1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2010-2013,2015 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44#include "arch/locked_mem.hh"
45#include "arch/mmapped_ipr.hh"
46#include "arch/utility.hh"
47#include "base/bigint.hh"
48#include "config/the_isa.hh"
49#include "cpu/simple/timing.hh"
50#include "cpu/exetrace.hh"
51#include "debug/Config.hh"
52#include "debug/Drain.hh"
53#include "debug/ExecFaulting.hh"
54#include "debug/SimpleCPU.hh"
55#include "mem/packet.hh"
56#include "mem/packet_access.hh"
57#include "params/TimingSimpleCPU.hh"
58#include "sim/faults.hh"
59#include "sim/full_system.hh"
60#include "sim/system.hh"
61
62#include "debug/Mwait.hh"
63
64using namespace std;
65using namespace TheISA;
66
67void
68TimingSimpleCPU::init()
69{
70 BaseSimpleCPU::init();
71}
72
73void
74TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
75{
76 pkt = _pkt;
77 cpu->schedule(this, t);
78}
79
80TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
81 : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
82 dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
83 fetchEvent(this)
84{
85 _status = Idle;
86}
87
88
89
90TimingSimpleCPU::~TimingSimpleCPU()
91{
92}
93
94DrainState
95TimingSimpleCPU::drain()
96{
97 if (switchedOut())
98 return DrainState::Drained;
99
100 if (_status == Idle ||
101 (_status == BaseSimpleCPU::Running && isDrained())) {
102 DPRINTF(Drain, "No need to drain.\n");
103 activeThreads.clear();
104 return DrainState::Drained;
105 } else {
106 DPRINTF(Drain, "Requesting drain.\n");
107
108 // The fetch event can become descheduled if a drain didn't
109 // succeed on the first attempt. We need to reschedule it if
110 // the CPU is waiting for a microcode routine to complete.
111 if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
112 schedule(fetchEvent, clockEdge());
113
114 return DrainState::Draining;
115 }
116}
117
118void
119TimingSimpleCPU::drainResume()
120{
121 assert(!fetchEvent.scheduled());
122 if (switchedOut())
123 return;
124
125 DPRINTF(SimpleCPU, "Resume\n");
126 verifyMemoryMode();
127
128 assert(!threadContexts.empty());
129
130 _status = BaseSimpleCPU::Idle;
131
132 for (ThreadID tid = 0; tid < numThreads; tid++) {
133 if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
134 threadInfo[tid]->notIdleFraction = 1;
135
136 activeThreads.push_back(tid);
137
138 _status = BaseSimpleCPU::Running;
139
140 // Fetch if any threads active
141 if (!fetchEvent.scheduled()) {
142 schedule(fetchEvent, nextCycle());
143 }
144 } else {
145 threadInfo[tid]->notIdleFraction = 0;
146 }
147 }
148
149 system->totalNumInsts = 0;
150}
151
152bool
153TimingSimpleCPU::tryCompleteDrain()
154{
155 if (drainState() != DrainState::Draining)
156 return false;
157
158 DPRINTF(Drain, "tryCompleteDrain.\n");
159 if (!isDrained())
160 return false;
161
162 DPRINTF(Drain, "CPU done draining, processing drain event\n");
163 signalDrainDone();
164
165 return true;
166}
167
168void
169TimingSimpleCPU::switchOut()
170{
171 SimpleExecContext& t_info = *threadInfo[curThread];
172 M5_VAR_USED SimpleThread* thread = t_info.thread;
173
174 BaseSimpleCPU::switchOut();
175
176 assert(!fetchEvent.scheduled());
177 assert(_status == BaseSimpleCPU::Running || _status == Idle);
178 assert(!t_info.stayAtPC);
179 assert(thread->microPC() == 0);
180
181 updateCycleCounts();
182}
183
184
185void
186TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
187{
188 BaseSimpleCPU::takeOverFrom(oldCPU);
189
190 previousCycle = curCycle();
191}
192
193void
194TimingSimpleCPU::verifyMemoryMode() const
195{
196 if (!system->isTimingMode()) {
197 fatal("The timing CPU requires the memory system to be in "
198 "'timing' mode.\n");
199 }
200}
201
202void
203TimingSimpleCPU::activateContext(ThreadID thread_num)
204{
205 DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
206
207 assert(thread_num < numThreads);
208
209 threadInfo[thread_num]->notIdleFraction = 1;
210 if (_status == BaseSimpleCPU::Idle)
211 _status = BaseSimpleCPU::Running;
212
213 // kick things off by initiating the fetch of the next instruction
214 if (!fetchEvent.scheduled())
215 schedule(fetchEvent, clockEdge(Cycles(0)));
216
217 if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
218 == activeThreads.end()) {
219 activeThreads.push_back(thread_num);
220 }
221}
222
223
224void
225TimingSimpleCPU::suspendContext(ThreadID thread_num)
226{
227 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
228
229 assert(thread_num < numThreads);
230 activeThreads.remove(thread_num);
231
232 if (_status == Idle)
233 return;
234
235 assert(_status == BaseSimpleCPU::Running);
236
237 threadInfo[thread_num]->notIdleFraction = 0;
238
239 if (activeThreads.empty()) {
240 _status = Idle;
241
242 if (fetchEvent.scheduled()) {
243 deschedule(fetchEvent);
244 }
245 }
246}
247
248bool
249TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
250{
251 SimpleExecContext &t_info = *threadInfo[curThread];
252 SimpleThread* thread = t_info.thread;
253
254 RequestPtr req = pkt->req;
255
256 // We're about the issues a locked load, so tell the monitor
257 // to start caring about this address
258 if (pkt->isRead() && pkt->req->isLLSC()) {
259 TheISA::handleLockedRead(thread, pkt->req);
260 }
261 if (req->isMmappedIpr()) {
262 Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
263 new IprEvent(pkt, this, clockEdge(delay));
264 _status = DcacheWaitResponse;
265 dcache_pkt = NULL;
266 } else if (!dcachePort.sendTimingReq(pkt)) {
267 _status = DcacheRetry;
268 dcache_pkt = pkt;
269 } else {
270 _status = DcacheWaitResponse;
271 // memory system takes ownership of packet
272 dcache_pkt = NULL;
273 }
274 return dcache_pkt == NULL;
275}
276
277void
278TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
279 bool read)
280{
281 SimpleExecContext &t_info = *threadInfo[curThread];
282 SimpleThread* thread = t_info.thread;
283
284 PacketPtr pkt = buildPacket(req, read);
285 pkt->dataDynamic<uint8_t>(data);
286 if (req->getFlags().isSet(Request::NO_ACCESS)) {
287 assert(!dcache_pkt);
288 pkt->makeResponse();
289 completeDataAccess(pkt);
290 } else if (read) {
291 handleReadPacket(pkt);
292 } else {
293 bool do_access = true; // flag to suppress cache access
294
295 if (req->isLLSC()) {
296 do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
297 } else if (req->isCondSwap()) {
298 assert(res);
299 req->setExtraData(*res);
300 }
301
302 if (do_access) {
303 dcache_pkt = pkt;
304 handleWritePacket();
305 threadSnoop(pkt, curThread);
306 } else {
307 _status = DcacheWaitResponse;
308 completeDataAccess(pkt);
309 }
310 }
311}
312
313void
314TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
315 RequestPtr req, uint8_t *data, bool read)
316{
317 PacketPtr pkt1, pkt2;
318 buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
319 if (req->getFlags().isSet(Request::NO_ACCESS)) {
320 assert(!dcache_pkt);
321 pkt1->makeResponse();
322 completeDataAccess(pkt1);
323 } else if (read) {
324 SplitFragmentSenderState * send_state =
325 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
326 if (handleReadPacket(pkt1)) {
327 send_state->clearFromParent();
328 send_state = dynamic_cast<SplitFragmentSenderState *>(
329 pkt2->senderState);
330 if (handleReadPacket(pkt2)) {
331 send_state->clearFromParent();
332 }
333 }
334 } else {
335 dcache_pkt = pkt1;
336 SplitFragmentSenderState * send_state =
337 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
338 if (handleWritePacket()) {
339 send_state->clearFromParent();
340 dcache_pkt = pkt2;
341 send_state = dynamic_cast<SplitFragmentSenderState *>(
342 pkt2->senderState);
343 if (handleWritePacket()) {
344 send_state->clearFromParent();
345 }
346 }
347 }
348}
349
350void
351TimingSimpleCPU::translationFault(const Fault &fault)
352{
353 // fault may be NoFault in cases where a fault is suppressed,
354 // for instance prefetches.
355 updateCycleCounts();
356
357 if (traceData) {
358 // Since there was a fault, we shouldn't trace this instruction.
359 delete traceData;
360 traceData = NULL;
361 }
362
363 postExecute();
364
365 advanceInst(fault);
366}
367
368PacketPtr
369TimingSimpleCPU::buildPacket(RequestPtr req, bool read)
370{
371 return read ? Packet::createRead(req) : Packet::createWrite(req);
372}
373
374void
375TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
376 RequestPtr req1, RequestPtr req2, RequestPtr req,
377 uint8_t *data, bool read)
378{
379 pkt1 = pkt2 = NULL;
380
381 assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
382
383 if (req->getFlags().isSet(Request::NO_ACCESS)) {
384 pkt1 = buildPacket(req, read);
385 return;
386 }
387
388 pkt1 = buildPacket(req1, read);
389 pkt2 = buildPacket(req2, read);
390
391 PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
392
393 pkt->dataDynamic<uint8_t>(data);
394 pkt1->dataStatic<uint8_t>(data);
395 pkt2->dataStatic<uint8_t>(data + req1->getSize());
396
397 SplitMainSenderState * main_send_state = new SplitMainSenderState;
398 pkt->senderState = main_send_state;
399 main_send_state->fragments[0] = pkt1;
400 main_send_state->fragments[1] = pkt2;
401 main_send_state->outstanding = 2;
402 pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
403 pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
404}
405
406Fault
407TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
408 unsigned size, unsigned flags)
409{
410 panic("readMem() is for atomic accesses, and should "
411 "never be called on TimingSimpleCPU.\n");
412}
413
414Fault
415TimingSimpleCPU::initiateMemRead(Addr addr, unsigned size, unsigned flags)
416{
417 SimpleExecContext &t_info = *threadInfo[curThread];
418 SimpleThread* thread = t_info.thread;
419
420 Fault fault;
421 const int asid = 0;
422 const ThreadID tid = curThread;
423 const Addr pc = thread->instAddr();
424 unsigned block_size = cacheLineSize();
425 BaseTLB::Mode mode = BaseTLB::Read;
426
427 if (traceData)
428 traceData->setMem(addr, size, flags);
429
430 RequestPtr req = new Request(asid, addr, size,
431 flags, dataMasterId(), pc,
432 thread->contextId(), tid);
433
434 req->taskId(taskId());
435
436 Addr split_addr = roundDown(addr + size - 1, block_size);
437 assert(split_addr <= addr || split_addr - addr < block_size);
438
439 _status = DTBWaitResponse;
440 if (split_addr > addr) {
441 RequestPtr req1, req2;
442 assert(!req->isLLSC() && !req->isSwap());
443 req->splitOnVaddr(split_addr, req1, req2);
444
445 WholeTranslationState *state =
446 new WholeTranslationState(req, req1, req2, new uint8_t[size],
447 NULL, mode);
448 DataTranslation<TimingSimpleCPU *> *trans1 =
449 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
450 DataTranslation<TimingSimpleCPU *> *trans2 =
451 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
452
453 thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
454 thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
455 } else {
456 WholeTranslationState *state =
457 new WholeTranslationState(req, new uint8_t[size], NULL, mode);
458 DataTranslation<TimingSimpleCPU *> *translation
459 = new DataTranslation<TimingSimpleCPU *>(this, state);
460 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
461 }
462
463 return NoFault;
464}
465
466bool
467TimingSimpleCPU::handleWritePacket()
468{
469 SimpleExecContext &t_info = *threadInfo[curThread];
470 SimpleThread* thread = t_info.thread;
471
472 RequestPtr req = dcache_pkt->req;
473 if (req->isMmappedIpr()) {
474 Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
475 new IprEvent(dcache_pkt, this, clockEdge(delay));
476 _status = DcacheWaitResponse;
477 dcache_pkt = NULL;
478 } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
479 _status = DcacheRetry;
480 } else {
481 _status = DcacheWaitResponse;
482 // memory system takes ownership of packet
483 dcache_pkt = NULL;
484 }
485 return dcache_pkt == NULL;
486}
487
488Fault
489TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
490 Addr addr, unsigned flags, uint64_t *res)
491{
492 SimpleExecContext &t_info = *threadInfo[curThread];
493 SimpleThread* thread = t_info.thread;
494
495 uint8_t *newData = new uint8_t[size];
496 const int asid = 0;
497 const ThreadID tid = curThread;
498 const Addr pc = thread->instAddr();
499 unsigned block_size = cacheLineSize();
500 BaseTLB::Mode mode = BaseTLB::Write;
501
502 if (data == NULL) {
503 assert(flags & Request::CACHE_BLOCK_ZERO);
504 // This must be a cache block cleaning request
505 memset(newData, 0, size);
506 } else {
507 memcpy(newData, data, size);
508 }
509
510 if (traceData)
511 traceData->setMem(addr, size, flags);
512
513 RequestPtr req = new Request(asid, addr, size,
514 flags, dataMasterId(), pc,
515 thread->contextId(), tid);
516
517 req->taskId(taskId());
518
519 Addr split_addr = roundDown(addr + size - 1, block_size);
520 assert(split_addr <= addr || split_addr - addr < block_size);
521
522 _status = DTBWaitResponse;
523 if (split_addr > addr) {
524 RequestPtr req1, req2;
525 assert(!req->isLLSC() && !req->isSwap());
526 req->splitOnVaddr(split_addr, req1, req2);
527
528 WholeTranslationState *state =
529 new WholeTranslationState(req, req1, req2, newData, res, mode);
530 DataTranslation<TimingSimpleCPU *> *trans1 =
531 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
532 DataTranslation<TimingSimpleCPU *> *trans2 =
533 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
534
535 thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
536 thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
537 } else {
538 WholeTranslationState *state =
539 new WholeTranslationState(req, newData, res, mode);
540 DataTranslation<TimingSimpleCPU *> *translation =
541 new DataTranslation<TimingSimpleCPU *>(this, state);
542 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
543 }
544
545 // Translation faults will be returned via finishTranslation()
546 return NoFault;
547}
548
549void
550TimingSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender)
551{
552 for (ThreadID tid = 0; tid < numThreads; tid++) {
553 if (tid != sender) {
554 if(getCpuAddrMonitor(tid)->doMonitor(pkt)) {
555 wakeup(tid);
556 }
557 TheISA::handleLockedSnoop(threadInfo[tid]->thread, pkt,
558 dcachePort.cacheBlockMask);
559 }
560 }
561}
562
563void
564TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
565{
566 _status = BaseSimpleCPU::Running;
567
568 if (state->getFault() != NoFault) {
569 if (state->isPrefetch()) {
570 state->setNoFault();
571 }
572 delete [] state->data;
573 state->deleteReqs();
574 translationFault(state->getFault());
575 } else {
576 if (!state->isSplit) {
577 sendData(state->mainReq, state->data, state->res,
578 state->mode == BaseTLB::Read);
579 } else {
580 sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
581 state->data, state->mode == BaseTLB::Read);
582 }
583 }
584
585 delete state;
586}
587
588
589void
590TimingSimpleCPU::fetch()
591{
592 // Change thread if multi-threaded
593 swapActiveThread();
594
595 SimpleExecContext &t_info = *threadInfo[curThread];
596 SimpleThread* thread = t_info.thread;
597
598 DPRINTF(SimpleCPU, "Fetch\n");
599
600 if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
601 checkForInterrupts();
602 checkPcEventQueue();
603 }
604
605 // We must have just got suspended by a PC event
606 if (_status == Idle)
607 return;
608
609 TheISA::PCState pcState = thread->pcState();
610 bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
611 !curMacroStaticInst;
612
613 if (needToFetch) {
614 _status = BaseSimpleCPU::Running;
615 Request *ifetch_req = new Request();
616 ifetch_req->taskId(taskId());
617 ifetch_req->setThreadContext(thread->contextId(), curThread);
618 setupFetchRequest(ifetch_req);
619 DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
620 thread->itb->translateTiming(ifetch_req, thread->getTC(),
621 &fetchTranslation, BaseTLB::Execute);
622 } else {
623 _status = IcacheWaitResponse;
624 completeIfetch(NULL);
625
626 updateCycleCounts();
627 }
628}
629
630
631void
632TimingSimpleCPU::sendFetch(const Fault &fault, RequestPtr req,
633 ThreadContext *tc)
634{
635 if (fault == NoFault) {
636 DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
637 req->getVaddr(), req->getPaddr());
638 ifetch_pkt = new Packet(req, MemCmd::ReadReq);
639 ifetch_pkt->dataStatic(&inst);
640 DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
641
642 if (!icachePort.sendTimingReq(ifetch_pkt)) {
643 // Need to wait for retry
644 _status = IcacheRetry;
645 } else {
646 // Need to wait for cache to respond
647 _status = IcacheWaitResponse;
648 // ownership of packet transferred to memory system
649 ifetch_pkt = NULL;
650 }
651 } else {
652 DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
653 delete req;
654 // fetch fault: advance directly to next instruction (fault handler)
655 _status = BaseSimpleCPU::Running;
656 advanceInst(fault);
657 }
658
659 updateCycleCounts();
660}
661
662
663void
664TimingSimpleCPU::advanceInst(const Fault &fault)
665{
666 SimpleExecContext &t_info = *threadInfo[curThread];
667
668 if (_status == Faulting)
669 return;
670
671 if (fault != NoFault) {
672 advancePC(fault);
673 DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
674 reschedule(fetchEvent, clockEdge(), true);
675 _status = Faulting;
676 return;
677 }
678
679
680 if (!t_info.stayAtPC)
681 advancePC(fault);
682
683 if (tryCompleteDrain())
684 return;
685
686 if (_status == BaseSimpleCPU::Running) {
687 // kick off fetch of next instruction... callback from icache
688 // response will cause that instruction to be executed,
689 // keeping the CPU running.
690 fetch();
691 }
692}
693
694
695void
696TimingSimpleCPU::completeIfetch(PacketPtr pkt)
697{
698 SimpleExecContext& t_info = *threadInfo[curThread];
699
700 DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
701 pkt->getAddr() : 0);
702
703 // received a response from the icache: execute the received
704 // instruction
705 assert(!pkt || !pkt->isError());
706 assert(_status == IcacheWaitResponse);
707
708 _status = BaseSimpleCPU::Running;
709
710 updateCycleCounts();
711
712 if (pkt)
713 pkt->req->setAccessLatency();
714
715
716 preExecute();
717 if (curStaticInst && curStaticInst->isMemRef()) {
718 // load or store: just send to dcache
719 Fault fault = curStaticInst->initiateAcc(&t_info, traceData);
720
721 // If we're not running now the instruction will complete in a dcache
722 // response callback or the instruction faulted and has started an
723 // ifetch
724 if (_status == BaseSimpleCPU::Running) {
725 if (fault != NoFault && traceData) {
726 // If there was a fault, we shouldn't trace this instruction.
727 delete traceData;
728 traceData = NULL;
729 }
730
731 postExecute();
732 // @todo remove me after debugging with legion done
733 if (curStaticInst && (!curStaticInst->isMicroop() ||
734 curStaticInst->isFirstMicroop()))
735 instCnt++;
736 advanceInst(fault);
737 }
738 } else if (curStaticInst) {
739 // non-memory instruction: execute completely now
740 Fault fault = curStaticInst->execute(&t_info, traceData);
741
742 // keep an instruction count
743 if (fault == NoFault)
744 countInst();
745 else if (traceData && !DTRACE(ExecFaulting)) {
746 delete traceData;
747 traceData = NULL;
748 }
749
750 postExecute();
751 // @todo remove me after debugging with legion done
752 if (curStaticInst && (!curStaticInst->isMicroop() ||
753 curStaticInst->isFirstMicroop()))
754 instCnt++;
755 advanceInst(fault);
756 } else {
757 advanceInst(NoFault);
758 }
759
760 if (pkt) {
761 delete pkt->req;
762 delete pkt;
763 }
764}
765
766void
767TimingSimpleCPU::IcachePort::ITickEvent::process()
768{
769 cpu->completeIfetch(pkt);
770}
771
772bool
773TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
774{
775 DPRINTF(SimpleCPU, "Received fetch response %#x\n", pkt->getAddr());
776 // we should only ever see one response per cycle since we only
777 // issue a new request once this response is sunk
778 assert(!tickEvent.scheduled());
779 // delay processing of returned data until next CPU clock edge
780 tickEvent.schedule(pkt, cpu->clockEdge());
781
782 return true;
783}
784
785void
786TimingSimpleCPU::IcachePort::recvReqRetry()
787{
788 // we shouldn't get a retry unless we have a packet that we're
789 // waiting to transmit
790 assert(cpu->ifetch_pkt != NULL);
791 assert(cpu->_status == IcacheRetry);
792 PacketPtr tmp = cpu->ifetch_pkt;
793 if (sendTimingReq(tmp)) {
794 cpu->_status = IcacheWaitResponse;
795 cpu->ifetch_pkt = NULL;
796 }
797}
798
799void
800TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
801{
802 // received a response from the dcache: complete the load or store
803 // instruction
804 assert(!pkt->isError());
805 assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
806 pkt->req->getFlags().isSet(Request::NO_ACCESS));
807
808 pkt->req->setAccessLatency();
809
810 updateCycleCounts();
811
812 if (pkt->senderState) {
813 SplitFragmentSenderState * send_state =
814 dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
815 assert(send_state);
816 delete pkt->req;
817 delete pkt;
818 PacketPtr big_pkt = send_state->bigPkt;
819 delete send_state;
820
821 SplitMainSenderState * main_send_state =
822 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
823 assert(main_send_state);
824 // Record the fact that this packet is no longer outstanding.
825 assert(main_send_state->outstanding != 0);
826 main_send_state->outstanding--;
827
828 if (main_send_state->outstanding) {
829 return;
830 } else {
831 delete main_send_state;
832 big_pkt->senderState = NULL;
833 pkt = big_pkt;
834 }
835 }
836
837 _status = BaseSimpleCPU::Running;
838
839 Fault fault = curStaticInst->completeAcc(pkt, threadInfo[curThread],
840 traceData);
841
842 // keep an instruction count
843 if (fault == NoFault)
844 countInst();
845 else if (traceData) {
846 // If there was a fault, we shouldn't trace this instruction.
847 delete traceData;
848 traceData = NULL;
849 }
850
851 delete pkt->req;
852 delete pkt;
853
854 postExecute();
855
856 advanceInst(fault);
857}
858
859void
860TimingSimpleCPU::updateCycleCounts()
861{
862 const Cycles delta(curCycle() - previousCycle);
863
864 numCycles += delta;
865 ppCycles->notify(delta);
866
867 previousCycle = curCycle();
868}
869
870void
871TimingSimpleCPU::DcachePort::recvTimingSnoopReq(PacketPtr pkt)
872{
873 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
874 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
875 cpu->wakeup(tid);
876 }
877 }
878
879 for (auto &t_info : cpu->threadInfo) {
880 TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
881 }
882}
883
884void
885TimingSimpleCPU::DcachePort::recvFunctionalSnoop(PacketPtr pkt)
886{
887 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
888 if(cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
889 cpu->wakeup(tid);
890 }
891 }
892}
893
894bool
895TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
896{
897 DPRINTF(SimpleCPU, "Received load/store response %#x\n", pkt->getAddr());
898
899 // The timing CPU is not really ticked, instead it relies on the
900 // memory system (fetch and load/store) to set the pace.
901 if (!tickEvent.scheduled()) {
902 // Delay processing of returned data until next CPU clock edge
903 tickEvent.schedule(pkt, cpu->clockEdge());
904 return true;
905 } else {
906 // In the case of a split transaction and a cache that is
907 // faster than a CPU we could get two responses in the
908 // same tick, delay the second one
909 if (!retryRespEvent.scheduled())
910 cpu->schedule(retryRespEvent, cpu->clockEdge(Cycles(1)));
911 return false;
912 }
913}
914
915void
916TimingSimpleCPU::DcachePort::DTickEvent::process()
917{
918 cpu->completeDataAccess(pkt);
919}
920
921void
922TimingSimpleCPU::DcachePort::recvReqRetry()
923{
924 // we shouldn't get a retry unless we have a packet that we're
925 // waiting to transmit
926 assert(cpu->dcache_pkt != NULL);
927 assert(cpu->_status == DcacheRetry);
928 PacketPtr tmp = cpu->dcache_pkt;
929 if (tmp->senderState) {
930 // This is a packet from a split access.
931 SplitFragmentSenderState * send_state =
932 dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
933 assert(send_state);
934 PacketPtr big_pkt = send_state->bigPkt;
935
936 SplitMainSenderState * main_send_state =
937 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
938 assert(main_send_state);
939
940 if (sendTimingReq(tmp)) {
941 // If we were able to send without retrying, record that fact
942 // and try sending the other fragment.
943 send_state->clearFromParent();
944 int other_index = main_send_state->getPendingFragment();
945 if (other_index > 0) {
946 tmp = main_send_state->fragments[other_index];
947 cpu->dcache_pkt = tmp;
948 if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
949 (big_pkt->isWrite() && cpu->handleWritePacket())) {
950 main_send_state->fragments[other_index] = NULL;
951 }
952 } else {
953 cpu->_status = DcacheWaitResponse;
954 // memory system takes ownership of packet
955 cpu->dcache_pkt = NULL;
956 }
957 }
958 } else if (sendTimingReq(tmp)) {
959 cpu->_status = DcacheWaitResponse;
960 // memory system takes ownership of packet
961 cpu->dcache_pkt = NULL;
962 }
963}
964
965TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
966 Tick t)
967 : pkt(_pkt), cpu(_cpu)
968{
969 cpu->schedule(this, t);
970}
971
972void
973TimingSimpleCPU::IprEvent::process()
974{
975 cpu->completeDataAccess(pkt);
976}
977
978const char *
979TimingSimpleCPU::IprEvent::description() const
980{
981 return "Timing Simple CPU Delay IPR event";
982}
983
984
985void
986TimingSimpleCPU::printAddr(Addr a)
987{
988 dcachePort.printAddr(a);
989}
990
991
992////////////////////////////////////////////////////////////////////////
993//
994// TimingSimpleCPU Simulation Object
995//
996TimingSimpleCPU *
997TimingSimpleCPUParams::create()
998{
999 return new TimingSimpleCPU(this);
1000}