1804
1805 if (!readDoneEvent.empty()) {
1806 readDoneEvent.pop_front();
1807 }
1808}
1809
1810/**
1811 * set interrupt and sort out the doorbell register.
1812 */
1813
1814void
1815UFSHostDevice::generateInterrupt()
1816{
1817 /**just to keep track of the transactions*/
1818 countInt++;
1819
1820 /**step5 clear doorbell*/
1821 UFSHCIMem.TRUTRLDBR &= transferTrack;
1822 pendingDoorbells = 0;
1823 DPRINTF(UFSHostDevice, "Clear doorbell %X\n", UFSHCIMem.TRUTRLDBR);
1824
1825 checkDrain();
1826
1827 /**step6 raise interrupt*/
1828 gic->sendInt(intNum);
1829 DPRINTF(UFSHostDevice, "Send interrupt @ transaction: 0x%8x!\n",
1830 countInt);
1831}
1832
1833/**
1834 * Clear interrupt
1835 */
1836
1837void
1838UFSHostDevice::clearInterrupt()
1839{
1840 gic->clearInt(intNum);
1841 DPRINTF(UFSHostDevice, "Clear interrupt: 0x%8x!\n", countInt);
1842
1843 checkDrain();
1844
1845 if (!(UFSHCIMem.TRUTRLDBR)) {
1846 idlePhaseStart = curTick();
1847 }
1848 /**end of a transaction*/
1849}
1850
1851/**
1852 * Important to understand about the transfer flow:
1853 * We have basically three stages, The "system memory" stage, the "device
1854 * buffer" stage and the "disk" stage. In this model we assume an infinite
1855 * buffer, or a buffer that is big enough to store all the data in the
1856 * biggest transaction. Between the three stages are two queues. Those queues
1857 * store the messages to simulate their transaction from one stage to the
1858 * next. The manage{Action} function fills up one of the queues and triggers
1859 * the first event, which causes a chain reaction of events executed once
1860 * they pass through their queues. For a write action the stages are ordered
1861 * "system memory", "device buffer" and "disk", whereas the read transfers
1862 * happen "disk", "device buffer" and "system memory". The dma action in the
1863 * dma device is written from a bus perspective whereas this model is written
1864 * from a device perspective. To avoid confusion, the translation between the
1865 * two has been made in the writeDevice and readDevice funtions.
1866 */
1867
1868
1869/**
1870 * Dma transaction function: write device. Note that the dma action is
1871 * from a device perspective, while this function is from an initiator
1872 * perspective
1873 */
1874
1875void
1876UFSHostDevice::writeDevice(Event* additional_action, bool toDisk, Addr
1877 start, int size, uint8_t* destination, uint64_t
1878 SCSIDiskOffset, uint32_t lun_id)
1879{
1880 DPRINTF(UFSHostDevice, "Write transaction Start: 0x%8x; Size: %d\n",
1881 start, size);
1882
1883 /**check whether transfer is all the way to the flash*/
1884 if (toDisk) {
1885 ++writePendingNum;
1886
1887 while (!writeDoneEvent.empty() && (writeDoneEvent.front().when()
1888 < curTick()))
1889 writeDoneEvent.pop_front();
1890
1891 writeDoneEvent.push_back(this);
1892 assert(!writeDoneEvent.back().scheduled());
1893
1894 /**destination is an offset here since we are writing to a disk*/
1895 struct transferInfo new_transfer;
1896 new_transfer.offset = SCSIDiskOffset;
1897 new_transfer.size = size;
1898 new_transfer.lunID = lun_id;
1899 new_transfer.filePointer = 0;
1900 SSDWriteinfo.push_back(new_transfer);
1901
1902 /**allocate appropriate buffer*/
1903 SSDWriteinfo.back().buffer.resize(size);
1904
1905 /**transaction*/
1906 dmaPort.dmaAction(MemCmd::ReadReq, start, size,
1907 &writeDoneEvent.back(),
1908 &SSDWriteinfo.back().buffer[0], 0);
1909 //yes, a readreq at a write device function is correct.
1910 DPRINTF(UFSHostDevice, "Write to disk scheduled\n");
1911
1912 } else {
1913 assert(!additional_action->scheduled());
1914 dmaPort.dmaAction(MemCmd::ReadReq, start, size,
1915 additional_action, destination, 0);
1916 DPRINTF(UFSHostDevice, "Write scheduled\n");
1917 }
1918}
1919
1920/**
1921 * Manage write transfer. Manages correct transfer flow and makes sure that
1922 * the queues are filled on time
1923 */
1924
1925void
1926UFSHostDevice::manageWriteTransfer(uint8_t LUN, uint64_t offset, uint32_t
1927 sg_table_length, struct UFSHCDSGEntry*
1928 sglist)
1929{
1930 struct writeToDiskBurst next_packet;
1931
1932 next_packet.SCSIDiskOffset = offset;
1933
1934 UFSDevice[LUN]->setTotalWrite(sg_table_length);
1935
1936 /**
1937 * Break-up the transactions into actions defined by the scatter gather
1938 * list.
1939 */
1940 for (uint32_t count = 0; count < sg_table_length; count++) {
1941 next_packet.start = sglist[count].upperAddr;
1942 next_packet.start = (next_packet.start << 32) |
1943 (sglist[count].baseAddr & 0xFFFFFFFF);
1944 next_packet.LUN = LUN;
1945 DPRINTF(UFSHostDevice, "Write data DMA start: 0x%8x\n",
1946 next_packet.start);
1947 DPRINTF(UFSHostDevice, "Write data DMA size: 0x%8x\n",
1948 (sglist[count].size + 1));
1949 assert(sglist[count].size > 0);
1950
1951 if (count != 0)
1952 next_packet.SCSIDiskOffset = next_packet.SCSIDiskOffset +
1953 (sglist[count - 1].size + 1);
1954
1955 next_packet.size = sglist[count].size + 1;
1956
1957 /**If the queue is empty, the transaction should be initiated*/
1958 if (dmaWriteInfo.empty())
1959 writeDevice(NULL, true, next_packet.start, next_packet.size,
1960 NULL, next_packet.SCSIDiskOffset, next_packet.LUN);
1961 else
1962 DPRINTF(UFSHostDevice, "Write not initiated queue: %d\n",
1963 dmaWriteInfo.size());
1964
1965 dmaWriteInfo.push_back(next_packet);
1966 DPRINTF(UFSHostDevice, "Write Location: 0x%8x\n",
1967 next_packet.SCSIDiskOffset);
1968
1969 DPRINTF(UFSHostDevice, "Write transfer #: 0x%8x\n", count + 1);
1970
1971 /** stats **/
1972 stats.totalWrittenSSD += (sglist[count].size + 1);
1973 }
1974
1975 /**stats**/
1976 ++stats.totalWriteUFSTransactions;
1977}
1978
1979/**
1980 * Write done handling function. Is only initiated when the flash is directly
1981 * approached
1982 */
1983
1984void
1985UFSHostDevice::writeDone()
1986{
1987 /**DMA is done, information no longer needed*/
1988 assert(dmaWriteInfo.size() > 0);
1989 dmaWriteInfo.pop_front();
1990 assert(SSDWriteinfo.size() > 0);
1991 uint32_t lun = SSDWriteinfo.front().lunID;
1992
1993 /**If there is nothing on the way, we need to start the events*/
1994 DPRINTF(UFSHostDevice, "Write done entered, queue: %d\n",
1995 UFSDevice[lun]->SSDWriteDoneInfo.size());
1996 /**Write the disk*/
1997 UFSDevice[lun]->writeFlash(&SSDWriteinfo.front().buffer[0],
1998 SSDWriteinfo.front().offset,
1999 SSDWriteinfo.front().size);
2000
2001 /**
2002 * Move to the second queue, enter the logic unit
2003 * This is where the disk is approached and the flash transaction is
2004 * handled SSDWriteDone will take care of the timing
2005 */
2006 UFSDevice[lun]->SSDWriteDoneInfo.push_back(SSDWriteinfo.front());
2007 SSDWriteinfo.pop_front();
2008
2009 --writePendingNum;
2010 /**so far, only the DMA part has been handled, lets do the disk delay*/
2011 UFSDevice[lun]->SSDWriteStart();
2012
2013 /** stats **/
2014 stats.currentWriteSSDQueue = UFSDevice[lun]->SSDWriteDoneInfo.size();
2015 stats.averageWriteSSDQueue = UFSDevice[lun]->SSDWriteDoneInfo.size();
2016 ++stats.totalWriteDiskTransactions;
2017
2018 /**initiate the next dma action (if any)*/
2019 if (!dmaWriteInfo.empty())
2020 writeDevice(NULL, true, dmaWriteInfo.front().start,
2021 dmaWriteInfo.front().size, NULL,
2022 dmaWriteInfo.front().SCSIDiskOffset,
2023 dmaWriteInfo.front().LUN);
2024 DPRINTF(UFSHostDevice, "Write done end\n");
2025}
2026
2027/**
2028 * SSD write start. Starts the write action in the timing model
2029 */
2030void
2031UFSHostDevice::UFSSCSIDevice::SSDWriteStart()
2032{
2033 assert(SSDWriteDoneInfo.size() > 0);
2034 flashDevice->writeMemory(
2035 SSDWriteDoneInfo.front().offset,
2036 SSDWriteDoneInfo.front().size, memWriteCallback);
2037
2038 SSDWriteDoneInfo.pop_front();
2039
2040 DPRINTF(UFSHostDevice, "Write is started; left in queue: %d\n",
2041 SSDWriteDoneInfo.size());
2042}
2043
2044
2045/**
2046 * SSDisk write done
2047 */
2048
2049void
2050UFSHostDevice::UFSSCSIDevice::SSDWriteDone()
2051{
2052 DPRINTF(UFSHostDevice, "Write disk, aiming for %d messages, %d so far\n",
2053 totalWrite, amountOfWriteTransfers);
2054
2055 //we have done one extra transfer
2056 ++amountOfWriteTransfers;
2057
2058 /**test whether call was correct*/
2059 assert(totalWrite >= amountOfWriteTransfers && totalWrite != 0);
2060
2061 /**are we there yet? (did we do everything)*/
2062 if (totalWrite == amountOfWriteTransfers) {
2063 DPRINTF(UFSHostDevice, "Write transactions finished\n");
2064 totalWrite = 0;
2065 amountOfWriteTransfers = 0;
2066
2067 //Callback UFS Host
2068 setSignal();
2069 signalDone->process();
2070 }
2071
2072}
2073
2074/**
2075 * Dma transaction function: read device. Notice that the dma action is from
2076 * a device perspective, while this function is from an initiator perspective
2077 */
2078
2079void
2080UFSHostDevice::readDevice(bool lastTransfer, Addr start, uint32_t size,
2081 uint8_t* destination, bool no_cache, Event*
2082 additional_action)
2083{
2084 DPRINTF(UFSHostDevice, "Read start: 0x%8x; Size: %d, data[0]: 0x%8x\n",
2085 start, size, (reinterpret_cast<uint32_t *>(destination))[0]);
2086
2087 /** check wether interrupt is needed */
2088 if (lastTransfer) {
2089 ++readPendingNum;
2090 readDoneEvent.push_back(this);
2091 assert(!readDoneEvent.back().scheduled());
2092 dmaPort.dmaAction(MemCmd::WriteReq, start, size,
2093 &readDoneEvent.back(), destination, 0);
2094 //yes, a writereq at a read device function is correct.
2095
2096 } else {
2097 if (additional_action != NULL)
2098 assert(!additional_action->scheduled());
2099
2100 dmaPort.dmaAction(MemCmd::WriteReq, start, size,
2101 additional_action, destination, 0);
2102
2103 }
2104
2105}
2106
2107/**
2108 * Manage read transfer. Manages correct transfer flow and makes sure that
2109 * the queues are filled on time
2110 */
2111
2112void
2113UFSHostDevice::manageReadTransfer(uint32_t size, uint32_t LUN, uint64_t
2114 offset, uint32_t sg_table_length,
2115 struct UFSHCDSGEntry* sglist)
2116{
2117 uint32_t size_accum = 0;
2118
2119 DPRINTF(UFSHostDevice, "Data READ size: %d\n", size);
2120
2121 /**
2122 * Break-up the transactions into actions defined by the scatter gather
2123 * list.
2124 */
2125 for (uint32_t count = 0; count < sg_table_length; count++) {
2126 struct transferInfo new_transfer;
2127 new_transfer.offset = sglist[count].upperAddr;
2128 new_transfer.offset = (new_transfer.offset << 32) |
2129 (sglist[count].baseAddr & 0xFFFFFFFF);
2130 new_transfer.filePointer = offset + size_accum;
2131 new_transfer.size = (sglist[count].size + 1);
2132 new_transfer.lunID = LUN;
2133
2134 DPRINTF(UFSHostDevice, "Data READ start: 0x%8x; size: %d\n",
2135 new_transfer.offset, new_transfer.size);
2136
2137 UFSDevice[LUN]->SSDReadInfo.push_back(new_transfer);
2138 UFSDevice[LUN]->SSDReadInfo.back().buffer.resize(sglist[count].size
2139 + 1);
2140
2141 /**
2142 * The disk image is read here; but the action is simultated later
2143 * You can see this as the preparation stage, whereas later is the
2144 * simulation phase.
2145 */
2146 UFSDevice[LUN]->readFlash(&UFSDevice[LUN]->
2147 SSDReadInfo.back().buffer[0],
2148 offset + size_accum,
2149 sglist[count].size + 1);
2150
2151 size_accum += (sglist[count].size + 1);
2152
2153 DPRINTF(UFSHostDevice, "Transfer %d; Remaining: 0x%8x, Accumulated:"
2154 " 0x%8x\n", (count + 1), (size-size_accum), size_accum);
2155
2156 /** stats **/
2157 stats.totalReadSSD += (sglist[count].size + 1);
2158 stats.currentReadSSDQueue = UFSDevice[LUN]->SSDReadInfo.size();
2159 stats.averageReadSSDQueue = UFSDevice[LUN]->SSDReadInfo.size();
2160 }
2161
2162 UFSDevice[LUN]->SSDReadStart(sg_table_length);
2163
2164 /** stats **/
2165 ++stats.totalReadUFSTransactions;
2166
2167}
2168
2169
2170
2171/**
2172 * SSDisk start read; this function was created to keep the interfaces
2173 * between the layers simpler. Without this function UFSHost would need to
2174 * know about the flashdevice.
2175 */
2176
2177void
2178UFSHostDevice::UFSSCSIDevice::SSDReadStart(uint32_t total_read)
2179{
2180 totalRead = total_read;
2181 for (uint32_t number_handled = 0; number_handled < SSDReadInfo.size();
2182 number_handled++) {
2183 /**
2184 * Load all the read request to the Memory device.
2185 * It will call back when done.
2186 */
2187 flashDevice->readMemory(SSDReadInfo.front().filePointer,
2188 SSDReadInfo.front().size, memReadCallback);
2189 }
2190
2191}
2192
2193
2194/**
2195 * SSDisk read done
2196 */
2197
2198void
2199UFSHostDevice::UFSSCSIDevice::SSDReadDone()
2200{
2201 DPRINTF(UFSHostDevice, "SSD read done at lun %d, Aiming for %d messages,"
2202 " %d so far\n", lunID, totalRead, amountOfReadTransfers);
2203
2204 if (totalRead == amountOfReadTransfers) {
2205 totalRead = 0;
2206 amountOfReadTransfers = 0;
2207
2208 /**Callback: transferdone*/
2209 setSignal();
2210 signalDone->process();
2211 }
2212
2213}
2214
2215/**
2216 * Read callback, on the way from the disk to the DMA. Called by the flash
2217 * layer. Intermediate step to the host layer
2218 */
2219void
2220UFSHostDevice::UFSSCSIDevice::readCallback()
2221{
2222 ++amountOfReadTransfers;
2223
2224 /**Callback; make sure data is transfered upstream:
2225 * UFSHostDevice::readCallback
2226 */
2227 setReadSignal();
2228 deviceReadCallback->process();
2229
2230 //Are we done yet?
2231 SSDReadDone();
2232}
2233
2234/**
2235 * Read callback, on the way from the disk to the DMA. Called by the UFSSCSI
2236 * layer.
2237 */
2238
2239void
2240UFSHostDevice::readCallback()
2241{
2242 DPRINTF(UFSHostDevice, "Read Callback\n");
2243 uint8_t this_lun = 0;
2244
2245 //while we haven't found the right lun, keep searching
2246 while ((this_lun < lunAvail) && !UFSDevice[this_lun]->finishedRead())
2247 ++this_lun;
2248
2249 DPRINTF(UFSHostDevice, "Found LUN %d messages pending for clean: %d\n",
2250 this_lun, SSDReadPending.size());
2251
2252 if (this_lun < lunAvail) {
2253 //Clear signal.
2254 UFSDevice[this_lun]->clearReadSignal();
2255 SSDReadPending.push_back(UFSDevice[this_lun]->SSDReadInfo.front());
2256 UFSDevice[this_lun]->SSDReadInfo.pop_front();
2257 readGarbageEventQueue.push_back(this);
2258
2259 //make sure the queue is popped a the end of the dma transaction
2260 readDevice(false, SSDReadPending.front().offset,
2261 SSDReadPending.front().size,
2262 &SSDReadPending.front().buffer[0], false,
2263 &readGarbageEventQueue.back());
2264
2265 /**stats*/
2266 ++stats.totalReadDiskTransactions;
2267 }
2268 else
2269 panic("no read finished in tick %d\n", curTick());
2270}
2271
2272/**
2273 * After a disk read DMA transfer, the structure needs to be freed. This is
2274 * done in this function.
2275 */
2276void
2277UFSHostDevice::readGarbage()
2278{
2279 DPRINTF(UFSHostDevice, "Clean read data, %d\n", SSDReadPending.size());
2280 SSDReadPending.pop_front();
2281 readGarbageEventQueue.pop_front();
2282}
2283
2284/**
2285 * Serialize; needed to make checkpoints
2286 */
2287
2288void
2289UFSHostDevice::serialize(CheckpointOut &cp) const
2290{
2291 DmaDevice::serialize(cp);
2292
2293 const uint8_t* temp_HCI_mem = reinterpret_cast<const uint8_t*>(&UFSHCIMem);
2294 SERIALIZE_ARRAY(temp_HCI_mem, sizeof(HCIMem));
2295
2296 uint32_t lun_avail = lunAvail;
2297 SERIALIZE_SCALAR(lun_avail);
2298}
2299
2300
2301/**
2302 * Unserialize; needed to restore from checkpoints
2303 */
2304
2305void
2306UFSHostDevice::unserialize(CheckpointIn &cp)
2307{
2308 DmaDevice::unserialize(cp);
2309 uint8_t* temp_HCI_mem = reinterpret_cast<uint8_t*>(&UFSHCIMem);
2310 UNSERIALIZE_ARRAY(temp_HCI_mem, sizeof(HCIMem));
2311
2312 uint32_t lun_avail;
2313 UNSERIALIZE_SCALAR(lun_avail);
2314 assert(lunAvail == lun_avail);
2315}
2316
2317
2318/**
2319 * Drain; needed to enable checkpoints
2320 */
2321
2322DrainState
2323UFSHostDevice::drain()
2324{
2325 if (UFSHCIMem.TRUTRLDBR) {
2326 DPRINTF(UFSHostDevice, "UFSDevice is draining...\n");
2327 return DrainState::Draining;
2328 } else {
2329 DPRINTF(UFSHostDevice, "UFSDevice drained\n");
2330 return DrainState::Drained;
2331 }
2332}
2333
2334/**
2335 * Checkdrain; needed to enable checkpoints
2336 */
2337
2338void
2339UFSHostDevice::checkDrain()
2340{
2341 if (drainState() != DrainState::Draining)
2342 return;
2343
2344 if (UFSHCIMem.TRUTRLDBR) {
2345 DPRINTF(UFSHostDevice, "UFSDevice is still draining; with %d active"
2346 " doorbells\n", activeDoorbells);
2347 } else {
2348 DPRINTF(UFSHostDevice, "UFSDevice is done draining\n");
2349 signalDrainDone();
2350 }
2351}
779 using namespace Stats;
780
781 std::string UFSHost_name = name() + ".UFSDiskHost";
782
783 // Register the stats
784 /** Queue lengths */
785 stats.currentSCSIQueue
786 .name(UFSHost_name + ".currentSCSIQueue")
787 .desc("Most up to date length of the command queue")
788 .flags(none);
789 stats.currentReadSSDQueue
790 .name(UFSHost_name + ".currentReadSSDQueue")
791 .desc("Most up to date length of the read SSD queue")
792 .flags(none);
793 stats.currentWriteSSDQueue
794 .name(UFSHost_name + ".currentWriteSSDQueue")
795 .desc("Most up to date length of the write SSD queue")
796 .flags(none);
797
798 /** Amount of data read/written */
799 stats.totalReadSSD
800 .name(UFSHost_name + ".totalReadSSD")
801 .desc("Number of bytes read from SSD")
802 .flags(none);
803
804 stats.totalWrittenSSD
805 .name(UFSHost_name + ".totalWrittenSSD")
806 .desc("Number of bytes written to SSD")
807 .flags(none);
808
809 stats.totalReadDiskTransactions
810 .name(UFSHost_name + ".totalReadDiskTransactions")
811 .desc("Number of transactions from disk")
812 .flags(none);
813 stats.totalWriteDiskTransactions
814 .name(UFSHost_name + ".totalWriteDiskTransactions")
815 .desc("Number of transactions to disk")
816 .flags(none);
817 stats.totalReadUFSTransactions
818 .name(UFSHost_name + ".totalReadUFSTransactions")
819 .desc("Number of transactions from device")
820 .flags(none);
821 stats.totalWriteUFSTransactions
822 .name(UFSHost_name + ".totalWriteUFSTransactions")
823 .desc("Number of transactions to device")
824 .flags(none);
825
826 /** Average bandwidth for reads and writes */
827 stats.averageReadSSDBW
828 .name(UFSHost_name + ".averageReadSSDBandwidth")
829 .desc("Average read bandwidth (bytes/s)")
830 .flags(nozero);
831
832 stats.averageReadSSDBW = stats.totalReadSSD / simSeconds;
833
834 stats.averageWriteSSDBW
835 .name(UFSHost_name + ".averageWriteSSDBandwidth")
836 .desc("Average write bandwidth (bytes/s)")
837 .flags(nozero);
838
839 stats.averageWriteSSDBW = stats.totalWrittenSSD / simSeconds;
840
841 stats.averageSCSIQueue
842 .name(UFSHost_name + ".averageSCSIQueueLength")
843 .desc("Average command queue length")
844 .flags(nozero);
845 stats.averageReadSSDQueue
846 .name(UFSHost_name + ".averageReadSSDQueueLength")
847 .desc("Average read queue length")
848 .flags(nozero);
849 stats.averageWriteSSDQueue
850 .name(UFSHost_name + ".averageWriteSSDQueueLength")
851 .desc("Average write queue length")
852 .flags(nozero);
853
854 /** Number of doorbells rung*/
855 stats.curDoorbell
856 .name(UFSHost_name + ".curDoorbell")
857 .desc("Most up to date number of doorbells used")
858 .flags(none);
859
860 stats.curDoorbell = activeDoorbells;
861
862 stats.maxDoorbell
863 .name(UFSHost_name + ".maxDoorbell")
864 .desc("Maximum number of doorbells utilized")
865 .flags(none);
866 stats.averageDoorbell
867 .name(UFSHost_name + ".averageDoorbell")
868 .desc("Average number of Doorbells used")
869 .flags(nozero);
870
871 /** Latency*/
872 stats.transactionLatency
873 .init(100)
874 .name(UFSHost_name + ".transactionLatency")
875 .desc("Histogram of transaction times")
876 .flags(pdf);
877
878 stats.idleTimes
879 .init(100)
880 .name(UFSHost_name + ".idlePeriods")
881 .desc("Histogram of idle times")
882 .flags(pdf);
883
884}
885
886/**
887 * Register init
888 */
889void UFSHostDevice::setValues()
890{
891 /**
892 * The capability register is built up as follows:
893 * 31-29 RES; Testmode support; O3 delivery; 64 bit addr;
894 * 23-19 RES; 18-16 #TM Req slots; 15-5 RES;4-0 # TR slots
895 */
896 UFSHCIMem.HCCAP = 0x06070000 | (UFSSlots & 0x1F);
897 UFSHCIMem.HCversion = 0x00010000; //version is 1.0
898 UFSHCIMem.HCHCDDID = 0xAA003C3C;// Arbitrary number
899 UFSHCIMem.HCHCPMID = 0x41524D48; //ARMH (not an official MIPI number)
900 UFSHCIMem.TRUTRLDBR = 0x00;
901 UFSHCIMem.TMUTMRLDBR = 0x00;
902 UFSHCIMem.CMDUICCMDR = 0x00;
903 // We can process CMD, TM, TR, device present
904 UFSHCIMem.ORHostControllerStatus = 0x08;
905 UFSHCIMem.TRUTRLBA = 0x00;
906 UFSHCIMem.TRUTRLBAU = 0x00;
907 UFSHCIMem.TMUTMRLBA = 0x00;
908 UFSHCIMem.TMUTMRLBAU = 0x00;
909}
910
911/**
912 * Determine address ranges
913 */
914
915AddrRangeList
916UFSHostDevice::getAddrRanges() const
917{
918 AddrRangeList ranges;
919 ranges.push_back(RangeSize(pioAddr, pioSize));
920 return ranges;
921}
922
923/**
924 * UFSHCD read register. This function allows the system to read the
925 * register entries
926 */
927
928Tick
929UFSHostDevice::read(PacketPtr pkt)
930{
931 uint32_t data = 0;
932
933 switch (pkt->getAddr() & 0xFF)
934 {
935
936 case regControllerCapabilities:
937 data = UFSHCIMem.HCCAP;
938 break;
939
940 case regUFSVersion:
941 data = UFSHCIMem.HCversion;
942 break;
943
944 case regControllerDEVID:
945 data = UFSHCIMem.HCHCDDID;
946 break;
947
948 case regControllerPRODID:
949 data = UFSHCIMem.HCHCPMID;
950 break;
951
952 case regInterruptStatus:
953 data = UFSHCIMem.ORInterruptStatus;
954 UFSHCIMem.ORInterruptStatus = 0x00;
955 //TODO: Revise and extend
956 clearInterrupt();
957 break;
958
959 case regInterruptEnable:
960 data = UFSHCIMem.ORInterruptEnable;
961 break;
962
963 case regControllerStatus:
964 data = UFSHCIMem.ORHostControllerStatus;
965 break;
966
967 case regControllerEnable:
968 data = UFSHCIMem.ORHostControllerEnable;
969 break;
970
971 case regUICErrorCodePHYAdapterLayer:
972 data = UFSHCIMem.ORUECPA;
973 break;
974
975 case regUICErrorCodeDataLinkLayer:
976 data = UFSHCIMem.ORUECDL;
977 break;
978
979 case regUICErrorCodeNetworkLayer:
980 data = UFSHCIMem.ORUECN;
981 break;
982
983 case regUICErrorCodeTransportLayer:
984 data = UFSHCIMem.ORUECT;
985 break;
986
987 case regUICErrorCodeDME:
988 data = UFSHCIMem.ORUECDME;
989 break;
990
991 case regUTPTransferREQINTAGGControl:
992 data = UFSHCIMem.ORUTRIACR;
993 break;
994
995 case regUTPTransferREQListBaseL:
996 data = UFSHCIMem.TRUTRLBA;
997 break;
998
999 case regUTPTransferREQListBaseH:
1000 data = UFSHCIMem.TRUTRLBAU;
1001 break;
1002
1003 case regUTPTransferREQDoorbell:
1004 data = UFSHCIMem.TRUTRLDBR;
1005 break;
1006
1007 case regUTPTransferREQListClear:
1008 data = UFSHCIMem.TRUTRLCLR;
1009 break;
1010
1011 case regUTPTransferREQListRunStop:
1012 data = UFSHCIMem.TRUTRLRSR;
1013 break;
1014
1015 case regUTPTaskREQListBaseL:
1016 data = UFSHCIMem.TMUTMRLBA;
1017 break;
1018
1019 case regUTPTaskREQListBaseH:
1020 data = UFSHCIMem.TMUTMRLBAU;
1021 break;
1022
1023 case regUTPTaskREQDoorbell:
1024 data = UFSHCIMem.TMUTMRLDBR;
1025 break;
1026
1027 case regUTPTaskREQListClear:
1028 data = UFSHCIMem.TMUTMRLCLR;
1029 break;
1030
1031 case regUTPTaskREQListRunStop:
1032 data = UFSHCIMem.TMUTMRLRSR;
1033 break;
1034
1035 case regUICCommand:
1036 data = UFSHCIMem.CMDUICCMDR;
1037 break;
1038
1039 case regUICCommandArg1:
1040 data = UFSHCIMem.CMDUCMDARG1;
1041 break;
1042
1043 case regUICCommandArg2:
1044 data = UFSHCIMem.CMDUCMDARG2;
1045 break;
1046
1047 case regUICCommandArg3:
1048 data = UFSHCIMem.CMDUCMDARG3;
1049 break;
1050
1051 default:
1052 data = 0x00;
1053 break;
1054 }
1055
1056 pkt->set<uint32_t>(data);
1057 pkt->makeResponse();
1058 return pioDelay;
1059}
1060
1061/**
1062 * UFSHCD write function. This function allows access to the writeable
1063 * registers. If any function attempts to write value to an unwriteable
1064 * register entry, then the value will not be written.
1065 */
1066Tick
1067UFSHostDevice::write(PacketPtr pkt)
1068{
1069 uint32_t data = 0;
1070
1071 switch (pkt->getSize()) {
1072
1073 case 1:
1074 data = pkt->get<uint8_t>();
1075 break;
1076
1077 case 2:
1078 data = pkt->get<uint16_t>();
1079 break;
1080
1081 case 4:
1082 data = pkt->get<uint32_t>();
1083 break;
1084
1085 default:
1086 panic("Undefined UFSHCD controller write size!\n");
1087 break;
1088 }
1089
1090 switch (pkt->getAddr() & 0xFF)
1091 {
1092 case regControllerCapabilities://you shall not write to this
1093 break;
1094
1095 case regUFSVersion://you shall not write to this
1096 break;
1097
1098 case regControllerDEVID://you shall not write to this
1099 break;
1100
1101 case regControllerPRODID://you shall not write to this
1102 break;
1103
1104 case regInterruptStatus://you shall not write to this
1105 break;
1106
1107 case regInterruptEnable:
1108 UFSHCIMem.ORInterruptEnable = data;
1109 break;
1110
1111 case regControllerStatus:
1112 UFSHCIMem.ORHostControllerStatus = data;
1113 break;
1114
1115 case regControllerEnable:
1116 UFSHCIMem.ORHostControllerEnable = data;
1117 break;
1118
1119 case regUICErrorCodePHYAdapterLayer:
1120 UFSHCIMem.ORUECPA = data;
1121 break;
1122
1123 case regUICErrorCodeDataLinkLayer:
1124 UFSHCIMem.ORUECDL = data;
1125 break;
1126
1127 case regUICErrorCodeNetworkLayer:
1128 UFSHCIMem.ORUECN = data;
1129 break;
1130
1131 case regUICErrorCodeTransportLayer:
1132 UFSHCIMem.ORUECT = data;
1133 break;
1134
1135 case regUICErrorCodeDME:
1136 UFSHCIMem.ORUECDME = data;
1137 break;
1138
1139 case regUTPTransferREQINTAGGControl:
1140 UFSHCIMem.ORUTRIACR = data;
1141 break;
1142
1143 case regUTPTransferREQListBaseL:
1144 UFSHCIMem.TRUTRLBA = data;
1145 if (((UFSHCIMem.TRUTRLBA | UFSHCIMem.TRUTRLBAU) != 0x00) &&
1146 ((UFSHCIMem.TMUTMRLBA | UFSHCIMem.TMUTMRLBAU)!= 0x00))
1147 UFSHCIMem.ORHostControllerStatus |= UICCommandReady;
1148 break;
1149
1150 case regUTPTransferREQListBaseH:
1151 UFSHCIMem.TRUTRLBAU = data;
1152 if (((UFSHCIMem.TRUTRLBA | UFSHCIMem.TRUTRLBAU) != 0x00) &&
1153 ((UFSHCIMem.TMUTMRLBA | UFSHCIMem.TMUTMRLBAU) != 0x00))
1154 UFSHCIMem.ORHostControllerStatus |= UICCommandReady;
1155 break;
1156
1157 case regUTPTransferREQDoorbell:
1158 if (!(UFSHCIMem.TRUTRLDBR) && data)
1159 stats.idleTimes.sample(curTick() - idlePhaseStart);
1160 UFSHCIMem.TRUTRLDBR |= data;
1161 requestHandler();
1162 break;
1163
1164 case regUTPTransferREQListClear:
1165 UFSHCIMem.TRUTRLCLR = data;
1166 break;
1167
1168 case regUTPTransferREQListRunStop:
1169 UFSHCIMem.TRUTRLRSR = data;
1170 break;
1171
1172 case regUTPTaskREQListBaseL:
1173 UFSHCIMem.TMUTMRLBA = data;
1174 if (((UFSHCIMem.TRUTRLBA | UFSHCIMem.TRUTRLBAU) != 0x00) &&
1175 ((UFSHCIMem.TMUTMRLBA | UFSHCIMem.TMUTMRLBAU) != 0x00))
1176 UFSHCIMem.ORHostControllerStatus |= UICCommandReady;
1177 break;
1178
1179 case regUTPTaskREQListBaseH:
1180 UFSHCIMem.TMUTMRLBAU = data;
1181 if (((UFSHCIMem.TRUTRLBA | UFSHCIMem.TRUTRLBAU) != 0x00) &&
1182 ((UFSHCIMem.TMUTMRLBA | UFSHCIMem.TMUTMRLBAU) != 0x00))
1183 UFSHCIMem.ORHostControllerStatus |= UICCommandReady;
1184 break;
1185
1186 case regUTPTaskREQDoorbell:
1187 UFSHCIMem.TMUTMRLDBR |= data;
1188 requestHandler();
1189 break;
1190
1191 case regUTPTaskREQListClear:
1192 UFSHCIMem.TMUTMRLCLR = data;
1193 break;
1194
1195 case regUTPTaskREQListRunStop:
1196 UFSHCIMem.TMUTMRLRSR = data;
1197 break;
1198
1199 case regUICCommand:
1200 UFSHCIMem.CMDUICCMDR = data;
1201 requestHandler();
1202 break;
1203
1204 case regUICCommandArg1:
1205 UFSHCIMem.CMDUCMDARG1 = data;
1206 break;
1207
1208 case regUICCommandArg2:
1209 UFSHCIMem.CMDUCMDARG2 = data;
1210 break;
1211
1212 case regUICCommandArg3:
1213 UFSHCIMem.CMDUCMDARG3 = data;
1214 break;
1215
1216 default:break;//nothing happens, you try to access a register that
1217 //does not exist
1218
1219 }
1220
1221 pkt->makeResponse();
1222 return pioDelay;
1223}
1224
1225/**
1226 * Request handler. Determines where the request comes from and initiates the
1227 * appropriate actions accordingly.
1228 */
1229
1230void
1231UFSHostDevice::requestHandler()
1232{
1233 Addr address = 0x00;
1234 int mask = 0x01;
1235 int size;
1236 int count = 0;
1237 struct taskStart task_info;
1238 struct transferStart transferstart_info;
1239 transferstart_info.done = 0;
1240
1241 /**
1242 * step1 determine what called us
1243 * step2 determine where to get it
1244 * Look for any request of which we where not yet aware
1245 */
1246 while (((UFSHCIMem.CMDUICCMDR > 0x00) |
1247 ((UFSHCIMem.TMUTMRLDBR ^ taskCommandTrack) > 0x00) |
1248 ((UFSHCIMem.TRUTRLDBR ^ transferTrack) > 0x00)) ) {
1249
1250 if (UFSHCIMem.CMDUICCMDR > 0x00) {
1251 /**
1252 * Command; general control of the Host controller.
1253 * no DMA transfer needed
1254 */
1255 commandHandler();
1256 UFSHCIMem.ORInterruptStatus |= UICCommandCOMPL;
1257 generateInterrupt();
1258 UFSHCIMem.CMDUICCMDR = 0x00;
1259 return; //command, nothing more we can do
1260
1261 } else if ((UFSHCIMem.TMUTMRLDBR ^ taskCommandTrack) > 0x00) {
1262 /**
1263 * Task; flow control, meant for the device/Logic unit
1264 * DMA transfer is needed, flash will not be approached
1265 */
1266 size = sizeof(UTPUPIUTaskReq);
1267 /**Find the position that is not handled yet*/
1268 count = findLsbSet((UFSHCIMem.TMUTMRLDBR ^ taskCommandTrack));
1269 address = UFSHCIMem.TMUTMRLBAU;
1270 //<-64 bit
1271 address = (count * size) + (address << 32) +
1272 UFSHCIMem.TMUTMRLBA;
1273 taskCommandTrack |= mask << count;
1274
1275 inform("UFSmodel received a task from the system; this might"
1276 " lead to untested behaviour.\n");
1277
1278 task_info.mask = mask << count;
1279 task_info.address = address;
1280 task_info.size = size;
1281 task_info.done = UFSHCIMem.TMUTMRLDBR;
1282 taskInfo.push_back(task_info);
1283 taskEventQueue.push_back(this);
1284 writeDevice(&taskEventQueue.back(), false, address, size,
1285 reinterpret_cast<uint8_t*>
1286 (&taskInfo.back().destination), 0, 0);
1287
1288 } else if ((UFSHCIMem.TRUTRLDBR ^ transferTrack) > 0x00) {
1289 /**
1290 * Transfer; Data transfer from or to the disk. There will be DMA
1291 * transfers, and the flash might be approached. Further
1292 * commands, are needed to specify the exact command.
1293 */
1294 size = sizeof(UTPTransferReqDesc);
1295 /**Find the position that is not handled yet*/
1296 count = findLsbSet((UFSHCIMem.TRUTRLDBR ^ transferTrack));
1297 address = UFSHCIMem.TRUTRLBAU;
1298 //<-64 bit
1299 address = (count * size) + (address << 32) + UFSHCIMem.TRUTRLBA;
1300
1301 transferTrack |= mask << count;
1302 DPRINTF(UFSHostDevice, "Doorbell register: 0x%8x select #:"
1303 " 0x%8x completion info: 0x%8x\n", UFSHCIMem.TRUTRLDBR,
1304 count, transferstart_info.done);
1305
1306 transferstart_info.done = UFSHCIMem.TRUTRLDBR;
1307
1308 /**stats**/
1309 transactionStart[count] = curTick(); //note the start time
1310 ++activeDoorbells;
1311 stats.maxDoorbell = (stats.maxDoorbell.value() < activeDoorbells)
1312 ? activeDoorbells : stats.maxDoorbell.value();
1313 stats.averageDoorbell = stats.maxDoorbell.value();
1314
1315 /**
1316 * step3 start transfer
1317 * step4 register information; allowing the host to respond in
1318 * the end
1319 */
1320 transferstart_info.mask = mask << count;
1321 transferstart_info.address = address;
1322 transferstart_info.size = size;
1323 transferstart_info.done = UFSHCIMem.TRUTRLDBR;
1324 transferStartInfo.push_back(transferstart_info);
1325
1326 /**Deleted in readDone, queued in finalUTP*/
1327 transferStartInfo.back().destination = new struct
1328 UTPTransferReqDesc;
1329 DPRINTF(UFSHostDevice, "Initial transfer start: 0x%8x\n",
1330 transferstart_info.done);
1331 transferEventQueue.push_back(this);
1332
1333 if (transferEventQueue.size() < 2) {
1334 writeDevice(&transferEventQueue.front(), false,
1335 address, size, reinterpret_cast<uint8_t*>
1336 (transferStartInfo.front().destination),0, 0);
1337 DPRINTF(UFSHostDevice, "Transfer scheduled\n");
1338 }
1339 }
1340 }
1341}
1342
1343/**
1344 * Task start event
1345 */
1346
1347void
1348UFSHostDevice::taskStart()
1349{
1350 DPRINTF(UFSHostDevice, "Task start");
1351 taskHandler(&taskInfo.front().destination, taskInfo.front().mask,
1352 taskInfo.front().address, taskInfo.front().size);
1353 taskInfo.pop_front();
1354 taskEventQueue.pop_front();
1355}
1356
1357/**
1358 * Transfer start event
1359 */
1360
1361void
1362UFSHostDevice::transferStart()
1363{
1364 DPRINTF(UFSHostDevice, "Enter transfer event\n");
1365 transferHandler(transferStartInfo.front().destination,
1366 transferStartInfo.front().mask,
1367 transferStartInfo.front().address,
1368 transferStartInfo.front().size,
1369 transferStartInfo.front().done);
1370
1371 transferStartInfo.pop_front();
1372 DPRINTF(UFSHostDevice, "Transfer queue size at end of event: "
1373 "0x%8x\n", transferEventQueue.size());
1374}
1375
1376/**
1377 * Handles the commands that are given. At this point in time, not many
1378 * commands have been implemented in the driver.
1379 */
1380
1381void
1382UFSHostDevice::commandHandler()
1383{
1384 if (UFSHCIMem.CMDUICCMDR == 0x16) {
1385 UFSHCIMem.ORHostControllerStatus |= 0x0F;//link startup
1386 }
1387
1388}
1389
1390/**
1391 * Handles the tasks that are given. At this point in time, not many tasks
1392 * have been implemented in the driver.
1393 */
1394
1395void
1396UFSHostDevice::taskHandler(struct UTPUPIUTaskReq* request_in,
1397 uint32_t req_pos, Addr finaladdress, uint32_t
1398 finalsize)
1399{
1400 /**
1401 * For now, just unpack and acknowledge the task without doing anything.
1402 * TODO Implement UFS tasks.
1403 */
1404 inform("taskHandler\n");
1405 inform("%8x\n", request_in->header.dWord0);
1406 inform("%8x\n", request_in->header.dWord1);
1407 inform("%8x\n", request_in->header.dWord2);
1408
1409 request_in->header.dWord2 &= 0xffffff00;
1410
1411 UFSHCIMem.TMUTMRLDBR &= ~(req_pos);
1412 taskCommandTrack &= ~(req_pos);
1413 UFSHCIMem.ORInterruptStatus |= UTPTaskREQCOMPL;
1414
1415 readDevice(true, finaladdress, finalsize, reinterpret_cast<uint8_t*>
1416 (request_in), true, NULL);
1417
1418}
1419
1420/**
1421 * Obtains the SCSI command (if any)
1422 * Two possibilities: if it contains a SCSI command, then it is a usable
1423 * message; if it doesnt contain a SCSI message, then it can't be handeld
1424 * by this code.
1425 * This is the second stage of the transfer. We have the information about
1426 * where the next command can be found and what the type of command is. The
1427 * actions that are needed from the device its side are: get the information
1428 * and store the information such that we can reply.
1429 */
1430
1431void
1432UFSHostDevice::transferHandler(struct UTPTransferReqDesc* request_in,
1433 int req_pos, Addr finaladdress, uint32_t
1434 finalsize, uint32_t done)
1435{
1436
1437 Addr cmd_desc_addr = 0x00;
1438
1439
1440 //acknowledge handling of the message
1441 DPRINTF(UFSHostDevice, "SCSI message detected\n");
1442 request_in->header.dWord2 &= 0xffffff00;
1443 SCSIInfo.RequestIn = request_in;
1444 SCSIInfo.reqPos = req_pos;
1445 SCSIInfo.finalAddress = finaladdress;
1446 SCSIInfo.finalSize = finalsize;
1447 SCSIInfo.destination.resize(request_in->PRDTableOffset * 4
1448 + request_in->PRDTableLength * sizeof(UFSHCDSGEntry));
1449 SCSIInfo.done = done;
1450
1451 assert(!SCSIResumeEvent.scheduled());
1452 /**
1453 *Get the UTP command that has the SCSI command
1454 */
1455 cmd_desc_addr = request_in->commandDescBaseAddrHi;
1456 cmd_desc_addr = (cmd_desc_addr << 32) |
1457 (request_in->commandDescBaseAddrLo & 0xffffffff);
1458
1459 writeDevice(&SCSIResumeEvent, false, cmd_desc_addr,
1460 SCSIInfo.destination.size(), &SCSIInfo.destination[0],0, 0);
1461
1462 DPRINTF(UFSHostDevice, "SCSI scheduled\n");
1463
1464 transferEventQueue.pop_front();
1465}
1466
1467/**
1468 * Obtain LUN and put it in the right LUN queue. Each LUN has its own queue
1469 * of commands that need to be executed. This is the first instance where it
1470 * can be determined which Logic unit should handle the transfer. Then check
1471 * wether it should wait and queue or if it can continue.
1472 */
1473
1474void
1475UFSHostDevice::SCSIStart()
1476{
1477 DPRINTF(UFSHostDevice, "SCSI message on hold until ready\n");
1478 uint32_t LUN = SCSIInfo.destination[2];
1479 UFSDevice[LUN]->SCSIInfoQueue.push_back(SCSIInfo);
1480
1481 DPRINTF(UFSHostDevice, "SCSI queue %d has %d elements\n", LUN,
1482 UFSDevice[LUN]->SCSIInfoQueue.size());
1483
1484 /**There are 32 doorbells, so at max there can be 32 transactions*/
1485 if (UFSDevice[LUN]->SCSIInfoQueue.size() < 2) //LUN is available
1486 SCSIResume(LUN);
1487
1488 else if (UFSDevice[LUN]->SCSIInfoQueue.size() > 32)
1489 panic("SCSI queue is getting too big %d\n", UFSDevice[LUN]->
1490 SCSIInfoQueue.size());
1491
1492 /**
1493 * First transfer is done, fetch the next;
1494 * At this point, the device is busy, not the HC
1495 */
1496 if (!transferEventQueue.empty()) {
1497
1498 /**
1499 * loading next data packet in case Another LUN
1500 * is approached in the mean time
1501 */
1502 writeDevice(&transferEventQueue.front(), false,
1503 transferStartInfo.front().address,
1504 transferStartInfo.front().size, reinterpret_cast<uint8_t*>
1505 (transferStartInfo.front().destination), 0, 0);
1506
1507 DPRINTF(UFSHostDevice, "Transfer scheduled");
1508 }
1509}
1510
1511/**
1512 * Handles the transfer requests that are given.
1513 * There can be three types of transfer. SCSI specific, Reads and writes
1514 * apart from the data transfer, this also generates its own reply (UPIU
1515 * response). Information for this reply is stored in transferInfo and will
1516 * be used in transferDone
1517 */
1518
1519void
1520UFSHostDevice::SCSIResume(uint32_t lun_id)
1521{
1522 DPRINTF(UFSHostDevice, "SCSIresume\n");
1523 if (UFSDevice[lun_id]->SCSIInfoQueue.empty())
1524 panic("No SCSI message scheduled lun:%d Doorbell: 0x%8x", lun_id,
1525 UFSHCIMem.TRUTRLDBR);
1526
1527 /**old info, lets form it such that we can understand it*/
1528 struct UTPTransferReqDesc* request_in = UFSDevice[lun_id]->
1529 SCSIInfoQueue.front().RequestIn;
1530
1531 uint32_t req_pos = UFSDevice[lun_id]->SCSIInfoQueue.front().reqPos;
1532
1533 Addr finaladdress = UFSDevice[lun_id]->SCSIInfoQueue.front().
1534 finalAddress;
1535
1536 uint32_t finalsize = UFSDevice[lun_id]->SCSIInfoQueue.front().finalSize;
1537
1538 uint32_t* transfercommand = reinterpret_cast<uint32_t*>
1539 (&(UFSDevice[lun_id]->SCSIInfoQueue.front().destination[0]));
1540
1541 DPRINTF(UFSHostDevice, "Task tag: 0x%8x\n", transfercommand[0]>>24);
1542 /**call logic unit to handle SCSI command*/
1543 request_out_datain = UFSDevice[(transfercommand[0] & 0xFF0000) >> 16]->
1544 SCSICMDHandle(transfercommand);
1545
1546 DPRINTF(UFSHostDevice, "LUN: %d\n", request_out_datain.LUN);
1547
1548 /**
1549 * build response stating that it was succesful
1550 * command completion, Logic unit number, and Task tag
1551 */
1552 request_in->header.dWord0 = ((request_in->header.dWord0 >> 24) == 0x21)
1553 ? 0x36 : 0x21;
1554 UFSDevice[lun_id]->transferInfo.requestOut.header.dWord0 =
1555 request_in->header.dWord0 | (request_out_datain.LUN << 8)
1556 | (transfercommand[0] & 0xFF000000);
1557 /**SCSI status reply*/
1558 UFSDevice[lun_id]->transferInfo.requestOut.header.dWord1 = 0x00000000 |
1559 (request_out_datain.status << 24);
1560 /**segment size + EHS length (see UFS standard ch7)*/
1561 UFSDevice[lun_id]->transferInfo.requestOut.header.dWord2 = 0x00000000 |
1562 ((request_out_datain.senseSize + 2) << 24) | 0x05;
1563 /**amount of data that will follow*/
1564 UFSDevice[lun_id]->transferInfo.requestOut.senseDataLen =
1565 request_out_datain.senseSize;
1566
1567 //data
1568 for (uint8_t count = 0; count<request_out_datain.senseSize; count++) {
1569 UFSDevice[lun_id]->transferInfo.requestOut.senseData[count] =
1570 request_out_datain.senseCode[count + 1];
1571 }
1572
1573 /*
1574 * At position defined by "request_in->PRDTableOffset" (counting 32 bit
1575 * words) in array "transfercommand" we have a scatter gather list, which
1576 * is usefull to us if we interpreted it as a UFSHCDSGEntry structure.
1577 */
1578 struct UFSHCDSGEntry* sglist = reinterpret_cast<UFSHCDSGEntry*>
1579 (&(transfercommand[(request_in->PRDTableOffset)]));
1580
1581 uint32_t length = request_in->PRDTableLength;
1582 DPRINTF(UFSHostDevice, "# PRDT entries: %d\n", length);
1583
1584 Addr response_addr = request_in->commandDescBaseAddrHi;
1585 response_addr = (response_addr << 32) |
1586 ((request_in->commandDescBaseAddrLo +
1587 (request_in->responseUPIULength << 2)) & 0xffffffff);
1588
1589 /**transferdone information packet filling*/
1590 UFSDevice[lun_id]->transferInfo.responseStartAddr = response_addr;
1591 UFSDevice[lun_id]->transferInfo.reqPos = req_pos;
1592 UFSDevice[lun_id]->transferInfo.size = finalsize;
1593 UFSDevice[lun_id]->transferInfo.address = finaladdress;
1594 UFSDevice[lun_id]->transferInfo.destination = reinterpret_cast<uint8_t*>
1595 (UFSDevice[lun_id]->SCSIInfoQueue.front().RequestIn);
1596 UFSDevice[lun_id]->transferInfo.finished = true;
1597 UFSDevice[lun_id]->transferInfo.lunID = request_out_datain.LUN;
1598
1599 /**
1600 * In this part the data that needs to be transfered will be initiated
1601 * and the chain of DMA (and potentially) disk transactions will be
1602 * started.
1603 */
1604 if (request_out_datain.expectMore == 0x01) {
1605 /**write transfer*/
1606 manageWriteTransfer(request_out_datain.LUN, request_out_datain.offset,
1607 length, sglist);
1608
1609 } else if (request_out_datain.expectMore == 0x02) {
1610 /**read transfer*/
1611 manageReadTransfer(request_out_datain.msgSize, request_out_datain.LUN,
1612 request_out_datain.offset, length, sglist);
1613
1614 } else {
1615 /**not disk related transfer, SCSI maintanance*/
1616 uint32_t count = 0;
1617 uint32_t size_accum = 0;
1618 DPRINTF(UFSHostDevice, "Data DMA size: 0x%8x\n",
1619 request_out_datain.msgSize);
1620
1621 /**Transport the SCSI reponse data according to the SG list*/
1622 while ((length > count) && size_accum
1623 < (request_out_datain.msgSize - 1) &&
1624 (request_out_datain.msgSize != 0x00)) {
1625 Addr SCSI_start = sglist[count].upperAddr;
1626 SCSI_start = (SCSI_start << 32) |
1627 (sglist[count].baseAddr & 0xFFFFFFFF);
1628 DPRINTF(UFSHostDevice, "Data DMA start: 0x%8x\n", SCSI_start);
1629 DPRINTF(UFSHostDevice, "Data DMA size: 0x%8x\n",
1630 (sglist[count].size + 1));
1631 /**
1632 * safetynet; it has been shown that sg list may be optimistic in
1633 * the amount of data allocated, which can potentially lead to
1634 * some garbage data being send over. Hence this construction
1635 * that finds the least amount of data that needs to be
1636 * transfered.
1637 */
1638 uint32_t size_to_send = sglist[count].size + 1;
1639
1640 if (request_out_datain.msgSize < (size_to_send + size_accum))
1641 size_to_send = request_out_datain.msgSize - size_accum;
1642
1643 readDevice(false, SCSI_start, size_to_send,
1644 reinterpret_cast<uint8_t*>
1645 (&(request_out_datain.message.dataMsg[size_accum])),
1646 false, NULL);
1647
1648 size_accum += size_to_send;
1649 DPRINTF(UFSHostDevice, "Total remaining: 0x%8x,accumulated so far"
1650 " : 0x%8x\n", (request_out_datain.msgSize - size_accum),
1651 size_accum);
1652
1653 ++count;
1654 DPRINTF(UFSHostDevice, "Transfer #: %d\n", count);
1655 }
1656
1657 /**Go to the next stage of the answering process*/
1658 transferDone(response_addr, req_pos, UFSDevice[lun_id]->
1659 transferInfo.requestOut, finalsize, finaladdress,
1660 reinterpret_cast<uint8_t*>(request_in), true, lun_id);
1661 }
1662
1663 DPRINTF(UFSHostDevice, "SCSI resume done\n");
1664}
1665
1666/**
1667 * Find finished transfer. Callback function. One of the LUNs is done with
1668 * the disk transfer and reports back to the controller. This function finds
1669 * out who it was, and calls transferDone.
1670 */
1671void
1672UFSHostDevice::LUNSignal()
1673{
1674 uint8_t this_lun = 0;
1675
1676 //while we haven't found the right lun, keep searching
1677 while ((this_lun < lunAvail) && !UFSDevice[this_lun]->finishedCommand())
1678 ++this_lun;
1679
1680 if (this_lun < lunAvail) {
1681 //Clear signal.
1682 UFSDevice[this_lun]->clearSignal();
1683 //found it; call transferDone
1684 transferDone(UFSDevice[this_lun]->transferInfo.responseStartAddr,
1685 UFSDevice[this_lun]->transferInfo.reqPos,
1686 UFSDevice[this_lun]->transferInfo.requestOut,
1687 UFSDevice[this_lun]->transferInfo.size,
1688 UFSDevice[this_lun]->transferInfo.address,
1689 UFSDevice[this_lun]->transferInfo.destination,
1690 UFSDevice[this_lun]->transferInfo.finished,
1691 UFSDevice[this_lun]->transferInfo.lunID);
1692 }
1693
1694 else
1695 panic("no LUN finished in tick %d\n", curTick());
1696}
1697
1698/**
1699 * Transfer done. When the data transfer is done, this function ensures
1700 * that the application is notified.
1701 */
1702
1703void
1704UFSHostDevice::transferDone(Addr responseStartAddr, uint32_t req_pos,
1705 struct UTPUPIURSP request_out, uint32_t size,
1706 Addr address, uint8_t* destination,
1707 bool finished, uint32_t lun_id)
1708{
1709 /**Test whether SCSI queue hasn't popped prematurely*/
1710 if (UFSDevice[lun_id]->SCSIInfoQueue.empty())
1711 panic("No SCSI message scheduled lun:%d Doorbell: 0x%8x", lun_id,
1712 UFSHCIMem.TRUTRLDBR);
1713
1714 DPRINTF(UFSHostDevice, "DMA start: 0x%8x; DMA size: 0x%8x\n",
1715 responseStartAddr, sizeof(request_out));
1716
1717 struct transferStart lastinfo;
1718 lastinfo.mask = req_pos;
1719 lastinfo.done = finished;
1720 lastinfo.address = address;
1721 lastinfo.size = size;
1722 lastinfo.destination = reinterpret_cast<UTPTransferReqDesc*>
1723 (destination);
1724 lastinfo.lun_id = lun_id;
1725
1726 transferEnd.push_back(lastinfo);
1727
1728 DPRINTF(UFSHostDevice, "Transfer done start\n");
1729
1730 readDevice(false, responseStartAddr, sizeof(request_out),
1731 reinterpret_cast<uint8_t*>
1732 (&(UFSDevice[lun_id]->transferInfo.requestOut)),
1733 true, &UTPEvent);
1734}
1735
1736/**
1737 * finalUTP. Second part of the transfer done event.
1738 * this sends the final response: the UTP response. After this transaction
1739 * the doorbell shall be cleared, and the interupt shall be set.
1740 */
1741
1742void
1743UFSHostDevice::finalUTP()
1744{
1745 uint32_t lun_id = transferEnd.front().lun_id;
1746
1747 UFSDevice[lun_id]->SCSIInfoQueue.pop_front();
1748 DPRINTF(UFSHostDevice, "SCSIInfoQueue size: %d, lun: %d\n",
1749 UFSDevice[lun_id]->SCSIInfoQueue.size(), lun_id);
1750
1751 /**stats**/
1752 if (UFSHCIMem.TRUTRLDBR & transferEnd.front().mask) {
1753 uint8_t count = 0;
1754 while (!(transferEnd.front().mask & (0x1 << count)))
1755 ++count;
1756 stats.transactionLatency.sample(curTick() -
1757 transactionStart[count]);
1758 }
1759
1760 /**Last message that will be transfered*/
1761 readDevice(true, transferEnd.front().address,
1762 transferEnd.front().size, reinterpret_cast<uint8_t*>
1763 (transferEnd.front().destination), true, NULL);
1764
1765 /**clean and ensure that the tracker is updated*/
1766 transferTrack &= ~(transferEnd.front().mask);
1767 --activeDoorbells;
1768 ++pendingDoorbells;
1769 garbage.push_back(transferEnd.front().destination);
1770 transferEnd.pop_front();
1771 DPRINTF(UFSHostDevice, "UTP handled\n");
1772
1773 /**stats**/
1774 stats.averageDoorbell = stats.maxDoorbell.value();
1775
1776 DPRINTF(UFSHostDevice, "activeDoorbells: %d, pendingDoorbells: %d,"
1777 " garbage: %d, TransferEvent: %d\n", activeDoorbells,
1778 pendingDoorbells, garbage.size(), transferEventQueue.size());
1779
1780 /**This is the moment that the device is available again*/
1781 if (!UFSDevice[lun_id]->SCSIInfoQueue.empty())
1782 SCSIResume(lun_id);
1783}
1784
1785/**
1786 * Read done handling function, is only initiated at the end of a transaction
1787 */
1788void
1789UFSHostDevice::readDone()
1790{
1791 DPRINTF(UFSHostDevice, "Read done start\n");
1792 --readPendingNum;
1793
1794 /**Garbage collection; sort out the allocated UTP descriptor*/
1795 if (garbage.size() > 0) {
1796 delete garbage.front();
1797 garbage.pop_front();
1798 }
1799
1800 /**done, generate interrupt if we havent got one already*/
1801 if (!(UFSHCIMem.ORInterruptStatus & 0x01)) {
1802 UFSHCIMem.ORInterruptStatus |= UTPTransferREQCOMPL;
1803 generateInterrupt();
1804 }
1805
1806
1807 if (!readDoneEvent.empty()) {
1808 readDoneEvent.pop_front();
1809 }
1810}
1811
1812/**
1813 * set interrupt and sort out the doorbell register.
1814 */
1815
1816void
1817UFSHostDevice::generateInterrupt()
1818{
1819 /**just to keep track of the transactions*/
1820 countInt++;
1821
1822 /**step5 clear doorbell*/
1823 UFSHCIMem.TRUTRLDBR &= transferTrack;
1824 pendingDoorbells = 0;
1825 DPRINTF(UFSHostDevice, "Clear doorbell %X\n", UFSHCIMem.TRUTRLDBR);
1826
1827 checkDrain();
1828
1829 /**step6 raise interrupt*/
1830 gic->sendInt(intNum);
1831 DPRINTF(UFSHostDevice, "Send interrupt @ transaction: 0x%8x!\n",
1832 countInt);
1833}
1834
1835/**
1836 * Clear interrupt
1837 */
1838
1839void
1840UFSHostDevice::clearInterrupt()
1841{
1842 gic->clearInt(intNum);
1843 DPRINTF(UFSHostDevice, "Clear interrupt: 0x%8x!\n", countInt);
1844
1845 checkDrain();
1846
1847 if (!(UFSHCIMem.TRUTRLDBR)) {
1848 idlePhaseStart = curTick();
1849 }
1850 /**end of a transaction*/
1851}
1852
1853/**
1854 * Important to understand about the transfer flow:
1855 * We have basically three stages, The "system memory" stage, the "device
1856 * buffer" stage and the "disk" stage. In this model we assume an infinite
1857 * buffer, or a buffer that is big enough to store all the data in the
1858 * biggest transaction. Between the three stages are two queues. Those queues
1859 * store the messages to simulate their transaction from one stage to the
1860 * next. The manage{Action} function fills up one of the queues and triggers
1861 * the first event, which causes a chain reaction of events executed once
1862 * they pass through their queues. For a write action the stages are ordered
1863 * "system memory", "device buffer" and "disk", whereas the read transfers
1864 * happen "disk", "device buffer" and "system memory". The dma action in the
1865 * dma device is written from a bus perspective whereas this model is written
1866 * from a device perspective. To avoid confusion, the translation between the
1867 * two has been made in the writeDevice and readDevice funtions.
1868 */
1869
1870
1871/**
1872 * Dma transaction function: write device. Note that the dma action is
1873 * from a device perspective, while this function is from an initiator
1874 * perspective
1875 */
1876
1877void
1878UFSHostDevice::writeDevice(Event* additional_action, bool toDisk, Addr
1879 start, int size, uint8_t* destination, uint64_t
1880 SCSIDiskOffset, uint32_t lun_id)
1881{
1882 DPRINTF(UFSHostDevice, "Write transaction Start: 0x%8x; Size: %d\n",
1883 start, size);
1884
1885 /**check whether transfer is all the way to the flash*/
1886 if (toDisk) {
1887 ++writePendingNum;
1888
1889 while (!writeDoneEvent.empty() && (writeDoneEvent.front().when()
1890 < curTick()))
1891 writeDoneEvent.pop_front();
1892
1893 writeDoneEvent.push_back(this);
1894 assert(!writeDoneEvent.back().scheduled());
1895
1896 /**destination is an offset here since we are writing to a disk*/
1897 struct transferInfo new_transfer;
1898 new_transfer.offset = SCSIDiskOffset;
1899 new_transfer.size = size;
1900 new_transfer.lunID = lun_id;
1901 new_transfer.filePointer = 0;
1902 SSDWriteinfo.push_back(new_transfer);
1903
1904 /**allocate appropriate buffer*/
1905 SSDWriteinfo.back().buffer.resize(size);
1906
1907 /**transaction*/
1908 dmaPort.dmaAction(MemCmd::ReadReq, start, size,
1909 &writeDoneEvent.back(),
1910 &SSDWriteinfo.back().buffer[0], 0);
1911 //yes, a readreq at a write device function is correct.
1912 DPRINTF(UFSHostDevice, "Write to disk scheduled\n");
1913
1914 } else {
1915 assert(!additional_action->scheduled());
1916 dmaPort.dmaAction(MemCmd::ReadReq, start, size,
1917 additional_action, destination, 0);
1918 DPRINTF(UFSHostDevice, "Write scheduled\n");
1919 }
1920}
1921
1922/**
1923 * Manage write transfer. Manages correct transfer flow and makes sure that
1924 * the queues are filled on time
1925 */
1926
1927void
1928UFSHostDevice::manageWriteTransfer(uint8_t LUN, uint64_t offset, uint32_t
1929 sg_table_length, struct UFSHCDSGEntry*
1930 sglist)
1931{
1932 struct writeToDiskBurst next_packet;
1933
1934 next_packet.SCSIDiskOffset = offset;
1935
1936 UFSDevice[LUN]->setTotalWrite(sg_table_length);
1937
1938 /**
1939 * Break-up the transactions into actions defined by the scatter gather
1940 * list.
1941 */
1942 for (uint32_t count = 0; count < sg_table_length; count++) {
1943 next_packet.start = sglist[count].upperAddr;
1944 next_packet.start = (next_packet.start << 32) |
1945 (sglist[count].baseAddr & 0xFFFFFFFF);
1946 next_packet.LUN = LUN;
1947 DPRINTF(UFSHostDevice, "Write data DMA start: 0x%8x\n",
1948 next_packet.start);
1949 DPRINTF(UFSHostDevice, "Write data DMA size: 0x%8x\n",
1950 (sglist[count].size + 1));
1951 assert(sglist[count].size > 0);
1952
1953 if (count != 0)
1954 next_packet.SCSIDiskOffset = next_packet.SCSIDiskOffset +
1955 (sglist[count - 1].size + 1);
1956
1957 next_packet.size = sglist[count].size + 1;
1958
1959 /**If the queue is empty, the transaction should be initiated*/
1960 if (dmaWriteInfo.empty())
1961 writeDevice(NULL, true, next_packet.start, next_packet.size,
1962 NULL, next_packet.SCSIDiskOffset, next_packet.LUN);
1963 else
1964 DPRINTF(UFSHostDevice, "Write not initiated queue: %d\n",
1965 dmaWriteInfo.size());
1966
1967 dmaWriteInfo.push_back(next_packet);
1968 DPRINTF(UFSHostDevice, "Write Location: 0x%8x\n",
1969 next_packet.SCSIDiskOffset);
1970
1971 DPRINTF(UFSHostDevice, "Write transfer #: 0x%8x\n", count + 1);
1972
1973 /** stats **/
1974 stats.totalWrittenSSD += (sglist[count].size + 1);
1975 }
1976
1977 /**stats**/
1978 ++stats.totalWriteUFSTransactions;
1979}
1980
1981/**
1982 * Write done handling function. Is only initiated when the flash is directly
1983 * approached
1984 */
1985
1986void
1987UFSHostDevice::writeDone()
1988{
1989 /**DMA is done, information no longer needed*/
1990 assert(dmaWriteInfo.size() > 0);
1991 dmaWriteInfo.pop_front();
1992 assert(SSDWriteinfo.size() > 0);
1993 uint32_t lun = SSDWriteinfo.front().lunID;
1994
1995 /**If there is nothing on the way, we need to start the events*/
1996 DPRINTF(UFSHostDevice, "Write done entered, queue: %d\n",
1997 UFSDevice[lun]->SSDWriteDoneInfo.size());
1998 /**Write the disk*/
1999 UFSDevice[lun]->writeFlash(&SSDWriteinfo.front().buffer[0],
2000 SSDWriteinfo.front().offset,
2001 SSDWriteinfo.front().size);
2002
2003 /**
2004 * Move to the second queue, enter the logic unit
2005 * This is where the disk is approached and the flash transaction is
2006 * handled SSDWriteDone will take care of the timing
2007 */
2008 UFSDevice[lun]->SSDWriteDoneInfo.push_back(SSDWriteinfo.front());
2009 SSDWriteinfo.pop_front();
2010
2011 --writePendingNum;
2012 /**so far, only the DMA part has been handled, lets do the disk delay*/
2013 UFSDevice[lun]->SSDWriteStart();
2014
2015 /** stats **/
2016 stats.currentWriteSSDQueue = UFSDevice[lun]->SSDWriteDoneInfo.size();
2017 stats.averageWriteSSDQueue = UFSDevice[lun]->SSDWriteDoneInfo.size();
2018 ++stats.totalWriteDiskTransactions;
2019
2020 /**initiate the next dma action (if any)*/
2021 if (!dmaWriteInfo.empty())
2022 writeDevice(NULL, true, dmaWriteInfo.front().start,
2023 dmaWriteInfo.front().size, NULL,
2024 dmaWriteInfo.front().SCSIDiskOffset,
2025 dmaWriteInfo.front().LUN);
2026 DPRINTF(UFSHostDevice, "Write done end\n");
2027}
2028
2029/**
2030 * SSD write start. Starts the write action in the timing model
2031 */
2032void
2033UFSHostDevice::UFSSCSIDevice::SSDWriteStart()
2034{
2035 assert(SSDWriteDoneInfo.size() > 0);
2036 flashDevice->writeMemory(
2037 SSDWriteDoneInfo.front().offset,
2038 SSDWriteDoneInfo.front().size, memWriteCallback);
2039
2040 SSDWriteDoneInfo.pop_front();
2041
2042 DPRINTF(UFSHostDevice, "Write is started; left in queue: %d\n",
2043 SSDWriteDoneInfo.size());
2044}
2045
2046
2047/**
2048 * SSDisk write done
2049 */
2050
2051void
2052UFSHostDevice::UFSSCSIDevice::SSDWriteDone()
2053{
2054 DPRINTF(UFSHostDevice, "Write disk, aiming for %d messages, %d so far\n",
2055 totalWrite, amountOfWriteTransfers);
2056
2057 //we have done one extra transfer
2058 ++amountOfWriteTransfers;
2059
2060 /**test whether call was correct*/
2061 assert(totalWrite >= amountOfWriteTransfers && totalWrite != 0);
2062
2063 /**are we there yet? (did we do everything)*/
2064 if (totalWrite == amountOfWriteTransfers) {
2065 DPRINTF(UFSHostDevice, "Write transactions finished\n");
2066 totalWrite = 0;
2067 amountOfWriteTransfers = 0;
2068
2069 //Callback UFS Host
2070 setSignal();
2071 signalDone->process();
2072 }
2073
2074}
2075
2076/**
2077 * Dma transaction function: read device. Notice that the dma action is from
2078 * a device perspective, while this function is from an initiator perspective
2079 */
2080
2081void
2082UFSHostDevice::readDevice(bool lastTransfer, Addr start, uint32_t size,
2083 uint8_t* destination, bool no_cache, Event*
2084 additional_action)
2085{
2086 DPRINTF(UFSHostDevice, "Read start: 0x%8x; Size: %d, data[0]: 0x%8x\n",
2087 start, size, (reinterpret_cast<uint32_t *>(destination))[0]);
2088
2089 /** check wether interrupt is needed */
2090 if (lastTransfer) {
2091 ++readPendingNum;
2092 readDoneEvent.push_back(this);
2093 assert(!readDoneEvent.back().scheduled());
2094 dmaPort.dmaAction(MemCmd::WriteReq, start, size,
2095 &readDoneEvent.back(), destination, 0);
2096 //yes, a writereq at a read device function is correct.
2097
2098 } else {
2099 if (additional_action != NULL)
2100 assert(!additional_action->scheduled());
2101
2102 dmaPort.dmaAction(MemCmd::WriteReq, start, size,
2103 additional_action, destination, 0);
2104
2105 }
2106
2107}
2108
2109/**
2110 * Manage read transfer. Manages correct transfer flow and makes sure that
2111 * the queues are filled on time
2112 */
2113
2114void
2115UFSHostDevice::manageReadTransfer(uint32_t size, uint32_t LUN, uint64_t
2116 offset, uint32_t sg_table_length,
2117 struct UFSHCDSGEntry* sglist)
2118{
2119 uint32_t size_accum = 0;
2120
2121 DPRINTF(UFSHostDevice, "Data READ size: %d\n", size);
2122
2123 /**
2124 * Break-up the transactions into actions defined by the scatter gather
2125 * list.
2126 */
2127 for (uint32_t count = 0; count < sg_table_length; count++) {
2128 struct transferInfo new_transfer;
2129 new_transfer.offset = sglist[count].upperAddr;
2130 new_transfer.offset = (new_transfer.offset << 32) |
2131 (sglist[count].baseAddr & 0xFFFFFFFF);
2132 new_transfer.filePointer = offset + size_accum;
2133 new_transfer.size = (sglist[count].size + 1);
2134 new_transfer.lunID = LUN;
2135
2136 DPRINTF(UFSHostDevice, "Data READ start: 0x%8x; size: %d\n",
2137 new_transfer.offset, new_transfer.size);
2138
2139 UFSDevice[LUN]->SSDReadInfo.push_back(new_transfer);
2140 UFSDevice[LUN]->SSDReadInfo.back().buffer.resize(sglist[count].size
2141 + 1);
2142
2143 /**
2144 * The disk image is read here; but the action is simultated later
2145 * You can see this as the preparation stage, whereas later is the
2146 * simulation phase.
2147 */
2148 UFSDevice[LUN]->readFlash(&UFSDevice[LUN]->
2149 SSDReadInfo.back().buffer[0],
2150 offset + size_accum,
2151 sglist[count].size + 1);
2152
2153 size_accum += (sglist[count].size + 1);
2154
2155 DPRINTF(UFSHostDevice, "Transfer %d; Remaining: 0x%8x, Accumulated:"
2156 " 0x%8x\n", (count + 1), (size-size_accum), size_accum);
2157
2158 /** stats **/
2159 stats.totalReadSSD += (sglist[count].size + 1);
2160 stats.currentReadSSDQueue = UFSDevice[LUN]->SSDReadInfo.size();
2161 stats.averageReadSSDQueue = UFSDevice[LUN]->SSDReadInfo.size();
2162 }
2163
2164 UFSDevice[LUN]->SSDReadStart(sg_table_length);
2165
2166 /** stats **/
2167 ++stats.totalReadUFSTransactions;
2168
2169}
2170
2171
2172
2173/**
2174 * SSDisk start read; this function was created to keep the interfaces
2175 * between the layers simpler. Without this function UFSHost would need to
2176 * know about the flashdevice.
2177 */
2178
2179void
2180UFSHostDevice::UFSSCSIDevice::SSDReadStart(uint32_t total_read)
2181{
2182 totalRead = total_read;
2183 for (uint32_t number_handled = 0; number_handled < SSDReadInfo.size();
2184 number_handled++) {
2185 /**
2186 * Load all the read request to the Memory device.
2187 * It will call back when done.
2188 */
2189 flashDevice->readMemory(SSDReadInfo.front().filePointer,
2190 SSDReadInfo.front().size, memReadCallback);
2191 }
2192
2193}
2194
2195
2196/**
2197 * SSDisk read done
2198 */
2199
2200void
2201UFSHostDevice::UFSSCSIDevice::SSDReadDone()
2202{
2203 DPRINTF(UFSHostDevice, "SSD read done at lun %d, Aiming for %d messages,"
2204 " %d so far\n", lunID, totalRead, amountOfReadTransfers);
2205
2206 if (totalRead == amountOfReadTransfers) {
2207 totalRead = 0;
2208 amountOfReadTransfers = 0;
2209
2210 /**Callback: transferdone*/
2211 setSignal();
2212 signalDone->process();
2213 }
2214
2215}
2216
2217/**
2218 * Read callback, on the way from the disk to the DMA. Called by the flash
2219 * layer. Intermediate step to the host layer
2220 */
2221void
2222UFSHostDevice::UFSSCSIDevice::readCallback()
2223{
2224 ++amountOfReadTransfers;
2225
2226 /**Callback; make sure data is transfered upstream:
2227 * UFSHostDevice::readCallback
2228 */
2229 setReadSignal();
2230 deviceReadCallback->process();
2231
2232 //Are we done yet?
2233 SSDReadDone();
2234}
2235
2236/**
2237 * Read callback, on the way from the disk to the DMA. Called by the UFSSCSI
2238 * layer.
2239 */
2240
2241void
2242UFSHostDevice::readCallback()
2243{
2244 DPRINTF(UFSHostDevice, "Read Callback\n");
2245 uint8_t this_lun = 0;
2246
2247 //while we haven't found the right lun, keep searching
2248 while ((this_lun < lunAvail) && !UFSDevice[this_lun]->finishedRead())
2249 ++this_lun;
2250
2251 DPRINTF(UFSHostDevice, "Found LUN %d messages pending for clean: %d\n",
2252 this_lun, SSDReadPending.size());
2253
2254 if (this_lun < lunAvail) {
2255 //Clear signal.
2256 UFSDevice[this_lun]->clearReadSignal();
2257 SSDReadPending.push_back(UFSDevice[this_lun]->SSDReadInfo.front());
2258 UFSDevice[this_lun]->SSDReadInfo.pop_front();
2259 readGarbageEventQueue.push_back(this);
2260
2261 //make sure the queue is popped a the end of the dma transaction
2262 readDevice(false, SSDReadPending.front().offset,
2263 SSDReadPending.front().size,
2264 &SSDReadPending.front().buffer[0], false,
2265 &readGarbageEventQueue.back());
2266
2267 /**stats*/
2268 ++stats.totalReadDiskTransactions;
2269 }
2270 else
2271 panic("no read finished in tick %d\n", curTick());
2272}
2273
2274/**
2275 * After a disk read DMA transfer, the structure needs to be freed. This is
2276 * done in this function.
2277 */
2278void
2279UFSHostDevice::readGarbage()
2280{
2281 DPRINTF(UFSHostDevice, "Clean read data, %d\n", SSDReadPending.size());
2282 SSDReadPending.pop_front();
2283 readGarbageEventQueue.pop_front();
2284}
2285
2286/**
2287 * Serialize; needed to make checkpoints
2288 */
2289
2290void
2291UFSHostDevice::serialize(CheckpointOut &cp) const
2292{
2293 DmaDevice::serialize(cp);
2294
2295 const uint8_t* temp_HCI_mem = reinterpret_cast<const uint8_t*>(&UFSHCIMem);
2296 SERIALIZE_ARRAY(temp_HCI_mem, sizeof(HCIMem));
2297
2298 uint32_t lun_avail = lunAvail;
2299 SERIALIZE_SCALAR(lun_avail);
2300}
2301
2302
2303/**
2304 * Unserialize; needed to restore from checkpoints
2305 */
2306
2307void
2308UFSHostDevice::unserialize(CheckpointIn &cp)
2309{
2310 DmaDevice::unserialize(cp);
2311 uint8_t* temp_HCI_mem = reinterpret_cast<uint8_t*>(&UFSHCIMem);
2312 UNSERIALIZE_ARRAY(temp_HCI_mem, sizeof(HCIMem));
2313
2314 uint32_t lun_avail;
2315 UNSERIALIZE_SCALAR(lun_avail);
2316 assert(lunAvail == lun_avail);
2317}
2318
2319
2320/**
2321 * Drain; needed to enable checkpoints
2322 */
2323
2324DrainState
2325UFSHostDevice::drain()
2326{
2327 if (UFSHCIMem.TRUTRLDBR) {
2328 DPRINTF(UFSHostDevice, "UFSDevice is draining...\n");
2329 return DrainState::Draining;
2330 } else {
2331 DPRINTF(UFSHostDevice, "UFSDevice drained\n");
2332 return DrainState::Drained;
2333 }
2334}
2335
2336/**
2337 * Checkdrain; needed to enable checkpoints
2338 */
2339
2340void
2341UFSHostDevice::checkDrain()
2342{
2343 if (drainState() != DrainState::Draining)
2344 return;
2345
2346 if (UFSHCIMem.TRUTRLDBR) {
2347 DPRINTF(UFSHostDevice, "UFSDevice is still draining; with %d active"
2348 " doorbells\n", activeDoorbells);
2349 } else {
2350 DPRINTF(UFSHostDevice, "UFSDevice is done draining\n");
2351 signalDrainDone();
2352 }
2353}