static_inst.hh (2670:9107b8bd08cd) static_inst.hh (2680:246e7104f744)
1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#ifndef __CPU_STATIC_INST_HH__
32#define __CPU_STATIC_INST_HH__
33
34#include <bitset>
35#include <string>
36
37#include "base/hashmap.hh"
38#include "base/misc.hh"
39#include "base/refcnt.hh"
40#include "cpu/op_class.hh"
41#include "sim/host.hh"
42#include "arch/isa_traits.hh"
43
44// forward declarations
45struct AlphaSimpleImpl;
46struct OzoneImpl;
47struct SimpleImpl;
1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#ifndef __CPU_STATIC_INST_HH__
32#define __CPU_STATIC_INST_HH__
33
34#include <bitset>
35#include <string>
36
37#include "base/hashmap.hh"
38#include "base/misc.hh"
39#include "base/refcnt.hh"
40#include "cpu/op_class.hh"
41#include "sim/host.hh"
42#include "arch/isa_traits.hh"
43
44// forward declarations
45struct AlphaSimpleImpl;
46struct OzoneImpl;
47struct SimpleImpl;
48class ExecContext;
48class ThreadContext;
49class DynInst;
50class Packet;
51
52template <class Impl>
53class AlphaDynInst;
54
55template <class Impl>
56class OzoneDynInst;
57
58class CheckerCPU;
59class FastCPU;
60class AtomicSimpleCPU;
61class TimingSimpleCPU;
62class InorderCPU;
63class SymbolTable;
64
65namespace Trace {
66 class InstRecord;
67}
68
69/**
70 * Base, ISA-independent static instruction class.
71 *
72 * The main component of this class is the vector of flags and the
73 * associated methods for reading them. Any object that can rely
74 * solely on these flags can process instructions without being
75 * recompiled for multiple ISAs.
76 */
77class StaticInstBase : public RefCounted
78{
79 protected:
80
81 /// Set of boolean static instruction properties.
82 ///
83 /// Notes:
84 /// - The IsInteger and IsFloating flags are based on the class of
85 /// registers accessed by the instruction. Although most
86 /// instructions will have exactly one of these two flags set, it
87 /// is possible for an instruction to have neither (e.g., direct
88 /// unconditional branches, memory barriers) or both (e.g., an
89 /// FP/int conversion).
90 /// - If IsMemRef is set, then exactly one of IsLoad or IsStore
91 /// will be set.
92 /// - If IsControl is set, then exactly one of IsDirectControl or
93 /// IsIndirect Control will be set, and exactly one of
94 /// IsCondControl or IsUncondControl will be set.
95 /// - IsSerializing, IsMemBarrier, and IsWriteBarrier are
96 /// implemented as flags since in the current model there's no
97 /// other way for instructions to inject behavior into the
98 /// pipeline outside of fetch. Once we go to an exec-in-exec CPU
99 /// model we should be able to get rid of these flags and
100 /// implement this behavior via the execute() methods.
101 ///
102 enum Flags {
103 IsNop, ///< Is a no-op (no effect at all).
104
105 IsInteger, ///< References integer regs.
106 IsFloating, ///< References FP regs.
107
108 IsMemRef, ///< References memory (load, store, or prefetch).
109 IsLoad, ///< Reads from memory (load or prefetch).
110 IsStore, ///< Writes to memory.
111 IsStoreConditional, ///< Store conditional instruction.
112 IsInstPrefetch, ///< Instruction-cache prefetch.
113 IsDataPrefetch, ///< Data-cache prefetch.
114 IsCopy, ///< Fast Cache block copy
115
116 IsControl, ///< Control transfer instruction.
117 IsDirectControl, ///< PC relative control transfer.
118 IsIndirectControl, ///< Register indirect control transfer.
119 IsCondControl, ///< Conditional control transfer.
120 IsUncondControl, ///< Unconditional control transfer.
121 IsCall, ///< Subroutine call.
122 IsReturn, ///< Subroutine return.
123
124 IsCondDelaySlot,///< Conditional Delay-Slot Instruction
125
126 IsThreadSync, ///< Thread synchronization operation.
127
128 IsSerializing, ///< Serializes pipeline: won't execute until all
129 /// older instructions have committed.
130 IsSerializeBefore,
131 IsSerializeAfter,
132 IsMemBarrier, ///< Is a memory barrier
133 IsWriteBarrier, ///< Is a write barrier
134
135 IsNonSpeculative, ///< Should not be executed speculatively
136 IsQuiesce, ///< Is a quiesce instruction
137
138 IsIprAccess, ///< Accesses IPRs
139 IsUnverifiable, ///< Can't be verified by a checker
140
141 NumFlags
142 };
143
144 /// Flag values for this instruction.
145 std::bitset<NumFlags> flags;
146
147 /// See opClass().
148 OpClass _opClass;
149
150 /// See numSrcRegs().
151 int8_t _numSrcRegs;
152
153 /// See numDestRegs().
154 int8_t _numDestRegs;
155
156 /// The following are used to track physical register usage
157 /// for machines with separate int & FP reg files.
158 //@{
159 int8_t _numFPDestRegs;
160 int8_t _numIntDestRegs;
161 //@}
162
163 /// Constructor.
164 /// It's important to initialize everything here to a sane
165 /// default, since the decoder generally only overrides
166 /// the fields that are meaningful for the particular
167 /// instruction.
168 StaticInstBase(OpClass __opClass)
169 : _opClass(__opClass), _numSrcRegs(0), _numDestRegs(0),
170 _numFPDestRegs(0), _numIntDestRegs(0)
171 {
172 }
173
174 public:
175
176 /// @name Register information.
177 /// The sum of numFPDestRegs() and numIntDestRegs() equals
178 /// numDestRegs(). The former two functions are used to track
179 /// physical register usage for machines with separate int & FP
180 /// reg files.
181 //@{
182 /// Number of source registers.
183 int8_t numSrcRegs() const { return _numSrcRegs; }
184 /// Number of destination registers.
185 int8_t numDestRegs() const { return _numDestRegs; }
186 /// Number of floating-point destination regs.
187 int8_t numFPDestRegs() const { return _numFPDestRegs; }
188 /// Number of integer destination regs.
189 int8_t numIntDestRegs() const { return _numIntDestRegs; }
190 //@}
191
192 /// @name Flag accessors.
193 /// These functions are used to access the values of the various
194 /// instruction property flags. See StaticInstBase::Flags for descriptions
195 /// of the individual flags.
196 //@{
197
198 bool isNop() const { return flags[IsNop]; }
199
200 bool isMemRef() const { return flags[IsMemRef]; }
201 bool isLoad() const { return flags[IsLoad]; }
202 bool isStore() const { return flags[IsStore]; }
203 bool isStoreConditional() const { return flags[IsStoreConditional]; }
204 bool isInstPrefetch() const { return flags[IsInstPrefetch]; }
205 bool isDataPrefetch() const { return flags[IsDataPrefetch]; }
206 bool isCopy() const { return flags[IsCopy];}
207
208 bool isInteger() const { return flags[IsInteger]; }
209 bool isFloating() const { return flags[IsFloating]; }
210
211 bool isControl() const { return flags[IsControl]; }
212 bool isCall() const { return flags[IsCall]; }
213 bool isReturn() const { return flags[IsReturn]; }
214 bool isDirectCtrl() const { return flags[IsDirectControl]; }
215 bool isIndirectCtrl() const { return flags[IsIndirectControl]; }
216 bool isCondCtrl() const { return flags[IsCondControl]; }
217 bool isUncondCtrl() const { return flags[IsUncondControl]; }
218
219 bool isThreadSync() const { return flags[IsThreadSync]; }
220 bool isSerializing() const { return flags[IsSerializing] ||
221 flags[IsSerializeBefore] ||
222 flags[IsSerializeAfter]; }
223 bool isSerializeBefore() const { return flags[IsSerializeBefore]; }
224 bool isSerializeAfter() const { return flags[IsSerializeAfter]; }
225 bool isMemBarrier() const { return flags[IsMemBarrier]; }
226 bool isWriteBarrier() const { return flags[IsWriteBarrier]; }
227 bool isNonSpeculative() const { return flags[IsNonSpeculative]; }
228 bool isQuiesce() const { return flags[IsQuiesce]; }
229 bool isIprAccess() const { return flags[IsIprAccess]; }
230 bool isUnverifiable() const { return flags[IsUnverifiable]; }
231 //@}
232
233 /// Operation class. Used to select appropriate function unit in issue.
234 OpClass opClass() const { return _opClass; }
235};
236
237
238// forward declaration
239class StaticInstPtr;
240
241/**
242 * Generic yet ISA-dependent static instruction class.
243 *
244 * This class builds on StaticInstBase, defining fields and interfaces
245 * that are generic across all ISAs but that differ in details
246 * according to the specific ISA being used.
247 */
248class StaticInst : public StaticInstBase
249{
250 public:
251
252 /// Binary machine instruction type.
253 typedef TheISA::MachInst MachInst;
254 /// Binary extended machine instruction type.
255 typedef TheISA::ExtMachInst ExtMachInst;
256 /// Logical register index type.
257 typedef TheISA::RegIndex RegIndex;
258
259 enum {
260 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, //< Max source regs
261 MaxInstDestRegs = TheISA::MaxInstDestRegs, //< Max dest regs
262 };
263
264
265 /// Return logical index (architectural reg num) of i'th destination reg.
266 /// Only the entries from 0 through numDestRegs()-1 are valid.
267 RegIndex destRegIdx(int i) const { return _destRegIdx[i]; }
268
269 /// Return logical index (architectural reg num) of i'th source reg.
270 /// Only the entries from 0 through numSrcRegs()-1 are valid.
271 RegIndex srcRegIdx(int i) const { return _srcRegIdx[i]; }
272
273 /// Pointer to a statically allocated "null" instruction object.
274 /// Used to give eaCompInst() and memAccInst() something to return
275 /// when called on non-memory instructions.
276 static StaticInstPtr nullStaticInstPtr;
277
278 /**
279 * Memory references only: returns "fake" instruction representing
280 * the effective address part of the memory operation. Used to
281 * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
282 * just the EA computation.
283 */
284 virtual const
285 StaticInstPtr &eaCompInst() const { return nullStaticInstPtr; }
286
287 /**
288 * Memory references only: returns "fake" instruction representing
289 * the memory access part of the memory operation. Used to
290 * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
291 * just the memory access (not the EA computation).
292 */
293 virtual const
294 StaticInstPtr &memAccInst() const { return nullStaticInstPtr; }
295
296 /// The binary machine instruction.
297 const ExtMachInst machInst;
298
299 protected:
300
301 /// See destRegIdx().
302 RegIndex _destRegIdx[MaxInstDestRegs];
303 /// See srcRegIdx().
304 RegIndex _srcRegIdx[MaxInstSrcRegs];
305
306 /**
307 * Base mnemonic (e.g., "add"). Used by generateDisassembly()
308 * methods. Also useful to readily identify instructions from
309 * within the debugger when #cachedDisassembly has not been
310 * initialized.
311 */
312 const char *mnemonic;
313
314 /**
315 * String representation of disassembly (lazily evaluated via
316 * disassemble()).
317 */
318 mutable std::string *cachedDisassembly;
319
320 /**
321 * Internal function to generate disassembly string.
322 */
323 virtual std::string
324 generateDisassembly(Addr pc, const SymbolTable *symtab) const = 0;
325
326 /// Constructor.
327 StaticInst(const char *_mnemonic, ExtMachInst _machInst, OpClass __opClass)
328 : StaticInstBase(__opClass),
329 machInst(_machInst), mnemonic(_mnemonic), cachedDisassembly(0)
330 {
331 }
332
333 public:
334
335 virtual ~StaticInst()
336 {
337 if (cachedDisassembly)
338 delete cachedDisassembly;
339 }
340
341/**
342 * The execute() signatures are auto-generated by scons based on the
343 * set of CPU models we are compiling in today.
344 */
345#include "cpu/static_inst_exec_sigs.hh"
346
347 /**
348 * Return the target address for a PC-relative branch.
349 * Invalid if not a PC-relative branch (i.e. isDirectCtrl()
350 * should be true).
351 */
352 virtual Addr branchTarget(Addr branchPC) const
353 {
354 panic("StaticInst::branchTarget() called on instruction "
355 "that is not a PC-relative branch.");
356 }
357
358 /**
359 * Return the target address for an indirect branch (jump). The
49class DynInst;
50class Packet;
51
52template <class Impl>
53class AlphaDynInst;
54
55template <class Impl>
56class OzoneDynInst;
57
58class CheckerCPU;
59class FastCPU;
60class AtomicSimpleCPU;
61class TimingSimpleCPU;
62class InorderCPU;
63class SymbolTable;
64
65namespace Trace {
66 class InstRecord;
67}
68
69/**
70 * Base, ISA-independent static instruction class.
71 *
72 * The main component of this class is the vector of flags and the
73 * associated methods for reading them. Any object that can rely
74 * solely on these flags can process instructions without being
75 * recompiled for multiple ISAs.
76 */
77class StaticInstBase : public RefCounted
78{
79 protected:
80
81 /// Set of boolean static instruction properties.
82 ///
83 /// Notes:
84 /// - The IsInteger and IsFloating flags are based on the class of
85 /// registers accessed by the instruction. Although most
86 /// instructions will have exactly one of these two flags set, it
87 /// is possible for an instruction to have neither (e.g., direct
88 /// unconditional branches, memory barriers) or both (e.g., an
89 /// FP/int conversion).
90 /// - If IsMemRef is set, then exactly one of IsLoad or IsStore
91 /// will be set.
92 /// - If IsControl is set, then exactly one of IsDirectControl or
93 /// IsIndirect Control will be set, and exactly one of
94 /// IsCondControl or IsUncondControl will be set.
95 /// - IsSerializing, IsMemBarrier, and IsWriteBarrier are
96 /// implemented as flags since in the current model there's no
97 /// other way for instructions to inject behavior into the
98 /// pipeline outside of fetch. Once we go to an exec-in-exec CPU
99 /// model we should be able to get rid of these flags and
100 /// implement this behavior via the execute() methods.
101 ///
102 enum Flags {
103 IsNop, ///< Is a no-op (no effect at all).
104
105 IsInteger, ///< References integer regs.
106 IsFloating, ///< References FP regs.
107
108 IsMemRef, ///< References memory (load, store, or prefetch).
109 IsLoad, ///< Reads from memory (load or prefetch).
110 IsStore, ///< Writes to memory.
111 IsStoreConditional, ///< Store conditional instruction.
112 IsInstPrefetch, ///< Instruction-cache prefetch.
113 IsDataPrefetch, ///< Data-cache prefetch.
114 IsCopy, ///< Fast Cache block copy
115
116 IsControl, ///< Control transfer instruction.
117 IsDirectControl, ///< PC relative control transfer.
118 IsIndirectControl, ///< Register indirect control transfer.
119 IsCondControl, ///< Conditional control transfer.
120 IsUncondControl, ///< Unconditional control transfer.
121 IsCall, ///< Subroutine call.
122 IsReturn, ///< Subroutine return.
123
124 IsCondDelaySlot,///< Conditional Delay-Slot Instruction
125
126 IsThreadSync, ///< Thread synchronization operation.
127
128 IsSerializing, ///< Serializes pipeline: won't execute until all
129 /// older instructions have committed.
130 IsSerializeBefore,
131 IsSerializeAfter,
132 IsMemBarrier, ///< Is a memory barrier
133 IsWriteBarrier, ///< Is a write barrier
134
135 IsNonSpeculative, ///< Should not be executed speculatively
136 IsQuiesce, ///< Is a quiesce instruction
137
138 IsIprAccess, ///< Accesses IPRs
139 IsUnverifiable, ///< Can't be verified by a checker
140
141 NumFlags
142 };
143
144 /// Flag values for this instruction.
145 std::bitset<NumFlags> flags;
146
147 /// See opClass().
148 OpClass _opClass;
149
150 /// See numSrcRegs().
151 int8_t _numSrcRegs;
152
153 /// See numDestRegs().
154 int8_t _numDestRegs;
155
156 /// The following are used to track physical register usage
157 /// for machines with separate int & FP reg files.
158 //@{
159 int8_t _numFPDestRegs;
160 int8_t _numIntDestRegs;
161 //@}
162
163 /// Constructor.
164 /// It's important to initialize everything here to a sane
165 /// default, since the decoder generally only overrides
166 /// the fields that are meaningful for the particular
167 /// instruction.
168 StaticInstBase(OpClass __opClass)
169 : _opClass(__opClass), _numSrcRegs(0), _numDestRegs(0),
170 _numFPDestRegs(0), _numIntDestRegs(0)
171 {
172 }
173
174 public:
175
176 /// @name Register information.
177 /// The sum of numFPDestRegs() and numIntDestRegs() equals
178 /// numDestRegs(). The former two functions are used to track
179 /// physical register usage for machines with separate int & FP
180 /// reg files.
181 //@{
182 /// Number of source registers.
183 int8_t numSrcRegs() const { return _numSrcRegs; }
184 /// Number of destination registers.
185 int8_t numDestRegs() const { return _numDestRegs; }
186 /// Number of floating-point destination regs.
187 int8_t numFPDestRegs() const { return _numFPDestRegs; }
188 /// Number of integer destination regs.
189 int8_t numIntDestRegs() const { return _numIntDestRegs; }
190 //@}
191
192 /// @name Flag accessors.
193 /// These functions are used to access the values of the various
194 /// instruction property flags. See StaticInstBase::Flags for descriptions
195 /// of the individual flags.
196 //@{
197
198 bool isNop() const { return flags[IsNop]; }
199
200 bool isMemRef() const { return flags[IsMemRef]; }
201 bool isLoad() const { return flags[IsLoad]; }
202 bool isStore() const { return flags[IsStore]; }
203 bool isStoreConditional() const { return flags[IsStoreConditional]; }
204 bool isInstPrefetch() const { return flags[IsInstPrefetch]; }
205 bool isDataPrefetch() const { return flags[IsDataPrefetch]; }
206 bool isCopy() const { return flags[IsCopy];}
207
208 bool isInteger() const { return flags[IsInteger]; }
209 bool isFloating() const { return flags[IsFloating]; }
210
211 bool isControl() const { return flags[IsControl]; }
212 bool isCall() const { return flags[IsCall]; }
213 bool isReturn() const { return flags[IsReturn]; }
214 bool isDirectCtrl() const { return flags[IsDirectControl]; }
215 bool isIndirectCtrl() const { return flags[IsIndirectControl]; }
216 bool isCondCtrl() const { return flags[IsCondControl]; }
217 bool isUncondCtrl() const { return flags[IsUncondControl]; }
218
219 bool isThreadSync() const { return flags[IsThreadSync]; }
220 bool isSerializing() const { return flags[IsSerializing] ||
221 flags[IsSerializeBefore] ||
222 flags[IsSerializeAfter]; }
223 bool isSerializeBefore() const { return flags[IsSerializeBefore]; }
224 bool isSerializeAfter() const { return flags[IsSerializeAfter]; }
225 bool isMemBarrier() const { return flags[IsMemBarrier]; }
226 bool isWriteBarrier() const { return flags[IsWriteBarrier]; }
227 bool isNonSpeculative() const { return flags[IsNonSpeculative]; }
228 bool isQuiesce() const { return flags[IsQuiesce]; }
229 bool isIprAccess() const { return flags[IsIprAccess]; }
230 bool isUnverifiable() const { return flags[IsUnverifiable]; }
231 //@}
232
233 /// Operation class. Used to select appropriate function unit in issue.
234 OpClass opClass() const { return _opClass; }
235};
236
237
238// forward declaration
239class StaticInstPtr;
240
241/**
242 * Generic yet ISA-dependent static instruction class.
243 *
244 * This class builds on StaticInstBase, defining fields and interfaces
245 * that are generic across all ISAs but that differ in details
246 * according to the specific ISA being used.
247 */
248class StaticInst : public StaticInstBase
249{
250 public:
251
252 /// Binary machine instruction type.
253 typedef TheISA::MachInst MachInst;
254 /// Binary extended machine instruction type.
255 typedef TheISA::ExtMachInst ExtMachInst;
256 /// Logical register index type.
257 typedef TheISA::RegIndex RegIndex;
258
259 enum {
260 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, //< Max source regs
261 MaxInstDestRegs = TheISA::MaxInstDestRegs, //< Max dest regs
262 };
263
264
265 /// Return logical index (architectural reg num) of i'th destination reg.
266 /// Only the entries from 0 through numDestRegs()-1 are valid.
267 RegIndex destRegIdx(int i) const { return _destRegIdx[i]; }
268
269 /// Return logical index (architectural reg num) of i'th source reg.
270 /// Only the entries from 0 through numSrcRegs()-1 are valid.
271 RegIndex srcRegIdx(int i) const { return _srcRegIdx[i]; }
272
273 /// Pointer to a statically allocated "null" instruction object.
274 /// Used to give eaCompInst() and memAccInst() something to return
275 /// when called on non-memory instructions.
276 static StaticInstPtr nullStaticInstPtr;
277
278 /**
279 * Memory references only: returns "fake" instruction representing
280 * the effective address part of the memory operation. Used to
281 * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
282 * just the EA computation.
283 */
284 virtual const
285 StaticInstPtr &eaCompInst() const { return nullStaticInstPtr; }
286
287 /**
288 * Memory references only: returns "fake" instruction representing
289 * the memory access part of the memory operation. Used to
290 * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
291 * just the memory access (not the EA computation).
292 */
293 virtual const
294 StaticInstPtr &memAccInst() const { return nullStaticInstPtr; }
295
296 /// The binary machine instruction.
297 const ExtMachInst machInst;
298
299 protected:
300
301 /// See destRegIdx().
302 RegIndex _destRegIdx[MaxInstDestRegs];
303 /// See srcRegIdx().
304 RegIndex _srcRegIdx[MaxInstSrcRegs];
305
306 /**
307 * Base mnemonic (e.g., "add"). Used by generateDisassembly()
308 * methods. Also useful to readily identify instructions from
309 * within the debugger when #cachedDisassembly has not been
310 * initialized.
311 */
312 const char *mnemonic;
313
314 /**
315 * String representation of disassembly (lazily evaluated via
316 * disassemble()).
317 */
318 mutable std::string *cachedDisassembly;
319
320 /**
321 * Internal function to generate disassembly string.
322 */
323 virtual std::string
324 generateDisassembly(Addr pc, const SymbolTable *symtab) const = 0;
325
326 /// Constructor.
327 StaticInst(const char *_mnemonic, ExtMachInst _machInst, OpClass __opClass)
328 : StaticInstBase(__opClass),
329 machInst(_machInst), mnemonic(_mnemonic), cachedDisassembly(0)
330 {
331 }
332
333 public:
334
335 virtual ~StaticInst()
336 {
337 if (cachedDisassembly)
338 delete cachedDisassembly;
339 }
340
341/**
342 * The execute() signatures are auto-generated by scons based on the
343 * set of CPU models we are compiling in today.
344 */
345#include "cpu/static_inst_exec_sigs.hh"
346
347 /**
348 * Return the target address for a PC-relative branch.
349 * Invalid if not a PC-relative branch (i.e. isDirectCtrl()
350 * should be true).
351 */
352 virtual Addr branchTarget(Addr branchPC) const
353 {
354 panic("StaticInst::branchTarget() called on instruction "
355 "that is not a PC-relative branch.");
356 }
357
358 /**
359 * Return the target address for an indirect branch (jump). The
360 * register value is read from the supplied execution context, so
361 * the result is valid only if the execution context is about to
360 * register value is read from the supplied thread context, so
361 * the result is valid only if the thread context is about to
362 * execute the branch in question. Invalid if not an indirect
363 * branch (i.e. isIndirectCtrl() should be true).
364 */
362 * execute the branch in question. Invalid if not an indirect
363 * branch (i.e. isIndirectCtrl() should be true).
364 */
365 virtual Addr branchTarget(ExecContext *xc) const
365 virtual Addr branchTarget(ThreadContext *tc) const
366 {
367 panic("StaticInst::branchTarget() called on instruction "
368 "that is not an indirect branch.");
369 }
370
371 /**
372 * Return true if the instruction is a control transfer, and if so,
373 * return the target address as well.
374 */
366 {
367 panic("StaticInst::branchTarget() called on instruction "
368 "that is not an indirect branch.");
369 }
370
371 /**
372 * Return true if the instruction is a control transfer, and if so,
373 * return the target address as well.
374 */
375 bool hasBranchTarget(Addr pc, ExecContext *xc, Addr &tgt) const;
375 bool hasBranchTarget(Addr pc, ThreadContext *tc, Addr &tgt) const;
376
377 /**
378 * Return string representation of disassembled instruction.
379 * The default version of this function will call the internal
380 * virtual generateDisassembly() function to get the string,
381 * then cache it in #cachedDisassembly. If the disassembly
382 * should not be cached, this function should be overridden directly.
383 */
384 virtual const std::string &disassemble(Addr pc,
385 const SymbolTable *symtab = 0) const
386 {
387 if (!cachedDisassembly)
388 cachedDisassembly =
389 new std::string(generateDisassembly(pc, symtab));
390
391 return *cachedDisassembly;
392 }
393
394 /// Decoded instruction cache type.
395 /// For now we're using a generic hash_map; this seems to work
396 /// pretty well.
397 typedef m5::hash_map<ExtMachInst, StaticInstPtr> DecodeCache;
398
399 /// A cache of decoded instruction objects.
400 static DecodeCache decodeCache;
401
402 /**
403 * Dump some basic stats on the decode cache hash map.
404 * Only gets called if DECODE_CACHE_HASH_STATS is defined.
405 */
406 static void dumpDecodeCacheStats();
407
408 /// Decode a machine instruction.
409 /// @param mach_inst The binary instruction to decode.
410 /// @retval A pointer to the corresponding StaticInst object.
411 //This is defined as inline below.
412 static StaticInstPtr decode(ExtMachInst mach_inst);
413
414 //MIPS Decoder Debug Functions
415 int getOpcode() { return (machInst & 0xFC000000) >> 26 ; }//31..26
416 int getRs() { return (machInst & 0x03E00000) >> 21; } //25...21
417 int getRt() { return (machInst & 0x001F0000) >> 16; } //20...16
418 int getRd() { return (machInst & 0x0000F800) >> 11; } //15...11
419 int getImm() { return (machInst & 0x0000FFFF); } //15...0
420 int getFunction(){ return (machInst & 0x0000003F); }//5...0
421 int getBranch(){ return (machInst & 0x0000FFFF); }//15...0
422 int getJump(){ return (machInst & 0x03FFFFFF); }//5...0
423 int getHint(){ return (machInst & 0x000007C0) >> 6; } //10...6
424 std::string getName() { return mnemonic; }
425};
426
427typedef RefCountingPtr<StaticInstBase> StaticInstBasePtr;
428
429/// Reference-counted pointer to a StaticInst object.
430/// This type should be used instead of "StaticInst *" so that
431/// StaticInst objects can be properly reference-counted.
432class StaticInstPtr : public RefCountingPtr<StaticInst>
433{
434 public:
435 /// Constructor.
436 StaticInstPtr()
437 : RefCountingPtr<StaticInst>()
438 {
439 }
440
441 /// Conversion from "StaticInst *".
442 StaticInstPtr(StaticInst *p)
443 : RefCountingPtr<StaticInst>(p)
444 {
445 }
446
447 /// Copy constructor.
448 StaticInstPtr(const StaticInstPtr &r)
449 : RefCountingPtr<StaticInst>(r)
450 {
451 }
452
453 /// Construct directly from machine instruction.
454 /// Calls StaticInst::decode().
455 StaticInstPtr(TheISA::ExtMachInst mach_inst)
456 : RefCountingPtr<StaticInst>(StaticInst::decode(mach_inst))
457 {
458 }
459
460 /// Convert to pointer to StaticInstBase class.
461 operator const StaticInstBasePtr()
462 {
463 return this->get();
464 }
465};
466
467inline StaticInstPtr
468StaticInst::decode(StaticInst::ExtMachInst mach_inst)
469{
470#ifdef DECODE_CACHE_HASH_STATS
471 // Simple stats on decode hash_map. Turns out the default
472 // hash function is as good as anything I could come up with.
473 const int dump_every_n = 10000000;
474 static int decodes_til_dump = dump_every_n;
475
476 if (--decodes_til_dump == 0) {
477 dumpDecodeCacheStats();
478 decodes_til_dump = dump_every_n;
479 }
480#endif
481
482 DecodeCache::iterator iter = decodeCache.find(mach_inst);
483 if (iter != decodeCache.end()) {
484 return iter->second;
485 }
486
487 StaticInstPtr si = TheISA::decodeInst(mach_inst);
488 decodeCache[mach_inst] = si;
489 return si;
490}
491
492#endif // __CPU_STATIC_INST_HH__
376
377 /**
378 * Return string representation of disassembled instruction.
379 * The default version of this function will call the internal
380 * virtual generateDisassembly() function to get the string,
381 * then cache it in #cachedDisassembly. If the disassembly
382 * should not be cached, this function should be overridden directly.
383 */
384 virtual const std::string &disassemble(Addr pc,
385 const SymbolTable *symtab = 0) const
386 {
387 if (!cachedDisassembly)
388 cachedDisassembly =
389 new std::string(generateDisassembly(pc, symtab));
390
391 return *cachedDisassembly;
392 }
393
394 /// Decoded instruction cache type.
395 /// For now we're using a generic hash_map; this seems to work
396 /// pretty well.
397 typedef m5::hash_map<ExtMachInst, StaticInstPtr> DecodeCache;
398
399 /// A cache of decoded instruction objects.
400 static DecodeCache decodeCache;
401
402 /**
403 * Dump some basic stats on the decode cache hash map.
404 * Only gets called if DECODE_CACHE_HASH_STATS is defined.
405 */
406 static void dumpDecodeCacheStats();
407
408 /// Decode a machine instruction.
409 /// @param mach_inst The binary instruction to decode.
410 /// @retval A pointer to the corresponding StaticInst object.
411 //This is defined as inline below.
412 static StaticInstPtr decode(ExtMachInst mach_inst);
413
414 //MIPS Decoder Debug Functions
415 int getOpcode() { return (machInst & 0xFC000000) >> 26 ; }//31..26
416 int getRs() { return (machInst & 0x03E00000) >> 21; } //25...21
417 int getRt() { return (machInst & 0x001F0000) >> 16; } //20...16
418 int getRd() { return (machInst & 0x0000F800) >> 11; } //15...11
419 int getImm() { return (machInst & 0x0000FFFF); } //15...0
420 int getFunction(){ return (machInst & 0x0000003F); }//5...0
421 int getBranch(){ return (machInst & 0x0000FFFF); }//15...0
422 int getJump(){ return (machInst & 0x03FFFFFF); }//5...0
423 int getHint(){ return (machInst & 0x000007C0) >> 6; } //10...6
424 std::string getName() { return mnemonic; }
425};
426
427typedef RefCountingPtr<StaticInstBase> StaticInstBasePtr;
428
429/// Reference-counted pointer to a StaticInst object.
430/// This type should be used instead of "StaticInst *" so that
431/// StaticInst objects can be properly reference-counted.
432class StaticInstPtr : public RefCountingPtr<StaticInst>
433{
434 public:
435 /// Constructor.
436 StaticInstPtr()
437 : RefCountingPtr<StaticInst>()
438 {
439 }
440
441 /// Conversion from "StaticInst *".
442 StaticInstPtr(StaticInst *p)
443 : RefCountingPtr<StaticInst>(p)
444 {
445 }
446
447 /// Copy constructor.
448 StaticInstPtr(const StaticInstPtr &r)
449 : RefCountingPtr<StaticInst>(r)
450 {
451 }
452
453 /// Construct directly from machine instruction.
454 /// Calls StaticInst::decode().
455 StaticInstPtr(TheISA::ExtMachInst mach_inst)
456 : RefCountingPtr<StaticInst>(StaticInst::decode(mach_inst))
457 {
458 }
459
460 /// Convert to pointer to StaticInstBase class.
461 operator const StaticInstBasePtr()
462 {
463 return this->get();
464 }
465};
466
467inline StaticInstPtr
468StaticInst::decode(StaticInst::ExtMachInst mach_inst)
469{
470#ifdef DECODE_CACHE_HASH_STATS
471 // Simple stats on decode hash_map. Turns out the default
472 // hash function is as good as anything I could come up with.
473 const int dump_every_n = 10000000;
474 static int decodes_til_dump = dump_every_n;
475
476 if (--decodes_til_dump == 0) {
477 dumpDecodeCacheStats();
478 decodes_til_dump = dump_every_n;
479 }
480#endif
481
482 DecodeCache::iterator iter = decodeCache.find(mach_inst);
483 if (iter != decodeCache.end()) {
484 return iter->second;
485 }
486
487 StaticInstPtr si = TheISA::decodeInst(mach_inst);
488 decodeCache[mach_inst] = si;
489 return si;
490}
491
492#endif // __CPU_STATIC_INST_HH__