timing.hh (8737:770ccf3af571) timing.hh (8850:ed91b534ed04)
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#ifndef __CPU_SIMPLE_TIMING_HH__
32#define __CPU_SIMPLE_TIMING_HH__
33
34#include "cpu/simple/base.hh"
35#include "cpu/translation.hh"
36#include "params/TimingSimpleCPU.hh"
37
38class TimingSimpleCPU : public BaseSimpleCPU
39{
40 public:
41
42 TimingSimpleCPU(TimingSimpleCPUParams * params);
43 virtual ~TimingSimpleCPU();
44
45 virtual void init();
46
47 public:
48 Event *drainEvent;
49
50 private:
51
52 /*
53 * If an access needs to be broken into fragments, currently at most two,
54 * the the following two classes are used as the sender state of the
55 * packets so the CPU can keep track of everything. In the main packet
56 * sender state, there's an array with a spot for each fragment. If a
57 * fragment has already been accepted by the CPU, aka isn't waiting for
58 * a retry, it's pointer is NULL. After each fragment has successfully
59 * been processed, the "outstanding" counter is decremented. Once the
60 * count is zero, the entire larger access is complete.
61 */
62 class SplitMainSenderState : public Packet::SenderState
63 {
64 public:
65 int outstanding;
66 PacketPtr fragments[2];
67
68 int
69 getPendingFragment()
70 {
71 if (fragments[0]) {
72 return 0;
73 } else if (fragments[1]) {
74 return 1;
75 } else {
76 return -1;
77 }
78 }
79 };
80
81 class SplitFragmentSenderState : public Packet::SenderState
82 {
83 public:
84 SplitFragmentSenderState(PacketPtr _bigPkt, int _index) :
85 bigPkt(_bigPkt), index(_index)
86 {}
87 PacketPtr bigPkt;
88 int index;
89
90 void
91 clearFromParent()
92 {
93 SplitMainSenderState * main_send_state =
94 dynamic_cast<SplitMainSenderState *>(bigPkt->senderState);
95 main_send_state->fragments[index] = NULL;
96 }
97 };
98
99 class FetchTranslation : public BaseTLB::Translation
100 {
101 protected:
102 TimingSimpleCPU *cpu;
103
104 public:
105 FetchTranslation(TimingSimpleCPU *_cpu)
106 : cpu(_cpu)
107 {}
108
109 void
110 markDelayed()
111 {
112 assert(cpu->_status == Running);
113 cpu->_status = ITBWaitResponse;
114 }
115
116 void
117 finish(Fault fault, RequestPtr req, ThreadContext *tc,
118 BaseTLB::Mode mode)
119 {
120 cpu->sendFetch(fault, req, tc);
121 }
122 };
123 FetchTranslation fetchTranslation;
124
125 void sendData(RequestPtr req, uint8_t *data, uint64_t *res, bool read);
126 void sendSplitData(RequestPtr req1, RequestPtr req2, RequestPtr req,
127 uint8_t *data, bool read);
128
129 void translationFault(Fault fault);
130
131 void buildPacket(PacketPtr &pkt, RequestPtr req, bool read);
132 void buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
133 RequestPtr req1, RequestPtr req2, RequestPtr req,
134 uint8_t *data, bool read);
135
136 bool handleReadPacket(PacketPtr pkt);
137 // This function always implicitly uses dcache_pkt.
138 bool handleWritePacket();
139
140 /**
141 * A TimingCPUPort overrides the default behaviour of the
142 * recvTiming and recvRetry and implements events for the
143 * scheduling of handling of incoming packets in the following
144 * cycle.
145 */
146 class TimingCPUPort : public CpuPort
147 {
148 public:
149
150 TimingCPUPort(const std::string& _name, TimingSimpleCPU* _cpu)
151 : CpuPort(_name, _cpu), cpu(_cpu), retryEvent(this)
152 { }
153
154 protected:
155
156 TimingSimpleCPU* cpu;
157
158 struct TickEvent : public Event
159 {
160 PacketPtr pkt;
161 TimingSimpleCPU *cpu;
162 CpuPort *port;
163
164 TickEvent(TimingSimpleCPU *_cpu) : pkt(NULL), cpu(_cpu) {}
165 const char *description() const { return "Timing CPU tick"; }
166 void schedule(PacketPtr _pkt, Tick t);
167 };
168
169 EventWrapper<Port, &Port::sendRetry> retryEvent;
170 };
171
172 class IcachePort : public TimingCPUPort
173 {
174 public:
175
176 IcachePort(TimingSimpleCPU *_cpu)
177 : TimingCPUPort(_cpu->name() + "-iport", _cpu),
178 tickEvent(_cpu)
179 { }
180
181 protected:
182
183 virtual bool recvTiming(PacketPtr pkt);
184
185 virtual void recvRetry();
186
187 struct ITickEvent : public TickEvent
188 {
189
190 ITickEvent(TimingSimpleCPU *_cpu)
191 : TickEvent(_cpu) {}
192 void process();
193 const char *description() const { return "Timing CPU icache tick"; }
194 };
195
196 ITickEvent tickEvent;
197
198 };
199
200 class DcachePort : public TimingCPUPort
201 {
202 public:
203
204 DcachePort(TimingSimpleCPU *_cpu)
205 : TimingCPUPort(_cpu->name() + "-dport", _cpu), tickEvent(_cpu)
206 { }
207
208 protected:
209
210 virtual bool recvTiming(PacketPtr pkt);
211
212 virtual void recvRetry();
213
214 struct DTickEvent : public TickEvent
215 {
216 DTickEvent(TimingSimpleCPU *_cpu)
217 : TickEvent(_cpu) {}
218 void process();
219 const char *description() const { return "Timing CPU dcache tick"; }
220 };
221
222 DTickEvent tickEvent;
223
224 };
225
226 IcachePort icachePort;
227 DcachePort dcachePort;
228
229 PacketPtr ifetch_pkt;
230 PacketPtr dcache_pkt;
231
232 Tick previousTick;
233
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#ifndef __CPU_SIMPLE_TIMING_HH__
32#define __CPU_SIMPLE_TIMING_HH__
33
34#include "cpu/simple/base.hh"
35#include "cpu/translation.hh"
36#include "params/TimingSimpleCPU.hh"
37
38class TimingSimpleCPU : public BaseSimpleCPU
39{
40 public:
41
42 TimingSimpleCPU(TimingSimpleCPUParams * params);
43 virtual ~TimingSimpleCPU();
44
45 virtual void init();
46
47 public:
48 Event *drainEvent;
49
50 private:
51
52 /*
53 * If an access needs to be broken into fragments, currently at most two,
54 * the the following two classes are used as the sender state of the
55 * packets so the CPU can keep track of everything. In the main packet
56 * sender state, there's an array with a spot for each fragment. If a
57 * fragment has already been accepted by the CPU, aka isn't waiting for
58 * a retry, it's pointer is NULL. After each fragment has successfully
59 * been processed, the "outstanding" counter is decremented. Once the
60 * count is zero, the entire larger access is complete.
61 */
62 class SplitMainSenderState : public Packet::SenderState
63 {
64 public:
65 int outstanding;
66 PacketPtr fragments[2];
67
68 int
69 getPendingFragment()
70 {
71 if (fragments[0]) {
72 return 0;
73 } else if (fragments[1]) {
74 return 1;
75 } else {
76 return -1;
77 }
78 }
79 };
80
81 class SplitFragmentSenderState : public Packet::SenderState
82 {
83 public:
84 SplitFragmentSenderState(PacketPtr _bigPkt, int _index) :
85 bigPkt(_bigPkt), index(_index)
86 {}
87 PacketPtr bigPkt;
88 int index;
89
90 void
91 clearFromParent()
92 {
93 SplitMainSenderState * main_send_state =
94 dynamic_cast<SplitMainSenderState *>(bigPkt->senderState);
95 main_send_state->fragments[index] = NULL;
96 }
97 };
98
99 class FetchTranslation : public BaseTLB::Translation
100 {
101 protected:
102 TimingSimpleCPU *cpu;
103
104 public:
105 FetchTranslation(TimingSimpleCPU *_cpu)
106 : cpu(_cpu)
107 {}
108
109 void
110 markDelayed()
111 {
112 assert(cpu->_status == Running);
113 cpu->_status = ITBWaitResponse;
114 }
115
116 void
117 finish(Fault fault, RequestPtr req, ThreadContext *tc,
118 BaseTLB::Mode mode)
119 {
120 cpu->sendFetch(fault, req, tc);
121 }
122 };
123 FetchTranslation fetchTranslation;
124
125 void sendData(RequestPtr req, uint8_t *data, uint64_t *res, bool read);
126 void sendSplitData(RequestPtr req1, RequestPtr req2, RequestPtr req,
127 uint8_t *data, bool read);
128
129 void translationFault(Fault fault);
130
131 void buildPacket(PacketPtr &pkt, RequestPtr req, bool read);
132 void buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
133 RequestPtr req1, RequestPtr req2, RequestPtr req,
134 uint8_t *data, bool read);
135
136 bool handleReadPacket(PacketPtr pkt);
137 // This function always implicitly uses dcache_pkt.
138 bool handleWritePacket();
139
140 /**
141 * A TimingCPUPort overrides the default behaviour of the
142 * recvTiming and recvRetry and implements events for the
143 * scheduling of handling of incoming packets in the following
144 * cycle.
145 */
146 class TimingCPUPort : public CpuPort
147 {
148 public:
149
150 TimingCPUPort(const std::string& _name, TimingSimpleCPU* _cpu)
151 : CpuPort(_name, _cpu), cpu(_cpu), retryEvent(this)
152 { }
153
154 protected:
155
156 TimingSimpleCPU* cpu;
157
158 struct TickEvent : public Event
159 {
160 PacketPtr pkt;
161 TimingSimpleCPU *cpu;
162 CpuPort *port;
163
164 TickEvent(TimingSimpleCPU *_cpu) : pkt(NULL), cpu(_cpu) {}
165 const char *description() const { return "Timing CPU tick"; }
166 void schedule(PacketPtr _pkt, Tick t);
167 };
168
169 EventWrapper<Port, &Port::sendRetry> retryEvent;
170 };
171
172 class IcachePort : public TimingCPUPort
173 {
174 public:
175
176 IcachePort(TimingSimpleCPU *_cpu)
177 : TimingCPUPort(_cpu->name() + "-iport", _cpu),
178 tickEvent(_cpu)
179 { }
180
181 protected:
182
183 virtual bool recvTiming(PacketPtr pkt);
184
185 virtual void recvRetry();
186
187 struct ITickEvent : public TickEvent
188 {
189
190 ITickEvent(TimingSimpleCPU *_cpu)
191 : TickEvent(_cpu) {}
192 void process();
193 const char *description() const { return "Timing CPU icache tick"; }
194 };
195
196 ITickEvent tickEvent;
197
198 };
199
200 class DcachePort : public TimingCPUPort
201 {
202 public:
203
204 DcachePort(TimingSimpleCPU *_cpu)
205 : TimingCPUPort(_cpu->name() + "-dport", _cpu), tickEvent(_cpu)
206 { }
207
208 protected:
209
210 virtual bool recvTiming(PacketPtr pkt);
211
212 virtual void recvRetry();
213
214 struct DTickEvent : public TickEvent
215 {
216 DTickEvent(TimingSimpleCPU *_cpu)
217 : TickEvent(_cpu) {}
218 void process();
219 const char *description() const { return "Timing CPU dcache tick"; }
220 };
221
222 DTickEvent tickEvent;
223
224 };
225
226 IcachePort icachePort;
227 DcachePort dcachePort;
228
229 PacketPtr ifetch_pkt;
230 PacketPtr dcache_pkt;
231
232 Tick previousTick;
233
234 public:
234 protected:
235
235
236 virtual Port *getPort(const std::string &if_name, int idx = -1);
236 /** Return a reference to the data port. */
237 virtual CpuPort &getDataPort() { return dcachePort; }
237
238
239 /** Return a reference to the instruction port. */
240 virtual CpuPort &getInstPort() { return icachePort; }
241
242 public:
243
238 virtual void serialize(std::ostream &os);
239 virtual void unserialize(Checkpoint *cp, const std::string &section);
240
241 virtual unsigned int drain(Event *drain_event);
242 virtual void resume();
243
244 void switchOut();
245 void takeOverFrom(BaseCPU *oldCPU);
246
247 virtual void activateContext(ThreadID thread_num, int delay);
248 virtual void suspendContext(ThreadID thread_num);
249
250 Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags);
251
252 Fault writeMem(uint8_t *data, unsigned size,
253 Addr addr, unsigned flags, uint64_t *res);
254
255 void fetch();
256 void sendFetch(Fault fault, RequestPtr req, ThreadContext *tc);
257 void completeIfetch(PacketPtr );
258 void completeDataAccess(PacketPtr pkt);
259 void advanceInst(Fault fault);
260
261 /**
262 * Print state of address in memory system via PrintReq (for
263 * debugging).
264 */
265 void printAddr(Addr a);
266
267 /**
268 * Finish a DTB translation.
269 * @param state The DTB translation state.
270 */
271 void finishTranslation(WholeTranslationState *state);
272
273 private:
274
275 typedef EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch> FetchEvent;
276 FetchEvent fetchEvent;
277
278 struct IprEvent : Event {
279 Packet *pkt;
280 TimingSimpleCPU *cpu;
281 IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu, Tick t);
282 virtual void process();
283 virtual const char *description() const;
284 };
285
286 void completeDrain();
287};
288
289#endif // __CPU_SIMPLE_TIMING_HH__
244 virtual void serialize(std::ostream &os);
245 virtual void unserialize(Checkpoint *cp, const std::string &section);
246
247 virtual unsigned int drain(Event *drain_event);
248 virtual void resume();
249
250 void switchOut();
251 void takeOverFrom(BaseCPU *oldCPU);
252
253 virtual void activateContext(ThreadID thread_num, int delay);
254 virtual void suspendContext(ThreadID thread_num);
255
256 Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags);
257
258 Fault writeMem(uint8_t *data, unsigned size,
259 Addr addr, unsigned flags, uint64_t *res);
260
261 void fetch();
262 void sendFetch(Fault fault, RequestPtr req, ThreadContext *tc);
263 void completeIfetch(PacketPtr );
264 void completeDataAccess(PacketPtr pkt);
265 void advanceInst(Fault fault);
266
267 /**
268 * Print state of address in memory system via PrintReq (for
269 * debugging).
270 */
271 void printAddr(Addr a);
272
273 /**
274 * Finish a DTB translation.
275 * @param state The DTB translation state.
276 */
277 void finishTranslation(WholeTranslationState *state);
278
279 private:
280
281 typedef EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch> FetchEvent;
282 FetchEvent fetchEvent;
283
284 struct IprEvent : Event {
285 Packet *pkt;
286 TimingSimpleCPU *cpu;
287 IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu, Tick t);
288 virtual void process();
289 virtual const char *description() const;
290 };
291
292 void completeDrain();
293};
294
295#endif // __CPU_SIMPLE_TIMING_HH__