timing.cc (5726:17157c5f7e15) timing.cc (5728:9574f561dfa2)
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;

--- 227 unchanged lines hidden (view full) ---

236
237 // just change status to Idle... if status != Running,
238 // completeInst() will not initiate fetch of next instruction.
239
240 notIdleFraction--;
241 _status = Idle;
242}
243
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;

--- 227 unchanged lines hidden (view full) ---

236
237 // just change status to Idle... if status != Running,
238 // completeInst() will not initiate fetch of next instruction.
239
240 notIdleFraction--;
241 _status = Idle;
242}
243
244bool
245TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
246{
247 RequestPtr req = pkt->req;
248 if (req->isMmapedIpr()) {
249 Tick delay;
250 delay = TheISA::handleIprRead(thread->getTC(), pkt);
251 new IprEvent(pkt, this, nextCycle(curTick + delay));
252 _status = DcacheWaitResponse;
253 dcache_pkt = NULL;
254 } else if (!dcachePort.sendTiming(pkt)) {
255 _status = DcacheRetry;
256 dcache_pkt = pkt;
257 } else {
258 _status = DcacheWaitResponse;
259 // memory system takes ownership of packet
260 dcache_pkt = NULL;
261 }
262 return dcache_pkt == NULL;
263}
244
245template <class T>
246Fault
247TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
248{
264
265template <class T>
266Fault
267TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
268{
249 Request *req =
250 new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
251 _cpuId, /* thread ID */ 0);
269 Fault fault;
270 const int asid = 0;
271 const int thread_id = 0;
272 const Addr pc = thread->readPC();
252
273
253 if (traceData) {
254 traceData->setAddr(req->getVaddr());
255 }
274 PacketPtr pkt;
275 RequestPtr req;
256
276
257 // translate to physical address
258 Fault fault = thread->translateDataReadReq(req);
277 int block_size = dcachePort.peerBlockSize();
278 int data_size = sizeof(T);
259
279
260 // Now do the access.
261 if (fault == NoFault) {
262 PacketPtr pkt =
263 new Packet(req,
264 (req->isLocked() ?
265 MemCmd::LoadLockedReq : MemCmd::ReadReq),
266 Packet::Broadcast);
267 pkt->dataDynamic<T>(new T);
280 Addr second_addr = roundDown(addr + data_size - 1, block_size);
268
281
269 if (req->isMmapedIpr()) {
270 Tick delay;
271 delay = TheISA::handleIprRead(thread->getTC(), pkt);
272 new IprEvent(pkt, this, nextCycle(curTick + delay));
273 _status = DcacheWaitResponse;
274 dcache_pkt = NULL;
275 } else if (!dcachePort.sendTiming(pkt)) {
276 _status = DcacheRetry;
277 dcache_pkt = pkt;
278 } else {
279 _status = DcacheWaitResponse;
280 // memory system takes ownership of packet
281 dcache_pkt = NULL;
282 if (second_addr > addr) {
283 Addr first_size = second_addr - addr;
284 Addr second_size = data_size - first_size;
285 // Make sure we'll only need two accesses.
286 assert(roundDown(second_addr + second_size - 1, block_size) ==
287 second_addr);
288
289 /*
290 * Do the translations. If something isn't going to work, find out
291 * before we waste time setting up anything else.
292 */
293 req = new Request(asid, addr, first_size,
294 flags, pc, _cpuId, thread_id);
295 fault = thread->translateDataReadReq(req);
296 if (fault != NoFault) {
297 delete req;
298 return fault;
282 }
299 }
300 Request *second_req =
301 new Request(asid, second_addr, second_size,
302 flags, pc, _cpuId, thread_id);
303 fault = thread->translateDataReadReq(second_req);
304 if (fault != NoFault) {
305 delete req;
306 delete second_req;
307 return fault;
308 }
283
309
284 // This will need a new way to tell if it has a dcache attached.
285 if (req->isUncacheable())
286 recordEvent("Uncached Read");
310 T * data_ptr = new T;
311
312 /*
313 * This is the big packet that will hold the data we've gotten so far,
314 * if any, and also act as the response we actually give to the
315 * instruction.
316 */
317 Request *orig_req =
318 new Request(asid, addr, data_size, flags, pc, _cpuId, thread_id);
319 orig_req->setPhys(req->getPaddr(), data_size, flags);
320 PacketPtr big_pkt =
321 new Packet(orig_req, MemCmd::ReadResp, Packet::Broadcast);
322 big_pkt->dataDynamic<T>(data_ptr);
323 SplitMainSenderState * main_send_state = new SplitMainSenderState;
324 big_pkt->senderState = main_send_state;
325 main_send_state->outstanding = 2;
326
327 // This is the packet we'll process now.
328 pkt = new Packet(req, MemCmd::ReadReq, Packet::Broadcast);
329 pkt->dataStatic<uint8_t>((uint8_t *)data_ptr);
330 pkt->senderState = new SplitFragmentSenderState(big_pkt, 0);
331
332 // This is the second half of the access we'll deal with later.
333 PacketPtr second_pkt =
334 new Packet(second_req, MemCmd::ReadReq, Packet::Broadcast);
335 second_pkt->dataStatic<uint8_t>((uint8_t *)data_ptr + first_size);
336 second_pkt->senderState = new SplitFragmentSenderState(big_pkt, 1);
337 if (!handleReadPacket(pkt)) {
338 main_send_state->fragments[1] = second_pkt;
339 } else {
340 handleReadPacket(second_pkt);
341 }
287 } else {
342 } else {
288 delete req;
343 req = new Request(asid, addr, data_size,
344 flags, pc, _cpuId, thread_id);
345
346 // translate to physical address
347 Fault fault = thread->translateDataReadReq(req);
348
349 if (fault != NoFault) {
350 delete req;
351 return fault;
352 }
353
354 pkt = new Packet(req,
355 (req->isLocked() ?
356 MemCmd::LoadLockedReq : MemCmd::ReadReq),
357 Packet::Broadcast);
358 pkt->dataDynamic<T>(new T);
359
360 handleReadPacket(pkt);
289 }
290
291 if (traceData) {
292 traceData->setData(data);
361 }
362
363 if (traceData) {
364 traceData->setData(data);
365 traceData->setAddr(addr);
293 }
366 }
294 return fault;
367
368 // This will need a new way to tell if it has a dcache attached.
369 if (req->isUncacheable())
370 recordEvent("Uncached Read");
371
372 return NoFault;
295}
296
297Fault
298TimingSimpleCPU::translateDataReadAddr(Addr vaddr, Addr &paddr,
299 int size, unsigned flags)
300{
301 Request *req =
302 new Request(0, vaddr, size, flags, thread->readPC(), _cpuId, 0);

--- 56 unchanged lines hidden (view full) ---

359
360template<>
361Fault
362TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
363{
364 return read(addr, (uint32_t&)data, flags);
365}
366
373}
374
375Fault
376TimingSimpleCPU::translateDataReadAddr(Addr vaddr, Addr &paddr,
377 int size, unsigned flags)
378{
379 Request *req =
380 new Request(0, vaddr, size, flags, thread->readPC(), _cpuId, 0);

--- 56 unchanged lines hidden (view full) ---

437
438template<>
439Fault
440TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
441{
442 return read(addr, (uint32_t&)data, flags);
443}
444
445bool
446TimingSimpleCPU::handleWritePacket()
447{
448 RequestPtr req = dcache_pkt->req;
449 if (req->isMmapedIpr()) {
450 Tick delay;
451 delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
452 new IprEvent(dcache_pkt, this, nextCycle(curTick + delay));
453 _status = DcacheWaitResponse;
454 dcache_pkt = NULL;
455 } else if (!dcachePort.sendTiming(dcache_pkt)) {
456 _status = DcacheRetry;
457 } else {
458 _status = DcacheWaitResponse;
459 // memory system takes ownership of packet
460 dcache_pkt = NULL;
461 }
462 return dcache_pkt == NULL;
463}
367
368template <class T>
369Fault
370TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
371{
464
465template <class T>
466Fault
467TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
468{
372 Request *req =
373 new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
374 _cpuId, /* thread ID */ 0);
469 const int asid = 0;
470 const int thread_id = 0;
471 bool do_access = true; // flag to suppress cache access
472 const Addr pc = thread->readPC();
375
473
376 if (traceData) {
377 traceData->setAddr(req->getVaddr());
378 }
474 RequestPtr req;
379
475
380 // translate to physical address
381 Fault fault = thread->translateDataWriteReq(req);
476 int block_size = dcachePort.peerBlockSize();
477 int data_size = sizeof(T);
382
478
383 // Now do the access.
384 if (fault == NoFault) {
479 Addr second_addr = roundDown(addr + data_size - 1, block_size);
480
481 if (second_addr > addr) {
482 Fault fault;
483 Addr first_size = second_addr - addr;
484 Addr second_size = data_size - first_size;
485 // Make sure we'll only need two accesses.
486 assert(roundDown(second_addr + second_size - 1, block_size) ==
487 second_addr);
488
489 req = new Request(asid, addr, first_size,
490 flags, pc, _cpuId, thread_id);
491 fault = thread->translateDataWriteReq(req);
492 if (fault != NoFault) {
493 delete req;
494 return fault;
495 }
496 RequestPtr second_req = new Request(asid, second_addr, second_size,
497 flags, pc, _cpuId, thread_id);
498 fault = thread->translateDataWriteReq(second_req);
499 if (fault != NoFault) {
500 delete req;
501 delete second_req;
502 return fault;
503 }
504
505 if (req->isLocked() || req->isSwap() ||
506 second_req->isLocked() || second_req->isSwap()) {
507 panic("LL/SCs and swaps can't be split.");
508 }
509
510 T * data_ptr = new T;
511
512 /*
513 * This is the big packet that will hold the data we've gotten so far,
514 * if any, and also act as the response we actually give to the
515 * instruction.
516 */
517 RequestPtr orig_req =
518 new Request(asid, addr, data_size, flags, pc, _cpuId, thread_id);
519 orig_req->setPhys(req->getPaddr(), data_size, flags);
520 PacketPtr big_pkt =
521 new Packet(orig_req, MemCmd::WriteResp, Packet::Broadcast);
522 big_pkt->dataDynamic<T>(data_ptr);
523 big_pkt->set(data);
524 SplitMainSenderState * main_send_state = new SplitMainSenderState;
525 big_pkt->senderState = main_send_state;
526 main_send_state->outstanding = 2;
527
528 assert(dcache_pkt == NULL);
529 // This is the packet we'll process now.
530 dcache_pkt = new Packet(req, MemCmd::WriteReq, Packet::Broadcast);
531 dcache_pkt->dataStatic<uint8_t>((uint8_t *)data_ptr);
532 dcache_pkt->senderState = new SplitFragmentSenderState(big_pkt, 0);
533
534 // This is the second half of the access we'll deal with later.
535 PacketPtr second_pkt =
536 new Packet(second_req, MemCmd::WriteReq, Packet::Broadcast);
537 second_pkt->dataStatic<uint8_t>((uint8_t *)data_ptr + first_size);
538 second_pkt->senderState = new SplitFragmentSenderState(big_pkt, 1);
539 if (!handleWritePacket()) {
540 main_send_state->fragments[1] = second_pkt;
541 } else {
542 dcache_pkt = second_pkt;
543 handleWritePacket();
544 }
545 } else {
546 req = new Request(asid, addr, data_size, flags, pc, _cpuId, thread_id);
547
548 // translate to physical address
549 Fault fault = thread->translateDataWriteReq(req);
550 if (fault != NoFault) {
551 delete req;
552 return fault;
553 }
554
385 MemCmd cmd = MemCmd::WriteReq; // default
555 MemCmd cmd = MemCmd::WriteReq; // default
386 bool do_access = true; // flag to suppress cache access
387
388 if (req->isLocked()) {
389 cmd = MemCmd::StoreCondReq;
390 do_access = TheISA::handleLockedWrite(thread, req);
391 } else if (req->isSwap()) {
392 cmd = MemCmd::SwapReq;
393 if (req->isCondSwap()) {
394 assert(res);
395 req->setExtraData(*res);
396 }
397 }
398
399 // Note: need to allocate dcache_pkt even if do_access is
400 // false, as it's used unconditionally to call completeAcc().
401 assert(dcache_pkt == NULL);
402 dcache_pkt = new Packet(req, cmd, Packet::Broadcast);
403 dcache_pkt->allocate();
556
557 if (req->isLocked()) {
558 cmd = MemCmd::StoreCondReq;
559 do_access = TheISA::handleLockedWrite(thread, req);
560 } else if (req->isSwap()) {
561 cmd = MemCmd::SwapReq;
562 if (req->isCondSwap()) {
563 assert(res);
564 req->setExtraData(*res);
565 }
566 }
567
568 // Note: need to allocate dcache_pkt even if do_access is
569 // false, as it's used unconditionally to call completeAcc().
570 assert(dcache_pkt == NULL);
571 dcache_pkt = new Packet(req, cmd, Packet::Broadcast);
572 dcache_pkt->allocate();
404 dcache_pkt->set(data);
573 if (req->isMmapedIpr())
574 dcache_pkt->set(htog(data));
575 else
576 dcache_pkt->set(data);
405
577
406 if (do_access) {
407 if (req->isMmapedIpr()) {
408 Tick delay;
409 dcache_pkt->set(htog(data));
410 delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
411 new IprEvent(dcache_pkt, this, nextCycle(curTick + delay));
412 _status = DcacheWaitResponse;
413 dcache_pkt = NULL;
414 } else if (!dcachePort.sendTiming(dcache_pkt)) {
415 _status = DcacheRetry;
416 } else {
417 _status = DcacheWaitResponse;
418 // memory system takes ownership of packet
419 dcache_pkt = NULL;
420 }
421 }
422 // This will need a new way to tell if it's hooked up to a cache or not.
423 if (req->isUncacheable())
424 recordEvent("Uncached Write");
425 } else {
426 delete req;
578 if (do_access)
579 handleWritePacket();
427 }
428
429 if (traceData) {
580 }
581
582 if (traceData) {
583 traceData->setAddr(req->getVaddr());
430 traceData->setData(data);
431 }
432
584 traceData->setData(data);
585 }
586
587 // This will need a new way to tell if it's hooked up to a cache or not.
588 if (req->isUncacheable())
589 recordEvent("Uncached Write");
590
433 // If the write needs to have a fault on the access, consider calling
434 // changeStatus() and changing it to "bad addr write" or something.
591 // If the write needs to have a fault on the access, consider calling
592 // changeStatus() and changing it to "bad addr write" or something.
435 return fault;
593 return NoFault;
436}
437
438Fault
439TimingSimpleCPU::translateDataWriteAddr(Addr vaddr, Addr &paddr,
440 int size, unsigned flags)
441{
442 Request *req =
443 new Request(0, vaddr, size, flags, thread->readPC(), _cpuId, 0);

--- 272 unchanged lines hidden (view full) ---

716}
717
718void
719TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
720{
721 // received a response from the dcache: complete the load or store
722 // instruction
723 assert(!pkt->isError());
594}
595
596Fault
597TimingSimpleCPU::translateDataWriteAddr(Addr vaddr, Addr &paddr,
598 int size, unsigned flags)
599{
600 Request *req =
601 new Request(0, vaddr, size, flags, thread->readPC(), _cpuId, 0);

--- 272 unchanged lines hidden (view full) ---

874}
875
876void
877TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
878{
879 // received a response from the dcache: complete the load or store
880 // instruction
881 assert(!pkt->isError());
724 assert(_status == DcacheWaitResponse);
725 _status = Running;
726
727 numCycles += tickToCycles(curTick - previousTick);
728 previousTick = curTick;
729
882
883 numCycles += tickToCycles(curTick - previousTick);
884 previousTick = curTick;
885
886 if (pkt->senderState) {
887 SplitFragmentSenderState * send_state =
888 dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
889 assert(send_state);
890 delete pkt->req;
891 delete pkt;
892 PacketPtr big_pkt = send_state->bigPkt;
893 delete send_state;
894
895 SplitMainSenderState * main_send_state =
896 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
897 assert(main_send_state);
898 // Record the fact that this packet is no longer outstanding.
899 assert(main_send_state->outstanding != 0);
900 main_send_state->outstanding--;
901
902 if (main_send_state->outstanding) {
903 return;
904 } else {
905 delete main_send_state;
906 big_pkt->senderState = NULL;
907 pkt = big_pkt;
908 }
909 }
910
911 assert(_status == DcacheWaitResponse);
912 _status = Running;
913
730 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
731
732 // keep an instruction count
733 if (fault == NoFault)
734 countInst();
735 else if (traceData) {
736 // If there was a fault, we shouldn't trace this instruction.
737 delete traceData;

--- 44 unchanged lines hidden (view full) ---

782
783bool
784TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
785{
786 if (pkt->isResponse() && !pkt->wasNacked()) {
787 // delay processing of returned data until next CPU clock edge
788 Tick next_tick = cpu->nextCycle(curTick);
789
914 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
915
916 // keep an instruction count
917 if (fault == NoFault)
918 countInst();
919 else if (traceData) {
920 // If there was a fault, we shouldn't trace this instruction.
921 delete traceData;

--- 44 unchanged lines hidden (view full) ---

966
967bool
968TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
969{
970 if (pkt->isResponse() && !pkt->wasNacked()) {
971 // delay processing of returned data until next CPU clock edge
972 Tick next_tick = cpu->nextCycle(curTick);
973
790 if (next_tick == curTick)
974 if (next_tick == curTick) {
791 cpu->completeDataAccess(pkt);
975 cpu->completeDataAccess(pkt);
792 else
976 } else {
793 tickEvent.schedule(pkt, next_tick);
977 tickEvent.schedule(pkt, next_tick);
978 }
794
795 return true;
796 }
797 else if (pkt->wasNacked()) {
798 assert(cpu->_status == DcacheWaitResponse);
799 pkt->reinitNacked();
800 if (!sendTiming(pkt)) {
801 cpu->_status = DcacheRetry;

--- 13 unchanged lines hidden (view full) ---

815void
816TimingSimpleCPU::DcachePort::recvRetry()
817{
818 // we shouldn't get a retry unless we have a packet that we're
819 // waiting to transmit
820 assert(cpu->dcache_pkt != NULL);
821 assert(cpu->_status == DcacheRetry);
822 PacketPtr tmp = cpu->dcache_pkt;
979
980 return true;
981 }
982 else if (pkt->wasNacked()) {
983 assert(cpu->_status == DcacheWaitResponse);
984 pkt->reinitNacked();
985 if (!sendTiming(pkt)) {
986 cpu->_status = DcacheRetry;

--- 13 unchanged lines hidden (view full) ---

1000void
1001TimingSimpleCPU::DcachePort::recvRetry()
1002{
1003 // we shouldn't get a retry unless we have a packet that we're
1004 // waiting to transmit
1005 assert(cpu->dcache_pkt != NULL);
1006 assert(cpu->_status == DcacheRetry);
1007 PacketPtr tmp = cpu->dcache_pkt;
823 if (sendTiming(tmp)) {
1008 if (tmp->senderState) {
1009 // This is a packet from a split access.
1010 SplitFragmentSenderState * send_state =
1011 dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
1012 assert(send_state);
1013 PacketPtr big_pkt = send_state->bigPkt;
1014
1015 SplitMainSenderState * main_send_state =
1016 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
1017 assert(main_send_state);
1018
1019 if (sendTiming(tmp)) {
1020 // If we were able to send without retrying, record that fact
1021 // and try sending the other fragment.
1022 send_state->clearFromParent();
1023 int other_index = main_send_state->getPendingFragment();
1024 if (other_index > 0) {
1025 tmp = main_send_state->fragments[other_index];
1026 cpu->dcache_pkt = tmp;
1027 if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
1028 (big_pkt->isWrite() && cpu->handleWritePacket())) {
1029 main_send_state->fragments[other_index] = NULL;
1030 }
1031 } else {
1032 cpu->_status = DcacheWaitResponse;
1033 // memory system takes ownership of packet
1034 cpu->dcache_pkt = NULL;
1035 }
1036 }
1037 } else if (sendTiming(tmp)) {
824 cpu->_status = DcacheWaitResponse;
825 // memory system takes ownership of packet
826 cpu->dcache_pkt = NULL;
827 }
828}
829
830TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
831 Tick t)

--- 39 unchanged lines hidden ---
1038 cpu->_status = DcacheWaitResponse;
1039 // memory system takes ownership of packet
1040 cpu->dcache_pkt = NULL;
1041 }
1042}
1043
1044TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
1045 Tick t)

--- 39 unchanged lines hidden ---