static_inst.hh (5665:433182bf55c1) static_inst.hh (5677:c8479d55206c)
1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#ifndef __CPU_STATIC_INST_HH__
32#define __CPU_STATIC_INST_HH__
33
34#include <bitset>
35#include <string>
36
37#include "arch/isa_traits.hh"
38#include "arch/utility.hh"
39#include "sim/faults.hh"
40#include "base/bitfield.hh"
41#include "base/hashmap.hh"
42#include "base/misc.hh"
43#include "base/refcnt.hh"
44#include "cpu/op_class.hh"
45#include "sim/faults.hh"
46#include "sim/host.hh"
47
48// forward declarations
49struct AlphaSimpleImpl;
50struct OzoneImpl;
51struct SimpleImpl;
52class ThreadContext;
53class DynInst;
54class Packet;
55
56class O3CPUImpl;
57template <class Impl> class BaseO3DynInst;
58typedef BaseO3DynInst<O3CPUImpl> O3DynInst;
59
60template <class Impl>
61class OzoneDynInst;
62
63class CheckerCPU;
64class FastCPU;
65class AtomicSimpleCPU;
66class TimingSimpleCPU;
67class InorderCPU;
68class SymbolTable;
69class AddrDecodePage;
70
71namespace Trace {
72 class InstRecord;
73}
74
1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#ifndef __CPU_STATIC_INST_HH__
32#define __CPU_STATIC_INST_HH__
33
34#include <bitset>
35#include <string>
36
37#include "arch/isa_traits.hh"
38#include "arch/utility.hh"
39#include "sim/faults.hh"
40#include "base/bitfield.hh"
41#include "base/hashmap.hh"
42#include "base/misc.hh"
43#include "base/refcnt.hh"
44#include "cpu/op_class.hh"
45#include "sim/faults.hh"
46#include "sim/host.hh"
47
48// forward declarations
49struct AlphaSimpleImpl;
50struct OzoneImpl;
51struct SimpleImpl;
52class ThreadContext;
53class DynInst;
54class Packet;
55
56class O3CPUImpl;
57template <class Impl> class BaseO3DynInst;
58typedef BaseO3DynInst<O3CPUImpl> O3DynInst;
59
60template <class Impl>
61class OzoneDynInst;
62
63class CheckerCPU;
64class FastCPU;
65class AtomicSimpleCPU;
66class TimingSimpleCPU;
67class InorderCPU;
68class SymbolTable;
69class AddrDecodePage;
70
71namespace Trace {
72 class InstRecord;
73}
74
75typedef uint32_t MicroPC;
75typedef uint16_t MicroPC;
76
77static const MicroPC MicroPCRomBit = 1 << (sizeof(MicroPC) * 8 - 1);
78
79static inline MicroPC
80romMicroPC(MicroPC upc)
81{
82 return upc | MicroPCRomBit;
83}
84
85static inline MicroPC
86normalMicroPC(MicroPC upc)
87{
88 return upc & ~MicroPCRomBit;
89}
90
91static inline bool
92isRomMicroPC(MicroPC upc)
93{
94 return MicroPCRomBit & upc;
95}
96
97/**
98 * Base, ISA-independent static instruction class.
99 *
100 * The main component of this class is the vector of flags and the
101 * associated methods for reading them. Any object that can rely
102 * solely on these flags can process instructions without being
103 * recompiled for multiple ISAs.
104 */
105class StaticInstBase : public RefCounted
106{
107 protected:
108
109 /// Set of boolean static instruction properties.
110 ///
111 /// Notes:
112 /// - The IsInteger and IsFloating flags are based on the class of
113 /// registers accessed by the instruction. Although most
114 /// instructions will have exactly one of these two flags set, it
115 /// is possible for an instruction to have neither (e.g., direct
116 /// unconditional branches, memory barriers) or both (e.g., an
117 /// FP/int conversion).
118 /// - If IsMemRef is set, then exactly one of IsLoad or IsStore
119 /// will be set.
120 /// - If IsControl is set, then exactly one of IsDirectControl or
121 /// IsIndirect Control will be set, and exactly one of
122 /// IsCondControl or IsUncondControl will be set.
123 /// - IsSerializing, IsMemBarrier, and IsWriteBarrier are
124 /// implemented as flags since in the current model there's no
125 /// other way for instructions to inject behavior into the
126 /// pipeline outside of fetch. Once we go to an exec-in-exec CPU
127 /// model we should be able to get rid of these flags and
128 /// implement this behavior via the execute() methods.
129 ///
130 enum Flags {
131 IsNop, ///< Is a no-op (no effect at all).
132
133 IsInteger, ///< References integer regs.
134 IsFloating, ///< References FP regs.
135
136 IsMemRef, ///< References memory (load, store, or prefetch).
137 IsLoad, ///< Reads from memory (load or prefetch).
138 IsStore, ///< Writes to memory.
139 IsStoreConditional, ///< Store conditional instruction.
140 IsIndexed, ///< Accesses memory with an indexed address computation
141 IsInstPrefetch, ///< Instruction-cache prefetch.
142 IsDataPrefetch, ///< Data-cache prefetch.
143 IsCopy, ///< Fast Cache block copy
144
145 IsControl, ///< Control transfer instruction.
146 IsDirectControl, ///< PC relative control transfer.
147 IsIndirectControl, ///< Register indirect control transfer.
148 IsCondControl, ///< Conditional control transfer.
149 IsUncondControl, ///< Unconditional control transfer.
150 IsCall, ///< Subroutine call.
151 IsReturn, ///< Subroutine return.
152
153 IsCondDelaySlot,///< Conditional Delay-Slot Instruction
154
155 IsThreadSync, ///< Thread synchronization operation.
156
157 IsSerializing, ///< Serializes pipeline: won't execute until all
158 /// older instructions have committed.
159 IsSerializeBefore,
160 IsSerializeAfter,
161 IsMemBarrier, ///< Is a memory barrier
162 IsWriteBarrier, ///< Is a write barrier
163 IsERET, /// <- Causes the IFU to stall (MIPS ISA)
164
165 IsNonSpeculative, ///< Should not be executed speculatively
166 IsQuiesce, ///< Is a quiesce instruction
167
168 IsIprAccess, ///< Accesses IPRs
169 IsUnverifiable, ///< Can't be verified by a checker
170
171 IsSyscall, ///< Causes a system call to be emulated in syscall
172 /// emulation mode.
173
174 //Flags for microcode
175 IsMacroop, ///< Is a macroop containing microops
176 IsMicroop, ///< Is a microop
177 IsDelayedCommit, ///< This microop doesn't commit right away
178 IsLastMicroop, ///< This microop ends a microop sequence
179 IsFirstMicroop, ///< This microop begins a microop sequence
180 //This flag doesn't do anything yet
181 IsMicroBranch, ///< This microop branches within the microcode for a macroop
182 IsDspOp,
183
184 NumFlags
185 };
186
187 /// Flag values for this instruction.
188 std::bitset<NumFlags> flags;
189
190 /// See opClass().
191 OpClass _opClass;
192
193 /// See numSrcRegs().
194 int8_t _numSrcRegs;
195
196 /// See numDestRegs().
197 int8_t _numDestRegs;
198
199 /// The following are used to track physical register usage
200 /// for machines with separate int & FP reg files.
201 //@{
202 int8_t _numFPDestRegs;
203 int8_t _numIntDestRegs;
204 //@}
205
206 /// Constructor.
207 /// It's important to initialize everything here to a sane
208 /// default, since the decoder generally only overrides
209 /// the fields that are meaningful for the particular
210 /// instruction.
211 StaticInstBase(OpClass __opClass)
212 : _opClass(__opClass), _numSrcRegs(0), _numDestRegs(0),
213 _numFPDestRegs(0), _numIntDestRegs(0)
214 {
215 }
216
217 public:
218
219 /// @name Register information.
220 /// The sum of numFPDestRegs() and numIntDestRegs() equals
221 /// numDestRegs(). The former two functions are used to track
222 /// physical register usage for machines with separate int & FP
223 /// reg files.
224 //@{
225 /// Number of source registers.
226 int8_t numSrcRegs() const { return _numSrcRegs; }
227 /// Number of destination registers.
228 int8_t numDestRegs() const { return _numDestRegs; }
229 /// Number of floating-point destination regs.
230 int8_t numFPDestRegs() const { return _numFPDestRegs; }
231 /// Number of integer destination regs.
232 int8_t numIntDestRegs() const { return _numIntDestRegs; }
233 //@}
234
235 /// @name Flag accessors.
236 /// These functions are used to access the values of the various
237 /// instruction property flags. See StaticInstBase::Flags for descriptions
238 /// of the individual flags.
239 //@{
240
241 bool isNop() const { return flags[IsNop]; }
242
243 bool isMemRef() const { return flags[IsMemRef]; }
244 bool isLoad() const { return flags[IsLoad]; }
245 bool isStore() const { return flags[IsStore]; }
246 bool isStoreConditional() const { return flags[IsStoreConditional]; }
247 bool isInstPrefetch() const { return flags[IsInstPrefetch]; }
248 bool isDataPrefetch() const { return flags[IsDataPrefetch]; }
249 bool isCopy() const { return flags[IsCopy];}
250
251 bool isInteger() const { return flags[IsInteger]; }
252 bool isFloating() const { return flags[IsFloating]; }
253
254 bool isControl() const { return flags[IsControl]; }
255 bool isCall() const { return flags[IsCall]; }
256 bool isReturn() const { return flags[IsReturn]; }
257 bool isDirectCtrl() const { return flags[IsDirectControl]; }
258 bool isIndirectCtrl() const { return flags[IsIndirectControl]; }
259 bool isCondCtrl() const { return flags[IsCondControl]; }
260 bool isUncondCtrl() const { return flags[IsUncondControl]; }
261 bool isCondDelaySlot() const { return flags[IsCondDelaySlot]; }
262
263 bool isThreadSync() const { return flags[IsThreadSync]; }
264 bool isSerializing() const { return flags[IsSerializing] ||
265 flags[IsSerializeBefore] ||
266 flags[IsSerializeAfter]; }
267 bool isSerializeBefore() const { return flags[IsSerializeBefore]; }
268 bool isSerializeAfter() const { return flags[IsSerializeAfter]; }
269 bool isMemBarrier() const { return flags[IsMemBarrier]; }
270 bool isWriteBarrier() const { return flags[IsWriteBarrier]; }
271 bool isNonSpeculative() const { return flags[IsNonSpeculative]; }
272 bool isQuiesce() const { return flags[IsQuiesce]; }
273 bool isIprAccess() const { return flags[IsIprAccess]; }
274 bool isUnverifiable() const { return flags[IsUnverifiable]; }
275 bool isSyscall() const { return flags[IsSyscall]; }
276 bool isMacroop() const { return flags[IsMacroop]; }
277 bool isMicroop() const { return flags[IsMicroop]; }
278 bool isDelayedCommit() const { return flags[IsDelayedCommit]; }
279 bool isLastMicroop() const { return flags[IsLastMicroop]; }
280 bool isFirstMicroop() const { return flags[IsFirstMicroop]; }
281 //This flag doesn't do anything yet
282 bool isMicroBranch() const { return flags[IsMicroBranch]; }
283 //@}
284
285 void setLastMicroop() { flags[IsLastMicroop] = true; }
286 /// Operation class. Used to select appropriate function unit in issue.
287 OpClass opClass() const { return _opClass; }
288};
289
290
291// forward declaration
292class StaticInstPtr;
293
294/**
295 * Generic yet ISA-dependent static instruction class.
296 *
297 * This class builds on StaticInstBase, defining fields and interfaces
298 * that are generic across all ISAs but that differ in details
299 * according to the specific ISA being used.
300 */
301class StaticInst : public StaticInstBase
302{
303 public:
304
305 /// Binary machine instruction type.
306 typedef TheISA::MachInst MachInst;
307 /// Binary extended machine instruction type.
308 typedef TheISA::ExtMachInst ExtMachInst;
309 /// Logical register index type.
310 typedef TheISA::RegIndex RegIndex;
311
312 enum {
313 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, //< Max source regs
314 MaxInstDestRegs = TheISA::MaxInstDestRegs, //< Max dest regs
315 };
316
317
318 /// Return logical index (architectural reg num) of i'th destination reg.
319 /// Only the entries from 0 through numDestRegs()-1 are valid.
320 RegIndex destRegIdx(int i) const { return _destRegIdx[i]; }
321
322 /// Return logical index (architectural reg num) of i'th source reg.
323 /// Only the entries from 0 through numSrcRegs()-1 are valid.
324 RegIndex srcRegIdx(int i) const { return _srcRegIdx[i]; }
325
326 /// Pointer to a statically allocated "null" instruction object.
327 /// Used to give eaCompInst() and memAccInst() something to return
328 /// when called on non-memory instructions.
329 static StaticInstPtr nullStaticInstPtr;
330
331 /**
332 * Memory references only: returns "fake" instruction representing
333 * the effective address part of the memory operation. Used to
334 * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
335 * just the EA computation.
336 */
337 virtual const
338 StaticInstPtr &eaCompInst() const { return nullStaticInstPtr; }
339
340 /**
341 * Memory references only: returns "fake" instruction representing
342 * the memory access part of the memory operation. Used to
343 * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
344 * just the memory access (not the EA computation).
345 */
346 virtual const
347 StaticInstPtr &memAccInst() const { return nullStaticInstPtr; }
348
349 /// The binary machine instruction.
350 const ExtMachInst machInst;
351
352 protected:
353
354 /// See destRegIdx().
355 RegIndex _destRegIdx[MaxInstDestRegs];
356 /// See srcRegIdx().
357 RegIndex _srcRegIdx[MaxInstSrcRegs];
358
359 /**
360 * Base mnemonic (e.g., "add"). Used by generateDisassembly()
361 * methods. Also useful to readily identify instructions from
362 * within the debugger when #cachedDisassembly has not been
363 * initialized.
364 */
365 const char *mnemonic;
366
367 /**
368 * String representation of disassembly (lazily evaluated via
369 * disassemble()).
370 */
371 mutable std::string *cachedDisassembly;
372
373 /**
374 * Internal function to generate disassembly string.
375 */
376 virtual std::string
377 generateDisassembly(Addr pc, const SymbolTable *symtab) const = 0;
378
379 /// Constructor.
380 StaticInst(const char *_mnemonic, ExtMachInst _machInst, OpClass __opClass)
381 : StaticInstBase(__opClass),
382 machInst(_machInst), mnemonic(_mnemonic), cachedDisassembly(0)
383 { }
384
385 public:
386
387 virtual ~StaticInst()
388 {
389 if (cachedDisassembly)
390 delete cachedDisassembly;
391 }
392
393/**
394 * The execute() signatures are auto-generated by scons based on the
395 * set of CPU models we are compiling in today.
396 */
397#include "cpu/static_inst_exec_sigs.hh"
398
399 /**
400 * Return the microop that goes with a particular micropc. This should
401 * only be defined/used in macroops which will contain microops
402 */
403 virtual StaticInstPtr fetchMicroop(MicroPC micropc);
404
405 /**
406 * Return the target address for a PC-relative branch.
407 * Invalid if not a PC-relative branch (i.e. isDirectCtrl()
408 * should be true).
409 */
410 virtual Addr branchTarget(Addr branchPC) const
411 {
412 panic("StaticInst::branchTarget() called on instruction "
413 "that is not a PC-relative branch.");
414 M5_DUMMY_RETURN
415 }
416
417 /**
418 * Return the target address for an indirect branch (jump). The
419 * register value is read from the supplied thread context, so
420 * the result is valid only if the thread context is about to
421 * execute the branch in question. Invalid if not an indirect
422 * branch (i.e. isIndirectCtrl() should be true).
423 */
424 virtual Addr branchTarget(ThreadContext *tc) const
425 {
426 panic("StaticInst::branchTarget() called on instruction "
427 "that is not an indirect branch.");
428 M5_DUMMY_RETURN
429 }
430
431 /**
432 * Return true if the instruction is a control transfer, and if so,
433 * return the target address as well.
434 */
435 bool hasBranchTarget(Addr pc, ThreadContext *tc, Addr &tgt) const;
436
437 /**
438 * Return string representation of disassembled instruction.
439 * The default version of this function will call the internal
440 * virtual generateDisassembly() function to get the string,
441 * then cache it in #cachedDisassembly. If the disassembly
442 * should not be cached, this function should be overridden directly.
443 */
444 virtual const std::string &disassemble(Addr pc,
445 const SymbolTable *symtab = 0) const
446 {
447 if (!cachedDisassembly)
448 cachedDisassembly =
449 new std::string(generateDisassembly(pc, symtab));
450
451 return *cachedDisassembly;
452 }
453
454 /// Decoded instruction cache type.
455 /// For now we're using a generic hash_map; this seems to work
456 /// pretty well.
457 typedef m5::hash_map<ExtMachInst, StaticInstPtr> DecodeCache;
458
459 /// A cache of decoded instruction objects.
460 static DecodeCache decodeCache;
461
462 /**
463 * Dump some basic stats on the decode cache hash map.
464 * Only gets called if DECODE_CACHE_HASH_STATS is defined.
465 */
466 static void dumpDecodeCacheStats();
467
468 /// Decode a machine instruction.
469 /// @param mach_inst The binary instruction to decode.
470 /// @retval A pointer to the corresponding StaticInst object.
471 //This is defined as inlined below.
472 static StaticInstPtr decode(ExtMachInst mach_inst, Addr addr);
473
474 /// Return name of machine instruction
475 std::string getName() { return mnemonic; }
476
477 /// Decoded instruction cache type, for address decoding.
478 /// A generic hash_map is used.
479 typedef m5::hash_map<Addr, AddrDecodePage *> AddrDecodeCache;
480
481 /// A cache of decoded instruction objects from addresses.
482 static AddrDecodeCache addrDecodeCache;
483
484 struct cacheElement {
485 Addr page_addr;
486 AddrDecodePage *decodePage;
487
488 cacheElement()
489 :decodePage(NULL) { }
490 } ;
491
492 /// An array of recently decoded instructions.
493 // might not use an array if there is only two elements
494 static struct cacheElement recentDecodes[2];
495
496 /// Updates the recently decoded instructions entries
497 /// @param page_addr The page address recently used.
498 /// @param decodePage Pointer to decoding page containing the decoded
499 /// instruction.
500 static inline void
501 updateCache(Addr page_addr, AddrDecodePage *decodePage)
502 {
503 recentDecodes[1].page_addr = recentDecodes[0].page_addr;
504 recentDecodes[1].decodePage = recentDecodes[0].decodePage;
505 recentDecodes[0].page_addr = page_addr;
506 recentDecodes[0].decodePage = decodePage;
507 }
508
509 /// Searches the decoded instruction cache for instruction decoding.
510 /// If it is not found, then we decode the instruction.
511 /// Otherwise, we get the instruction from the cache and move it into
512 /// the address-to-instruction decoding page.
513 /// @param mach_inst The binary instruction to decode.
514 /// @param addr The address that contained the binary instruction.
515 /// @param decodePage Pointer to decoding page containing the instruction.
516 /// @retval A pointer to the corresponding StaticInst object.
517 //This is defined as inlined below.
518 static StaticInstPtr searchCache(ExtMachInst mach_inst, Addr addr,
519 AddrDecodePage * decodePage);
520};
521
522typedef RefCountingPtr<StaticInstBase> StaticInstBasePtr;
523
524/// Reference-counted pointer to a StaticInst object.
525/// This type should be used instead of "StaticInst *" so that
526/// StaticInst objects can be properly reference-counted.
527class StaticInstPtr : public RefCountingPtr<StaticInst>
528{
529 public:
530 /// Constructor.
531 StaticInstPtr()
532 : RefCountingPtr<StaticInst>()
533 {
534 }
535
536 /// Conversion from "StaticInst *".
537 StaticInstPtr(StaticInst *p)
538 : RefCountingPtr<StaticInst>(p)
539 {
540 }
541
542 /// Copy constructor.
543 StaticInstPtr(const StaticInstPtr &r)
544 : RefCountingPtr<StaticInst>(r)
545 {
546 }
547
548 /// Construct directly from machine instruction.
549 /// Calls StaticInst::decode().
550 explicit StaticInstPtr(TheISA::ExtMachInst mach_inst, Addr addr)
551 : RefCountingPtr<StaticInst>(StaticInst::decode(mach_inst, addr))
552 {
553 }
554
555 /// Convert to pointer to StaticInstBase class.
556 operator const StaticInstBasePtr()
557 {
558 return this->get();
559 }
560};
561
562/// A page of a list of decoded instructions from an address.
563class AddrDecodePage
564{
565 typedef TheISA::ExtMachInst ExtMachInst;
566 protected:
567 StaticInstPtr instructions[TheISA::PageBytes];
568 bool valid[TheISA::PageBytes];
569 Addr lowerMask;
570
571 public:
572 /// Constructor
573 AddrDecodePage() {
574 lowerMask = TheISA::PageBytes - 1;
575 memset(valid, 0, TheISA::PageBytes);
576 }
577
578 /// Checks if the instruction is already decoded and the machine
579 /// instruction in the cache matches the current machine instruction
580 /// related to the address
581 /// @param mach_inst The binary instruction to check
582 /// @param addr The address containing the instruction
583 inline bool decoded(ExtMachInst mach_inst, Addr addr)
584 {
585 return (valid[addr & lowerMask] &&
586 (instructions[addr & lowerMask]->machInst == mach_inst));
587 }
588
589 /// Returns the instruction object. decoded should be called first
590 /// to check if the instruction is valid.
591 /// @param addr The address of the instruction.
592 /// @retval A pointer to the corresponding StaticInst object.
593 inline StaticInstPtr getInst(Addr addr)
594 { return instructions[addr & lowerMask]; }
595
596 /// Inserts a pointer to a StaticInst object into the list of decoded
597 /// instructions on the page.
598 /// @param addr The address of the instruction.
599 /// @param si A pointer to the corresponding StaticInst object.
600 inline void insert(Addr addr, StaticInstPtr &si)
601 {
602 instructions[addr & lowerMask] = si;
603 valid[addr & lowerMask] = true;
604 }
605
606};
607
608
609inline StaticInstPtr
610StaticInst::decode(StaticInst::ExtMachInst mach_inst, Addr addr)
611{
612#ifdef DECODE_CACHE_HASH_STATS
613 // Simple stats on decode hash_map. Turns out the default
614 // hash function is as good as anything I could come up with.
615 const int dump_every_n = 10000000;
616 static int decodes_til_dump = dump_every_n;
617
618 if (--decodes_til_dump == 0) {
619 dumpDecodeCacheStats();
620 decodes_til_dump = dump_every_n;
621 }
622#endif
623
624 Addr page_addr = addr & ~(TheISA::PageBytes - 1);
625
626 // checks recently decoded addresses
627 if (recentDecodes[0].decodePage &&
628 page_addr == recentDecodes[0].page_addr) {
629 if (recentDecodes[0].decodePage->decoded(mach_inst, addr))
630 return recentDecodes[0].decodePage->getInst(addr);
631
632 return searchCache(mach_inst, addr, recentDecodes[0].decodePage);
633 }
634
635 if (recentDecodes[1].decodePage &&
636 page_addr == recentDecodes[1].page_addr) {
637 if (recentDecodes[1].decodePage->decoded(mach_inst, addr))
638 return recentDecodes[1].decodePage->getInst(addr);
639
640 return searchCache(mach_inst, addr, recentDecodes[1].decodePage);
641 }
642
643 // searches the page containing the address to decode
644 AddrDecodeCache::iterator iter = addrDecodeCache.find(page_addr);
645 if (iter != addrDecodeCache.end()) {
646 updateCache(page_addr, iter->second);
647 if (iter->second->decoded(mach_inst, addr))
648 return iter->second->getInst(addr);
649
650 return searchCache(mach_inst, addr, iter->second);
651 }
652
653 // creates a new object for a page of decoded instructions
654 AddrDecodePage * decodePage = new AddrDecodePage;
655 addrDecodeCache[page_addr] = decodePage;
656 updateCache(page_addr, decodePage);
657 return searchCache(mach_inst, addr, decodePage);
658}
659
660inline StaticInstPtr
661StaticInst::searchCache(ExtMachInst mach_inst, Addr addr,
662 AddrDecodePage * decodePage)
663{
664 DecodeCache::iterator iter = decodeCache.find(mach_inst);
665 if (iter != decodeCache.end()) {
666 decodePage->insert(addr, iter->second);
667 return iter->second;
668 }
669
670 StaticInstPtr si = TheISA::decodeInst(mach_inst);
671 decodePage->insert(addr, si);
672 decodeCache[mach_inst] = si;
673 return si;
674}
675
676#endif // __CPU_STATIC_INST_HH__
76
77static const MicroPC MicroPCRomBit = 1 << (sizeof(MicroPC) * 8 - 1);
78
79static inline MicroPC
80romMicroPC(MicroPC upc)
81{
82 return upc | MicroPCRomBit;
83}
84
85static inline MicroPC
86normalMicroPC(MicroPC upc)
87{
88 return upc & ~MicroPCRomBit;
89}
90
91static inline bool
92isRomMicroPC(MicroPC upc)
93{
94 return MicroPCRomBit & upc;
95}
96
97/**
98 * Base, ISA-independent static instruction class.
99 *
100 * The main component of this class is the vector of flags and the
101 * associated methods for reading them. Any object that can rely
102 * solely on these flags can process instructions without being
103 * recompiled for multiple ISAs.
104 */
105class StaticInstBase : public RefCounted
106{
107 protected:
108
109 /// Set of boolean static instruction properties.
110 ///
111 /// Notes:
112 /// - The IsInteger and IsFloating flags are based on the class of
113 /// registers accessed by the instruction. Although most
114 /// instructions will have exactly one of these two flags set, it
115 /// is possible for an instruction to have neither (e.g., direct
116 /// unconditional branches, memory barriers) or both (e.g., an
117 /// FP/int conversion).
118 /// - If IsMemRef is set, then exactly one of IsLoad or IsStore
119 /// will be set.
120 /// - If IsControl is set, then exactly one of IsDirectControl or
121 /// IsIndirect Control will be set, and exactly one of
122 /// IsCondControl or IsUncondControl will be set.
123 /// - IsSerializing, IsMemBarrier, and IsWriteBarrier are
124 /// implemented as flags since in the current model there's no
125 /// other way for instructions to inject behavior into the
126 /// pipeline outside of fetch. Once we go to an exec-in-exec CPU
127 /// model we should be able to get rid of these flags and
128 /// implement this behavior via the execute() methods.
129 ///
130 enum Flags {
131 IsNop, ///< Is a no-op (no effect at all).
132
133 IsInteger, ///< References integer regs.
134 IsFloating, ///< References FP regs.
135
136 IsMemRef, ///< References memory (load, store, or prefetch).
137 IsLoad, ///< Reads from memory (load or prefetch).
138 IsStore, ///< Writes to memory.
139 IsStoreConditional, ///< Store conditional instruction.
140 IsIndexed, ///< Accesses memory with an indexed address computation
141 IsInstPrefetch, ///< Instruction-cache prefetch.
142 IsDataPrefetch, ///< Data-cache prefetch.
143 IsCopy, ///< Fast Cache block copy
144
145 IsControl, ///< Control transfer instruction.
146 IsDirectControl, ///< PC relative control transfer.
147 IsIndirectControl, ///< Register indirect control transfer.
148 IsCondControl, ///< Conditional control transfer.
149 IsUncondControl, ///< Unconditional control transfer.
150 IsCall, ///< Subroutine call.
151 IsReturn, ///< Subroutine return.
152
153 IsCondDelaySlot,///< Conditional Delay-Slot Instruction
154
155 IsThreadSync, ///< Thread synchronization operation.
156
157 IsSerializing, ///< Serializes pipeline: won't execute until all
158 /// older instructions have committed.
159 IsSerializeBefore,
160 IsSerializeAfter,
161 IsMemBarrier, ///< Is a memory barrier
162 IsWriteBarrier, ///< Is a write barrier
163 IsERET, /// <- Causes the IFU to stall (MIPS ISA)
164
165 IsNonSpeculative, ///< Should not be executed speculatively
166 IsQuiesce, ///< Is a quiesce instruction
167
168 IsIprAccess, ///< Accesses IPRs
169 IsUnverifiable, ///< Can't be verified by a checker
170
171 IsSyscall, ///< Causes a system call to be emulated in syscall
172 /// emulation mode.
173
174 //Flags for microcode
175 IsMacroop, ///< Is a macroop containing microops
176 IsMicroop, ///< Is a microop
177 IsDelayedCommit, ///< This microop doesn't commit right away
178 IsLastMicroop, ///< This microop ends a microop sequence
179 IsFirstMicroop, ///< This microop begins a microop sequence
180 //This flag doesn't do anything yet
181 IsMicroBranch, ///< This microop branches within the microcode for a macroop
182 IsDspOp,
183
184 NumFlags
185 };
186
187 /// Flag values for this instruction.
188 std::bitset<NumFlags> flags;
189
190 /// See opClass().
191 OpClass _opClass;
192
193 /// See numSrcRegs().
194 int8_t _numSrcRegs;
195
196 /// See numDestRegs().
197 int8_t _numDestRegs;
198
199 /// The following are used to track physical register usage
200 /// for machines with separate int & FP reg files.
201 //@{
202 int8_t _numFPDestRegs;
203 int8_t _numIntDestRegs;
204 //@}
205
206 /// Constructor.
207 /// It's important to initialize everything here to a sane
208 /// default, since the decoder generally only overrides
209 /// the fields that are meaningful for the particular
210 /// instruction.
211 StaticInstBase(OpClass __opClass)
212 : _opClass(__opClass), _numSrcRegs(0), _numDestRegs(0),
213 _numFPDestRegs(0), _numIntDestRegs(0)
214 {
215 }
216
217 public:
218
219 /// @name Register information.
220 /// The sum of numFPDestRegs() and numIntDestRegs() equals
221 /// numDestRegs(). The former two functions are used to track
222 /// physical register usage for machines with separate int & FP
223 /// reg files.
224 //@{
225 /// Number of source registers.
226 int8_t numSrcRegs() const { return _numSrcRegs; }
227 /// Number of destination registers.
228 int8_t numDestRegs() const { return _numDestRegs; }
229 /// Number of floating-point destination regs.
230 int8_t numFPDestRegs() const { return _numFPDestRegs; }
231 /// Number of integer destination regs.
232 int8_t numIntDestRegs() const { return _numIntDestRegs; }
233 //@}
234
235 /// @name Flag accessors.
236 /// These functions are used to access the values of the various
237 /// instruction property flags. See StaticInstBase::Flags for descriptions
238 /// of the individual flags.
239 //@{
240
241 bool isNop() const { return flags[IsNop]; }
242
243 bool isMemRef() const { return flags[IsMemRef]; }
244 bool isLoad() const { return flags[IsLoad]; }
245 bool isStore() const { return flags[IsStore]; }
246 bool isStoreConditional() const { return flags[IsStoreConditional]; }
247 bool isInstPrefetch() const { return flags[IsInstPrefetch]; }
248 bool isDataPrefetch() const { return flags[IsDataPrefetch]; }
249 bool isCopy() const { return flags[IsCopy];}
250
251 bool isInteger() const { return flags[IsInteger]; }
252 bool isFloating() const { return flags[IsFloating]; }
253
254 bool isControl() const { return flags[IsControl]; }
255 bool isCall() const { return flags[IsCall]; }
256 bool isReturn() const { return flags[IsReturn]; }
257 bool isDirectCtrl() const { return flags[IsDirectControl]; }
258 bool isIndirectCtrl() const { return flags[IsIndirectControl]; }
259 bool isCondCtrl() const { return flags[IsCondControl]; }
260 bool isUncondCtrl() const { return flags[IsUncondControl]; }
261 bool isCondDelaySlot() const { return flags[IsCondDelaySlot]; }
262
263 bool isThreadSync() const { return flags[IsThreadSync]; }
264 bool isSerializing() const { return flags[IsSerializing] ||
265 flags[IsSerializeBefore] ||
266 flags[IsSerializeAfter]; }
267 bool isSerializeBefore() const { return flags[IsSerializeBefore]; }
268 bool isSerializeAfter() const { return flags[IsSerializeAfter]; }
269 bool isMemBarrier() const { return flags[IsMemBarrier]; }
270 bool isWriteBarrier() const { return flags[IsWriteBarrier]; }
271 bool isNonSpeculative() const { return flags[IsNonSpeculative]; }
272 bool isQuiesce() const { return flags[IsQuiesce]; }
273 bool isIprAccess() const { return flags[IsIprAccess]; }
274 bool isUnverifiable() const { return flags[IsUnverifiable]; }
275 bool isSyscall() const { return flags[IsSyscall]; }
276 bool isMacroop() const { return flags[IsMacroop]; }
277 bool isMicroop() const { return flags[IsMicroop]; }
278 bool isDelayedCommit() const { return flags[IsDelayedCommit]; }
279 bool isLastMicroop() const { return flags[IsLastMicroop]; }
280 bool isFirstMicroop() const { return flags[IsFirstMicroop]; }
281 //This flag doesn't do anything yet
282 bool isMicroBranch() const { return flags[IsMicroBranch]; }
283 //@}
284
285 void setLastMicroop() { flags[IsLastMicroop] = true; }
286 /// Operation class. Used to select appropriate function unit in issue.
287 OpClass opClass() const { return _opClass; }
288};
289
290
291// forward declaration
292class StaticInstPtr;
293
294/**
295 * Generic yet ISA-dependent static instruction class.
296 *
297 * This class builds on StaticInstBase, defining fields and interfaces
298 * that are generic across all ISAs but that differ in details
299 * according to the specific ISA being used.
300 */
301class StaticInst : public StaticInstBase
302{
303 public:
304
305 /// Binary machine instruction type.
306 typedef TheISA::MachInst MachInst;
307 /// Binary extended machine instruction type.
308 typedef TheISA::ExtMachInst ExtMachInst;
309 /// Logical register index type.
310 typedef TheISA::RegIndex RegIndex;
311
312 enum {
313 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, //< Max source regs
314 MaxInstDestRegs = TheISA::MaxInstDestRegs, //< Max dest regs
315 };
316
317
318 /// Return logical index (architectural reg num) of i'th destination reg.
319 /// Only the entries from 0 through numDestRegs()-1 are valid.
320 RegIndex destRegIdx(int i) const { return _destRegIdx[i]; }
321
322 /// Return logical index (architectural reg num) of i'th source reg.
323 /// Only the entries from 0 through numSrcRegs()-1 are valid.
324 RegIndex srcRegIdx(int i) const { return _srcRegIdx[i]; }
325
326 /// Pointer to a statically allocated "null" instruction object.
327 /// Used to give eaCompInst() and memAccInst() something to return
328 /// when called on non-memory instructions.
329 static StaticInstPtr nullStaticInstPtr;
330
331 /**
332 * Memory references only: returns "fake" instruction representing
333 * the effective address part of the memory operation. Used to
334 * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
335 * just the EA computation.
336 */
337 virtual const
338 StaticInstPtr &eaCompInst() const { return nullStaticInstPtr; }
339
340 /**
341 * Memory references only: returns "fake" instruction representing
342 * the memory access part of the memory operation. Used to
343 * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
344 * just the memory access (not the EA computation).
345 */
346 virtual const
347 StaticInstPtr &memAccInst() const { return nullStaticInstPtr; }
348
349 /// The binary machine instruction.
350 const ExtMachInst machInst;
351
352 protected:
353
354 /// See destRegIdx().
355 RegIndex _destRegIdx[MaxInstDestRegs];
356 /// See srcRegIdx().
357 RegIndex _srcRegIdx[MaxInstSrcRegs];
358
359 /**
360 * Base mnemonic (e.g., "add"). Used by generateDisassembly()
361 * methods. Also useful to readily identify instructions from
362 * within the debugger when #cachedDisassembly has not been
363 * initialized.
364 */
365 const char *mnemonic;
366
367 /**
368 * String representation of disassembly (lazily evaluated via
369 * disassemble()).
370 */
371 mutable std::string *cachedDisassembly;
372
373 /**
374 * Internal function to generate disassembly string.
375 */
376 virtual std::string
377 generateDisassembly(Addr pc, const SymbolTable *symtab) const = 0;
378
379 /// Constructor.
380 StaticInst(const char *_mnemonic, ExtMachInst _machInst, OpClass __opClass)
381 : StaticInstBase(__opClass),
382 machInst(_machInst), mnemonic(_mnemonic), cachedDisassembly(0)
383 { }
384
385 public:
386
387 virtual ~StaticInst()
388 {
389 if (cachedDisassembly)
390 delete cachedDisassembly;
391 }
392
393/**
394 * The execute() signatures are auto-generated by scons based on the
395 * set of CPU models we are compiling in today.
396 */
397#include "cpu/static_inst_exec_sigs.hh"
398
399 /**
400 * Return the microop that goes with a particular micropc. This should
401 * only be defined/used in macroops which will contain microops
402 */
403 virtual StaticInstPtr fetchMicroop(MicroPC micropc);
404
405 /**
406 * Return the target address for a PC-relative branch.
407 * Invalid if not a PC-relative branch (i.e. isDirectCtrl()
408 * should be true).
409 */
410 virtual Addr branchTarget(Addr branchPC) const
411 {
412 panic("StaticInst::branchTarget() called on instruction "
413 "that is not a PC-relative branch.");
414 M5_DUMMY_RETURN
415 }
416
417 /**
418 * Return the target address for an indirect branch (jump). The
419 * register value is read from the supplied thread context, so
420 * the result is valid only if the thread context is about to
421 * execute the branch in question. Invalid if not an indirect
422 * branch (i.e. isIndirectCtrl() should be true).
423 */
424 virtual Addr branchTarget(ThreadContext *tc) const
425 {
426 panic("StaticInst::branchTarget() called on instruction "
427 "that is not an indirect branch.");
428 M5_DUMMY_RETURN
429 }
430
431 /**
432 * Return true if the instruction is a control transfer, and if so,
433 * return the target address as well.
434 */
435 bool hasBranchTarget(Addr pc, ThreadContext *tc, Addr &tgt) const;
436
437 /**
438 * Return string representation of disassembled instruction.
439 * The default version of this function will call the internal
440 * virtual generateDisassembly() function to get the string,
441 * then cache it in #cachedDisassembly. If the disassembly
442 * should not be cached, this function should be overridden directly.
443 */
444 virtual const std::string &disassemble(Addr pc,
445 const SymbolTable *symtab = 0) const
446 {
447 if (!cachedDisassembly)
448 cachedDisassembly =
449 new std::string(generateDisassembly(pc, symtab));
450
451 return *cachedDisassembly;
452 }
453
454 /// Decoded instruction cache type.
455 /// For now we're using a generic hash_map; this seems to work
456 /// pretty well.
457 typedef m5::hash_map<ExtMachInst, StaticInstPtr> DecodeCache;
458
459 /// A cache of decoded instruction objects.
460 static DecodeCache decodeCache;
461
462 /**
463 * Dump some basic stats on the decode cache hash map.
464 * Only gets called if DECODE_CACHE_HASH_STATS is defined.
465 */
466 static void dumpDecodeCacheStats();
467
468 /// Decode a machine instruction.
469 /// @param mach_inst The binary instruction to decode.
470 /// @retval A pointer to the corresponding StaticInst object.
471 //This is defined as inlined below.
472 static StaticInstPtr decode(ExtMachInst mach_inst, Addr addr);
473
474 /// Return name of machine instruction
475 std::string getName() { return mnemonic; }
476
477 /// Decoded instruction cache type, for address decoding.
478 /// A generic hash_map is used.
479 typedef m5::hash_map<Addr, AddrDecodePage *> AddrDecodeCache;
480
481 /// A cache of decoded instruction objects from addresses.
482 static AddrDecodeCache addrDecodeCache;
483
484 struct cacheElement {
485 Addr page_addr;
486 AddrDecodePage *decodePage;
487
488 cacheElement()
489 :decodePage(NULL) { }
490 } ;
491
492 /// An array of recently decoded instructions.
493 // might not use an array if there is only two elements
494 static struct cacheElement recentDecodes[2];
495
496 /// Updates the recently decoded instructions entries
497 /// @param page_addr The page address recently used.
498 /// @param decodePage Pointer to decoding page containing the decoded
499 /// instruction.
500 static inline void
501 updateCache(Addr page_addr, AddrDecodePage *decodePage)
502 {
503 recentDecodes[1].page_addr = recentDecodes[0].page_addr;
504 recentDecodes[1].decodePage = recentDecodes[0].decodePage;
505 recentDecodes[0].page_addr = page_addr;
506 recentDecodes[0].decodePage = decodePage;
507 }
508
509 /// Searches the decoded instruction cache for instruction decoding.
510 /// If it is not found, then we decode the instruction.
511 /// Otherwise, we get the instruction from the cache and move it into
512 /// the address-to-instruction decoding page.
513 /// @param mach_inst The binary instruction to decode.
514 /// @param addr The address that contained the binary instruction.
515 /// @param decodePage Pointer to decoding page containing the instruction.
516 /// @retval A pointer to the corresponding StaticInst object.
517 //This is defined as inlined below.
518 static StaticInstPtr searchCache(ExtMachInst mach_inst, Addr addr,
519 AddrDecodePage * decodePage);
520};
521
522typedef RefCountingPtr<StaticInstBase> StaticInstBasePtr;
523
524/// Reference-counted pointer to a StaticInst object.
525/// This type should be used instead of "StaticInst *" so that
526/// StaticInst objects can be properly reference-counted.
527class StaticInstPtr : public RefCountingPtr<StaticInst>
528{
529 public:
530 /// Constructor.
531 StaticInstPtr()
532 : RefCountingPtr<StaticInst>()
533 {
534 }
535
536 /// Conversion from "StaticInst *".
537 StaticInstPtr(StaticInst *p)
538 : RefCountingPtr<StaticInst>(p)
539 {
540 }
541
542 /// Copy constructor.
543 StaticInstPtr(const StaticInstPtr &r)
544 : RefCountingPtr<StaticInst>(r)
545 {
546 }
547
548 /// Construct directly from machine instruction.
549 /// Calls StaticInst::decode().
550 explicit StaticInstPtr(TheISA::ExtMachInst mach_inst, Addr addr)
551 : RefCountingPtr<StaticInst>(StaticInst::decode(mach_inst, addr))
552 {
553 }
554
555 /// Convert to pointer to StaticInstBase class.
556 operator const StaticInstBasePtr()
557 {
558 return this->get();
559 }
560};
561
562/// A page of a list of decoded instructions from an address.
563class AddrDecodePage
564{
565 typedef TheISA::ExtMachInst ExtMachInst;
566 protected:
567 StaticInstPtr instructions[TheISA::PageBytes];
568 bool valid[TheISA::PageBytes];
569 Addr lowerMask;
570
571 public:
572 /// Constructor
573 AddrDecodePage() {
574 lowerMask = TheISA::PageBytes - 1;
575 memset(valid, 0, TheISA::PageBytes);
576 }
577
578 /// Checks if the instruction is already decoded and the machine
579 /// instruction in the cache matches the current machine instruction
580 /// related to the address
581 /// @param mach_inst The binary instruction to check
582 /// @param addr The address containing the instruction
583 inline bool decoded(ExtMachInst mach_inst, Addr addr)
584 {
585 return (valid[addr & lowerMask] &&
586 (instructions[addr & lowerMask]->machInst == mach_inst));
587 }
588
589 /// Returns the instruction object. decoded should be called first
590 /// to check if the instruction is valid.
591 /// @param addr The address of the instruction.
592 /// @retval A pointer to the corresponding StaticInst object.
593 inline StaticInstPtr getInst(Addr addr)
594 { return instructions[addr & lowerMask]; }
595
596 /// Inserts a pointer to a StaticInst object into the list of decoded
597 /// instructions on the page.
598 /// @param addr The address of the instruction.
599 /// @param si A pointer to the corresponding StaticInst object.
600 inline void insert(Addr addr, StaticInstPtr &si)
601 {
602 instructions[addr & lowerMask] = si;
603 valid[addr & lowerMask] = true;
604 }
605
606};
607
608
609inline StaticInstPtr
610StaticInst::decode(StaticInst::ExtMachInst mach_inst, Addr addr)
611{
612#ifdef DECODE_CACHE_HASH_STATS
613 // Simple stats on decode hash_map. Turns out the default
614 // hash function is as good as anything I could come up with.
615 const int dump_every_n = 10000000;
616 static int decodes_til_dump = dump_every_n;
617
618 if (--decodes_til_dump == 0) {
619 dumpDecodeCacheStats();
620 decodes_til_dump = dump_every_n;
621 }
622#endif
623
624 Addr page_addr = addr & ~(TheISA::PageBytes - 1);
625
626 // checks recently decoded addresses
627 if (recentDecodes[0].decodePage &&
628 page_addr == recentDecodes[0].page_addr) {
629 if (recentDecodes[0].decodePage->decoded(mach_inst, addr))
630 return recentDecodes[0].decodePage->getInst(addr);
631
632 return searchCache(mach_inst, addr, recentDecodes[0].decodePage);
633 }
634
635 if (recentDecodes[1].decodePage &&
636 page_addr == recentDecodes[1].page_addr) {
637 if (recentDecodes[1].decodePage->decoded(mach_inst, addr))
638 return recentDecodes[1].decodePage->getInst(addr);
639
640 return searchCache(mach_inst, addr, recentDecodes[1].decodePage);
641 }
642
643 // searches the page containing the address to decode
644 AddrDecodeCache::iterator iter = addrDecodeCache.find(page_addr);
645 if (iter != addrDecodeCache.end()) {
646 updateCache(page_addr, iter->second);
647 if (iter->second->decoded(mach_inst, addr))
648 return iter->second->getInst(addr);
649
650 return searchCache(mach_inst, addr, iter->second);
651 }
652
653 // creates a new object for a page of decoded instructions
654 AddrDecodePage * decodePage = new AddrDecodePage;
655 addrDecodeCache[page_addr] = decodePage;
656 updateCache(page_addr, decodePage);
657 return searchCache(mach_inst, addr, decodePage);
658}
659
660inline StaticInstPtr
661StaticInst::searchCache(ExtMachInst mach_inst, Addr addr,
662 AddrDecodePage * decodePage)
663{
664 DecodeCache::iterator iter = decodeCache.find(mach_inst);
665 if (iter != decodeCache.end()) {
666 decodePage->insert(addr, iter->second);
667 return iter->second;
668 }
669
670 StaticInstPtr si = TheISA::decodeInst(mach_inst);
671 decodePage->insert(addr, si);
672 decodeCache[mach_inst] = si;
673 return si;
674}
675
676#endif // __CPU_STATIC_INST_HH__