simple_thread.hh (6221:58a3c04e6344) simple_thread.hh (6313:95f69a436c82)
1/*
2 * Copyright (c) 2001-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 * Nathan Binkert
30 */
31
32#ifndef __CPU_SIMPLE_THREAD_HH__
33#define __CPU_SIMPLE_THREAD_HH__
34
1/*
2 * Copyright (c) 2001-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 * Nathan Binkert
30 */
31
32#ifndef __CPU_SIMPLE_THREAD_HH__
33#define __CPU_SIMPLE_THREAD_HH__
34
35#include "arch/isa.hh"
35#include "arch/isa_traits.hh"
36#include "arch/regfile.hh"
37#include "arch/tlb.hh"
38#include "base/types.hh"
39#include "config/full_system.hh"
40#include "cpu/thread_context.hh"
41#include "cpu/thread_state.hh"
42#include "mem/request.hh"
43#include "sim/byteswap.hh"
44#include "sim/eventq.hh"
45#include "sim/serialize.hh"
46
47class BaseCPU;
48
49#if FULL_SYSTEM
50
51#include "sim/system.hh"
52
53class FunctionProfile;
54class ProfileNode;
55class FunctionalPort;
56class PhysicalPort;
57
58namespace TheISA {
59 namespace Kernel {
60 class Statistics;
61 };
62};
63
64#else // !FULL_SYSTEM
65
66#include "sim/process.hh"
67#include "mem/page_table.hh"
68class TranslatingPort;
69
70#endif // FULL_SYSTEM
71
72/**
73 * The SimpleThread object provides a combination of the ThreadState
74 * object and the ThreadContext interface. It implements the
75 * ThreadContext interface so that a ProxyThreadContext class can be
76 * made using SimpleThread as the template parameter (see
77 * thread_context.hh). It adds to the ThreadState object by adding all
78 * the objects needed for simple functional execution, including a
79 * simple architectural register file, and pointers to the ITB and DTB
80 * in full system mode. For CPU models that do not need more advanced
81 * ways to hold state (i.e. a separate physical register file, or
82 * separate fetch and commit PC's), this SimpleThread class provides
83 * all the necessary state for full architecture-level functional
84 * simulation. See the AtomicSimpleCPU or TimingSimpleCPU for
85 * examples.
86 */
87
88class SimpleThread : public ThreadState
89{
90 protected:
91 typedef TheISA::RegFile RegFile;
92 typedef TheISA::MachInst MachInst;
36#include "arch/isa_traits.hh"
37#include "arch/regfile.hh"
38#include "arch/tlb.hh"
39#include "base/types.hh"
40#include "config/full_system.hh"
41#include "cpu/thread_context.hh"
42#include "cpu/thread_state.hh"
43#include "mem/request.hh"
44#include "sim/byteswap.hh"
45#include "sim/eventq.hh"
46#include "sim/serialize.hh"
47
48class BaseCPU;
49
50#if FULL_SYSTEM
51
52#include "sim/system.hh"
53
54class FunctionProfile;
55class ProfileNode;
56class FunctionalPort;
57class PhysicalPort;
58
59namespace TheISA {
60 namespace Kernel {
61 class Statistics;
62 };
63};
64
65#else // !FULL_SYSTEM
66
67#include "sim/process.hh"
68#include "mem/page_table.hh"
69class TranslatingPort;
70
71#endif // FULL_SYSTEM
72
73/**
74 * The SimpleThread object provides a combination of the ThreadState
75 * object and the ThreadContext interface. It implements the
76 * ThreadContext interface so that a ProxyThreadContext class can be
77 * made using SimpleThread as the template parameter (see
78 * thread_context.hh). It adds to the ThreadState object by adding all
79 * the objects needed for simple functional execution, including a
80 * simple architectural register file, and pointers to the ITB and DTB
81 * in full system mode. For CPU models that do not need more advanced
82 * ways to hold state (i.e. a separate physical register file, or
83 * separate fetch and commit PC's), this SimpleThread class provides
84 * all the necessary state for full architecture-level functional
85 * simulation. See the AtomicSimpleCPU or TimingSimpleCPU for
86 * examples.
87 */
88
89class SimpleThread : public ThreadState
90{
91 protected:
92 typedef TheISA::RegFile RegFile;
93 typedef TheISA::MachInst MachInst;
93 typedef TheISA::MiscRegFile MiscRegFile;
94 typedef TheISA::MiscReg MiscReg;
95 typedef TheISA::FloatReg FloatReg;
96 typedef TheISA::FloatRegBits FloatRegBits;
97 public:
98 typedef ThreadContext::Status Status;
99
100 protected:
101 RegFile regs; // correct-path register context
94 typedef TheISA::MiscReg MiscReg;
95 typedef TheISA::FloatReg FloatReg;
96 typedef TheISA::FloatRegBits FloatRegBits;
97 public:
98 typedef ThreadContext::Status Status;
99
100 protected:
101 RegFile regs; // correct-path register context
102 TheISA::ISA isa; // one "instance" of the current ISA.
102
103 public:
104 // pointer to CPU associated with this SimpleThread
105 BaseCPU *cpu;
106
107 ProxyThreadContext<SimpleThread> *tc;
108
109 System *system;
110
111 TheISA::TLB *itb;
112 TheISA::TLB *dtb;
113
114 // constructor: initialize SimpleThread from given process structure
115#if FULL_SYSTEM
116 SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
117 TheISA::TLB *_itb, TheISA::TLB *_dtb,
118 bool use_kernel_stats = true);
119#else
120 SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process,
121 TheISA::TLB *_itb, TheISA::TLB *_dtb, int _asid);
122#endif
123
124 SimpleThread();
125
126 virtual ~SimpleThread();
127
128 virtual void takeOverFrom(ThreadContext *oldContext);
129
130 void regStats(const std::string &name);
131
132 void copyTC(ThreadContext *context);
133
134 void copyState(ThreadContext *oldContext);
135
136 void serialize(std::ostream &os);
137 void unserialize(Checkpoint *cp, const std::string &section);
138
139 /***************************************************************
140 * SimpleThread functions to provide CPU with access to various
141 * state.
142 **************************************************************/
143
144 /** Returns the pointer to this SimpleThread's ThreadContext. Used
145 * when a ThreadContext must be passed to objects outside of the
146 * CPU.
147 */
148 ThreadContext *getTC() { return tc; }
149
150 void demapPage(Addr vaddr, uint64_t asn)
151 {
152 itb->demapPage(vaddr, asn);
153 dtb->demapPage(vaddr, asn);
154 }
155
156 void demapInstPage(Addr vaddr, uint64_t asn)
157 {
158 itb->demapPage(vaddr, asn);
159 }
160
161 void demapDataPage(Addr vaddr, uint64_t asn)
162 {
163 dtb->demapPage(vaddr, asn);
164 }
165
166#if FULL_SYSTEM
103
104 public:
105 // pointer to CPU associated with this SimpleThread
106 BaseCPU *cpu;
107
108 ProxyThreadContext<SimpleThread> *tc;
109
110 System *system;
111
112 TheISA::TLB *itb;
113 TheISA::TLB *dtb;
114
115 // constructor: initialize SimpleThread from given process structure
116#if FULL_SYSTEM
117 SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
118 TheISA::TLB *_itb, TheISA::TLB *_dtb,
119 bool use_kernel_stats = true);
120#else
121 SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process,
122 TheISA::TLB *_itb, TheISA::TLB *_dtb, int _asid);
123#endif
124
125 SimpleThread();
126
127 virtual ~SimpleThread();
128
129 virtual void takeOverFrom(ThreadContext *oldContext);
130
131 void regStats(const std::string &name);
132
133 void copyTC(ThreadContext *context);
134
135 void copyState(ThreadContext *oldContext);
136
137 void serialize(std::ostream &os);
138 void unserialize(Checkpoint *cp, const std::string &section);
139
140 /***************************************************************
141 * SimpleThread functions to provide CPU with access to various
142 * state.
143 **************************************************************/
144
145 /** Returns the pointer to this SimpleThread's ThreadContext. Used
146 * when a ThreadContext must be passed to objects outside of the
147 * CPU.
148 */
149 ThreadContext *getTC() { return tc; }
150
151 void demapPage(Addr vaddr, uint64_t asn)
152 {
153 itb->demapPage(vaddr, asn);
154 dtb->demapPage(vaddr, asn);
155 }
156
157 void demapInstPage(Addr vaddr, uint64_t asn)
158 {
159 itb->demapPage(vaddr, asn);
160 }
161
162 void demapDataPage(Addr vaddr, uint64_t asn)
163 {
164 dtb->demapPage(vaddr, asn);
165 }
166
167#if FULL_SYSTEM
167 int getInstAsid() { return regs.instAsid(); }
168 int getDataAsid() { return regs.dataAsid(); }
168 int getInstAsid() { return isa.instAsid(); }
169 int getDataAsid() { return isa.dataAsid(); }
169
170 void dumpFuncProfile();
171
172 Fault hwrei();
173
174 bool simPalCheck(int palFunc);
175
176#endif
177
178 /*******************************************
179 * ThreadContext interface functions.
180 ******************************************/
181
182 BaseCPU *getCpuPtr() { return cpu; }
183
184 TheISA::TLB *getITBPtr() { return itb; }
185
186 TheISA::TLB *getDTBPtr() { return dtb; }
187
188 System *getSystemPtr() { return system; }
189
190#if FULL_SYSTEM
191 FunctionalPort *getPhysPort() { return physPort; }
192
193 /** Return a virtual port. This port cannot be cached locally in an object.
194 * After a CPU switch it may point to the wrong memory object which could
195 * mean stale data.
196 */
197 VirtualPort *getVirtPort() { return virtPort; }
198#endif
199
200 Status status() const { return _status; }
201
202 void setStatus(Status newStatus) { _status = newStatus; }
203
204 /// Set the status to Active. Optional delay indicates number of
205 /// cycles to wait before beginning execution.
206 void activate(int delay = 1);
207
208 /// Set the status to Suspended.
209 void suspend();
210
211 /// Set the status to Halted.
212 void halt();
213
214 virtual bool misspeculating();
215
216 Fault instRead(RequestPtr &req)
217 {
218 panic("instRead not implemented");
219 // return funcPhysMem->read(req, inst);
220 return NoFault;
221 }
222
223 void copyArchRegs(ThreadContext *tc);
224
225 void clearArchRegs() { regs.clear(); }
226
227 //
228 // New accessors for new decoder.
229 //
230 uint64_t readIntReg(int reg_idx)
231 {
170
171 void dumpFuncProfile();
172
173 Fault hwrei();
174
175 bool simPalCheck(int palFunc);
176
177#endif
178
179 /*******************************************
180 * ThreadContext interface functions.
181 ******************************************/
182
183 BaseCPU *getCpuPtr() { return cpu; }
184
185 TheISA::TLB *getITBPtr() { return itb; }
186
187 TheISA::TLB *getDTBPtr() { return dtb; }
188
189 System *getSystemPtr() { return system; }
190
191#if FULL_SYSTEM
192 FunctionalPort *getPhysPort() { return physPort; }
193
194 /** Return a virtual port. This port cannot be cached locally in an object.
195 * After a CPU switch it may point to the wrong memory object which could
196 * mean stale data.
197 */
198 VirtualPort *getVirtPort() { return virtPort; }
199#endif
200
201 Status status() const { return _status; }
202
203 void setStatus(Status newStatus) { _status = newStatus; }
204
205 /// Set the status to Active. Optional delay indicates number of
206 /// cycles to wait before beginning execution.
207 void activate(int delay = 1);
208
209 /// Set the status to Suspended.
210 void suspend();
211
212 /// Set the status to Halted.
213 void halt();
214
215 virtual bool misspeculating();
216
217 Fault instRead(RequestPtr &req)
218 {
219 panic("instRead not implemented");
220 // return funcPhysMem->read(req, inst);
221 return NoFault;
222 }
223
224 void copyArchRegs(ThreadContext *tc);
225
226 void clearArchRegs() { regs.clear(); }
227
228 //
229 // New accessors for new decoder.
230 //
231 uint64_t readIntReg(int reg_idx)
232 {
232 int flatIndex = TheISA::flattenIntIndex(getTC(), reg_idx);
233 int flatIndex = isa.flattenIntIndex(reg_idx);
233 return regs.readIntReg(flatIndex);
234 }
235
236 FloatReg readFloatReg(int reg_idx, int width)
237 {
234 return regs.readIntReg(flatIndex);
235 }
236
237 FloatReg readFloatReg(int reg_idx, int width)
238 {
238 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
239 int flatIndex = isa.flattenFloatIndex(reg_idx);
239 return regs.readFloatReg(flatIndex, width);
240 }
241
242 FloatReg readFloatReg(int reg_idx)
243 {
240 return regs.readFloatReg(flatIndex, width);
241 }
242
243 FloatReg readFloatReg(int reg_idx)
244 {
244 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
245 int flatIndex = isa.flattenFloatIndex(reg_idx);
245 return regs.readFloatReg(flatIndex);
246 }
247
248 FloatRegBits readFloatRegBits(int reg_idx, int width)
249 {
246 return regs.readFloatReg(flatIndex);
247 }
248
249 FloatRegBits readFloatRegBits(int reg_idx, int width)
250 {
250 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
251 int flatIndex = isa.flattenFloatIndex(reg_idx);
251 return regs.readFloatRegBits(flatIndex, width);
252 }
253
254 FloatRegBits readFloatRegBits(int reg_idx)
255 {
252 return regs.readFloatRegBits(flatIndex, width);
253 }
254
255 FloatRegBits readFloatRegBits(int reg_idx)
256 {
256 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
257 int flatIndex = isa.flattenFloatIndex(reg_idx);
257 return regs.readFloatRegBits(flatIndex);
258 }
259
260 void setIntReg(int reg_idx, uint64_t val)
261 {
258 return regs.readFloatRegBits(flatIndex);
259 }
260
261 void setIntReg(int reg_idx, uint64_t val)
262 {
262 int flatIndex = TheISA::flattenIntIndex(getTC(), reg_idx);
263 int flatIndex = isa.flattenIntIndex(reg_idx);
263 regs.setIntReg(flatIndex, val);
264 }
265
266 void setFloatReg(int reg_idx, FloatReg val, int width)
267 {
264 regs.setIntReg(flatIndex, val);
265 }
266
267 void setFloatReg(int reg_idx, FloatReg val, int width)
268 {
268 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
269 int flatIndex = isa.flattenFloatIndex(reg_idx);
269 regs.setFloatReg(flatIndex, val, width);
270 }
271
272 void setFloatReg(int reg_idx, FloatReg val)
273 {
270 regs.setFloatReg(flatIndex, val, width);
271 }
272
273 void setFloatReg(int reg_idx, FloatReg val)
274 {
274 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
275 int flatIndex = isa.flattenFloatIndex(reg_idx);
275 regs.setFloatReg(flatIndex, val);
276 }
277
278 void setFloatRegBits(int reg_idx, FloatRegBits val, int width)
279 {
276 regs.setFloatReg(flatIndex, val);
277 }
278
279 void setFloatRegBits(int reg_idx, FloatRegBits val, int width)
280 {
280 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
281 int flatIndex = isa.flattenFloatIndex(reg_idx);
281 regs.setFloatRegBits(flatIndex, val, width);
282 }
283
284 void setFloatRegBits(int reg_idx, FloatRegBits val)
285 {
282 regs.setFloatRegBits(flatIndex, val, width);
283 }
284
285 void setFloatRegBits(int reg_idx, FloatRegBits val)
286 {
286 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
287 int flatIndex = isa.flattenFloatIndex(reg_idx);
287 regs.setFloatRegBits(flatIndex, val);
288 }
289
290 uint64_t readPC()
291 {
292 return regs.readPC();
293 }
294
295 void setPC(uint64_t val)
296 {
297 regs.setPC(val);
298 }
299
300 uint64_t readMicroPC()
301 {
302 return microPC;
303 }
304
305 void setMicroPC(uint64_t val)
306 {
307 microPC = val;
308 }
309
310 uint64_t readNextPC()
311 {
312 return regs.readNextPC();
313 }
314
315 void setNextPC(uint64_t val)
316 {
317 regs.setNextPC(val);
318 }
319
320 uint64_t readNextMicroPC()
321 {
322 return nextMicroPC;
323 }
324
325 void setNextMicroPC(uint64_t val)
326 {
327 nextMicroPC = val;
328 }
329
330 uint64_t readNextNPC()
331 {
332 return regs.readNextNPC();
333 }
334
335 void setNextNPC(uint64_t val)
336 {
337 regs.setNextNPC(val);
338 }
339
340 MiscReg
341 readMiscRegNoEffect(int misc_reg, ThreadID tid = 0)
342 {
288 regs.setFloatRegBits(flatIndex, val);
289 }
290
291 uint64_t readPC()
292 {
293 return regs.readPC();
294 }
295
296 void setPC(uint64_t val)
297 {
298 regs.setPC(val);
299 }
300
301 uint64_t readMicroPC()
302 {
303 return microPC;
304 }
305
306 void setMicroPC(uint64_t val)
307 {
308 microPC = val;
309 }
310
311 uint64_t readNextPC()
312 {
313 return regs.readNextPC();
314 }
315
316 void setNextPC(uint64_t val)
317 {
318 regs.setNextPC(val);
319 }
320
321 uint64_t readNextMicroPC()
322 {
323 return nextMicroPC;
324 }
325
326 void setNextMicroPC(uint64_t val)
327 {
328 nextMicroPC = val;
329 }
330
331 uint64_t readNextNPC()
332 {
333 return regs.readNextNPC();
334 }
335
336 void setNextNPC(uint64_t val)
337 {
338 regs.setNextNPC(val);
339 }
340
341 MiscReg
342 readMiscRegNoEffect(int misc_reg, ThreadID tid = 0)
343 {
343 return regs.readMiscRegNoEffect(misc_reg);
344 return isa.readMiscRegNoEffect(misc_reg);
344 }
345
346 MiscReg
347 readMiscReg(int misc_reg, ThreadID tid = 0)
348 {
345 }
346
347 MiscReg
348 readMiscReg(int misc_reg, ThreadID tid = 0)
349 {
349 return regs.readMiscReg(misc_reg, tc);
350 return isa.readMiscReg(misc_reg, tc);
350 }
351
352 void
353 setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0)
354 {
351 }
352
353 void
354 setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0)
355 {
355 return regs.setMiscRegNoEffect(misc_reg, val);
356 return isa.setMiscRegNoEffect(misc_reg, val);
356 }
357
358 void
359 setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0)
360 {
357 }
358
359 void
360 setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0)
361 {
361 return regs.setMiscReg(misc_reg, val, tc);
362 return isa.setMiscReg(misc_reg, val, tc);
362 }
363
363 }
364
365 int
366 flattenIntIndex(int reg)
367 {
368 return isa.flattenIntIndex(reg);
369 }
370
371 int
372 flattenFloatIndex(int reg)
373 {
374 return isa.flattenFloatIndex(reg);
375 }
376
364 unsigned readStCondFailures() { return storeCondFailures; }
365
366 void setStCondFailures(unsigned sc_failures)
367 { storeCondFailures = sc_failures; }
368
369#if !FULL_SYSTEM
370 void syscall(int64_t callnum)
371 {
372 process->syscall(callnum, tc);
373 }
374#endif
375};
376
377
378// for non-speculative execution context, spec_mode is always false
379inline bool
380SimpleThread::misspeculating()
381{
382 return false;
383}
384
385#endif // __CPU_CPU_EXEC_CONTEXT_HH__
377 unsigned readStCondFailures() { return storeCondFailures; }
378
379 void setStCondFailures(unsigned sc_failures)
380 { storeCondFailures = sc_failures; }
381
382#if !FULL_SYSTEM
383 void syscall(int64_t callnum)
384 {
385 process->syscall(callnum, tc);
386 }
387#endif
388};
389
390
391// for non-speculative execution context, spec_mode is always false
392inline bool
393SimpleThread::misspeculating()
394{
395 return false;
396}
397
398#endif // __CPU_CPU_EXEC_CONTEXT_HH__