static_inst.hh (2847:6b19f07d9666) static_inst.hh (2848:f29a4a5c4d66)
1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#ifndef __CPU_STATIC_INST_HH__
32#define __CPU_STATIC_INST_HH__
33
34#include <bitset>
35#include <string>
36
37#include "base/bitfield.hh"
38#include "base/hashmap.hh"
39#include "base/misc.hh"
40#include "base/refcnt.hh"
41#include "cpu/op_class.hh"
1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#ifndef __CPU_STATIC_INST_HH__
32#define __CPU_STATIC_INST_HH__
33
34#include <bitset>
35#include <string>
36
37#include "base/bitfield.hh"
38#include "base/hashmap.hh"
39#include "base/misc.hh"
40#include "base/refcnt.hh"
41#include "cpu/op_class.hh"
42#include "cpu/o3/dyn_inst.hh"
42#include "sim/host.hh"
43#include "arch/isa_traits.hh"
44
45// forward declarations
46struct AlphaSimpleImpl;
47struct OzoneImpl;
48struct SimpleImpl;
49class ThreadContext;
50class DynInst;
51class Packet;
52
53template <class Impl>
43#include "sim/host.hh"
44#include "arch/isa_traits.hh"
45
46// forward declarations
47struct AlphaSimpleImpl;
48struct OzoneImpl;
49struct SimpleImpl;
50class ThreadContext;
51class DynInst;
52class Packet;
53
54template <class Impl>
54class AlphaDynInst;
55
56//class O3DynInst;
57
58template <class Impl>
59class OzoneDynInst;
60
61class CheckerCPU;
62class FastCPU;
63class AtomicSimpleCPU;
64class TimingSimpleCPU;
65class InorderCPU;
66class SymbolTable;
67
68namespace Trace {
69 class InstRecord;
70}
71
72/**
73 * Base, ISA-independent static instruction class.
74 *
75 * The main component of this class is the vector of flags and the
76 * associated methods for reading them. Any object that can rely
77 * solely on these flags can process instructions without being
78 * recompiled for multiple ISAs.
79 */
80class StaticInstBase : public RefCounted
81{
82 protected:
83
84 /// Set of boolean static instruction properties.
85 ///
86 /// Notes:
87 /// - The IsInteger and IsFloating flags are based on the class of
88 /// registers accessed by the instruction. Although most
89 /// instructions will have exactly one of these two flags set, it
90 /// is possible for an instruction to have neither (e.g., direct
91 /// unconditional branches, memory barriers) or both (e.g., an
92 /// FP/int conversion).
93 /// - If IsMemRef is set, then exactly one of IsLoad or IsStore
94 /// will be set.
95 /// - If IsControl is set, then exactly one of IsDirectControl or
96 /// IsIndirect Control will be set, and exactly one of
97 /// IsCondControl or IsUncondControl will be set.
98 /// - IsSerializing, IsMemBarrier, and IsWriteBarrier are
99 /// implemented as flags since in the current model there's no
100 /// other way for instructions to inject behavior into the
101 /// pipeline outside of fetch. Once we go to an exec-in-exec CPU
102 /// model we should be able to get rid of these flags and
103 /// implement this behavior via the execute() methods.
104 ///
105 enum Flags {
106 IsNop, ///< Is a no-op (no effect at all).
107
108 IsInteger, ///< References integer regs.
109 IsFloating, ///< References FP regs.
110
111 IsMemRef, ///< References memory (load, store, or prefetch).
112 IsLoad, ///< Reads from memory (load or prefetch).
113 IsStore, ///< Writes to memory.
114 IsStoreConditional, ///< Store conditional instruction.
115 IsInstPrefetch, ///< Instruction-cache prefetch.
116 IsDataPrefetch, ///< Data-cache prefetch.
117 IsCopy, ///< Fast Cache block copy
118
119 IsControl, ///< Control transfer instruction.
120 IsDirectControl, ///< PC relative control transfer.
121 IsIndirectControl, ///< Register indirect control transfer.
122 IsCondControl, ///< Conditional control transfer.
123 IsUncondControl, ///< Unconditional control transfer.
124 IsCall, ///< Subroutine call.
125 IsReturn, ///< Subroutine return.
126
127 IsCondDelaySlot,///< Conditional Delay-Slot Instruction
128
129 IsThreadSync, ///< Thread synchronization operation.
130
131 IsSerializing, ///< Serializes pipeline: won't execute until all
132 /// older instructions have committed.
133 IsSerializeBefore,
134 IsSerializeAfter,
135 IsMemBarrier, ///< Is a memory barrier
136 IsWriteBarrier, ///< Is a write barrier
137
138 IsNonSpeculative, ///< Should not be executed speculatively
139 IsQuiesce, ///< Is a quiesce instruction
140
141 IsIprAccess, ///< Accesses IPRs
142 IsUnverifiable, ///< Can't be verified by a checker
143
144 NumFlags
145 };
146
147 /// Flag values for this instruction.
148 std::bitset<NumFlags> flags;
149
150 /// See opClass().
151 OpClass _opClass;
152
153 /// See numSrcRegs().
154 int8_t _numSrcRegs;
155
156 /// See numDestRegs().
157 int8_t _numDestRegs;
158
159 /// The following are used to track physical register usage
160 /// for machines with separate int & FP reg files.
161 //@{
162 int8_t _numFPDestRegs;
163 int8_t _numIntDestRegs;
164 //@}
165
166 /// Constructor.
167 /// It's important to initialize everything here to a sane
168 /// default, since the decoder generally only overrides
169 /// the fields that are meaningful for the particular
170 /// instruction.
171 StaticInstBase(OpClass __opClass)
172 : _opClass(__opClass), _numSrcRegs(0), _numDestRegs(0),
173 _numFPDestRegs(0), _numIntDestRegs(0)
174 {
175 }
176
177 public:
178
179 /// @name Register information.
180 /// The sum of numFPDestRegs() and numIntDestRegs() equals
181 /// numDestRegs(). The former two functions are used to track
182 /// physical register usage for machines with separate int & FP
183 /// reg files.
184 //@{
185 /// Number of source registers.
186 int8_t numSrcRegs() const { return _numSrcRegs; }
187 /// Number of destination registers.
188 int8_t numDestRegs() const { return _numDestRegs; }
189 /// Number of floating-point destination regs.
190 int8_t numFPDestRegs() const { return _numFPDestRegs; }
191 /// Number of integer destination regs.
192 int8_t numIntDestRegs() const { return _numIntDestRegs; }
193 //@}
194
195 /// @name Flag accessors.
196 /// These functions are used to access the values of the various
197 /// instruction property flags. See StaticInstBase::Flags for descriptions
198 /// of the individual flags.
199 //@{
200
201 bool isNop() const { return flags[IsNop]; }
202
203 bool isMemRef() const { return flags[IsMemRef]; }
204 bool isLoad() const { return flags[IsLoad]; }
205 bool isStore() const { return flags[IsStore]; }
206 bool isStoreConditional() const { return flags[IsStoreConditional]; }
207 bool isInstPrefetch() const { return flags[IsInstPrefetch]; }
208 bool isDataPrefetch() const { return flags[IsDataPrefetch]; }
209 bool isCopy() const { return flags[IsCopy];}
210
211 bool isInteger() const { return flags[IsInteger]; }
212 bool isFloating() const { return flags[IsFloating]; }
213
214 bool isControl() const { return flags[IsControl]; }
215 bool isCall() const { return flags[IsCall]; }
216 bool isReturn() const { return flags[IsReturn]; }
217 bool isDirectCtrl() const { return flags[IsDirectControl]; }
218 bool isIndirectCtrl() const { return flags[IsIndirectControl]; }
219 bool isCondCtrl() const { return flags[IsCondControl]; }
220 bool isUncondCtrl() const { return flags[IsUncondControl]; }
221
222 bool isThreadSync() const { return flags[IsThreadSync]; }
223 bool isSerializing() const { return flags[IsSerializing] ||
224 flags[IsSerializeBefore] ||
225 flags[IsSerializeAfter]; }
226 bool isSerializeBefore() const { return flags[IsSerializeBefore]; }
227 bool isSerializeAfter() const { return flags[IsSerializeAfter]; }
228 bool isMemBarrier() const { return flags[IsMemBarrier]; }
229 bool isWriteBarrier() const { return flags[IsWriteBarrier]; }
230 bool isNonSpeculative() const { return flags[IsNonSpeculative]; }
231 bool isQuiesce() const { return flags[IsQuiesce]; }
232 bool isIprAccess() const { return flags[IsIprAccess]; }
233 bool isUnverifiable() const { return flags[IsUnverifiable]; }
234 //@}
235
236 /// Operation class. Used to select appropriate function unit in issue.
237 OpClass opClass() const { return _opClass; }
238};
239
240
241// forward declaration
242class StaticInstPtr;
243
244/**
245 * Generic yet ISA-dependent static instruction class.
246 *
247 * This class builds on StaticInstBase, defining fields and interfaces
248 * that are generic across all ISAs but that differ in details
249 * according to the specific ISA being used.
250 */
251class StaticInst : public StaticInstBase
252{
253 public:
254
255 /// Binary machine instruction type.
256 typedef TheISA::MachInst MachInst;
257 /// Binary extended machine instruction type.
258 typedef TheISA::ExtMachInst ExtMachInst;
259 /// Logical register index type.
260 typedef TheISA::RegIndex RegIndex;
261
262 enum {
263 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, //< Max source regs
264 MaxInstDestRegs = TheISA::MaxInstDestRegs, //< Max dest regs
265 };
266
267
268 /// Return logical index (architectural reg num) of i'th destination reg.
269 /// Only the entries from 0 through numDestRegs()-1 are valid.
270 RegIndex destRegIdx(int i) const { return _destRegIdx[i]; }
271
272 /// Return logical index (architectural reg num) of i'th source reg.
273 /// Only the entries from 0 through numSrcRegs()-1 are valid.
274 RegIndex srcRegIdx(int i) const { return _srcRegIdx[i]; }
275
276 /// Pointer to a statically allocated "null" instruction object.
277 /// Used to give eaCompInst() and memAccInst() something to return
278 /// when called on non-memory instructions.
279 static StaticInstPtr nullStaticInstPtr;
280
281 /**
282 * Memory references only: returns "fake" instruction representing
283 * the effective address part of the memory operation. Used to
284 * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
285 * just the EA computation.
286 */
287 virtual const
288 StaticInstPtr &eaCompInst() const { return nullStaticInstPtr; }
289
290 /**
291 * Memory references only: returns "fake" instruction representing
292 * the memory access part of the memory operation. Used to
293 * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
294 * just the memory access (not the EA computation).
295 */
296 virtual const
297 StaticInstPtr &memAccInst() const { return nullStaticInstPtr; }
298
299 /// The binary machine instruction.
300 const ExtMachInst machInst;
301
302 protected:
303
304 /// See destRegIdx().
305 RegIndex _destRegIdx[MaxInstDestRegs];
306 /// See srcRegIdx().
307 RegIndex _srcRegIdx[MaxInstSrcRegs];
308
309 /**
310 * Base mnemonic (e.g., "add"). Used by generateDisassembly()
311 * methods. Also useful to readily identify instructions from
312 * within the debugger when #cachedDisassembly has not been
313 * initialized.
314 */
315 const char *mnemonic;
316
317 /**
318 * String representation of disassembly (lazily evaluated via
319 * disassemble()).
320 */
321 mutable std::string *cachedDisassembly;
322
323 /**
324 * Internal function to generate disassembly string.
325 */
326 virtual std::string
327 generateDisassembly(Addr pc, const SymbolTable *symtab) const = 0;
328
329 /// Constructor.
330 StaticInst(const char *_mnemonic, ExtMachInst _machInst, OpClass __opClass)
331 : StaticInstBase(__opClass),
332 machInst(_machInst), mnemonic(_mnemonic), cachedDisassembly(0)
333 {
334 }
335
336 public:
337
338 virtual ~StaticInst()
339 {
340 if (cachedDisassembly)
341 delete cachedDisassembly;
342 }
343
344/**
345 * The execute() signatures are auto-generated by scons based on the
346 * set of CPU models we are compiling in today.
347 */
348#include "cpu/static_inst_exec_sigs.hh"
349
350 /**
351 * Return the target address for a PC-relative branch.
352 * Invalid if not a PC-relative branch (i.e. isDirectCtrl()
353 * should be true).
354 */
355 virtual Addr branchTarget(Addr branchPC) const
356 {
357 panic("StaticInst::branchTarget() called on instruction "
358 "that is not a PC-relative branch.");
359 }
360
361 /**
362 * Return the target address for an indirect branch (jump). The
363 * register value is read from the supplied thread context, so
364 * the result is valid only if the thread context is about to
365 * execute the branch in question. Invalid if not an indirect
366 * branch (i.e. isIndirectCtrl() should be true).
367 */
368 virtual Addr branchTarget(ThreadContext *tc) const
369 {
370 panic("StaticInst::branchTarget() called on instruction "
371 "that is not an indirect branch.");
372 }
373
374 /**
375 * Return true if the instruction is a control transfer, and if so,
376 * return the target address as well.
377 */
378 bool hasBranchTarget(Addr pc, ThreadContext *tc, Addr &tgt) const;
379
380 /**
381 * Return string representation of disassembled instruction.
382 * The default version of this function will call the internal
383 * virtual generateDisassembly() function to get the string,
384 * then cache it in #cachedDisassembly. If the disassembly
385 * should not be cached, this function should be overridden directly.
386 */
387 virtual const std::string &disassemble(Addr pc,
388 const SymbolTable *symtab = 0) const
389 {
390 if (!cachedDisassembly)
391 cachedDisassembly =
392 new std::string(generateDisassembly(pc, symtab));
393
394 return *cachedDisassembly;
395 }
396
397 /// Decoded instruction cache type.
398 /// For now we're using a generic hash_map; this seems to work
399 /// pretty well.
400 typedef m5::hash_map<ExtMachInst, StaticInstPtr> DecodeCache;
401
402 /// A cache of decoded instruction objects.
403 static DecodeCache decodeCache;
404
405 /**
406 * Dump some basic stats on the decode cache hash map.
407 * Only gets called if DECODE_CACHE_HASH_STATS is defined.
408 */
409 static void dumpDecodeCacheStats();
410
411 /// Decode a machine instruction.
412 /// @param mach_inst The binary instruction to decode.
413 /// @retval A pointer to the corresponding StaticInst object.
414 //This is defined as inline below.
415 static StaticInstPtr decode(ExtMachInst mach_inst);
416
417 /// Return opcode of machine instruction
418 uint32_t getOpcode() { return bits(machInst, 31, 26);}
419
420 /// Return name of machine instruction
421 std::string getName() { return mnemonic; }
422};
423
424typedef RefCountingPtr<StaticInstBase> StaticInstBasePtr;
425
426/// Reference-counted pointer to a StaticInst object.
427/// This type should be used instead of "StaticInst *" so that
428/// StaticInst objects can be properly reference-counted.
429class StaticInstPtr : public RefCountingPtr<StaticInst>
430{
431 public:
432 /// Constructor.
433 StaticInstPtr()
434 : RefCountingPtr<StaticInst>()
435 {
436 }
437
438 /// Conversion from "StaticInst *".
439 StaticInstPtr(StaticInst *p)
440 : RefCountingPtr<StaticInst>(p)
441 {
442 }
443
444 /// Copy constructor.
445 StaticInstPtr(const StaticInstPtr &r)
446 : RefCountingPtr<StaticInst>(r)
447 {
448 }
449
450 /// Construct directly from machine instruction.
451 /// Calls StaticInst::decode().
452 StaticInstPtr(TheISA::ExtMachInst mach_inst)
453 : RefCountingPtr<StaticInst>(StaticInst::decode(mach_inst))
454 {
455 }
456
457 /// Convert to pointer to StaticInstBase class.
458 operator const StaticInstBasePtr()
459 {
460 return this->get();
461 }
462};
463
464inline StaticInstPtr
465StaticInst::decode(StaticInst::ExtMachInst mach_inst)
466{
467#ifdef DECODE_CACHE_HASH_STATS
468 // Simple stats on decode hash_map. Turns out the default
469 // hash function is as good as anything I could come up with.
470 const int dump_every_n = 10000000;
471 static int decodes_til_dump = dump_every_n;
472
473 if (--decodes_til_dump == 0) {
474 dumpDecodeCacheStats();
475 decodes_til_dump = dump_every_n;
476 }
477#endif
478
479 DecodeCache::iterator iter = decodeCache.find(mach_inst);
480 if (iter != decodeCache.end()) {
481 return iter->second;
482 }
483
484 StaticInstPtr si = TheISA::decodeInst(mach_inst);
485 decodeCache[mach_inst] = si;
486 return si;
487}
488
489#endif // __CPU_STATIC_INST_HH__
55class OzoneDynInst;
56
57class CheckerCPU;
58class FastCPU;
59class AtomicSimpleCPU;
60class TimingSimpleCPU;
61class InorderCPU;
62class SymbolTable;
63
64namespace Trace {
65 class InstRecord;
66}
67
68/**
69 * Base, ISA-independent static instruction class.
70 *
71 * The main component of this class is the vector of flags and the
72 * associated methods for reading them. Any object that can rely
73 * solely on these flags can process instructions without being
74 * recompiled for multiple ISAs.
75 */
76class StaticInstBase : public RefCounted
77{
78 protected:
79
80 /// Set of boolean static instruction properties.
81 ///
82 /// Notes:
83 /// - The IsInteger and IsFloating flags are based on the class of
84 /// registers accessed by the instruction. Although most
85 /// instructions will have exactly one of these two flags set, it
86 /// is possible for an instruction to have neither (e.g., direct
87 /// unconditional branches, memory barriers) or both (e.g., an
88 /// FP/int conversion).
89 /// - If IsMemRef is set, then exactly one of IsLoad or IsStore
90 /// will be set.
91 /// - If IsControl is set, then exactly one of IsDirectControl or
92 /// IsIndirect Control will be set, and exactly one of
93 /// IsCondControl or IsUncondControl will be set.
94 /// - IsSerializing, IsMemBarrier, and IsWriteBarrier are
95 /// implemented as flags since in the current model there's no
96 /// other way for instructions to inject behavior into the
97 /// pipeline outside of fetch. Once we go to an exec-in-exec CPU
98 /// model we should be able to get rid of these flags and
99 /// implement this behavior via the execute() methods.
100 ///
101 enum Flags {
102 IsNop, ///< Is a no-op (no effect at all).
103
104 IsInteger, ///< References integer regs.
105 IsFloating, ///< References FP regs.
106
107 IsMemRef, ///< References memory (load, store, or prefetch).
108 IsLoad, ///< Reads from memory (load or prefetch).
109 IsStore, ///< Writes to memory.
110 IsStoreConditional, ///< Store conditional instruction.
111 IsInstPrefetch, ///< Instruction-cache prefetch.
112 IsDataPrefetch, ///< Data-cache prefetch.
113 IsCopy, ///< Fast Cache block copy
114
115 IsControl, ///< Control transfer instruction.
116 IsDirectControl, ///< PC relative control transfer.
117 IsIndirectControl, ///< Register indirect control transfer.
118 IsCondControl, ///< Conditional control transfer.
119 IsUncondControl, ///< Unconditional control transfer.
120 IsCall, ///< Subroutine call.
121 IsReturn, ///< Subroutine return.
122
123 IsCondDelaySlot,///< Conditional Delay-Slot Instruction
124
125 IsThreadSync, ///< Thread synchronization operation.
126
127 IsSerializing, ///< Serializes pipeline: won't execute until all
128 /// older instructions have committed.
129 IsSerializeBefore,
130 IsSerializeAfter,
131 IsMemBarrier, ///< Is a memory barrier
132 IsWriteBarrier, ///< Is a write barrier
133
134 IsNonSpeculative, ///< Should not be executed speculatively
135 IsQuiesce, ///< Is a quiesce instruction
136
137 IsIprAccess, ///< Accesses IPRs
138 IsUnverifiable, ///< Can't be verified by a checker
139
140 NumFlags
141 };
142
143 /// Flag values for this instruction.
144 std::bitset<NumFlags> flags;
145
146 /// See opClass().
147 OpClass _opClass;
148
149 /// See numSrcRegs().
150 int8_t _numSrcRegs;
151
152 /// See numDestRegs().
153 int8_t _numDestRegs;
154
155 /// The following are used to track physical register usage
156 /// for machines with separate int & FP reg files.
157 //@{
158 int8_t _numFPDestRegs;
159 int8_t _numIntDestRegs;
160 //@}
161
162 /// Constructor.
163 /// It's important to initialize everything here to a sane
164 /// default, since the decoder generally only overrides
165 /// the fields that are meaningful for the particular
166 /// instruction.
167 StaticInstBase(OpClass __opClass)
168 : _opClass(__opClass), _numSrcRegs(0), _numDestRegs(0),
169 _numFPDestRegs(0), _numIntDestRegs(0)
170 {
171 }
172
173 public:
174
175 /// @name Register information.
176 /// The sum of numFPDestRegs() and numIntDestRegs() equals
177 /// numDestRegs(). The former two functions are used to track
178 /// physical register usage for machines with separate int & FP
179 /// reg files.
180 //@{
181 /// Number of source registers.
182 int8_t numSrcRegs() const { return _numSrcRegs; }
183 /// Number of destination registers.
184 int8_t numDestRegs() const { return _numDestRegs; }
185 /// Number of floating-point destination regs.
186 int8_t numFPDestRegs() const { return _numFPDestRegs; }
187 /// Number of integer destination regs.
188 int8_t numIntDestRegs() const { return _numIntDestRegs; }
189 //@}
190
191 /// @name Flag accessors.
192 /// These functions are used to access the values of the various
193 /// instruction property flags. See StaticInstBase::Flags for descriptions
194 /// of the individual flags.
195 //@{
196
197 bool isNop() const { return flags[IsNop]; }
198
199 bool isMemRef() const { return flags[IsMemRef]; }
200 bool isLoad() const { return flags[IsLoad]; }
201 bool isStore() const { return flags[IsStore]; }
202 bool isStoreConditional() const { return flags[IsStoreConditional]; }
203 bool isInstPrefetch() const { return flags[IsInstPrefetch]; }
204 bool isDataPrefetch() const { return flags[IsDataPrefetch]; }
205 bool isCopy() const { return flags[IsCopy];}
206
207 bool isInteger() const { return flags[IsInteger]; }
208 bool isFloating() const { return flags[IsFloating]; }
209
210 bool isControl() const { return flags[IsControl]; }
211 bool isCall() const { return flags[IsCall]; }
212 bool isReturn() const { return flags[IsReturn]; }
213 bool isDirectCtrl() const { return flags[IsDirectControl]; }
214 bool isIndirectCtrl() const { return flags[IsIndirectControl]; }
215 bool isCondCtrl() const { return flags[IsCondControl]; }
216 bool isUncondCtrl() const { return flags[IsUncondControl]; }
217
218 bool isThreadSync() const { return flags[IsThreadSync]; }
219 bool isSerializing() const { return flags[IsSerializing] ||
220 flags[IsSerializeBefore] ||
221 flags[IsSerializeAfter]; }
222 bool isSerializeBefore() const { return flags[IsSerializeBefore]; }
223 bool isSerializeAfter() const { return flags[IsSerializeAfter]; }
224 bool isMemBarrier() const { return flags[IsMemBarrier]; }
225 bool isWriteBarrier() const { return flags[IsWriteBarrier]; }
226 bool isNonSpeculative() const { return flags[IsNonSpeculative]; }
227 bool isQuiesce() const { return flags[IsQuiesce]; }
228 bool isIprAccess() const { return flags[IsIprAccess]; }
229 bool isUnverifiable() const { return flags[IsUnverifiable]; }
230 //@}
231
232 /// Operation class. Used to select appropriate function unit in issue.
233 OpClass opClass() const { return _opClass; }
234};
235
236
237// forward declaration
238class StaticInstPtr;
239
240/**
241 * Generic yet ISA-dependent static instruction class.
242 *
243 * This class builds on StaticInstBase, defining fields and interfaces
244 * that are generic across all ISAs but that differ in details
245 * according to the specific ISA being used.
246 */
247class StaticInst : public StaticInstBase
248{
249 public:
250
251 /// Binary machine instruction type.
252 typedef TheISA::MachInst MachInst;
253 /// Binary extended machine instruction type.
254 typedef TheISA::ExtMachInst ExtMachInst;
255 /// Logical register index type.
256 typedef TheISA::RegIndex RegIndex;
257
258 enum {
259 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, //< Max source regs
260 MaxInstDestRegs = TheISA::MaxInstDestRegs, //< Max dest regs
261 };
262
263
264 /// Return logical index (architectural reg num) of i'th destination reg.
265 /// Only the entries from 0 through numDestRegs()-1 are valid.
266 RegIndex destRegIdx(int i) const { return _destRegIdx[i]; }
267
268 /// Return logical index (architectural reg num) of i'th source reg.
269 /// Only the entries from 0 through numSrcRegs()-1 are valid.
270 RegIndex srcRegIdx(int i) const { return _srcRegIdx[i]; }
271
272 /// Pointer to a statically allocated "null" instruction object.
273 /// Used to give eaCompInst() and memAccInst() something to return
274 /// when called on non-memory instructions.
275 static StaticInstPtr nullStaticInstPtr;
276
277 /**
278 * Memory references only: returns "fake" instruction representing
279 * the effective address part of the memory operation. Used to
280 * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
281 * just the EA computation.
282 */
283 virtual const
284 StaticInstPtr &eaCompInst() const { return nullStaticInstPtr; }
285
286 /**
287 * Memory references only: returns "fake" instruction representing
288 * the memory access part of the memory operation. Used to
289 * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
290 * just the memory access (not the EA computation).
291 */
292 virtual const
293 StaticInstPtr &memAccInst() const { return nullStaticInstPtr; }
294
295 /// The binary machine instruction.
296 const ExtMachInst machInst;
297
298 protected:
299
300 /// See destRegIdx().
301 RegIndex _destRegIdx[MaxInstDestRegs];
302 /// See srcRegIdx().
303 RegIndex _srcRegIdx[MaxInstSrcRegs];
304
305 /**
306 * Base mnemonic (e.g., "add"). Used by generateDisassembly()
307 * methods. Also useful to readily identify instructions from
308 * within the debugger when #cachedDisassembly has not been
309 * initialized.
310 */
311 const char *mnemonic;
312
313 /**
314 * String representation of disassembly (lazily evaluated via
315 * disassemble()).
316 */
317 mutable std::string *cachedDisassembly;
318
319 /**
320 * Internal function to generate disassembly string.
321 */
322 virtual std::string
323 generateDisassembly(Addr pc, const SymbolTable *symtab) const = 0;
324
325 /// Constructor.
326 StaticInst(const char *_mnemonic, ExtMachInst _machInst, OpClass __opClass)
327 : StaticInstBase(__opClass),
328 machInst(_machInst), mnemonic(_mnemonic), cachedDisassembly(0)
329 {
330 }
331
332 public:
333
334 virtual ~StaticInst()
335 {
336 if (cachedDisassembly)
337 delete cachedDisassembly;
338 }
339
340/**
341 * The execute() signatures are auto-generated by scons based on the
342 * set of CPU models we are compiling in today.
343 */
344#include "cpu/static_inst_exec_sigs.hh"
345
346 /**
347 * Return the target address for a PC-relative branch.
348 * Invalid if not a PC-relative branch (i.e. isDirectCtrl()
349 * should be true).
350 */
351 virtual Addr branchTarget(Addr branchPC) const
352 {
353 panic("StaticInst::branchTarget() called on instruction "
354 "that is not a PC-relative branch.");
355 }
356
357 /**
358 * Return the target address for an indirect branch (jump). The
359 * register value is read from the supplied thread context, so
360 * the result is valid only if the thread context is about to
361 * execute the branch in question. Invalid if not an indirect
362 * branch (i.e. isIndirectCtrl() should be true).
363 */
364 virtual Addr branchTarget(ThreadContext *tc) const
365 {
366 panic("StaticInst::branchTarget() called on instruction "
367 "that is not an indirect branch.");
368 }
369
370 /**
371 * Return true if the instruction is a control transfer, and if so,
372 * return the target address as well.
373 */
374 bool hasBranchTarget(Addr pc, ThreadContext *tc, Addr &tgt) const;
375
376 /**
377 * Return string representation of disassembled instruction.
378 * The default version of this function will call the internal
379 * virtual generateDisassembly() function to get the string,
380 * then cache it in #cachedDisassembly. If the disassembly
381 * should not be cached, this function should be overridden directly.
382 */
383 virtual const std::string &disassemble(Addr pc,
384 const SymbolTable *symtab = 0) const
385 {
386 if (!cachedDisassembly)
387 cachedDisassembly =
388 new std::string(generateDisassembly(pc, symtab));
389
390 return *cachedDisassembly;
391 }
392
393 /// Decoded instruction cache type.
394 /// For now we're using a generic hash_map; this seems to work
395 /// pretty well.
396 typedef m5::hash_map<ExtMachInst, StaticInstPtr> DecodeCache;
397
398 /// A cache of decoded instruction objects.
399 static DecodeCache decodeCache;
400
401 /**
402 * Dump some basic stats on the decode cache hash map.
403 * Only gets called if DECODE_CACHE_HASH_STATS is defined.
404 */
405 static void dumpDecodeCacheStats();
406
407 /// Decode a machine instruction.
408 /// @param mach_inst The binary instruction to decode.
409 /// @retval A pointer to the corresponding StaticInst object.
410 //This is defined as inline below.
411 static StaticInstPtr decode(ExtMachInst mach_inst);
412
413 /// Return opcode of machine instruction
414 uint32_t getOpcode() { return bits(machInst, 31, 26);}
415
416 /// Return name of machine instruction
417 std::string getName() { return mnemonic; }
418};
419
420typedef RefCountingPtr<StaticInstBase> StaticInstBasePtr;
421
422/// Reference-counted pointer to a StaticInst object.
423/// This type should be used instead of "StaticInst *" so that
424/// StaticInst objects can be properly reference-counted.
425class StaticInstPtr : public RefCountingPtr<StaticInst>
426{
427 public:
428 /// Constructor.
429 StaticInstPtr()
430 : RefCountingPtr<StaticInst>()
431 {
432 }
433
434 /// Conversion from "StaticInst *".
435 StaticInstPtr(StaticInst *p)
436 : RefCountingPtr<StaticInst>(p)
437 {
438 }
439
440 /// Copy constructor.
441 StaticInstPtr(const StaticInstPtr &r)
442 : RefCountingPtr<StaticInst>(r)
443 {
444 }
445
446 /// Construct directly from machine instruction.
447 /// Calls StaticInst::decode().
448 StaticInstPtr(TheISA::ExtMachInst mach_inst)
449 : RefCountingPtr<StaticInst>(StaticInst::decode(mach_inst))
450 {
451 }
452
453 /// Convert to pointer to StaticInstBase class.
454 operator const StaticInstBasePtr()
455 {
456 return this->get();
457 }
458};
459
460inline StaticInstPtr
461StaticInst::decode(StaticInst::ExtMachInst mach_inst)
462{
463#ifdef DECODE_CACHE_HASH_STATS
464 // Simple stats on decode hash_map. Turns out the default
465 // hash function is as good as anything I could come up with.
466 const int dump_every_n = 10000000;
467 static int decodes_til_dump = dump_every_n;
468
469 if (--decodes_til_dump == 0) {
470 dumpDecodeCacheStats();
471 decodes_til_dump = dump_every_n;
472 }
473#endif
474
475 DecodeCache::iterator iter = decodeCache.find(mach_inst);
476 if (iter != decodeCache.end()) {
477 return iter->second;
478 }
479
480 StaticInstPtr si = TheISA::decodeInst(mach_inst);
481 decodeCache[mach_inst] = si;
482 return si;
483}
484
485#endif // __CPU_STATIC_INST_HH__