Deleted Added
sdiff udiff text old ( 13928:7809a562b8cd ) new ( 14010:0e1e887507c0 )
full compact
1/*
2 * Copyright (c) 2018 Metempsy Technology Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Jairo Balart
29 */
30
31#include "dev/arm/gic_v3_redistributor.hh"
32
33#include "arch/arm/utility.hh"
34#include "debug/GIC.hh"
35#include "dev/arm/gic_v3_cpu_interface.hh"
36#include "dev/arm/gic_v3_distributor.hh"
37#include "mem/fs_translating_port_proxy.hh"
38
39const AddrRange Gicv3Redistributor::GICR_IPRIORITYR(SGI_base + 0x0400,
40 SGI_base + 0x041f);
41
42Gicv3Redistributor::Gicv3Redistributor(Gicv3 * gic, uint32_t cpu_id)
43 : gic(gic),
44 distributor(nullptr),
45 cpuInterface(nullptr),
46 cpuId(cpu_id),
47 memProxy(nullptr),
48 irqGroup(Gicv3::SGI_MAX + Gicv3::PPI_MAX),
49 irqEnabled(Gicv3::SGI_MAX + Gicv3::PPI_MAX),
50 irqPending(Gicv3::SGI_MAX + Gicv3::PPI_MAX),
51 irqActive(Gicv3::SGI_MAX + Gicv3::PPI_MAX),
52 irqPriority(Gicv3::SGI_MAX + Gicv3::PPI_MAX),
53 irqConfig(Gicv3::SGI_MAX + Gicv3::PPI_MAX),
54 irqGrpmod(Gicv3::SGI_MAX + Gicv3::PPI_MAX),
55 irqNsacr(Gicv3::SGI_MAX + Gicv3::PPI_MAX),
56 addrRangeSize(gic->params()->gicv4 ? 0x40000 : 0x20000)
57{
58}
59
60void
61Gicv3Redistributor::init()
62{
63 distributor = gic->getDistributor();
64 cpuInterface = gic->getCPUInterface(cpuId);
65
66 memProxy = &gic->getSystem()->physProxy;
67}
68
69void
70Gicv3Redistributor::initState()
71{
72 reset();
73}
74
75void
76Gicv3Redistributor::reset()
77{
78 peInLowPowerState = true;
79 std::fill(irqGroup.begin(), irqGroup.end(), 0);
80 std::fill(irqEnabled.begin(), irqEnabled.end(), false);
81 std::fill(irqPending.begin(), irqPending.end(), false);
82 std::fill(irqActive.begin(), irqActive.end(), false);
83 std::fill(irqPriority.begin(), irqPriority.end(), 0);
84
85 // SGIs have edge-triggered behavior
86 for (uint32_t int_id = 0; int_id < Gicv3::SGI_MAX; int_id++) {
87 irqConfig[int_id] = Gicv3::INT_EDGE_TRIGGERED;
88 }
89
90 std::fill(irqGrpmod.begin(), irqGrpmod.end(), 0);
91 std::fill(irqNsacr.begin(), irqNsacr.end(), 0);
92 DPG1S = false;
93 DPG1NS = false;
94 DPG0 = false;
95 EnableLPIs = false;
96 lpiConfigurationTablePtr = 0;
97 lpiIDBits = 0;
98 lpiPendingTablePtr = 0;
99}
100
101uint64_t
102Gicv3Redistributor::read(Addr addr, size_t size, bool is_secure_access)
103{
104 if (GICR_IPRIORITYR.contains(addr)) { // Interrupt Priority Registers
105 uint64_t value = 0;
106 int first_intid = addr - GICR_IPRIORITYR.start();
107
108 for (int i = 0, int_id = first_intid; i < size; i++, int_id++) {
109 uint8_t prio = irqPriority[int_id];
110
111 if (!distributor->DS && !is_secure_access) {
112 if (getIntGroup(int_id) != Gicv3::G1NS) {
113 // RAZ/WI for non-secure accesses for secure interrupts
114 continue;
115 } else {
116 // NS view
117 prio = (prio << 1) & 0xff;
118 }
119 }
120
121 value |= prio << (i * 8);
122 }
123
124 return value;
125 }
126
127 switch (addr) {
128 case GICR_CTLR: { // Control Register
129 uint64_t value = 0;
130
131 if (DPG1S) {
132 value |= GICR_CTLR_DPG1S;
133 }
134
135 if (DPG1NS) {
136 value |= GICR_CTLR_DPG1NS;
137 }
138
139 if (DPG0) {
140 value |= GICR_CTLR_DPG0;
141 }
142
143 if (EnableLPIs) {
144 value |= GICR_CTLR_ENABLE_LPIS;
145 }
146
147 return value;
148 }
149
150 case GICR_IIDR: // Implementer Identification Register
151 //return 0x43b; // r0p0 GIC-500
152 return 0;
153
154 case GICR_TYPER: { // Type Register
155 /*
156 * Affinity_Value [63:32] == X
157 * (The identity of the PE associated with this Redistributor)
158 * CommonLPIAff [25:24] == 01
159 * (All Redistributors with the same Aff3 value must share an
160 * LPI Configuration table)
161 * Processor_Number [23:8] == X
162 * (A unique identifier for the PE)
163 * DPGS [5] == 1
164 * (GICR_CTLR.DPG* bits are supported)
165 * Last [4] == X
166 * (This Redistributor is the highest-numbered Redistributor in
167 * a series of contiguous Redistributor pages)
168 * DirectLPI [3] == 1
169 * (direct injection of LPIs supported)
170 * VLPIS [1] == 0
171 * (virtual LPIs not supported)
172 * PLPIS [0] == 1
173 * (physical LPIs supported)
174 */
175 uint64_t affinity = getAffinity();
176 int last = cpuId == (gic->getSystem()->numContexts() - 1);
177 return (affinity << 32) | (1 << 24) | (cpuId << 8) |
178 (1 << 5) | (last << 4) | (1 << 3) | (1 << 0);
179 }
180
181 case GICR_WAKER: // Wake Register
182 if (!distributor->DS && !is_secure_access) {
183 // RAZ/WI for non-secure accesses
184 return 0;
185 }
186
187 if (peInLowPowerState) {
188 return GICR_WAKER_ChildrenAsleep | GICR_WAKER_ProcessorSleep;
189 } else {
190 return 0;
191 }
192
193 case GICR_PIDR0: { // Peripheral ID0 Register
194 return 0x92; // Part number, bits[7:0]
195 }
196
197 case GICR_PIDR1: { // Peripheral ID1 Register
198 uint8_t des_0 = 0xB; // JEP106 identification code, bits[3:0]
199 uint8_t part_1 = 0x4; // Part number, bits[11:8]
200 return (des_0 << 4) | (part_1 << 0);
201 }
202
203 case GICR_PIDR2: { // Peripheral ID2 Register
204 uint8_t arch_rev = 0x3; // 0x3 GICv3
205 uint8_t jedec = 0x1; // JEP code
206 uint8_t des_1 = 0x3; // JEP106 identification code, bits[6:4]
207 return (arch_rev << 4) | (jedec << 3) | (des_1 << 0);
208 }
209
210 case GICR_PIDR3: // Peripheral ID3 Register
211 return 0x0; // Implementation defined
212
213 case GICR_PIDR4: { // Peripheral ID4 Register
214 uint8_t size = 0x4; // 64 KB software visible page
215 uint8_t des_2 = 0x4; // ARM implementation
216 return (size << 4) | (des_2 << 0);
217 }
218
219 case GICR_PIDR5: // Peripheral ID5 Register
220 case GICR_PIDR6: // Peripheral ID6 Register
221 case GICR_PIDR7: // Peripheral ID7 Register
222 return 0; // RES0
223
224 case GICR_IGROUPR0: { // Interrupt Group Register 0
225 uint64_t value = 0;
226
227 if (!distributor->DS && !is_secure_access) {
228 // RAZ/WI for non-secure accesses
229 return 0;
230 }
231
232 for (int int_id = 0; int_id < 8 * size; int_id++) {
233 value |= (irqGroup[int_id] << int_id);
234 }
235
236 return value;
237 }
238
239 case GICR_ISENABLER0: // Interrupt Set-Enable Register 0
240 case GICR_ICENABLER0: { // Interrupt Clear-Enable Register 0
241 uint64_t value = 0;
242
243 for (int int_id = 0; int_id < 8 * size; int_id++) {
244 if (!distributor->DS && !is_secure_access) {
245 // RAZ/WI for non-secure accesses for secure interrupts
246 if (getIntGroup(int_id) != Gicv3::G1NS) {
247 continue;
248 }
249 }
250
251 if (irqEnabled[int_id]) {
252 value |= (1 << int_id);
253 }
254 }
255
256 return value;
257 }
258
259 case GICR_ISPENDR0: // Interrupt Set-Pending Register 0
260 case GICR_ICPENDR0: { // Interrupt Clear-Pending Register 0
261 uint64_t value = 0;
262
263 for (int int_id = 0; int_id < 8 * size; int_id++) {
264 if (!distributor->DS && !is_secure_access) {
265 // RAZ/WI for non-secure accesses for secure interrupts
266 if (getIntGroup(int_id) != Gicv3::G1NS) {
267 continue;
268 }
269 }
270
271 value |= (irqPending[int_id] << int_id);
272 }
273
274 return value;
275 }
276
277 case GICR_ISACTIVER0: // Interrupt Set-Active Register 0
278 case GICR_ICACTIVER0: { // Interrupt Clear-Active Register 0
279 uint64_t value = 0;
280
281 for (int int_id = 0; int_id < 8 * size; int_id++) {
282 if (!distributor->DS && !is_secure_access) {
283 // RAZ/WI for non-secure accesses for secure interrupts
284 if (getIntGroup(int_id) != Gicv3::G1NS) {
285 continue;
286 }
287 }
288
289 value |= irqActive[int_id] << int_id;
290 }
291
292 return value;
293 }
294
295 case GICR_ICFGR0: // SGI Configuration Register
296 case GICR_ICFGR1: { // PPI Configuration Register
297 uint64_t value = 0;
298 uint32_t first_int_id = addr == GICR_ICFGR0 ? 0 : Gicv3::SGI_MAX;
299
300 for (int i = 0, int_id = first_int_id; i < 32;
301 i = i + 2, int_id++) {
302 if (!distributor->DS && !is_secure_access) {
303 // RAZ/WI for non-secure accesses for secure interrupts
304 if (getIntGroup(int_id) != Gicv3::G1NS) {
305 continue;
306 }
307 }
308
309 if (irqConfig[int_id] == Gicv3::INT_EDGE_TRIGGERED) {
310 value |= (0x2) << i;
311 }
312 }
313
314 return value;
315 }
316
317 case GICR_IGRPMODR0: { // Interrupt Group Modifier Register 0
318 uint64_t value = 0;
319
320 if (distributor->DS) {
321 value = 0;
322 } else {
323 if (!is_secure_access) {
324 // RAZ/WI for non-secure accesses
325 value = 0;
326 } else {
327 for (int int_id = 0; int_id < 8 * size; int_id++) {
328 value |= irqGrpmod[int_id] << int_id;
329 }
330 }
331 }
332
333 return value;
334 }
335
336 case GICR_NSACR: { // Non-secure Access Control Register
337 uint64_t value = 0;
338
339 if (distributor->DS) {
340 // RAZ/WI
341 value = 0;
342 } else {
343 if (!is_secure_access) {
344 // RAZ/WI
345 value = 0;
346 } else {
347 for (int i = 0, int_id = 0; i < 8 * size;
348 i = i + 2, int_id++) {
349 value |= irqNsacr[int_id] << i;
350 }
351 }
352 }
353
354 return value;
355 }
356
357 case GICR_PROPBASER: // Redistributor Properties Base Address Register
358 // OuterCache, bits [58:56]
359 // 000 Memory type defined in InnerCache field
360 // Physical_Address, bits [51:12]
361 // Bits [51:12] of the physical address containing the LPI
362 // Configuration table
363 // Shareability, bits [11:10]
364 // 00 Non-shareable
365 // InnerCache, bits [9:7]
366 // 000 Device-nGnRnE
367 // IDbits, bits [4:0]
368 // limited by GICD_TYPER.IDbits
369 return lpiConfigurationTablePtr | lpiIDBits;
370
371 // Redistributor LPI Pending Table Base Address Register
372 case GICR_PENDBASER:
373 // PTZ, bit [62]
374 // Pending Table Zero
375 // OuterCache, bits [58:56]
376 // 000 Memory type defined in InnerCache field
377 // Physical_Address, bits [51:16]
378 // Bits [51:16] of the physical address containing the LPI Pending
379 // table
380 // Shareability, bits [11:10]
381 // 00 Non-shareable
382 // InnerCache, bits [9:7]
383 // 000 Device-nGnRnE
384 return lpiPendingTablePtr;
385
386 // Redistributor Synchronize Register
387 case GICR_SYNCR:
388 return 0;
389
390 default:
391 panic("Gicv3Redistributor::read(): invalid offset %#x\n", addr);
392 break;
393 }
394}
395
396void
397Gicv3Redistributor::write(Addr addr, uint64_t data, size_t size,
398 bool is_secure_access)
399{
400 if (GICR_IPRIORITYR.contains(addr)) { // Interrupt Priority Registers
401 int first_intid = addr - GICR_IPRIORITYR.start();
402
403 for (int i = 0, int_id = first_intid; i < size; i++, int_id++) {
404 uint8_t prio = bits(data, (i + 1) * 8 - 1, (i * 8));
405
406 if (!distributor->DS && !is_secure_access) {
407 if (getIntGroup(int_id) != Gicv3::G1NS) {
408 // RAZ/WI for non-secure accesses for secure interrupts
409 continue;
410 } else {
411 // NS view
412 prio = 0x80 | (prio >> 1);
413 }
414 }
415
416 irqPriority[int_id] = prio;
417 DPRINTF(GIC, "Gicv3Redistributor::write(): "
418 "int_id %d priority %d\n", int_id, irqPriority[int_id]);
419 }
420
421 return;
422 }
423
424 switch (addr) {
425 case GICR_CTLR: {
426 // GICR_TYPER.LPIS is 0 so EnableLPIs is RES0
427 EnableLPIs = data & GICR_CTLR_ENABLE_LPIS;
428 DPG1S = data & GICR_CTLR_DPG1S;
429 DPG1NS = data & GICR_CTLR_DPG1NS;
430 DPG0 = data & GICR_CTLR_DPG0;
431 break;
432 }
433
434 case GICR_WAKER: // Wake Register
435 if (!distributor->DS && !is_secure_access) {
436 // RAZ/WI for non-secure accesses
437 return;
438 }
439
440 if (not peInLowPowerState and
441 (data & GICR_WAKER_ProcessorSleep)) {
442 DPRINTF(GIC, "Gicv3Redistributor::write(): "
443 "PE entering in low power state\n");
444 } else if (peInLowPowerState and
445 not(data & GICR_WAKER_ProcessorSleep)) {
446 DPRINTF(GIC, "Gicv3Redistributor::write(): powering up PE\n");
447 }
448
449 peInLowPowerState = data & GICR_WAKER_ProcessorSleep;
450 break;
451
452 case GICR_IGROUPR0: // Interrupt Group Register 0
453 if (!distributor->DS && !is_secure_access) {
454 // RAZ/WI for non-secure accesses
455 return;
456 }
457
458 for (int int_id = 0; int_id < 8 * size; int_id++) {
459 irqGroup[int_id] = data & (1 << int_id) ? 1 : 0;
460 DPRINTF(GIC, "Gicv3Redistributor::write(): "
461 "int_id %d group %d\n", int_id, irqGroup[int_id]);
462 }
463
464 break;
465
466 case GICR_ISENABLER0: // Interrupt Set-Enable Register 0
467 for (int int_id = 0; int_id < 8 * size; int_id++) {
468 if (!distributor->DS && !is_secure_access) {
469 // RAZ/WI for non-secure accesses for secure interrupts
470 if (getIntGroup(int_id) != Gicv3::G1NS) {
471 continue;
472 }
473 }
474
475 bool enable = data & (1 << int_id) ? 1 : 0;
476
477 if (enable) {
478 irqEnabled[int_id] = true;
479 }
480
481 DPRINTF(GIC, "Gicv3Redistributor::write(): "
482 "int_id %d enable %i\n", int_id, irqEnabled[int_id]);
483 }
484
485 break;
486
487 case GICR_ICENABLER0: // Interrupt Clear-Enable Register 0
488 for (int int_id = 0; int_id < 8 * size; int_id++) {
489 if (!distributor->DS && !is_secure_access) {
490 // RAZ/WI for non-secure accesses for secure interrupts
491 if (getIntGroup(int_id) != Gicv3::G1NS) {
492 continue;
493 }
494 }
495
496 bool disable = data & (1 << int_id) ? 1 : 0;
497
498 if (disable) {
499 irqEnabled[int_id] = false;
500 }
501
502 DPRINTF(GIC, "Gicv3Redistributor::write(): "
503 "int_id %d enable %i\n", int_id, irqEnabled[int_id]);
504 }
505
506 break;
507
508 case GICR_ISPENDR0: // Interrupt Set-Pending Register 0
509 for (int int_id = 0; int_id < 8 * size; int_id++) {
510 if (!distributor->DS && !is_secure_access) {
511 // RAZ/WI for non-secure accesses for secure interrupts
512 if (getIntGroup(int_id) != Gicv3::G1NS) {
513 continue;
514 }
515 }
516
517 bool pending = data & (1 << int_id) ? 1 : 0;
518
519 if (pending) {
520 DPRINTF(GIC, "Gicv3Redistributor::write() "
521 "(GICR_ISPENDR0): int_id %d (PPI) "
522 "pending bit set\n", int_id);
523 irqPending[int_id] = true;
524 }
525 }
526
527 updateAndInformCPUInterface();
528 break;
529
530 case GICR_ICPENDR0:// Interrupt Clear-Pending Register 0
531 for (int int_id = 0; int_id < 8 * size; int_id++) {
532 if (!distributor->DS && !is_secure_access) {
533 // RAZ/WI for non-secure accesses for secure interrupts
534 if (getIntGroup(int_id) != Gicv3::G1NS) {
535 continue;
536 }
537 }
538
539 bool clear = data & (1 << int_id) ? 1 : 0;
540
541 if (clear) {
542 irqPending[int_id] = false;
543 }
544 }
545
546 break;
547
548 case GICR_ISACTIVER0: // Interrupt Set-Active Register 0
549 for (int int_id = 0; int_id < 8 * size; int_id++) {
550 if (!distributor->DS && !is_secure_access) {
551 // RAZ/WI for non-secure accesses for secure interrupts
552 if (getIntGroup(int_id) != Gicv3::G1NS) {
553 continue;
554 }
555 }
556
557 bool activate = data & (1 << int_id) ? 1 : 0;
558
559 if (activate) {
560 if (!irqActive[int_id]) {
561 DPRINTF(GIC, "Gicv3Redistributor::write(): "
562 "int_id %d active set\n", int_id);
563 }
564
565 irqActive[int_id] = true;
566 }
567 }
568
569 break;
570
571 case GICR_ICACTIVER0: // Interrupt Clear-Active Register 0
572 for (int int_id = 0; int_id < 8 * size; int_id++) {
573 if (!distributor->DS && !is_secure_access) {
574 // RAZ/WI for non-secure accesses for secure interrupts
575 if (getIntGroup(int_id) != Gicv3::G1NS) {
576 continue;
577 }
578 }
579
580 bool clear = data & (1 << int_id) ? 1 : 0;
581
582 if (clear) {
583 if (irqActive[int_id]) {
584 DPRINTF(GIC, "Gicv3Redistributor::write(): "
585 "int_id %d active cleared\n", int_id);
586 }
587
588 irqActive[int_id] = false;
589 }
590 }
591
592 break;
593
594 case GICR_ICFGR1: { // PPI Configuration Register
595 int first_intid = Gicv3::SGI_MAX;
596
597 for (int i = 0, int_id = first_intid; i < 8 * size;
598 i = i + 2, int_id++) {
599 if (!distributor->DS && !is_secure_access) {
600 // RAZ/WI for non-secure accesses for secure interrupts
601 if (getIntGroup(int_id) != Gicv3::G1NS) {
602 continue;
603 }
604 }
605
606 irqConfig[int_id] = data & (0x2 << i) ?
607 Gicv3::INT_EDGE_TRIGGERED :
608 Gicv3::INT_LEVEL_SENSITIVE;
609 DPRINTF(GIC, "Gicv3Redistributor::write(): "
610 "int_id %d (PPI) config %d\n",
611 int_id, irqConfig[int_id]);
612 }
613
614 break;
615 }
616
617 case GICR_IGRPMODR0: { // Interrupt Group Modifier Register 0
618 if (distributor->DS) {
619 // RAZ/WI if secutiry disabled
620 } else {
621 for (int int_id = 0; int_id < 8 * size; int_id++) {
622 if (!is_secure_access) {
623 // RAZ/WI for non-secure accesses
624 continue;
625 }
626
627 irqGrpmod[int_id] = data & (1 << int_id);
628 }
629 }
630
631 break;
632 }
633
634 case GICR_NSACR: { // Non-secure Access Control Register
635 if (distributor->DS) {
636 // RAZ/WI
637 } else {
638 if (!is_secure_access) {
639 // RAZ/WI
640 } else {
641 for (int i = 0, int_id = 0; i < 8 * size;
642 i = i + 2, int_id++) {
643 irqNsacr[int_id] = (data >> i) & 0x3;
644 }
645 }
646 }
647
648 break;
649 }
650
651 case GICR_SETLPIR: // Set LPI Pending Register
652 setClrLPI(data, true);
653 break;
654
655 case GICR_CLRLPIR: // Clear LPI Pending Register
656 setClrLPI(data, false);
657 break;
658
659 case GICR_PROPBASER: { // Redistributor Properties Base Address Register
660 // OuterCache, bits [58:56]
661 // 000 Memory type defined in InnerCache field
662 // Physical_Address, bits [51:12]
663 // Bits [51:12] of the physical address containing the LPI
664 // Configuration table
665 // Shareability, bits [11:10]
666 // 00 Non-shareable
667 // InnerCache, bits [9:7]
668 // 000 Device-nGnRnE
669 // IDbits, bits [4:0]
670 // limited by GICD_TYPER.IDbits (= 0xf)
671 lpiConfigurationTablePtr = data & 0xFFFFFFFFFF000;
672 lpiIDBits = data & 0x1f;
673
674 // 0xf here matches the value of GICD_TYPER.IDbits.
675 // TODO - make GICD_TYPER.IDbits a parameter instead of a hardcoded
676 // value
677 if (lpiIDBits > 0xf) {
678 lpiIDBits = 0xf;
679 }
680
681 break;
682 }
683
684 // Redistributor LPI Pending Table Base Address Register
685 case GICR_PENDBASER:
686 // PTZ, bit [62]
687 // Pending Table Zero
688 // OuterCache, bits [58:56]
689 // 000 Memory type defined in InnerCache field
690 // Physical_Address, bits [51:16]
691 // Bits [51:16] of the physical address containing the LPI Pending
692 // table
693 // Shareability, bits [11:10]
694 // 00 Non-shareable
695 // InnerCache, bits [9:7]
696 // 000 Device-nGnRnE
697 lpiPendingTablePtr = data & 0xFFFFFFFFF0000;
698 break;
699
700 case GICR_INVLPIR: { // Redistributor Invalidate LPI Register
701 // Do nothing: no caching supported
702 break;
703 }
704
705 case GICR_INVALLR: { // Redistributor Invalidate All Register
706 // Do nothing: no caching supported
707 break;
708 }
709
710 default:
711 panic("Gicv3Redistributor::write(): invalid offset %#x\n", addr);
712 break;
713 }
714}
715
716void
717Gicv3Redistributor::sendPPInt(uint32_t int_id)
718{
719 assert((int_id >= Gicv3::SGI_MAX) &&
720 (int_id < Gicv3::SGI_MAX + Gicv3::PPI_MAX));
721 irqPending[int_id] = true;
722 DPRINTF(GIC, "Gicv3Redistributor::sendPPInt(): "
723 "int_id %d (PPI) pending bit set\n", int_id);
724 updateAndInformCPUInterface();
725}
726
727void
728Gicv3Redistributor::sendSGI(uint32_t int_id, Gicv3::GroupId group, bool ns)
729{
730 assert(int_id < Gicv3::SGI_MAX);
731 Gicv3::GroupId int_group = getIntGroup(int_id);
732
733 // asked for secure group 1
734 // configured as group 0
735 // send group 0
736 if (int_group == Gicv3::G0S && group == Gicv3::G1S) {
737 group = Gicv3::G0S;
738 }
739
740 if (group == Gicv3::G0S and int_group != Gicv3::G0S) {
741 return;
742 }
743
744 if (ns && distributor->DS == 0) {
745 int nsaccess = irqNsacr[int_id];
746
747 if ((int_group == Gicv3::G0S && nsaccess < 1) ||
748 (int_group == Gicv3::G1S && nsaccess < 2)) {
749 return;
750 }
751 }
752
753 irqPending[int_id] = true;
754 DPRINTF(GIC, "Gicv3ReDistributor::sendSGI(): "
755 "int_id %d (SGI) pending bit set\n", int_id);
756 updateAndInformCPUInterface();
757}
758
759Gicv3::IntStatus
760Gicv3Redistributor::intStatus(uint32_t int_id) const
761{
762 assert(int_id < Gicv3::SGI_MAX + Gicv3::PPI_MAX);
763
764 if (irqPending[int_id]) {
765 if (irqActive[int_id]) {
766 return Gicv3::INT_ACTIVE_PENDING;
767 }
768
769 return Gicv3::INT_PENDING;
770 } else if (irqActive[int_id]) {
771 return Gicv3::INT_ACTIVE;
772 } else {
773 return Gicv3::INT_INACTIVE;
774 }
775}
776
777/*
778 * Recalculate the highest priority pending interrupt after a
779 * change to redistributor state.
780 */
781void
782Gicv3Redistributor::update()
783{
784 bool new_hppi = false;
785
786 for (int int_id = 0; int_id < Gicv3::SGI_MAX + Gicv3::PPI_MAX; int_id++) {
787 Gicv3::GroupId int_group = getIntGroup(int_id);
788 bool group_enabled = distributor->groupEnabled(int_group);
789
790 if (irqPending[int_id] && irqEnabled[int_id] &&
791 !irqActive[int_id] && group_enabled) {
792 if ((irqPriority[int_id] < cpuInterface->hppi.prio) ||
793 /*
794 * Multiple pending ints with same priority.
795 * Implementation choice which one to signal.
796 * Our implementation selects the one with the lower id.
797 */
798 (irqPriority[int_id] == cpuInterface->hppi.prio &&
799 int_id < cpuInterface->hppi.intid)) {
800 cpuInterface->hppi.intid = int_id;
801 cpuInterface->hppi.prio = irqPriority[int_id];
802 cpuInterface->hppi.group = int_group;
803 new_hppi = true;
804 }
805 }
806 }
807
808 // Check LPIs
809 if (EnableLPIs) {
810
811 const uint32_t largest_lpi_id = 1 << (lpiIDBits + 1);
812 const uint32_t number_lpis = largest_lpi_id - SMALLEST_LPI_ID + 1;
813
814 uint8_t lpi_pending_table[largest_lpi_id / 8];
815 uint8_t lpi_config_table[number_lpis];
816
817 memProxy->readBlob(lpiPendingTablePtr,
818 (uint8_t *) lpi_pending_table,
819 sizeof(lpi_pending_table));
820
821 memProxy->readBlob(lpiConfigurationTablePtr,
822 (uint8_t*) lpi_config_table,
823 sizeof(lpi_config_table));
824
825 for (int lpi_id = SMALLEST_LPI_ID; lpi_id < largest_lpi_id;
826 lpi_id++) {
827 uint32_t lpi_pending_entry_byte = lpi_id / 8;
828 uint8_t lpi_pending_entry_bit_position = lpi_id % 8;
829 bool lpi_is_pending = lpi_pending_table[lpi_pending_entry_byte] &
830 1 << lpi_pending_entry_bit_position;
831 uint32_t lpi_configuration_entry_index = lpi_id - SMALLEST_LPI_ID;
832
833 LPIConfigurationTableEntry config_entry =
834 lpi_config_table[lpi_configuration_entry_index];
835
836 bool lpi_is_enable = config_entry.enable;
837
838 // LPIs are always Non-secure Group 1 interrupts,
839 // in a system where two Security states are enabled.
840 Gicv3::GroupId lpi_group = Gicv3::G1NS;
841 bool group_enabled = distributor->groupEnabled(lpi_group);
842
843 if (lpi_is_pending && lpi_is_enable && group_enabled) {
844 uint8_t lpi_priority = config_entry.priority << 2;
845
846 if ((lpi_priority < cpuInterface->hppi.prio) ||
847 (lpi_priority == cpuInterface->hppi.prio &&
848 lpi_id < cpuInterface->hppi.intid)) {
849 cpuInterface->hppi.intid = lpi_id;
850 cpuInterface->hppi.prio = lpi_priority;
851 cpuInterface->hppi.group = lpi_group;
852 new_hppi = true;
853 }
854 }
855 }
856 }
857
858 if (!new_hppi && cpuInterface->hppi.prio != 0xff &&
859 (cpuInterface->hppi.intid < Gicv3::SGI_MAX + Gicv3::PPI_MAX ||
860 cpuInterface->hppi.intid > SMALLEST_LPI_ID)) {
861 distributor->fullUpdate();
862 }
863}
864
865uint8_t
866Gicv3Redistributor::readEntryLPI(uint32_t lpi_id)
867{
868 Addr lpi_pending_entry_ptr = lpiPendingTablePtr + (lpi_id / 8);
869
870 uint8_t lpi_pending_entry;
871 memProxy->readBlob(lpi_pending_entry_ptr,
872 (uint8_t*) &lpi_pending_entry,
873 sizeof(lpi_pending_entry));
874
875 return lpi_pending_entry;
876}
877
878void
879Gicv3Redistributor::writeEntryLPI(uint32_t lpi_id, uint8_t lpi_pending_entry)
880{
881 Addr lpi_pending_entry_ptr = lpiPendingTablePtr + (lpi_id / 8);
882
883 memProxy->writeBlob(lpi_pending_entry_ptr,
884 (uint8_t*) &lpi_pending_entry,
885 sizeof(lpi_pending_entry));
886}
887
888bool
889Gicv3Redistributor::isPendingLPI(uint32_t lpi_id)
890{
891 // Fetch the LPI pending entry from memory
892 uint8_t lpi_pending_entry = readEntryLPI(lpi_id);
893
894 uint8_t lpi_pending_entry_bit_position = lpi_id % 8;
895 bool is_set = lpi_pending_entry & (1 << lpi_pending_entry_bit_position);
896
897 return is_set;
898}
899
900void
901Gicv3Redistributor::setClrLPI(uint64_t data, bool set)
902{
903 if (!EnableLPIs) {
904 // Writes to GICR_SETLPIR or GICR_CLRLPIR have not effect if
905 // GICR_CTLR.EnableLPIs == 0.
906 return;
907 }
908
909 uint32_t lpi_id = data & 0xffffffff;
910 uint32_t largest_lpi_id = 1 << (lpiIDBits + 1);
911
912 if (lpi_id > largest_lpi_id) {
913 // Writes to GICR_SETLPIR or GICR_CLRLPIR have not effect if
914 // pINTID value specifies an unimplemented LPI.
915 return;
916 }
917
918 // Fetch the LPI pending entry from memory
919 uint8_t lpi_pending_entry = readEntryLPI(lpi_id);
920
921 uint8_t lpi_pending_entry_bit_position = lpi_id % 8;
922 bool is_set = lpi_pending_entry & (1 << lpi_pending_entry_bit_position);
923
924 if (set) {
925 if (is_set) {
926 // Writes to GICR_SETLPIR have not effect if the pINTID field
927 // corresponds to an LPI that is already pending.
928 return;
929 }
930
931 lpi_pending_entry |= 1 << (lpi_pending_entry_bit_position);
932 } else {
933 if (!is_set) {
934 // Writes to GICR_SETLPIR have not effect if the pINTID field
935 // corresponds to an LPI that is not pending.
936 return;
937 }
938
939 lpi_pending_entry &= ~(1 << (lpi_pending_entry_bit_position));
940 }
941
942 writeEntryLPI(lpi_id, lpi_pending_entry);
943
944 updateAndInformCPUInterface();
945}
946
947void
948Gicv3Redistributor::updateAndInformCPUInterface()
949{
950 update();
951 cpuInterface->update();
952}
953
954Gicv3::GroupId
955Gicv3Redistributor::getIntGroup(int int_id) const
956{
957 assert(int_id < (Gicv3::SGI_MAX + Gicv3::PPI_MAX));
958
959 if (distributor->DS) {
960 if (irqGroup[int_id] == 0) {
961 return Gicv3::G0S;
962 } else {
963 return Gicv3::G1NS;
964 }
965 } else {
966 if (irqGrpmod[int_id] == 0 && irqGroup[int_id] == 0) {
967 return Gicv3::G0S;
968 } else if (irqGrpmod[int_id] == 0 && irqGroup[int_id] == 1) {
969 return Gicv3::G1NS;
970 } else if (irqGrpmod[int_id] == 1 && irqGroup[int_id] == 0) {
971 return Gicv3::G1S;
972 } else if (irqGrpmod[int_id] == 1 && irqGroup[int_id] == 1) {
973 return Gicv3::G1NS;
974 }
975 }
976
977 M5_UNREACHABLE;
978}
979
980void
981Gicv3Redistributor::activateIRQ(uint32_t int_id)
982{
983 irqPending[int_id] = false;
984 irqActive[int_id] = true;
985}
986
987void
988Gicv3Redistributor::deactivateIRQ(uint32_t int_id)
989{
990 irqActive[int_id] = false;
991}
992
993uint32_t
994Gicv3Redistributor::getAffinity() const
995{
996 ThreadContext * tc = gic->getSystem()->getThreadContext(cpuId);
997 uint64_t mpidr = getMPIDR(gic->getSystem(), tc);
998 /*
999 * Aff3 = MPIDR[39:32]
1000 * (Note getMPIDR() returns uint32_t so Aff3 is always 0...)
1001 * Aff2 = MPIDR[23:16]
1002 * Aff1 = MPIDR[15:8]
1003 * Aff0 = MPIDR[7:0]
1004 * affinity = Aff3.Aff2.Aff1.Aff0
1005 */
1006 uint64_t affinity = ((mpidr & 0xff00000000) >> 8) | (mpidr & (0xffffff));
1007 return affinity;
1008}
1009
1010bool
1011Gicv3Redistributor::canBeSelectedFor1toNInterrupt(Gicv3::GroupId group) const
1012{
1013 if (peInLowPowerState) {
1014 return false;
1015 }
1016
1017 if (!distributor->groupEnabled(group)) {
1018 return false;
1019 }
1020
1021 if ((group == Gicv3::G1S) && DPG1S) {
1022 return false;
1023 }
1024
1025 if ((group == Gicv3::G1NS) && DPG1NS) {
1026 return false;
1027 }
1028
1029 if ((group == Gicv3::G0S) && DPG0) {
1030 return false;
1031 }
1032
1033 return true;
1034}
1035
1036void
1037Gicv3Redistributor::serialize(CheckpointOut & cp) const
1038{
1039 SERIALIZE_SCALAR(peInLowPowerState);
1040 SERIALIZE_CONTAINER(irqGroup);
1041 SERIALIZE_CONTAINER(irqEnabled);
1042 SERIALIZE_CONTAINER(irqPending);
1043 SERIALIZE_CONTAINER(irqActive);
1044 SERIALIZE_CONTAINER(irqPriority);
1045 SERIALIZE_CONTAINER(irqConfig);
1046 SERIALIZE_CONTAINER(irqGrpmod);
1047 SERIALIZE_CONTAINER(irqNsacr);
1048 SERIALIZE_SCALAR(DPG1S);
1049 SERIALIZE_SCALAR(DPG1NS);
1050 SERIALIZE_SCALAR(DPG0);
1051 SERIALIZE_SCALAR(EnableLPIs);
1052 SERIALIZE_SCALAR(lpiConfigurationTablePtr);
1053 SERIALIZE_SCALAR(lpiIDBits);
1054 SERIALIZE_SCALAR(lpiPendingTablePtr);
1055}
1056
1057void
1058Gicv3Redistributor::unserialize(CheckpointIn & cp)
1059{
1060 UNSERIALIZE_SCALAR(peInLowPowerState);
1061 UNSERIALIZE_CONTAINER(irqGroup);
1062 UNSERIALIZE_CONTAINER(irqEnabled);
1063 UNSERIALIZE_CONTAINER(irqPending);
1064 UNSERIALIZE_CONTAINER(irqActive);
1065 UNSERIALIZE_CONTAINER(irqPriority);
1066 UNSERIALIZE_CONTAINER(irqConfig);
1067 UNSERIALIZE_CONTAINER(irqGrpmod);
1068 UNSERIALIZE_CONTAINER(irqNsacr);
1069 UNSERIALIZE_SCALAR(DPG1S);
1070 UNSERIALIZE_SCALAR(DPG1NS);
1071 UNSERIALIZE_SCALAR(DPG0);
1072 UNSERIALIZE_SCALAR(EnableLPIs);
1073 UNSERIALIZE_SCALAR(lpiConfigurationTablePtr);
1074 UNSERIALIZE_SCALAR(lpiIDBits);
1075 UNSERIALIZE_SCALAR(lpiPendingTablePtr);
1076}