Deleted Added
sdiff udiff text old ( 10110:580b47334a97 ) new ( 10190:fb83d025d1c3 )
full compact
1/*
2 * Copyright (c) 2011-2012 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 */
43
44#ifndef __CPU_THREAD_CONTEXT_HH__
45#define __CPU_THREAD_CONTEXT_HH__
46
47#include <iostream>
48#include <string>
49
50#include "arch/registers.hh"
51#include "arch/types.hh"
52#include "base/types.hh"
53#include "config/the_isa.hh"
54
55// @todo: Figure out a more architecture independent way to obtain the ITB and
56// DTB pointers.
57namespace TheISA
58{
59 class Decoder;
60 class TLB;
61}
62class BaseCPU;
63class CheckerCPU;
64class Checkpoint;
65class EndQuiesceEvent;
66class SETranslatingPortProxy;
67class FSTranslatingPortProxy;
68class PortProxy;
69class Process;
70class System;
71namespace TheISA {
72 namespace Kernel {
73 class Statistics;
74 }
75}
76
77/**
78 * ThreadContext is the external interface to all thread state for
79 * anything outside of the CPU. It provides all accessor methods to
80 * state that might be needed by external objects, ranging from
81 * register values to things such as kernel stats. It is an abstract
82 * base class; the CPU can create its own ThreadContext by either
83 * deriving from it, or using the templated ProxyThreadContext.
84 *
85 * The ThreadContext is slightly different than the ExecContext. The
86 * ThreadContext provides access to an individual thread's state; an
87 * ExecContext provides ISA access to the CPU (meaning it is
88 * implicitly multithreaded on SMT systems). Additionally the
89 * ThreadState is an abstract class that exactly defines the
90 * interface; the ExecContext is a more implicit interface that must
91 * be implemented so that the ISA can access whatever state it needs.
92 */
93class ThreadContext
94{
95 protected:
96 typedef TheISA::MachInst MachInst;
97 typedef TheISA::IntReg IntReg;
98 typedef TheISA::FloatReg FloatReg;
99 typedef TheISA::FloatRegBits FloatRegBits;
100 typedef TheISA::CCReg CCReg;
101 typedef TheISA::MiscReg MiscReg;
102 public:
103
104 enum Status
105 {
106 /// Running. Instructions should be executed only when
107 /// the context is in this state.
108 Active,
109
110 /// Temporarily inactive. Entered while waiting for
111 /// synchronization, etc.
112 Suspended,
113
114 /// Permanently shut down. Entered when target executes
115 /// m5exit pseudo-instruction. When all contexts enter
116 /// this state, the simulation will terminate.
117 Halted
118 };
119
120 virtual ~ThreadContext() { };
121
122 virtual BaseCPU *getCpuPtr() = 0;
123
124 virtual int cpuId() const = 0;
125
126 virtual uint32_t socketId() const = 0;
127
128 virtual int threadId() const = 0;
129
130 virtual void setThreadId(int id) = 0;
131
132 virtual int contextId() const = 0;
133
134 virtual void setContextId(int id) = 0;
135
136 virtual TheISA::TLB *getITBPtr() = 0;
137
138 virtual TheISA::TLB *getDTBPtr() = 0;
139
140 virtual CheckerCPU *getCheckerCpuPtr() = 0;
141
142 virtual TheISA::Decoder *getDecoderPtr() = 0;
143
144 virtual System *getSystemPtr() = 0;
145
146 virtual TheISA::Kernel::Statistics *getKernelStats() = 0;
147
148 virtual PortProxy &getPhysProxy() = 0;
149
150 virtual FSTranslatingPortProxy &getVirtProxy() = 0;
151
152 /**
153 * Initialise the physical and virtual port proxies and tie them to
154 * the data port of the CPU.
155 *
156 * tc ThreadContext for the virtual-to-physical translation
157 */
158 virtual void initMemProxies(ThreadContext *tc) = 0;
159
160 virtual SETranslatingPortProxy &getMemProxy() = 0;
161
162 virtual Process *getProcessPtr() = 0;
163
164 virtual Status status() const = 0;
165
166 virtual void setStatus(Status new_status) = 0;
167
168 /// Set the status to Active. Optional delay indicates number of
169 /// cycles to wait before beginning execution.
170 virtual void activate(Cycles delay = Cycles(1)) = 0;
171
172 /// Set the status to Suspended.
173 virtual void suspend(Cycles delay = Cycles(0)) = 0;
174
175 /// Set the status to Halted.
176 virtual void halt(Cycles delay = Cycles(0)) = 0;
177
178 virtual void dumpFuncProfile() = 0;
179
180 virtual void takeOverFrom(ThreadContext *old_context) = 0;
181
182 virtual void regStats(const std::string &name) = 0;
183
184 virtual EndQuiesceEvent *getQuiesceEvent() = 0;
185
186 // Not necessarily the best location for these...
187 // Having an extra function just to read these is obnoxious
188 virtual Tick readLastActivate() = 0;
189 virtual Tick readLastSuspend() = 0;
190
191 virtual void profileClear() = 0;
192 virtual void profileSample() = 0;
193
194 virtual void copyArchRegs(ThreadContext *tc) = 0;
195
196 virtual void clearArchRegs() = 0;
197
198 //
199 // New accessors for new decoder.
200 //
201 virtual uint64_t readIntReg(int reg_idx) = 0;
202
203 virtual FloatReg readFloatReg(int reg_idx) = 0;
204
205 virtual FloatRegBits readFloatRegBits(int reg_idx) = 0;
206
207 virtual CCReg readCCReg(int reg_idx) = 0;
208
209 virtual void setIntReg(int reg_idx, uint64_t val) = 0;
210
211 virtual void setFloatReg(int reg_idx, FloatReg val) = 0;
212
213 virtual void setFloatRegBits(int reg_idx, FloatRegBits val) = 0;
214
215 virtual void setCCReg(int reg_idx, CCReg val) = 0;
216
217 virtual TheISA::PCState pcState() = 0;
218
219 virtual void pcState(const TheISA::PCState &val) = 0;
220
221 virtual void pcStateNoRecord(const TheISA::PCState &val) = 0;
222
223 virtual Addr instAddr() = 0;
224
225 virtual Addr nextInstAddr() = 0;
226
227 virtual MicroPC microPC() = 0;
228
229 virtual MiscReg readMiscRegNoEffect(int misc_reg) = 0;
230
231 virtual MiscReg readMiscReg(int misc_reg) = 0;
232
233 virtual void setMiscRegNoEffect(int misc_reg, const MiscReg &val) = 0;
234
235 virtual void setMiscReg(int misc_reg, const MiscReg &val) = 0;
236
237 virtual int flattenIntIndex(int reg) = 0;
238 virtual int flattenFloatIndex(int reg) = 0;
239 virtual int flattenCCIndex(int reg) = 0;
240 virtual int flattenMiscIndex(int reg) = 0;
241
242 virtual uint64_t
243 readRegOtherThread(int misc_reg, ThreadID tid)
244 {
245 return 0;
246 }
247
248 virtual void
249 setRegOtherThread(int misc_reg, const MiscReg &val, ThreadID tid)
250 {
251 }
252
253 // Also not necessarily the best location for these two. Hopefully will go
254 // away once we decide upon where st cond failures goes.
255 virtual unsigned readStCondFailures() = 0;
256
257 virtual void setStCondFailures(unsigned sc_failures) = 0;
258
259 // Only really makes sense for old CPU model. Still could be useful though.
260 virtual bool misspeculating() = 0;
261
262 // Same with st cond failures.
263 virtual Counter readFuncExeInst() = 0;
264
265 virtual void syscall(int64_t callnum) = 0;
266
267 // This function exits the thread context in the CPU and returns
268 // 1 if the CPU has no more active threads (meaning it's OK to exit);
269 // Used in syscall-emulation mode when a thread calls the exit syscall.
270 virtual int exit() { return 1; };
271
272 /** function to compare two thread contexts (for debugging) */
273 static void compare(ThreadContext *one, ThreadContext *two);
274
275 /** @{ */
276 /**
277 * Flat register interfaces
278 *
279 * Some architectures have different registers visible in
280 * different modes. Such architectures "flatten" a register (see
281 * flattenIntIndex() and flattenFloatIndex()) to map it into the
282 * gem5 register file. This interface provides a flat interface to
283 * the underlying register file, which allows for example
284 * serialization code to access all registers.
285 */
286
287 virtual uint64_t readIntRegFlat(int idx) = 0;
288 virtual void setIntRegFlat(int idx, uint64_t val) = 0;
289
290 virtual FloatReg readFloatRegFlat(int idx) = 0;
291 virtual void setFloatRegFlat(int idx, FloatReg val) = 0;
292
293 virtual FloatRegBits readFloatRegBitsFlat(int idx) = 0;
294 virtual void setFloatRegBitsFlat(int idx, FloatRegBits val) = 0;
295
296 virtual CCReg readCCRegFlat(int idx) = 0;
297 virtual void setCCRegFlat(int idx, CCReg val) = 0;
298 /** @} */
299
300};
301
302/**
303 * ProxyThreadContext class that provides a way to implement a
304 * ThreadContext without having to derive from it. ThreadContext is an
305 * abstract class, so anything that derives from it and uses its
306 * interface will pay the overhead of virtual function calls. This
307 * class is created to enable a user-defined Thread object to be used
308 * wherever ThreadContexts are used, without paying the overhead of
309 * virtual function calls when it is used by itself. See
310 * simple_thread.hh for an example of this.
311 */
312template <class TC>
313class ProxyThreadContext : public ThreadContext
314{
315 public:
316 ProxyThreadContext(TC *actual_tc)
317 { actualTC = actual_tc; }
318
319 private:
320 TC *actualTC;
321
322 public:
323
324 BaseCPU *getCpuPtr() { return actualTC->getCpuPtr(); }
325
326 int cpuId() const { return actualTC->cpuId(); }
327
328 uint32_t socketId() const { return actualTC->socketId(); }
329
330 int threadId() const { return actualTC->threadId(); }
331
332 void setThreadId(int id) { actualTC->setThreadId(id); }
333
334 int contextId() const { return actualTC->contextId(); }
335
336 void setContextId(int id) { actualTC->setContextId(id); }
337
338 TheISA::TLB *getITBPtr() { return actualTC->getITBPtr(); }
339
340 TheISA::TLB *getDTBPtr() { return actualTC->getDTBPtr(); }
341
342 CheckerCPU *getCheckerCpuPtr() { return actualTC->getCheckerCpuPtr(); }
343
344 TheISA::Decoder *getDecoderPtr() { return actualTC->getDecoderPtr(); }
345
346 System *getSystemPtr() { return actualTC->getSystemPtr(); }
347
348 TheISA::Kernel::Statistics *getKernelStats()
349 { return actualTC->getKernelStats(); }
350
351 PortProxy &getPhysProxy() { return actualTC->getPhysProxy(); }
352
353 FSTranslatingPortProxy &getVirtProxy() { return actualTC->getVirtProxy(); }
354
355 void initMemProxies(ThreadContext *tc) { actualTC->initMemProxies(tc); }
356
357 SETranslatingPortProxy &getMemProxy() { return actualTC->getMemProxy(); }
358
359 Process *getProcessPtr() { return actualTC->getProcessPtr(); }
360
361 Status status() const { return actualTC->status(); }
362
363 void setStatus(Status new_status) { actualTC->setStatus(new_status); }
364
365 /// Set the status to Active. Optional delay indicates number of
366 /// cycles to wait before beginning execution.
367 void activate(Cycles delay = Cycles(1))
368 { actualTC->activate(delay); }
369
370 /// Set the status to Suspended.
371 void suspend(Cycles delay = Cycles(0)) { actualTC->suspend(); }
372
373 /// Set the status to Halted.
374 void halt(Cycles delay = Cycles(0)) { actualTC->halt(); }
375
376 void dumpFuncProfile() { actualTC->dumpFuncProfile(); }
377
378 void takeOverFrom(ThreadContext *oldContext)
379 { actualTC->takeOverFrom(oldContext); }
380
381 void regStats(const std::string &name) { actualTC->regStats(name); }
382
383 EndQuiesceEvent *getQuiesceEvent() { return actualTC->getQuiesceEvent(); }
384
385 Tick readLastActivate() { return actualTC->readLastActivate(); }
386 Tick readLastSuspend() { return actualTC->readLastSuspend(); }
387
388 void profileClear() { return actualTC->profileClear(); }
389 void profileSample() { return actualTC->profileSample(); }
390
391 // @todo: Do I need this?
392 void copyArchRegs(ThreadContext *tc) { actualTC->copyArchRegs(tc); }
393
394 void clearArchRegs() { actualTC->clearArchRegs(); }
395
396 //
397 // New accessors for new decoder.
398 //
399 uint64_t readIntReg(int reg_idx)
400 { return actualTC->readIntReg(reg_idx); }
401
402 FloatReg readFloatReg(int reg_idx)
403 { return actualTC->readFloatReg(reg_idx); }
404
405 FloatRegBits readFloatRegBits(int reg_idx)
406 { return actualTC->readFloatRegBits(reg_idx); }
407
408 CCReg readCCReg(int reg_idx)
409 { return actualTC->readCCReg(reg_idx); }
410
411 void setIntReg(int reg_idx, uint64_t val)
412 { actualTC->setIntReg(reg_idx, val); }
413
414 void setFloatReg(int reg_idx, FloatReg val)
415 { actualTC->setFloatReg(reg_idx, val); }
416
417 void setFloatRegBits(int reg_idx, FloatRegBits val)
418 { actualTC->setFloatRegBits(reg_idx, val); }
419
420 void setCCReg(int reg_idx, CCReg val)
421 { actualTC->setCCReg(reg_idx, val); }
422
423 TheISA::PCState pcState() { return actualTC->pcState(); }
424
425 void pcState(const TheISA::PCState &val) { actualTC->pcState(val); }
426
427 void pcStateNoRecord(const TheISA::PCState &val) { actualTC->pcState(val); }
428
429 Addr instAddr() { return actualTC->instAddr(); }
430 Addr nextInstAddr() { return actualTC->nextInstAddr(); }
431 MicroPC microPC() { return actualTC->microPC(); }
432
433 bool readPredicate() { return actualTC->readPredicate(); }
434
435 void setPredicate(bool val)
436 { actualTC->setPredicate(val); }
437
438 MiscReg readMiscRegNoEffect(int misc_reg)
439 { return actualTC->readMiscRegNoEffect(misc_reg); }
440
441 MiscReg readMiscReg(int misc_reg)
442 { return actualTC->readMiscReg(misc_reg); }
443
444 void setMiscRegNoEffect(int misc_reg, const MiscReg &val)
445 { return actualTC->setMiscRegNoEffect(misc_reg, val); }
446
447 void setMiscReg(int misc_reg, const MiscReg &val)
448 { return actualTC->setMiscReg(misc_reg, val); }
449
450 int flattenIntIndex(int reg)
451 { return actualTC->flattenIntIndex(reg); }
452
453 int flattenFloatIndex(int reg)
454 { return actualTC->flattenFloatIndex(reg); }
455
456 int flattenCCIndex(int reg)
457 { return actualTC->flattenCCIndex(reg); }
458
459 int flattenMiscIndex(int reg)
460 { return actualTC->flattenMiscIndex(reg); }
461
462 unsigned readStCondFailures()
463 { return actualTC->readStCondFailures(); }
464
465 void setStCondFailures(unsigned sc_failures)
466 { actualTC->setStCondFailures(sc_failures); }
467
468 // @todo: Fix this!
469 bool misspeculating() { return actualTC->misspeculating(); }
470
471 void syscall(int64_t callnum)
472 { actualTC->syscall(callnum); }
473
474 Counter readFuncExeInst() { return actualTC->readFuncExeInst(); }
475
476 uint64_t readIntRegFlat(int idx)
477 { return actualTC->readIntRegFlat(idx); }
478
479 void setIntRegFlat(int idx, uint64_t val)
480 { actualTC->setIntRegFlat(idx, val); }
481
482 FloatReg readFloatRegFlat(int idx)
483 { return actualTC->readFloatRegFlat(idx); }
484
485 void setFloatRegFlat(int idx, FloatReg val)
486 { actualTC->setFloatRegFlat(idx, val); }
487
488 FloatRegBits readFloatRegBitsFlat(int idx)
489 { return actualTC->readFloatRegBitsFlat(idx); }
490
491 void setFloatRegBitsFlat(int idx, FloatRegBits val)
492 { actualTC->setFloatRegBitsFlat(idx, val); }
493
494 CCReg readCCRegFlat(int idx)
495 { return actualTC->readCCRegFlat(idx); }
496
497 void setCCRegFlat(int idx, CCReg val)
498 { actualTC->setCCRegFlat(idx, val); }
499};
500
501/** @{ */
502/**
503 * Thread context serialization helpers
504 *
505 * These helper functions provide a way to the data in a
506 * ThreadContext. They are provided as separate helper function since
507 * implementing them as members of the ThreadContext interface would
508 * be confusing when the ThreadContext is exported via a proxy.
509 */
510
511void serialize(ThreadContext &tc, std::ostream &os);
512void unserialize(ThreadContext &tc, Checkpoint *cp, const std::string &section);
513
514/** @} */
515
516
517/**
518 * Copy state between thread contexts in preparation for CPU handover.
519 *
520 * @note This method modifies the old thread contexts as well as the
521 * new thread context. The old thread context will have its quiesce
522 * event descheduled if it is scheduled and its status set to halted.
523 *
524 * @param new_tc Destination ThreadContext.
525 * @param old_tc Source ThreadContext.
526 */
527void takeOverFrom(ThreadContext &new_tc, ThreadContext &old_tc);
528
529#endif