simple_thread.hh (5088:2d5e28510f27) simple_thread.hh (5222:bb733a878f85)
1/*
2 * Copyright (c) 2001-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 * Nathan Binkert
30 */
31
32#ifndef __CPU_SIMPLE_THREAD_HH__
33#define __CPU_SIMPLE_THREAD_HH__
34
35#include "arch/isa_traits.hh"
36#include "arch/regfile.hh"
37#include "arch/syscallreturn.hh"
38#include "arch/tlb.hh"
39#include "config/full_system.hh"
40#include "cpu/thread_context.hh"
41#include "cpu/thread_state.hh"
42#include "mem/request.hh"
43#include "sim/byteswap.hh"
44#include "sim/eventq.hh"
45#include "sim/host.hh"
46#include "sim/serialize.hh"
47
48class BaseCPU;
49
50#if FULL_SYSTEM
51
52#include "sim/system.hh"
53
54class FunctionProfile;
55class ProfileNode;
56class FunctionalPort;
57class PhysicalPort;
58
59namespace TheISA {
60 namespace Kernel {
61 class Statistics;
62 };
63};
64
65#else // !FULL_SYSTEM
66
67#include "sim/process.hh"
68#include "mem/page_table.hh"
69class TranslatingPort;
70
71#endif // FULL_SYSTEM
72
73/**
74 * The SimpleThread object provides a combination of the ThreadState
75 * object and the ThreadContext interface. It implements the
76 * ThreadContext interface so that a ProxyThreadContext class can be
77 * made using SimpleThread as the template parameter (see
78 * thread_context.hh). It adds to the ThreadState object by adding all
79 * the objects needed for simple functional execution, including a
80 * simple architectural register file, and pointers to the ITB and DTB
81 * in full system mode. For CPU models that do not need more advanced
82 * ways to hold state (i.e. a separate physical register file, or
83 * separate fetch and commit PC's), this SimpleThread class provides
84 * all the necessary state for full architecture-level functional
85 * simulation. See the AtomicSimpleCPU or TimingSimpleCPU for
86 * examples.
87 */
88
89class SimpleThread : public ThreadState
90{
91 protected:
92 typedef TheISA::RegFile RegFile;
93 typedef TheISA::MachInst MachInst;
94 typedef TheISA::MiscRegFile MiscRegFile;
95 typedef TheISA::MiscReg MiscReg;
96 typedef TheISA::FloatReg FloatReg;
97 typedef TheISA::FloatRegBits FloatRegBits;
98 public:
99 typedef ThreadContext::Status Status;
100
101 protected:
102 RegFile regs; // correct-path register context
103
104 public:
105 // pointer to CPU associated with this SimpleThread
106 BaseCPU *cpu;
107
108 ProxyThreadContext<SimpleThread> *tc;
109
110 System *system;
111
112 TheISA::ITB *itb;
113 TheISA::DTB *dtb;
114
115 // constructor: initialize SimpleThread from given process structure
116#if FULL_SYSTEM
117 SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
118 TheISA::ITB *_itb, TheISA::DTB *_dtb,
119 bool use_kernel_stats = true);
120#else
121 SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process,
122 TheISA::ITB *_itb, TheISA::DTB *_dtb, int _asid);
123#endif
124
125 SimpleThread();
126
127 virtual ~SimpleThread();
128
129 virtual void takeOverFrom(ThreadContext *oldContext);
130
131 void regStats(const std::string &name);
132
133 void copyTC(ThreadContext *context);
134
135 void copyState(ThreadContext *oldContext);
136
137 void serialize(std::ostream &os);
138 void unserialize(Checkpoint *cp, const std::string &section);
139
140 /***************************************************************
141 * SimpleThread functions to provide CPU with access to various
142 * state, and to provide address translation methods.
143 **************************************************************/
144
145 /** Returns the pointer to this SimpleThread's ThreadContext. Used
146 * when a ThreadContext must be passed to objects outside of the
147 * CPU.
148 */
149 ThreadContext *getTC() { return tc; }
150
151 Fault translateInstReq(RequestPtr &req)
152 {
153 return itb->translate(req, tc);
154 }
155
156 Fault translateDataReadReq(RequestPtr &req)
157 {
158 return dtb->translate(req, tc, false);
159 }
160
161 Fault translateDataWriteReq(RequestPtr &req)
162 {
163 return dtb->translate(req, tc, true);
164 }
165
166#if FULL_SYSTEM
167 int getInstAsid() { return regs.instAsid(); }
168 int getDataAsid() { return regs.dataAsid(); }
169
170 void dumpFuncProfile();
171
172 Fault hwrei();
173
174 bool simPalCheck(int palFunc);
175
176#endif
177
178 /*******************************************
179 * ThreadContext interface functions.
180 ******************************************/
181
182 BaseCPU *getCpuPtr() { return cpu; }
183
184 int getThreadNum() { return tid; }
185
186 TheISA::ITB *getITBPtr() { return itb; }
187
188 TheISA::DTB *getDTBPtr() { return dtb; }
189
190#if FULL_SYSTEM
191 System *getSystemPtr() { return system; }
192
193 FunctionalPort *getPhysPort() { return physPort; }
194
195 /** Return a virtual port. If no thread context is specified then a static
196 * port is returned. Otherwise a port is created and returned. It must be
197 * deleted by deleteVirtPort(). */
198 VirtualPort *getVirtPort(ThreadContext *tc);
199
200 void delVirtPort(VirtualPort *vp);
201#endif
202
203 Status status() const { return _status; }
204
205 void setStatus(Status newStatus) { _status = newStatus; }
206
207 /// Set the status to Active. Optional delay indicates number of
208 /// cycles to wait before beginning execution.
209 void activate(int delay = 1);
210
211 /// Set the status to Suspended.
212 void suspend();
213
214 /// Set the status to Unallocated.
215 void deallocate();
216
217 /// Set the status to Halted.
218 void halt();
219
220 virtual bool misspeculating();
221
222 Fault instRead(RequestPtr &req)
223 {
224 panic("instRead not implemented");
225 // return funcPhysMem->read(req, inst);
226 return NoFault;
227 }
228
229 void copyArchRegs(ThreadContext *tc);
230
231 void clearArchRegs() { regs.clear(); }
232
233 //
234 // New accessors for new decoder.
235 //
236 uint64_t readIntReg(int reg_idx)
237 {
238 int flatIndex = TheISA::flattenIntIndex(getTC(), reg_idx);
239 return regs.readIntReg(flatIndex);
240 }
241
242 FloatReg readFloatReg(int reg_idx, int width)
243 {
244 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
245 return regs.readFloatReg(flatIndex, width);
246 }
247
248 FloatReg readFloatReg(int reg_idx)
249 {
250 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
251 return regs.readFloatReg(flatIndex);
252 }
253
254 FloatRegBits readFloatRegBits(int reg_idx, int width)
255 {
256 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
257 return regs.readFloatRegBits(flatIndex, width);
258 }
259
260 FloatRegBits readFloatRegBits(int reg_idx)
261 {
262 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
263 return regs.readFloatRegBits(flatIndex);
264 }
265
266 void setIntReg(int reg_idx, uint64_t val)
267 {
268 int flatIndex = TheISA::flattenIntIndex(getTC(), reg_idx);
269 regs.setIntReg(flatIndex, val);
270 }
271
272 void setFloatReg(int reg_idx, FloatReg val, int width)
273 {
274 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
275 regs.setFloatReg(flatIndex, val, width);
276 }
277
278 void setFloatReg(int reg_idx, FloatReg val)
279 {
280 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
281 regs.setFloatReg(flatIndex, val);
282 }
283
284 void setFloatRegBits(int reg_idx, FloatRegBits val, int width)
285 {
286 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
287 regs.setFloatRegBits(flatIndex, val, width);
288 }
289
290 void setFloatRegBits(int reg_idx, FloatRegBits val)
291 {
292 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
293 regs.setFloatRegBits(flatIndex, val);
294 }
295
296 uint64_t readPC()
297 {
298 return regs.readPC();
299 }
300
301 void setPC(uint64_t val)
302 {
303 regs.setPC(val);
304 }
305
306 uint64_t readMicroPC()
307 {
308 return microPC;
309 }
310
311 void setMicroPC(uint64_t val)
312 {
313 microPC = val;
314 }
315
316 uint64_t readNextPC()
317 {
318 return regs.readNextPC();
319 }
320
321 void setNextPC(uint64_t val)
322 {
323 regs.setNextPC(val);
324 }
325
326 uint64_t readNextMicroPC()
327 {
328 return nextMicroPC;
329 }
330
331 void setNextMicroPC(uint64_t val)
332 {
333 nextMicroPC = val;
334 }
335
336 uint64_t readNextNPC()
337 {
338 return regs.readNextNPC();
339 }
340
341 void setNextNPC(uint64_t val)
342 {
343 regs.setNextNPC(val);
344 }
345
346 MiscReg readMiscRegNoEffect(int misc_reg, unsigned tid = 0)
347 {
348 return regs.readMiscRegNoEffect(misc_reg);
349 }
350
351 MiscReg readMiscReg(int misc_reg, unsigned tid = 0)
352 {
353 return regs.readMiscReg(misc_reg, tc);
354 }
355
356 void setMiscRegNoEffect(int misc_reg, const MiscReg &val, unsigned tid = 0)
357 {
358 return regs.setMiscRegNoEffect(misc_reg, val);
359 }
360
361 void setMiscReg(int misc_reg, const MiscReg &val, unsigned tid = 0)
362 {
363 return regs.setMiscReg(misc_reg, val, tc);
364 }
365
366 unsigned readStCondFailures() { return storeCondFailures; }
367
368 void setStCondFailures(unsigned sc_failures)
369 { storeCondFailures = sc_failures; }
370
1/*
2 * Copyright (c) 2001-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 * Nathan Binkert
30 */
31
32#ifndef __CPU_SIMPLE_THREAD_HH__
33#define __CPU_SIMPLE_THREAD_HH__
34
35#include "arch/isa_traits.hh"
36#include "arch/regfile.hh"
37#include "arch/syscallreturn.hh"
38#include "arch/tlb.hh"
39#include "config/full_system.hh"
40#include "cpu/thread_context.hh"
41#include "cpu/thread_state.hh"
42#include "mem/request.hh"
43#include "sim/byteswap.hh"
44#include "sim/eventq.hh"
45#include "sim/host.hh"
46#include "sim/serialize.hh"
47
48class BaseCPU;
49
50#if FULL_SYSTEM
51
52#include "sim/system.hh"
53
54class FunctionProfile;
55class ProfileNode;
56class FunctionalPort;
57class PhysicalPort;
58
59namespace TheISA {
60 namespace Kernel {
61 class Statistics;
62 };
63};
64
65#else // !FULL_SYSTEM
66
67#include "sim/process.hh"
68#include "mem/page_table.hh"
69class TranslatingPort;
70
71#endif // FULL_SYSTEM
72
73/**
74 * The SimpleThread object provides a combination of the ThreadState
75 * object and the ThreadContext interface. It implements the
76 * ThreadContext interface so that a ProxyThreadContext class can be
77 * made using SimpleThread as the template parameter (see
78 * thread_context.hh). It adds to the ThreadState object by adding all
79 * the objects needed for simple functional execution, including a
80 * simple architectural register file, and pointers to the ITB and DTB
81 * in full system mode. For CPU models that do not need more advanced
82 * ways to hold state (i.e. a separate physical register file, or
83 * separate fetch and commit PC's), this SimpleThread class provides
84 * all the necessary state for full architecture-level functional
85 * simulation. See the AtomicSimpleCPU or TimingSimpleCPU for
86 * examples.
87 */
88
89class SimpleThread : public ThreadState
90{
91 protected:
92 typedef TheISA::RegFile RegFile;
93 typedef TheISA::MachInst MachInst;
94 typedef TheISA::MiscRegFile MiscRegFile;
95 typedef TheISA::MiscReg MiscReg;
96 typedef TheISA::FloatReg FloatReg;
97 typedef TheISA::FloatRegBits FloatRegBits;
98 public:
99 typedef ThreadContext::Status Status;
100
101 protected:
102 RegFile regs; // correct-path register context
103
104 public:
105 // pointer to CPU associated with this SimpleThread
106 BaseCPU *cpu;
107
108 ProxyThreadContext<SimpleThread> *tc;
109
110 System *system;
111
112 TheISA::ITB *itb;
113 TheISA::DTB *dtb;
114
115 // constructor: initialize SimpleThread from given process structure
116#if FULL_SYSTEM
117 SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
118 TheISA::ITB *_itb, TheISA::DTB *_dtb,
119 bool use_kernel_stats = true);
120#else
121 SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process,
122 TheISA::ITB *_itb, TheISA::DTB *_dtb, int _asid);
123#endif
124
125 SimpleThread();
126
127 virtual ~SimpleThread();
128
129 virtual void takeOverFrom(ThreadContext *oldContext);
130
131 void regStats(const std::string &name);
132
133 void copyTC(ThreadContext *context);
134
135 void copyState(ThreadContext *oldContext);
136
137 void serialize(std::ostream &os);
138 void unserialize(Checkpoint *cp, const std::string &section);
139
140 /***************************************************************
141 * SimpleThread functions to provide CPU with access to various
142 * state, and to provide address translation methods.
143 **************************************************************/
144
145 /** Returns the pointer to this SimpleThread's ThreadContext. Used
146 * when a ThreadContext must be passed to objects outside of the
147 * CPU.
148 */
149 ThreadContext *getTC() { return tc; }
150
151 Fault translateInstReq(RequestPtr &req)
152 {
153 return itb->translate(req, tc);
154 }
155
156 Fault translateDataReadReq(RequestPtr &req)
157 {
158 return dtb->translate(req, tc, false);
159 }
160
161 Fault translateDataWriteReq(RequestPtr &req)
162 {
163 return dtb->translate(req, tc, true);
164 }
165
166#if FULL_SYSTEM
167 int getInstAsid() { return regs.instAsid(); }
168 int getDataAsid() { return regs.dataAsid(); }
169
170 void dumpFuncProfile();
171
172 Fault hwrei();
173
174 bool simPalCheck(int palFunc);
175
176#endif
177
178 /*******************************************
179 * ThreadContext interface functions.
180 ******************************************/
181
182 BaseCPU *getCpuPtr() { return cpu; }
183
184 int getThreadNum() { return tid; }
185
186 TheISA::ITB *getITBPtr() { return itb; }
187
188 TheISA::DTB *getDTBPtr() { return dtb; }
189
190#if FULL_SYSTEM
191 System *getSystemPtr() { return system; }
192
193 FunctionalPort *getPhysPort() { return physPort; }
194
195 /** Return a virtual port. If no thread context is specified then a static
196 * port is returned. Otherwise a port is created and returned. It must be
197 * deleted by deleteVirtPort(). */
198 VirtualPort *getVirtPort(ThreadContext *tc);
199
200 void delVirtPort(VirtualPort *vp);
201#endif
202
203 Status status() const { return _status; }
204
205 void setStatus(Status newStatus) { _status = newStatus; }
206
207 /// Set the status to Active. Optional delay indicates number of
208 /// cycles to wait before beginning execution.
209 void activate(int delay = 1);
210
211 /// Set the status to Suspended.
212 void suspend();
213
214 /// Set the status to Unallocated.
215 void deallocate();
216
217 /// Set the status to Halted.
218 void halt();
219
220 virtual bool misspeculating();
221
222 Fault instRead(RequestPtr &req)
223 {
224 panic("instRead not implemented");
225 // return funcPhysMem->read(req, inst);
226 return NoFault;
227 }
228
229 void copyArchRegs(ThreadContext *tc);
230
231 void clearArchRegs() { regs.clear(); }
232
233 //
234 // New accessors for new decoder.
235 //
236 uint64_t readIntReg(int reg_idx)
237 {
238 int flatIndex = TheISA::flattenIntIndex(getTC(), reg_idx);
239 return regs.readIntReg(flatIndex);
240 }
241
242 FloatReg readFloatReg(int reg_idx, int width)
243 {
244 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
245 return regs.readFloatReg(flatIndex, width);
246 }
247
248 FloatReg readFloatReg(int reg_idx)
249 {
250 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
251 return regs.readFloatReg(flatIndex);
252 }
253
254 FloatRegBits readFloatRegBits(int reg_idx, int width)
255 {
256 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
257 return regs.readFloatRegBits(flatIndex, width);
258 }
259
260 FloatRegBits readFloatRegBits(int reg_idx)
261 {
262 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
263 return regs.readFloatRegBits(flatIndex);
264 }
265
266 void setIntReg(int reg_idx, uint64_t val)
267 {
268 int flatIndex = TheISA::flattenIntIndex(getTC(), reg_idx);
269 regs.setIntReg(flatIndex, val);
270 }
271
272 void setFloatReg(int reg_idx, FloatReg val, int width)
273 {
274 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
275 regs.setFloatReg(flatIndex, val, width);
276 }
277
278 void setFloatReg(int reg_idx, FloatReg val)
279 {
280 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
281 regs.setFloatReg(flatIndex, val);
282 }
283
284 void setFloatRegBits(int reg_idx, FloatRegBits val, int width)
285 {
286 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
287 regs.setFloatRegBits(flatIndex, val, width);
288 }
289
290 void setFloatRegBits(int reg_idx, FloatRegBits val)
291 {
292 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
293 regs.setFloatRegBits(flatIndex, val);
294 }
295
296 uint64_t readPC()
297 {
298 return regs.readPC();
299 }
300
301 void setPC(uint64_t val)
302 {
303 regs.setPC(val);
304 }
305
306 uint64_t readMicroPC()
307 {
308 return microPC;
309 }
310
311 void setMicroPC(uint64_t val)
312 {
313 microPC = val;
314 }
315
316 uint64_t readNextPC()
317 {
318 return regs.readNextPC();
319 }
320
321 void setNextPC(uint64_t val)
322 {
323 regs.setNextPC(val);
324 }
325
326 uint64_t readNextMicroPC()
327 {
328 return nextMicroPC;
329 }
330
331 void setNextMicroPC(uint64_t val)
332 {
333 nextMicroPC = val;
334 }
335
336 uint64_t readNextNPC()
337 {
338 return regs.readNextNPC();
339 }
340
341 void setNextNPC(uint64_t val)
342 {
343 regs.setNextNPC(val);
344 }
345
346 MiscReg readMiscRegNoEffect(int misc_reg, unsigned tid = 0)
347 {
348 return regs.readMiscRegNoEffect(misc_reg);
349 }
350
351 MiscReg readMiscReg(int misc_reg, unsigned tid = 0)
352 {
353 return regs.readMiscReg(misc_reg, tc);
354 }
355
356 void setMiscRegNoEffect(int misc_reg, const MiscReg &val, unsigned tid = 0)
357 {
358 return regs.setMiscRegNoEffect(misc_reg, val);
359 }
360
361 void setMiscReg(int misc_reg, const MiscReg &val, unsigned tid = 0)
362 {
363 return regs.setMiscReg(misc_reg, val, tc);
364 }
365
366 unsigned readStCondFailures() { return storeCondFailures; }
367
368 void setStCondFailures(unsigned sc_failures)
369 { storeCondFailures = sc_failures; }
370
371 void setShadowSet(int css, int tid=0) {
372 regs.setShadowSet(css);
373 }
374
371#if !FULL_SYSTEM
372 TheISA::IntReg getSyscallArg(int i)
373 {
374 assert(i < TheISA::NumArgumentRegs);
375 return regs.readIntReg(TheISA::flattenIntIndex(getTC(),
376 TheISA::ArgumentReg[i]));
377 }
378
379 // used to shift args for indirect syscall
380 void setSyscallArg(int i, TheISA::IntReg val)
381 {
382 assert(i < TheISA::NumArgumentRegs);
383 regs.setIntReg(TheISA::flattenIntIndex(getTC(),
384 TheISA::ArgumentReg[i]), val);
385 }
386
387 void setSyscallReturn(SyscallReturn return_value)
388 {
389 TheISA::setSyscallReturn(return_value, getTC());
390 }
391
392 void syscall(int64_t callnum)
393 {
394 process->syscall(callnum, tc);
395 }
396#endif
397
398 void changeRegFileContext(TheISA::RegContextParam param,
399 TheISA::RegContextVal val)
400 {
401 regs.changeContext(param, val);
402 }
403};
404
405
406// for non-speculative execution context, spec_mode is always false
407inline bool
408SimpleThread::misspeculating()
409{
410 return false;
411}
412
413#endif // __CPU_CPU_EXEC_CONTEXT_HH__
375#if !FULL_SYSTEM
376 TheISA::IntReg getSyscallArg(int i)
377 {
378 assert(i < TheISA::NumArgumentRegs);
379 return regs.readIntReg(TheISA::flattenIntIndex(getTC(),
380 TheISA::ArgumentReg[i]));
381 }
382
383 // used to shift args for indirect syscall
384 void setSyscallArg(int i, TheISA::IntReg val)
385 {
386 assert(i < TheISA::NumArgumentRegs);
387 regs.setIntReg(TheISA::flattenIntIndex(getTC(),
388 TheISA::ArgumentReg[i]), val);
389 }
390
391 void setSyscallReturn(SyscallReturn return_value)
392 {
393 TheISA::setSyscallReturn(return_value, getTC());
394 }
395
396 void syscall(int64_t callnum)
397 {
398 process->syscall(callnum, tc);
399 }
400#endif
401
402 void changeRegFileContext(TheISA::RegContextParam param,
403 TheISA::RegContextVal val)
404 {
405 regs.changeContext(param, val);
406 }
407};
408
409
410// for non-speculative execution context, spec_mode is always false
411inline bool
412SimpleThread::misspeculating()
413{
414 return false;
415}
416
417#endif // __CPU_CPU_EXEC_CONTEXT_HH__