Deleted Added
sdiff udiff text old ( 10847:1826ee736709 ) new ( 10905:a6ca6831e775 )
full compact
1/*
2 * Copyright (c) 2013, 2015 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Giacomo Gabrielli
38 * Andreas Sandberg
39 */
40
41#include "dev/arm/generic_timer.hh"
42
43#include "arch/arm/system.hh"
44#include "debug/Timer.hh"
45#include "dev/arm/base_gic.hh"
46#include "mem/packet_access.hh"
47#include "params/GenericTimer.hh"
48#include "params/GenericTimerMem.hh"
49
50SystemCounter::SystemCounter()
51 : _freq(0), _period(0), _resetTick(0), _regCntkctl(0)
52{
53 setFreq(0x01800000);
54}
55
56void
57SystemCounter::setFreq(uint32_t freq)
58{
59 if (_freq != 0) {
60 // Altering the frequency after boot shouldn't be done in practice.
61 warn_once("The frequency of the system counter has already been set");
62 }
63 _freq = freq;
64 _period = (1.0 / freq) * SimClock::Frequency;
65 _resetTick = curTick();
66}
67
68void
69SystemCounter::serialize(CheckpointOut &cp) const
70{
71 SERIALIZE_SCALAR(_regCntkctl);
72 SERIALIZE_SCALAR(_freq);
73 SERIALIZE_SCALAR(_period);
74 SERIALIZE_SCALAR(_resetTick);
75}
76
77void
78SystemCounter::unserialize(CheckpointIn &cp)
79{
80 // We didn't handle CNTKCTL in this class before, assume it's zero
81 // if it isn't present.
82 if (!UNSERIALIZE_OPT_SCALAR(_regCntkctl))
83 _regCntkctl = 0;
84 UNSERIALIZE_SCALAR(_freq);
85 UNSERIALIZE_SCALAR(_period);
86 UNSERIALIZE_SCALAR(_resetTick);
87}
88
89
90
91ArchTimer::ArchTimer(const std::string &name,
92 SimObject &parent,
93 SystemCounter &sysctr,
94 const Interrupt &interrupt)
95 : _name(name), _parent(parent), _systemCounter(sysctr),
96 _interrupt(interrupt),
97 _control(0), _counterLimit(0), _offset(0),
98 _counterLimitReachedEvent(this)
99{
100}
101
102void
103ArchTimer::counterLimitReached()
104{
105 _control.istatus = 1;
106
107 if (!_control.enable)
108 return;
109
110 DPRINTF(Timer, "Counter limit reached\n");
111 if (!_control.imask) {
112 DPRINTF(Timer, "Causing interrupt\n");
113 _interrupt.send();
114 }
115}
116
117void
118ArchTimer::updateCounter()
119{
120 if (_counterLimitReachedEvent.scheduled())
121 _parent.deschedule(_counterLimitReachedEvent);
122 if (value() >= _counterLimit) {
123 counterLimitReached();
124 } else {
125 const auto period(_systemCounter.period());
126 _control.istatus = 0;
127 _parent.schedule(_counterLimitReachedEvent,
128 curTick() + (_counterLimit - value()) * period);
129 }
130}
131
132void
133ArchTimer::setCompareValue(uint64_t val)
134{
135 _counterLimit = val;
136 updateCounter();
137}
138
139void
140ArchTimer::setTimerValue(uint32_t val)
141{
142 setCompareValue(value() + sext<32>(val));
143}
144
145void
146ArchTimer::setControl(uint32_t val)
147{
148 ArchTimerCtrl new_ctl = val;
149 if ((new_ctl.enable && !new_ctl.imask) &&
150 !(_control.enable && !_control.imask)) {
151 // Re-evalute the timer condition
152 if (_counterLimit >= value()) {
153 _control.istatus = 1;
154
155 DPRINTF(Timer, "Causing interrupt in control\n");
156 //_interrupt.send();
157 }
158 }
159 _control.enable = new_ctl.enable;
160 _control.imask = new_ctl.imask;
161}
162
163void
164ArchTimer::setOffset(uint64_t val)
165{
166 _offset = val;
167 updateCounter();
168}
169
170uint64_t
171ArchTimer::value() const
172{
173 return _systemCounter.value() - _offset;
174}
175
176void
177ArchTimer::serialize(CheckpointOut &cp) const
178{
179 paramOut(cp, "control_serial", _control);
180 SERIALIZE_SCALAR(_counterLimit);
181 SERIALIZE_SCALAR(_offset);
182
183 const bool event_scheduled(_counterLimitReachedEvent.scheduled());
184 SERIALIZE_SCALAR(event_scheduled);
185 if (event_scheduled) {
186 const Tick event_time(_counterLimitReachedEvent.when());
187 SERIALIZE_SCALAR(event_time);
188 }
189}
190
191void
192ArchTimer::unserialize(CheckpointIn &cp)
193{
194 paramIn(cp, "control_serial", _control);
195 // We didn't serialize an offset before we added support for the
196 // virtual timer. Consider it optional to maintain backwards
197 // compatibility.
198 if (!UNSERIALIZE_OPT_SCALAR(_offset))
199 _offset = 0;
200 bool event_scheduled;
201 UNSERIALIZE_SCALAR(event_scheduled);
202 if (event_scheduled) {
203 Tick event_time;
204 UNSERIALIZE_SCALAR(event_time);
205 _parent.schedule(_counterLimitReachedEvent, event_time);
206 }
207}
208
209void
210ArchTimer::Interrupt::send()
211{
212 if (_ppi) {
213 _gic.sendPPInt(_irq, _cpu);
214 } else {
215 _gic.sendInt(_irq);
216 }
217}
218
219
220void
221ArchTimer::Interrupt::clear()
222{
223 if (_ppi) {
224 _gic.clearPPInt(_irq, _cpu);
225 } else {
226 _gic.clearInt(_irq);
227 }
228}
229
230
231GenericTimer::GenericTimer(GenericTimerParams *p)
232 : SimObject(p),
233 gic(p->gic),
234 irqPhys(p->int_phys),
235 irqVirt(p->int_virt)
236{
237 dynamic_cast<ArmSystem &>(*p->system).setGenericTimer(this);
238}
239
240void
241GenericTimer::serialize(CheckpointOut &cp) const
242{
243 paramOut(cp, "cpu_count", timers.size());
244
245 systemCounter.serializeSection(cp, "sys_counter");
246
247 for (int i = 0; i < timers.size(); ++i) {
248 const CoreTimers &core(*timers[i]);
249
250 // This should really be phys_timerN, but we are stuck with
251 // arch_timer for backwards compatibility.
252 core.phys.serializeSection(cp, csprintf("arch_timer%d", i));
253 core.virt.serializeSection(cp, csprintf("virt_timer%d", i));
254 }
255}
256
257void
258GenericTimer::unserialize(CheckpointIn &cp)
259{
260 systemCounter.unserializeSection(cp, "sys_counter");
261
262 // Try to unserialize the CPU count. Old versions of the timer
263 // model assumed a 8 CPUs, so we fall back to that if the field
264 // isn't present.
265 static const unsigned OLD_CPU_MAX = 8;
266 unsigned cpu_count;
267 if (!UNSERIALIZE_OPT_SCALAR(cpu_count)) {
268 warn("Checkpoint does not contain CPU count, assuming %i CPUs\n",
269 OLD_CPU_MAX);
270 cpu_count = OLD_CPU_MAX;
271 }
272
273 for (int i = 0; i < cpu_count; ++i) {
274 CoreTimers &core(getTimers(i));
275 // This should really be phys_timerN, but we are stuck with
276 // arch_timer for backwards compatibility.
277 core.phys.unserializeSection(cp, csprintf("arch_timer%d", i));
278 core.virt.unserializeSection(cp, csprintf("virt_timer%d", i));
279 }
280}
281
282
283GenericTimer::CoreTimers &
284GenericTimer::getTimers(int cpu_id)
285{
286 if (cpu_id >= timers.size())
287 createTimers(cpu_id + 1);
288
289 return *timers[cpu_id];
290}
291
292void
293GenericTimer::createTimers(unsigned cpus)
294{
295 assert(timers.size() < cpus);
296
297 const unsigned old_cpu_count(timers.size());
298 timers.resize(cpus);
299 for (unsigned i = old_cpu_count; i < cpus; ++i) {
300 timers[i].reset(
301 new CoreTimers(*this, i, irqPhys, irqVirt));
302 }
303}
304
305
306void
307GenericTimer::setMiscReg(int reg, unsigned cpu, MiscReg val)
308{
309 CoreTimers &core(getTimers(cpu));
310
311 switch (reg) {
312 case MISCREG_CNTFRQ:
313 case MISCREG_CNTFRQ_EL0:
314 systemCounter.setFreq(val);
315 return;
316
317 case MISCREG_CNTKCTL:
318 case MISCREG_CNTKCTL_EL1:
319 systemCounter.setKernelControl(val);
320 return;
321
322 // Physical timer
323 case MISCREG_CNTP_CVAL:
324 case MISCREG_CNTP_CVAL_NS:
325 case MISCREG_CNTP_CVAL_EL0:
326 core.phys.setCompareValue(val);
327 return;
328
329 case MISCREG_CNTP_TVAL:
330 case MISCREG_CNTP_TVAL_NS:
331 case MISCREG_CNTP_TVAL_EL0:
332 core.phys.setTimerValue(val);
333 return;
334
335 case MISCREG_CNTP_CTL:
336 case MISCREG_CNTP_CTL_NS:
337 case MISCREG_CNTP_CTL_EL0:
338 core.phys.setControl(val);
339 return;
340
341 // Count registers
342 case MISCREG_CNTPCT:
343 case MISCREG_CNTPCT_EL0:
344 case MISCREG_CNTVCT:
345 case MISCREG_CNTVCT_EL0:
346 warn("Ignoring write to read only count register: %s\n",
347 miscRegName[reg]);
348 return;
349
350 // Virtual timer
351 case MISCREG_CNTVOFF:
352 case MISCREG_CNTVOFF_EL2:
353 core.virt.setOffset(val);
354 return;
355
356 case MISCREG_CNTV_CVAL:
357 case MISCREG_CNTV_CVAL_EL0:
358 core.virt.setCompareValue(val);
359 return;
360
361 case MISCREG_CNTV_TVAL:
362 case MISCREG_CNTV_TVAL_EL0:
363 core.virt.setTimerValue(val);
364 return;
365
366 case MISCREG_CNTV_CTL:
367 case MISCREG_CNTV_CTL_EL0:
368 core.virt.setControl(val);
369 return;
370
371 // PL1 phys. timer, secure
372 case MISCREG_CNTP_CTL_S:
373 case MISCREG_CNTPS_CVAL_EL1:
374 case MISCREG_CNTPS_TVAL_EL1:
375 case MISCREG_CNTPS_CTL_EL1:
376 /* FALLTHROUGH */
377
378 // PL2 phys. timer, non-secure
379 case MISCREG_CNTHCTL:
380 case MISCREG_CNTHCTL_EL2:
381 case MISCREG_CNTHP_CVAL:
382 case MISCREG_CNTHP_CVAL_EL2:
383 case MISCREG_CNTHP_TVAL:
384 case MISCREG_CNTHP_TVAL_EL2:
385 case MISCREG_CNTHP_CTL:
386 case MISCREG_CNTHP_CTL_EL2:
387 warn("Writing to unimplemented register: %s\n",
388 miscRegName[reg]);
389 return;
390
391 default:
392 warn("Writing to unknown register: %s\n", miscRegName[reg]);
393 return;
394 }
395}
396
397
398MiscReg
399GenericTimer::readMiscReg(int reg, unsigned cpu)
400{
401 CoreTimers &core(getTimers(cpu));
402
403 switch (reg) {
404 case MISCREG_CNTFRQ:
405 case MISCREG_CNTFRQ_EL0:
406 return systemCounter.freq();
407
408 case MISCREG_CNTKCTL:
409 case MISCREG_CNTKCTL_EL1:
410 return systemCounter.getKernelControl();
411
412 // Physical timer
413 case MISCREG_CNTP_CVAL:
414 case MISCREG_CNTP_CVAL_EL0:
415 return core.phys.compareValue();
416
417 case MISCREG_CNTP_TVAL:
418 case MISCREG_CNTP_TVAL_EL0:
419 return core.phys.timerValue();
420
421 case MISCREG_CNTP_CTL:
422 case MISCREG_CNTP_CTL_EL0:
423 case MISCREG_CNTP_CTL_NS:
424 return core.phys.control();
425
426 case MISCREG_CNTPCT:
427 case MISCREG_CNTPCT_EL0:
428 return core.phys.value();
429
430
431 // Virtual timer
432 case MISCREG_CNTVCT:
433 case MISCREG_CNTVCT_EL0:
434 return core.virt.value();
435
436 case MISCREG_CNTVOFF:
437 case MISCREG_CNTVOFF_EL2:
438 return core.virt.offset();
439
440 case MISCREG_CNTV_CVAL:
441 case MISCREG_CNTV_CVAL_EL0:
442 return core.virt.compareValue();
443
444 case MISCREG_CNTV_TVAL:
445 case MISCREG_CNTV_TVAL_EL0:
446 return core.virt.timerValue();
447
448 case MISCREG_CNTV_CTL:
449 case MISCREG_CNTV_CTL_EL0:
450 return core.virt.control();
451
452 // PL1 phys. timer, secure
453 case MISCREG_CNTP_CTL_S:
454 case MISCREG_CNTPS_CVAL_EL1:
455 case MISCREG_CNTPS_TVAL_EL1:
456 case MISCREG_CNTPS_CTL_EL1:
457 /* FALLTHROUGH */
458
459 // PL2 phys. timer, non-secure
460 case MISCREG_CNTHCTL:
461 case MISCREG_CNTHCTL_EL2:
462 case MISCREG_CNTHP_CVAL:
463 case MISCREG_CNTHP_CVAL_EL2:
464 case MISCREG_CNTHP_TVAL:
465 case MISCREG_CNTHP_TVAL_EL2:
466 case MISCREG_CNTHP_CTL:
467 case MISCREG_CNTHP_CTL_EL2:
468 warn("Reading from unimplemented register: %s\n",
469 miscRegName[reg]);
470 return 0;
471
472
473 default:
474 warn("Reading from unknown register: %s\n", miscRegName[reg]);
475 return 0;
476 }
477}
478
479
480
481GenericTimerMem::GenericTimerMem(GenericTimerMemParams *p)
482 : PioDevice(p),
483 ctrlRange(RangeSize(p->base, TheISA::PageBytes)),
484 timerRange(RangeSize(p->base + TheISA::PageBytes, TheISA::PageBytes)),
485 addrRanges{ctrlRange, timerRange},
486 systemCounter(),
487 physTimer(csprintf("%s.phys_timer0", name()),
488 *this, systemCounter,
489 ArchTimer::Interrupt(*p->gic, p->int_phys)),
490 virtTimer(csprintf("%s.virt_timer0", name()),
491 *this, systemCounter,
492 ArchTimer::Interrupt(*p->gic, p->int_virt))
493{
494}
495
496void
497GenericTimerMem::serialize(CheckpointOut &cp) const
498{
499 paramOut(cp, "timer_count", 1);
500
501 systemCounter.serializeSection(cp, "sys_counter");
502
503 physTimer.serializeSection(cp, "phys_timer0");
504 virtTimer.serializeSection(cp, "virt_timer0");
505}
506
507void
508GenericTimerMem::unserialize(CheckpointIn &cp)
509{
510 systemCounter.unserializeSection(cp, "sys_counter");
511
512 unsigned timer_count;
513 UNSERIALIZE_SCALAR(timer_count);
514 // The timer count variable is just here for future versions where
515 // we support more than one set of timers.
516 if (timer_count != 1)
517 panic("Incompatible checkpoint: Only one set of timers supported");
518
519 physTimer.unserializeSection(cp, "phys_timer0");
520 virtTimer.unserializeSection(cp, "virt_timer0");
521}
522
523Tick
524GenericTimerMem::read(PacketPtr pkt)
525{
526 const unsigned size(pkt->getSize());
527 const Addr addr(pkt->getAddr());
528 uint64_t value;
529
530 pkt->makeResponse();
531 if (ctrlRange.contains(addr)) {
532 value = ctrlRead(addr - ctrlRange.start(), size);
533 } else if (timerRange.contains(addr)) {
534 value = timerRead(addr - timerRange.start(), size);
535 } else {
536 panic("Invalid address: 0x%x\n", addr);
537 }
538
539 DPRINTF(Timer, "Read 0x%x <- 0x%x(%i)\n", value, addr, size);
540
541 if (size == 8) {
542 pkt->set<uint64_t>(value);
543 } else if (size == 4) {
544 pkt->set<uint32_t>(value);
545 } else {
546 panic("Unexpected access size: %i\n", size);
547 }
548
549 return 0;
550}
551
552Tick
553GenericTimerMem::write(PacketPtr pkt)
554{
555 const unsigned size(pkt->getSize());
556 if (size != 8 && size != 4)
557 panic("Unexpected access size\n");
558
559 const Addr addr(pkt->getAddr());
560 const uint64_t value(size == 8 ?
561 pkt->get<uint64_t>() : pkt->get<uint32_t>());
562
563 DPRINTF(Timer, "Write 0x%x -> 0x%x(%i)\n", value, addr, size);
564 if (ctrlRange.contains(addr)) {
565 ctrlWrite(addr - ctrlRange.start(), size, value);
566 } else if (timerRange.contains(addr)) {
567 timerWrite(addr - timerRange.start(), size, value);
568 } else {
569 panic("Invalid address: 0x%x\n", addr);
570 }
571
572 pkt->makeResponse();
573 return 0;
574}
575
576uint64_t
577GenericTimerMem::ctrlRead(Addr addr, size_t size) const
578{
579 if (size == 4) {
580 switch (addr) {
581 case CTRL_CNTFRQ:
582 return systemCounter.freq();
583
584 case CTRL_CNTTIDR:
585 return 0x3; // Frame 0 implemented with virtual timers
586
587 case CTRL_CNTNSAR:
588 case CTRL_CNTACR_BASE:
589 warn("Reading from unimplemented control register (0x%x)\n", addr);
590 return 0;
591
592 case CTRL_CNTVOFF_LO_BASE:
593 return virtTimer.offset();
594
595 case CTRL_CNTVOFF_HI_BASE:
596 return virtTimer.offset() >> 32;
597
598 default:
599 warn("Unexpected address (0x%x:%i), assuming RAZ\n", addr, size);
600 return 0;
601 }
602 } else if (size == 8) {
603 switch (addr) {
604 case CTRL_CNTVOFF_LO_BASE:
605 return virtTimer.offset();
606
607 default:
608 warn("Unexpected address (0x%x:%i), assuming RAZ\n", addr, size);
609 return 0;
610 }
611 } else {
612 panic("Invalid access size: %i\n", size);
613 }
614}
615
616void
617GenericTimerMem::ctrlWrite(Addr addr, size_t size, uint64_t value)
618{
619 if (size == 4) {
620 switch (addr) {
621 case CTRL_CNTFRQ:
622 case CTRL_CNTNSAR:
623 case CTRL_CNTTIDR:
624 case CTRL_CNTACR_BASE:
625 warn("Write to unimplemented control register (0x%x)\n", addr);
626 return;
627
628 case CTRL_CNTVOFF_LO_BASE:
629 virtTimer.setOffset(
630 insertBits(virtTimer.offset(), 31, 0, value));
631 return;
632
633 case CTRL_CNTVOFF_HI_BASE:
634 virtTimer.setOffset(
635 insertBits(virtTimer.offset(), 63, 32, value));
636 return;
637
638 default:
639 warn("Ignoring write to unexpected address (0x%x:%i)\n",
640 addr, size);
641 return;
642 }
643 } else if (size == 8) {
644 switch (addr) {
645 case CTRL_CNTVOFF_LO_BASE:
646 virtTimer.setOffset(value);
647 return;
648
649 default:
650 warn("Ignoring write to unexpected address (0x%x:%i)\n",
651 addr, size);
652 return;
653 }
654 } else {
655 panic("Invalid access size: %i\n", size);
656 }
657}
658
659uint64_t
660GenericTimerMem::timerRead(Addr addr, size_t size) const
661{
662 if (size == 4) {
663 switch (addr) {
664 case TIMER_CNTPCT_LO:
665 return physTimer.value();
666
667 case TIMER_CNTPCT_HI:
668 return physTimer.value() >> 32;
669
670 case TIMER_CNTVCT_LO:
671 return virtTimer.value();
672
673 case TIMER_CNTVCT_HI:
674 return virtTimer.value() >> 32;
675
676 case TIMER_CNTFRQ:
677 return systemCounter.freq();
678
679 case TIMER_CNTEL0ACR:
680 warn("Read from unimplemented timer register (0x%x)\n", addr);
681 return 0;
682
683 case CTRL_CNTVOFF_LO_BASE:
684 return virtTimer.offset();
685
686 case CTRL_CNTVOFF_HI_BASE:
687 return virtTimer.offset() >> 32;
688
689 case TIMER_CNTP_CVAL_LO:
690 return physTimer.compareValue();
691
692 case TIMER_CNTP_CVAL_HI:
693 return physTimer.compareValue() >> 32;
694
695 case TIMER_CNTP_TVAL:
696 return physTimer.timerValue();
697
698 case TIMER_CNTP_CTL:
699 return physTimer.control();
700
701 case TIMER_CNTV_CVAL_LO:
702 return virtTimer.compareValue();
703
704 case TIMER_CNTV_CVAL_HI:
705 return virtTimer.compareValue() >> 32;
706
707 case TIMER_CNTV_TVAL:
708 return virtTimer.timerValue();
709
710 case TIMER_CNTV_CTL:
711 return virtTimer.control();
712
713 default:
714 warn("Unexpected address (0x%x:%i), assuming RAZ\n", addr, size);
715 return 0;
716 }
717 } else if (size == 8) {
718 switch (addr) {
719 case TIMER_CNTPCT_LO:
720 return physTimer.value();
721
722 case TIMER_CNTVCT_LO:
723 return virtTimer.value();
724
725 case CTRL_CNTVOFF_LO_BASE:
726 return virtTimer.offset();
727
728 case TIMER_CNTP_CVAL_LO:
729 return physTimer.compareValue();
730
731 case TIMER_CNTV_CVAL_LO:
732 return virtTimer.compareValue();
733
734 default:
735 warn("Unexpected address (0x%x:%i), assuming RAZ\n", addr, size);
736 return 0;
737 }
738 } else {
739 panic("Invalid access size: %i\n", size);
740 }
741}
742
743void
744GenericTimerMem::timerWrite(Addr addr, size_t size, uint64_t value)
745{
746 if (size == 4) {
747 switch (addr) {
748 case TIMER_CNTEL0ACR:
749 warn("Unimplemented timer register (0x%x)\n", addr);
750 return;
751
752 case TIMER_CNTP_CVAL_LO:
753 physTimer.setCompareValue(
754 insertBits(physTimer.compareValue(), 31, 0, value));
755 return;
756
757 case TIMER_CNTP_CVAL_HI:
758 physTimer.setCompareValue(
759 insertBits(physTimer.compareValue(), 63, 32, value));
760 return;
761
762 case TIMER_CNTP_TVAL:
763 physTimer.setTimerValue(value);
764 return;
765
766 case TIMER_CNTP_CTL:
767 physTimer.setControl(value);
768 return;
769
770 case TIMER_CNTV_CVAL_LO:
771 virtTimer.setCompareValue(
772 insertBits(virtTimer.compareValue(), 31, 0, value));
773 return;
774
775 case TIMER_CNTV_CVAL_HI:
776 virtTimer.setCompareValue(
777 insertBits(virtTimer.compareValue(), 63, 32, value));
778 return;
779
780 case TIMER_CNTV_TVAL:
781 virtTimer.setTimerValue(value);
782 return;
783
784 case TIMER_CNTV_CTL:
785 virtTimer.setControl(value);
786 return;
787
788 default:
789 warn("Unexpected address (0x%x:%i), ignoring write\n", addr, size);
790 return;
791 }
792 } else if (size == 8) {
793 switch (addr) {
794 case TIMER_CNTP_CVAL_LO:
795 return physTimer.setCompareValue(value);
796
797 case TIMER_CNTV_CVAL_LO:
798 return virtTimer.setCompareValue(value);
799
800 default:
801 warn("Unexpected address (0x%x:%i), ignoring write\n", addr, size);
802 return;
803 }
804 } else {
805 panic("Invalid access size: %i\n", size);
806 }
807}
808
809GenericTimer *
810GenericTimerParams::create()
811{
812 return new GenericTimer(this);
813}
814
815GenericTimerMem *
816GenericTimerMemParams::create()
817{
818 return new GenericTimerMem(this);
819}