timing.cc (7016:8b2b8e5e7d35) timing.cc (7045:e21fe6a62b1c)
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "config/the_isa.hh"
36#include "cpu/exetrace.hh"
37#include "cpu/simple/timing.hh"
38#include "mem/packet.hh"
39#include "mem/packet_access.hh"
40#include "params/TimingSimpleCPU.hh"
41#include "sim/system.hh"
42
43using namespace std;
44using namespace TheISA;
45
46Port *
47TimingSimpleCPU::getPort(const std::string &if_name, int idx)
48{
49 if (if_name == "dcache_port")
50 return &dcachePort;
51 else if (if_name == "icache_port")
52 return &icachePort;
53 else
54 panic("No Such Port\n");
55}
56
57void
58TimingSimpleCPU::init()
59{
60 BaseCPU::init();
61#if FULL_SYSTEM
62 for (int i = 0; i < threadContexts.size(); ++i) {
63 ThreadContext *tc = threadContexts[i];
64
65 // initialize CPU, including PC
66 TheISA::initCPU(tc, _cpuId);
67 }
68#endif
69}
70
71Tick
72TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
73{
74 panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
75 return curTick;
76}
77
78void
79TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
80{
81 //No internal storage to update, jusst return
82 return;
83}
84
85void
86TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
87{
88 if (status == RangeChange) {
89 if (!snoopRangeSent) {
90 snoopRangeSent = true;
91 sendStatusChange(Port::RangeChange);
92 }
93 return;
94 }
95
96 panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
97}
98
99
100void
101TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
102{
103 pkt = _pkt;
104 cpu->schedule(this, t);
105}
106
107TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
108 : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this, p->clock),
109 dcachePort(this, p->clock), fetchEvent(this)
110{
111 _status = Idle;
112
113 icachePort.snoopRangeSent = false;
114 dcachePort.snoopRangeSent = false;
115
116 ifetch_pkt = dcache_pkt = NULL;
117 drainEvent = NULL;
118 previousTick = 0;
119 changeState(SimObject::Running);
120}
121
122
123TimingSimpleCPU::~TimingSimpleCPU()
124{
125}
126
127void
128TimingSimpleCPU::serialize(ostream &os)
129{
130 SimObject::State so_state = SimObject::getState();
131 SERIALIZE_ENUM(so_state);
132 BaseSimpleCPU::serialize(os);
133}
134
135void
136TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
137{
138 SimObject::State so_state;
139 UNSERIALIZE_ENUM(so_state);
140 BaseSimpleCPU::unserialize(cp, section);
141}
142
143unsigned int
144TimingSimpleCPU::drain(Event *drain_event)
145{
146 // TimingSimpleCPU is ready to drain if it's not waiting for
147 // an access to complete.
148 if (_status == Idle || _status == Running || _status == SwitchedOut) {
149 changeState(SimObject::Drained);
150 return 0;
151 } else {
152 changeState(SimObject::Draining);
153 drainEvent = drain_event;
154 return 1;
155 }
156}
157
158void
159TimingSimpleCPU::resume()
160{
161 DPRINTF(SimpleCPU, "Resume\n");
162 if (_status != SwitchedOut && _status != Idle) {
163 assert(system->getMemoryMode() == Enums::timing);
164
165 if (fetchEvent.scheduled())
166 deschedule(fetchEvent);
167
168 schedule(fetchEvent, nextCycle());
169 }
170
171 changeState(SimObject::Running);
172}
173
174void
175TimingSimpleCPU::switchOut()
176{
177 assert(_status == Running || _status == Idle);
178 _status = SwitchedOut;
179 numCycles += tickToCycles(curTick - previousTick);
180
181 // If we've been scheduled to resume but are then told to switch out,
182 // we'll need to cancel it.
183 if (fetchEvent.scheduled())
184 deschedule(fetchEvent);
185}
186
187
188void
189TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
190{
191 BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
192
193 // if any of this CPU's ThreadContexts are active, mark the CPU as
194 // running and schedule its tick event.
195 for (int i = 0; i < threadContexts.size(); ++i) {
196 ThreadContext *tc = threadContexts[i];
197 if (tc->status() == ThreadContext::Active && _status != Running) {
198 _status = Running;
199 break;
200 }
201 }
202
203 if (_status != Running) {
204 _status = Idle;
205 }
206 assert(threadContexts.size() == 1);
207 previousTick = curTick;
208}
209
210
211void
212TimingSimpleCPU::activateContext(int thread_num, int delay)
213{
214 DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
215
216 assert(thread_num == 0);
217 assert(thread);
218
219 assert(_status == Idle);
220
221 notIdleFraction++;
222 _status = Running;
223
224 // kick things off by initiating the fetch of the next instruction
225 schedule(fetchEvent, nextCycle(curTick + ticks(delay)));
226}
227
228
229void
230TimingSimpleCPU::suspendContext(int thread_num)
231{
232 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
233
234 assert(thread_num == 0);
235 assert(thread);
236
237 if (_status == Idle)
238 return;
239
240 assert(_status == Running);
241
242 // just change status to Idle... if status != Running,
243 // completeInst() will not initiate fetch of next instruction.
244
245 notIdleFraction--;
246 _status = Idle;
247}
248
249bool
250TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
251{
252 RequestPtr req = pkt->req;
253 if (req->isMmapedIpr()) {
254 Tick delay;
255 delay = TheISA::handleIprRead(thread->getTC(), pkt);
256 new IprEvent(pkt, this, nextCycle(curTick + delay));
257 _status = DcacheWaitResponse;
258 dcache_pkt = NULL;
259 } else if (!dcachePort.sendTiming(pkt)) {
260 _status = DcacheRetry;
261 dcache_pkt = pkt;
262 } else {
263 _status = DcacheWaitResponse;
264 // memory system takes ownership of packet
265 dcache_pkt = NULL;
266 }
267 return dcache_pkt == NULL;
268}
269
270void
271TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
272 bool read)
273{
274 PacketPtr pkt;
275 buildPacket(pkt, req, read);
276 pkt->dataDynamic<uint8_t>(data);
277 if (req->getFlags().isSet(Request::NO_ACCESS)) {
278 assert(!dcache_pkt);
279 pkt->makeResponse();
280 completeDataAccess(pkt);
281 } else if (read) {
282 handleReadPacket(pkt);
283 } else {
284 bool do_access = true; // flag to suppress cache access
285
286 if (req->isLLSC()) {
287 do_access = TheISA::handleLockedWrite(thread, req);
288 } else if (req->isCondSwap()) {
289 assert(res);
290 req->setExtraData(*res);
291 }
292
293 if (do_access) {
294 dcache_pkt = pkt;
295 handleWritePacket();
296 } else {
297 _status = DcacheWaitResponse;
298 completeDataAccess(pkt);
299 }
300 }
301}
302
303void
304TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
305 RequestPtr req, uint8_t *data, bool read)
306{
307 PacketPtr pkt1, pkt2;
308 buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
309 if (req->getFlags().isSet(Request::NO_ACCESS)) {
310 assert(!dcache_pkt);
311 pkt1->makeResponse();
312 completeDataAccess(pkt1);
313 } else if (read) {
314 if (handleReadPacket(pkt1)) {
315 SplitFragmentSenderState * send_state =
316 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
317 send_state->clearFromParent();
318 if (handleReadPacket(pkt2)) {
319 send_state = dynamic_cast<SplitFragmentSenderState *>(
320 pkt1->senderState);
321 send_state->clearFromParent();
322 }
323 }
324 } else {
325 dcache_pkt = pkt1;
326 if (handleWritePacket()) {
327 SplitFragmentSenderState * send_state =
328 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
329 send_state->clearFromParent();
330 dcache_pkt = pkt2;
331 if (handleWritePacket()) {
332 send_state = dynamic_cast<SplitFragmentSenderState *>(
333 pkt1->senderState);
334 send_state->clearFromParent();
335 }
336 }
337 }
338}
339
340void
341TimingSimpleCPU::translationFault(Fault fault)
342{
343 // fault may be NoFault in cases where a fault is suppressed,
344 // for instance prefetches.
345 numCycles += tickToCycles(curTick - previousTick);
346 previousTick = curTick;
347
348 if (traceData) {
349 // Since there was a fault, we shouldn't trace this instruction.
350 delete traceData;
351 traceData = NULL;
352 }
353
354 postExecute();
355
356 if (getState() == SimObject::Draining) {
357 advancePC(fault);
358 completeDrain();
359 } else {
360 advanceInst(fault);
361 }
362}
363
364void
365TimingSimpleCPU::buildPacket(PacketPtr &pkt, RequestPtr req, bool read)
366{
367 MemCmd cmd;
368 if (read) {
369 cmd = MemCmd::ReadReq;
370 if (req->isLLSC())
371 cmd = MemCmd::LoadLockedReq;
372 } else {
373 cmd = MemCmd::WriteReq;
374 if (req->isLLSC()) {
375 cmd = MemCmd::StoreCondReq;
376 } else if (req->isSwap()) {
377 cmd = MemCmd::SwapReq;
378 }
379 }
380 pkt = new Packet(req, cmd, Packet::Broadcast);
381}
382
383void
384TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
385 RequestPtr req1, RequestPtr req2, RequestPtr req,
386 uint8_t *data, bool read)
387{
388 pkt1 = pkt2 = NULL;
389
390 assert(!req1->isMmapedIpr() && !req2->isMmapedIpr());
391
392 if (req->getFlags().isSet(Request::NO_ACCESS)) {
393 buildPacket(pkt1, req, read);
394 return;
395 }
396
397 buildPacket(pkt1, req1, read);
398 buildPacket(pkt2, req2, read);
399
400 req->setPhys(req1->getPaddr(), req->getSize(), req1->getFlags());
401 PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand(),
402 Packet::Broadcast);
403
404 pkt->dataDynamic<uint8_t>(data);
405 pkt1->dataStatic<uint8_t>(data);
406 pkt2->dataStatic<uint8_t>(data + req1->getSize());
407
408 SplitMainSenderState * main_send_state = new SplitMainSenderState;
409 pkt->senderState = main_send_state;
410 main_send_state->fragments[0] = pkt1;
411 main_send_state->fragments[1] = pkt2;
412 main_send_state->outstanding = 2;
413 pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
414 pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
415}
416
417template <class T>
418Fault
419TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
420{
421 Fault fault;
422 const int asid = 0;
423 const ThreadID tid = 0;
424 const Addr pc = thread->readPC();
425 unsigned block_size = dcachePort.peerBlockSize();
426 int data_size = sizeof(T);
427 BaseTLB::Mode mode = BaseTLB::Read;
428
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "config/the_isa.hh"
36#include "cpu/exetrace.hh"
37#include "cpu/simple/timing.hh"
38#include "mem/packet.hh"
39#include "mem/packet_access.hh"
40#include "params/TimingSimpleCPU.hh"
41#include "sim/system.hh"
42
43using namespace std;
44using namespace TheISA;
45
46Port *
47TimingSimpleCPU::getPort(const std::string &if_name, int idx)
48{
49 if (if_name == "dcache_port")
50 return &dcachePort;
51 else if (if_name == "icache_port")
52 return &icachePort;
53 else
54 panic("No Such Port\n");
55}
56
57void
58TimingSimpleCPU::init()
59{
60 BaseCPU::init();
61#if FULL_SYSTEM
62 for (int i = 0; i < threadContexts.size(); ++i) {
63 ThreadContext *tc = threadContexts[i];
64
65 // initialize CPU, including PC
66 TheISA::initCPU(tc, _cpuId);
67 }
68#endif
69}
70
71Tick
72TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
73{
74 panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
75 return curTick;
76}
77
78void
79TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
80{
81 //No internal storage to update, jusst return
82 return;
83}
84
85void
86TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
87{
88 if (status == RangeChange) {
89 if (!snoopRangeSent) {
90 snoopRangeSent = true;
91 sendStatusChange(Port::RangeChange);
92 }
93 return;
94 }
95
96 panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
97}
98
99
100void
101TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
102{
103 pkt = _pkt;
104 cpu->schedule(this, t);
105}
106
107TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
108 : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this, p->clock),
109 dcachePort(this, p->clock), fetchEvent(this)
110{
111 _status = Idle;
112
113 icachePort.snoopRangeSent = false;
114 dcachePort.snoopRangeSent = false;
115
116 ifetch_pkt = dcache_pkt = NULL;
117 drainEvent = NULL;
118 previousTick = 0;
119 changeState(SimObject::Running);
120}
121
122
123TimingSimpleCPU::~TimingSimpleCPU()
124{
125}
126
127void
128TimingSimpleCPU::serialize(ostream &os)
129{
130 SimObject::State so_state = SimObject::getState();
131 SERIALIZE_ENUM(so_state);
132 BaseSimpleCPU::serialize(os);
133}
134
135void
136TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
137{
138 SimObject::State so_state;
139 UNSERIALIZE_ENUM(so_state);
140 BaseSimpleCPU::unserialize(cp, section);
141}
142
143unsigned int
144TimingSimpleCPU::drain(Event *drain_event)
145{
146 // TimingSimpleCPU is ready to drain if it's not waiting for
147 // an access to complete.
148 if (_status == Idle || _status == Running || _status == SwitchedOut) {
149 changeState(SimObject::Drained);
150 return 0;
151 } else {
152 changeState(SimObject::Draining);
153 drainEvent = drain_event;
154 return 1;
155 }
156}
157
158void
159TimingSimpleCPU::resume()
160{
161 DPRINTF(SimpleCPU, "Resume\n");
162 if (_status != SwitchedOut && _status != Idle) {
163 assert(system->getMemoryMode() == Enums::timing);
164
165 if (fetchEvent.scheduled())
166 deschedule(fetchEvent);
167
168 schedule(fetchEvent, nextCycle());
169 }
170
171 changeState(SimObject::Running);
172}
173
174void
175TimingSimpleCPU::switchOut()
176{
177 assert(_status == Running || _status == Idle);
178 _status = SwitchedOut;
179 numCycles += tickToCycles(curTick - previousTick);
180
181 // If we've been scheduled to resume but are then told to switch out,
182 // we'll need to cancel it.
183 if (fetchEvent.scheduled())
184 deschedule(fetchEvent);
185}
186
187
188void
189TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
190{
191 BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
192
193 // if any of this CPU's ThreadContexts are active, mark the CPU as
194 // running and schedule its tick event.
195 for (int i = 0; i < threadContexts.size(); ++i) {
196 ThreadContext *tc = threadContexts[i];
197 if (tc->status() == ThreadContext::Active && _status != Running) {
198 _status = Running;
199 break;
200 }
201 }
202
203 if (_status != Running) {
204 _status = Idle;
205 }
206 assert(threadContexts.size() == 1);
207 previousTick = curTick;
208}
209
210
211void
212TimingSimpleCPU::activateContext(int thread_num, int delay)
213{
214 DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
215
216 assert(thread_num == 0);
217 assert(thread);
218
219 assert(_status == Idle);
220
221 notIdleFraction++;
222 _status = Running;
223
224 // kick things off by initiating the fetch of the next instruction
225 schedule(fetchEvent, nextCycle(curTick + ticks(delay)));
226}
227
228
229void
230TimingSimpleCPU::suspendContext(int thread_num)
231{
232 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
233
234 assert(thread_num == 0);
235 assert(thread);
236
237 if (_status == Idle)
238 return;
239
240 assert(_status == Running);
241
242 // just change status to Idle... if status != Running,
243 // completeInst() will not initiate fetch of next instruction.
244
245 notIdleFraction--;
246 _status = Idle;
247}
248
249bool
250TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
251{
252 RequestPtr req = pkt->req;
253 if (req->isMmapedIpr()) {
254 Tick delay;
255 delay = TheISA::handleIprRead(thread->getTC(), pkt);
256 new IprEvent(pkt, this, nextCycle(curTick + delay));
257 _status = DcacheWaitResponse;
258 dcache_pkt = NULL;
259 } else if (!dcachePort.sendTiming(pkt)) {
260 _status = DcacheRetry;
261 dcache_pkt = pkt;
262 } else {
263 _status = DcacheWaitResponse;
264 // memory system takes ownership of packet
265 dcache_pkt = NULL;
266 }
267 return dcache_pkt == NULL;
268}
269
270void
271TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
272 bool read)
273{
274 PacketPtr pkt;
275 buildPacket(pkt, req, read);
276 pkt->dataDynamic<uint8_t>(data);
277 if (req->getFlags().isSet(Request::NO_ACCESS)) {
278 assert(!dcache_pkt);
279 pkt->makeResponse();
280 completeDataAccess(pkt);
281 } else if (read) {
282 handleReadPacket(pkt);
283 } else {
284 bool do_access = true; // flag to suppress cache access
285
286 if (req->isLLSC()) {
287 do_access = TheISA::handleLockedWrite(thread, req);
288 } else if (req->isCondSwap()) {
289 assert(res);
290 req->setExtraData(*res);
291 }
292
293 if (do_access) {
294 dcache_pkt = pkt;
295 handleWritePacket();
296 } else {
297 _status = DcacheWaitResponse;
298 completeDataAccess(pkt);
299 }
300 }
301}
302
303void
304TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
305 RequestPtr req, uint8_t *data, bool read)
306{
307 PacketPtr pkt1, pkt2;
308 buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
309 if (req->getFlags().isSet(Request::NO_ACCESS)) {
310 assert(!dcache_pkt);
311 pkt1->makeResponse();
312 completeDataAccess(pkt1);
313 } else if (read) {
314 if (handleReadPacket(pkt1)) {
315 SplitFragmentSenderState * send_state =
316 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
317 send_state->clearFromParent();
318 if (handleReadPacket(pkt2)) {
319 send_state = dynamic_cast<SplitFragmentSenderState *>(
320 pkt1->senderState);
321 send_state->clearFromParent();
322 }
323 }
324 } else {
325 dcache_pkt = pkt1;
326 if (handleWritePacket()) {
327 SplitFragmentSenderState * send_state =
328 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
329 send_state->clearFromParent();
330 dcache_pkt = pkt2;
331 if (handleWritePacket()) {
332 send_state = dynamic_cast<SplitFragmentSenderState *>(
333 pkt1->senderState);
334 send_state->clearFromParent();
335 }
336 }
337 }
338}
339
340void
341TimingSimpleCPU::translationFault(Fault fault)
342{
343 // fault may be NoFault in cases where a fault is suppressed,
344 // for instance prefetches.
345 numCycles += tickToCycles(curTick - previousTick);
346 previousTick = curTick;
347
348 if (traceData) {
349 // Since there was a fault, we shouldn't trace this instruction.
350 delete traceData;
351 traceData = NULL;
352 }
353
354 postExecute();
355
356 if (getState() == SimObject::Draining) {
357 advancePC(fault);
358 completeDrain();
359 } else {
360 advanceInst(fault);
361 }
362}
363
364void
365TimingSimpleCPU::buildPacket(PacketPtr &pkt, RequestPtr req, bool read)
366{
367 MemCmd cmd;
368 if (read) {
369 cmd = MemCmd::ReadReq;
370 if (req->isLLSC())
371 cmd = MemCmd::LoadLockedReq;
372 } else {
373 cmd = MemCmd::WriteReq;
374 if (req->isLLSC()) {
375 cmd = MemCmd::StoreCondReq;
376 } else if (req->isSwap()) {
377 cmd = MemCmd::SwapReq;
378 }
379 }
380 pkt = new Packet(req, cmd, Packet::Broadcast);
381}
382
383void
384TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
385 RequestPtr req1, RequestPtr req2, RequestPtr req,
386 uint8_t *data, bool read)
387{
388 pkt1 = pkt2 = NULL;
389
390 assert(!req1->isMmapedIpr() && !req2->isMmapedIpr());
391
392 if (req->getFlags().isSet(Request::NO_ACCESS)) {
393 buildPacket(pkt1, req, read);
394 return;
395 }
396
397 buildPacket(pkt1, req1, read);
398 buildPacket(pkt2, req2, read);
399
400 req->setPhys(req1->getPaddr(), req->getSize(), req1->getFlags());
401 PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand(),
402 Packet::Broadcast);
403
404 pkt->dataDynamic<uint8_t>(data);
405 pkt1->dataStatic<uint8_t>(data);
406 pkt2->dataStatic<uint8_t>(data + req1->getSize());
407
408 SplitMainSenderState * main_send_state = new SplitMainSenderState;
409 pkt->senderState = main_send_state;
410 main_send_state->fragments[0] = pkt1;
411 main_send_state->fragments[1] = pkt2;
412 main_send_state->outstanding = 2;
413 pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
414 pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
415}
416
417template <class T>
418Fault
419TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
420{
421 Fault fault;
422 const int asid = 0;
423 const ThreadID tid = 0;
424 const Addr pc = thread->readPC();
425 unsigned block_size = dcachePort.peerBlockSize();
426 int data_size = sizeof(T);
427 BaseTLB::Mode mode = BaseTLB::Read;
428
429 if (traceData) {
430 traceData->setAddr(addr);
431 }
432
429 RequestPtr req = new Request(asid, addr, data_size,
430 flags, pc, _cpuId, tid);
431
432 Addr split_addr = roundDown(addr + data_size - 1, block_size);
433 assert(split_addr <= addr || split_addr - addr < block_size);
434
435 // This will need a new way to tell if it's hooked up to a cache or not.
436 if (req->isUncacheable())
437 recordEvent("Uncached Write");
438
439 _status = DTBWaitResponse;
440 if (split_addr > addr) {
441 RequestPtr req1, req2;
442 assert(!req->isLLSC() && !req->isSwap());
443 req->splitOnVaddr(split_addr, req1, req2);
444
445 WholeTranslationState *state =
446 new WholeTranslationState(req, req1, req2, (uint8_t *)(new T),
447 NULL, mode);
448 DataTranslation<TimingSimpleCPU> *trans1 =
449 new DataTranslation<TimingSimpleCPU>(this, state, 0);
450 DataTranslation<TimingSimpleCPU> *trans2 =
451 new DataTranslation<TimingSimpleCPU>(this, state, 1);
452
453 thread->dtb->translateTiming(req1, tc, trans1, mode);
454 thread->dtb->translateTiming(req2, tc, trans2, mode);
455 } else {
456 WholeTranslationState *state =
457 new WholeTranslationState(req, (uint8_t *)(new T), NULL, mode);
458 DataTranslation<TimingSimpleCPU> *translation
459 = new DataTranslation<TimingSimpleCPU>(this, state);
460 thread->dtb->translateTiming(req, tc, translation, mode);
461 }
462
433 RequestPtr req = new Request(asid, addr, data_size,
434 flags, pc, _cpuId, tid);
435
436 Addr split_addr = roundDown(addr + data_size - 1, block_size);
437 assert(split_addr <= addr || split_addr - addr < block_size);
438
439 // This will need a new way to tell if it's hooked up to a cache or not.
440 if (req->isUncacheable())
441 recordEvent("Uncached Write");
442
443 _status = DTBWaitResponse;
444 if (split_addr > addr) {
445 RequestPtr req1, req2;
446 assert(!req->isLLSC() && !req->isSwap());
447 req->splitOnVaddr(split_addr, req1, req2);
448
449 WholeTranslationState *state =
450 new WholeTranslationState(req, req1, req2, (uint8_t *)(new T),
451 NULL, mode);
452 DataTranslation<TimingSimpleCPU> *trans1 =
453 new DataTranslation<TimingSimpleCPU>(this, state, 0);
454 DataTranslation<TimingSimpleCPU> *trans2 =
455 new DataTranslation<TimingSimpleCPU>(this, state, 1);
456
457 thread->dtb->translateTiming(req1, tc, trans1, mode);
458 thread->dtb->translateTiming(req2, tc, trans2, mode);
459 } else {
460 WholeTranslationState *state =
461 new WholeTranslationState(req, (uint8_t *)(new T), NULL, mode);
462 DataTranslation<TimingSimpleCPU> *translation
463 = new DataTranslation<TimingSimpleCPU>(this, state);
464 thread->dtb->translateTiming(req, tc, translation, mode);
465 }
466
463 if (traceData) {
464 traceData->setData(data);
465 traceData->setAddr(addr);
466 }
467
468 return NoFault;
469}
470
471#ifndef DOXYGEN_SHOULD_SKIP_THIS
472
473template
474Fault
475TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
476
477template
478Fault
479TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
480
481template
482Fault
483TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
484
485template
486Fault
487TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
488
489template
490Fault
491TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
492
493template
494Fault
495TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
496
497#endif //DOXYGEN_SHOULD_SKIP_THIS
498
499template<>
500Fault
501TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
502{
503 return read(addr, *(uint64_t*)&data, flags);
504}
505
506template<>
507Fault
508TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
509{
510 return read(addr, *(uint32_t*)&data, flags);
511}
512
513template<>
514Fault
515TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
516{
517 return read(addr, (uint32_t&)data, flags);
518}
519
520bool
521TimingSimpleCPU::handleWritePacket()
522{
523 RequestPtr req = dcache_pkt->req;
524 if (req->isMmapedIpr()) {
525 Tick delay;
526 delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
527 new IprEvent(dcache_pkt, this, nextCycle(curTick + delay));
528 _status = DcacheWaitResponse;
529 dcache_pkt = NULL;
530 } else if (!dcachePort.sendTiming(dcache_pkt)) {
531 _status = DcacheRetry;
532 } else {
533 _status = DcacheWaitResponse;
534 // memory system takes ownership of packet
535 dcache_pkt = NULL;
536 }
537 return dcache_pkt == NULL;
538}
539
540template <class T>
541Fault
542TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
543{
544 const int asid = 0;
545 const ThreadID tid = 0;
546 const Addr pc = thread->readPC();
547 unsigned block_size = dcachePort.peerBlockSize();
548 int data_size = sizeof(T);
549 BaseTLB::Mode mode = BaseTLB::Write;
550
467 return NoFault;
468}
469
470#ifndef DOXYGEN_SHOULD_SKIP_THIS
471
472template
473Fault
474TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
475
476template
477Fault
478TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
479
480template
481Fault
482TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
483
484template
485Fault
486TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
487
488template
489Fault
490TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
491
492template
493Fault
494TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
495
496#endif //DOXYGEN_SHOULD_SKIP_THIS
497
498template<>
499Fault
500TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
501{
502 return read(addr, *(uint64_t*)&data, flags);
503}
504
505template<>
506Fault
507TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
508{
509 return read(addr, *(uint32_t*)&data, flags);
510}
511
512template<>
513Fault
514TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
515{
516 return read(addr, (uint32_t&)data, flags);
517}
518
519bool
520TimingSimpleCPU::handleWritePacket()
521{
522 RequestPtr req = dcache_pkt->req;
523 if (req->isMmapedIpr()) {
524 Tick delay;
525 delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
526 new IprEvent(dcache_pkt, this, nextCycle(curTick + delay));
527 _status = DcacheWaitResponse;
528 dcache_pkt = NULL;
529 } else if (!dcachePort.sendTiming(dcache_pkt)) {
530 _status = DcacheRetry;
531 } else {
532 _status = DcacheWaitResponse;
533 // memory system takes ownership of packet
534 dcache_pkt = NULL;
535 }
536 return dcache_pkt == NULL;
537}
538
539template <class T>
540Fault
541TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
542{
543 const int asid = 0;
544 const ThreadID tid = 0;
545 const Addr pc = thread->readPC();
546 unsigned block_size = dcachePort.peerBlockSize();
547 int data_size = sizeof(T);
548 BaseTLB::Mode mode = BaseTLB::Write;
549
550 if (traceData) {
551 traceData->setAddr(addr);
552 traceData->setData(data);
553 }
554
551 RequestPtr req = new Request(asid, addr, data_size,
552 flags, pc, _cpuId, tid);
553
554 Addr split_addr = roundDown(addr + data_size - 1, block_size);
555 assert(split_addr <= addr || split_addr - addr < block_size);
556
557 // This will need a new way to tell if it's hooked up to a cache or not.
558 if (req->isUncacheable())
559 recordEvent("Uncached Write");
560
561 T *dataP = new T;
562 *dataP = TheISA::htog(data);
563 _status = DTBWaitResponse;
564 if (split_addr > addr) {
565 RequestPtr req1, req2;
566 assert(!req->isLLSC() && !req->isSwap());
567 req->splitOnVaddr(split_addr, req1, req2);
568
569 WholeTranslationState *state =
570 new WholeTranslationState(req, req1, req2, (uint8_t *)dataP,
571 res, mode);
572 DataTranslation<TimingSimpleCPU> *trans1 =
573 new DataTranslation<TimingSimpleCPU>(this, state, 0);
574 DataTranslation<TimingSimpleCPU> *trans2 =
575 new DataTranslation<TimingSimpleCPU>(this, state, 1);
576
577 thread->dtb->translateTiming(req1, tc, trans1, mode);
578 thread->dtb->translateTiming(req2, tc, trans2, mode);
579 } else {
580 WholeTranslationState *state =
581 new WholeTranslationState(req, (uint8_t *)dataP, res, mode);
582 DataTranslation<TimingSimpleCPU> *translation =
583 new DataTranslation<TimingSimpleCPU>(this, state);
584 thread->dtb->translateTiming(req, tc, translation, mode);
585 }
586
555 RequestPtr req = new Request(asid, addr, data_size,
556 flags, pc, _cpuId, tid);
557
558 Addr split_addr = roundDown(addr + data_size - 1, block_size);
559 assert(split_addr <= addr || split_addr - addr < block_size);
560
561 // This will need a new way to tell if it's hooked up to a cache or not.
562 if (req->isUncacheable())
563 recordEvent("Uncached Write");
564
565 T *dataP = new T;
566 *dataP = TheISA::htog(data);
567 _status = DTBWaitResponse;
568 if (split_addr > addr) {
569 RequestPtr req1, req2;
570 assert(!req->isLLSC() && !req->isSwap());
571 req->splitOnVaddr(split_addr, req1, req2);
572
573 WholeTranslationState *state =
574 new WholeTranslationState(req, req1, req2, (uint8_t *)dataP,
575 res, mode);
576 DataTranslation<TimingSimpleCPU> *trans1 =
577 new DataTranslation<TimingSimpleCPU>(this, state, 0);
578 DataTranslation<TimingSimpleCPU> *trans2 =
579 new DataTranslation<TimingSimpleCPU>(this, state, 1);
580
581 thread->dtb->translateTiming(req1, tc, trans1, mode);
582 thread->dtb->translateTiming(req2, tc, trans2, mode);
583 } else {
584 WholeTranslationState *state =
585 new WholeTranslationState(req, (uint8_t *)dataP, res, mode);
586 DataTranslation<TimingSimpleCPU> *translation =
587 new DataTranslation<TimingSimpleCPU>(this, state);
588 thread->dtb->translateTiming(req, tc, translation, mode);
589 }
590
587 if (traceData) {
588 traceData->setAddr(req->getVaddr());
589 traceData->setData(data);
590 }
591
592 // If the write needs to have a fault on the access, consider calling
593 // changeStatus() and changing it to "bad addr write" or something.
591 // Translation faults will be returned via finishTranslation()
594 return NoFault;
595}
596
597
598#ifndef DOXYGEN_SHOULD_SKIP_THIS
599template
600Fault
601TimingSimpleCPU::write(Twin32_t data, Addr addr,
602 unsigned flags, uint64_t *res);
603
604template
605Fault
606TimingSimpleCPU::write(Twin64_t data, Addr addr,
607 unsigned flags, uint64_t *res);
608
609template
610Fault
611TimingSimpleCPU::write(uint64_t data, Addr addr,
612 unsigned flags, uint64_t *res);
613
614template
615Fault
616TimingSimpleCPU::write(uint32_t data, Addr addr,
617 unsigned flags, uint64_t *res);
618
619template
620Fault
621TimingSimpleCPU::write(uint16_t data, Addr addr,
622 unsigned flags, uint64_t *res);
623
624template
625Fault
626TimingSimpleCPU::write(uint8_t data, Addr addr,
627 unsigned flags, uint64_t *res);
628
629#endif //DOXYGEN_SHOULD_SKIP_THIS
630
631template<>
632Fault
633TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
634{
635 return write(*(uint64_t*)&data, addr, flags, res);
636}
637
638template<>
639Fault
640TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
641{
642 return write(*(uint32_t*)&data, addr, flags, res);
643}
644
645
646template<>
647Fault
648TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
649{
650 return write((uint32_t)data, addr, flags, res);
651}
652
653
654void
655TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
656{
657 _status = Running;
658
659 if (state->getFault() != NoFault) {
660 if (state->isPrefetch()) {
661 state->setNoFault();
662 }
663 delete state->data;
664 state->deleteReqs();
665 translationFault(state->getFault());
666 } else {
667 if (!state->isSplit) {
668 sendData(state->mainReq, state->data, state->res,
669 state->mode == BaseTLB::Read);
670 } else {
671 sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
672 state->data, state->mode == BaseTLB::Read);
673 }
674 }
675
676 delete state;
677}
678
679
680void
681TimingSimpleCPU::fetch()
682{
683 DPRINTF(SimpleCPU, "Fetch\n");
684
685 if (!curStaticInst || !curStaticInst->isDelayedCommit())
686 checkForInterrupts();
687
688 checkPcEventQueue();
689
690 bool fromRom = isRomMicroPC(thread->readMicroPC());
691
692 if (!fromRom && !curMacroStaticInst) {
693 Request *ifetch_req = new Request();
694 ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
695 setupFetchRequest(ifetch_req);
696 thread->itb->translateTiming(ifetch_req, tc, &fetchTranslation,
697 BaseTLB::Execute);
698 } else {
699 _status = IcacheWaitResponse;
700 completeIfetch(NULL);
701
702 numCycles += tickToCycles(curTick - previousTick);
703 previousTick = curTick;
704 }
705}
706
707
708void
709TimingSimpleCPU::sendFetch(Fault fault, RequestPtr req, ThreadContext *tc)
710{
711 if (fault == NoFault) {
712 ifetch_pkt = new Packet(req, MemCmd::ReadReq, Packet::Broadcast);
713 ifetch_pkt->dataStatic(&inst);
714
715 if (!icachePort.sendTiming(ifetch_pkt)) {
716 // Need to wait for retry
717 _status = IcacheRetry;
718 } else {
719 // Need to wait for cache to respond
720 _status = IcacheWaitResponse;
721 // ownership of packet transferred to memory system
722 ifetch_pkt = NULL;
723 }
724 } else {
725 delete req;
726 // fetch fault: advance directly to next instruction (fault handler)
727 advanceInst(fault);
728 }
729
730 numCycles += tickToCycles(curTick - previousTick);
731 previousTick = curTick;
732}
733
734
735void
736TimingSimpleCPU::advanceInst(Fault fault)
737{
738 if (fault != NoFault || !stayAtPC)
739 advancePC(fault);
740
741 if (_status == Running) {
742 // kick off fetch of next instruction... callback from icache
743 // response will cause that instruction to be executed,
744 // keeping the CPU running.
745 fetch();
746 }
747}
748
749
750void
751TimingSimpleCPU::completeIfetch(PacketPtr pkt)
752{
753 DPRINTF(SimpleCPU, "Complete ICache Fetch\n");
754
755 // received a response from the icache: execute the received
756 // instruction
757
758 assert(!pkt || !pkt->isError());
759 assert(_status == IcacheWaitResponse);
760
761 _status = Running;
762
763 numCycles += tickToCycles(curTick - previousTick);
764 previousTick = curTick;
765
766 if (getState() == SimObject::Draining) {
767 if (pkt) {
768 delete pkt->req;
769 delete pkt;
770 }
771
772 completeDrain();
773 return;
774 }
775
776 preExecute();
777 if (curStaticInst &&
778 curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
779 // load or store: just send to dcache
780 Fault fault = curStaticInst->initiateAcc(this, traceData);
781 if (_status != Running) {
782 // instruction will complete in dcache response callback
783 assert(_status == DcacheWaitResponse ||
784 _status == DcacheRetry || DTBWaitResponse);
785 assert(fault == NoFault);
786 } else {
787 if (fault != NoFault && traceData) {
788 // If there was a fault, we shouldn't trace this instruction.
789 delete traceData;
790 traceData = NULL;
791 }
792
793 postExecute();
794 // @todo remove me after debugging with legion done
795 if (curStaticInst && (!curStaticInst->isMicroop() ||
796 curStaticInst->isFirstMicroop()))
797 instCnt++;
798 advanceInst(fault);
799 }
800 } else if (curStaticInst) {
801 // non-memory instruction: execute completely now
802 Fault fault = curStaticInst->execute(this, traceData);
803
804 // keep an instruction count
805 if (fault == NoFault)
806 countInst();
807 else if (traceData) {
808 // If there was a fault, we shouldn't trace this instruction.
809 delete traceData;
810 traceData = NULL;
811 }
812
813 postExecute();
814 // @todo remove me after debugging with legion done
815 if (curStaticInst && (!curStaticInst->isMicroop() ||
816 curStaticInst->isFirstMicroop()))
817 instCnt++;
818 advanceInst(fault);
819 } else {
820 advanceInst(NoFault);
821 }
822
823 if (pkt) {
824 delete pkt->req;
825 delete pkt;
826 }
827}
828
829void
830TimingSimpleCPU::IcachePort::ITickEvent::process()
831{
832 cpu->completeIfetch(pkt);
833}
834
835bool
836TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
837{
838 if (pkt->isResponse() && !pkt->wasNacked()) {
839 // delay processing of returned data until next CPU clock edge
840 Tick next_tick = cpu->nextCycle(curTick);
841
842 if (next_tick == curTick)
843 cpu->completeIfetch(pkt);
844 else
845 tickEvent.schedule(pkt, next_tick);
846
847 return true;
848 }
849 else if (pkt->wasNacked()) {
850 assert(cpu->_status == IcacheWaitResponse);
851 pkt->reinitNacked();
852 if (!sendTiming(pkt)) {
853 cpu->_status = IcacheRetry;
854 cpu->ifetch_pkt = pkt;
855 }
856 }
857 //Snooping a Coherence Request, do nothing
858 return true;
859}
860
861void
862TimingSimpleCPU::IcachePort::recvRetry()
863{
864 // we shouldn't get a retry unless we have a packet that we're
865 // waiting to transmit
866 assert(cpu->ifetch_pkt != NULL);
867 assert(cpu->_status == IcacheRetry);
868 PacketPtr tmp = cpu->ifetch_pkt;
869 if (sendTiming(tmp)) {
870 cpu->_status = IcacheWaitResponse;
871 cpu->ifetch_pkt = NULL;
872 }
873}
874
875void
876TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
877{
878 // received a response from the dcache: complete the load or store
879 // instruction
880 assert(!pkt->isError());
881
882 numCycles += tickToCycles(curTick - previousTick);
883 previousTick = curTick;
884
885 if (pkt->senderState) {
886 SplitFragmentSenderState * send_state =
887 dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
888 assert(send_state);
889 delete pkt->req;
890 delete pkt;
891 PacketPtr big_pkt = send_state->bigPkt;
892 delete send_state;
893
894 SplitMainSenderState * main_send_state =
895 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
896 assert(main_send_state);
897 // Record the fact that this packet is no longer outstanding.
898 assert(main_send_state->outstanding != 0);
899 main_send_state->outstanding--;
900
901 if (main_send_state->outstanding) {
902 return;
903 } else {
904 delete main_send_state;
905 big_pkt->senderState = NULL;
906 pkt = big_pkt;
907 }
908 }
909
910 assert(_status == DcacheWaitResponse || _status == DTBWaitResponse);
911 _status = Running;
912
913 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
914
915 // keep an instruction count
916 if (fault == NoFault)
917 countInst();
918 else if (traceData) {
919 // If there was a fault, we shouldn't trace this instruction.
920 delete traceData;
921 traceData = NULL;
922 }
923
924 // the locked flag may be cleared on the response packet, so check
925 // pkt->req and not pkt to see if it was a load-locked
926 if (pkt->isRead() && pkt->req->isLLSC()) {
927 TheISA::handleLockedRead(thread, pkt->req);
928 }
929
930 delete pkt->req;
931 delete pkt;
932
933 postExecute();
934
935 if (getState() == SimObject::Draining) {
936 advancePC(fault);
937 completeDrain();
938
939 return;
940 }
941
942 advanceInst(fault);
943}
944
945
946void
947TimingSimpleCPU::completeDrain()
948{
949 DPRINTF(Config, "Done draining\n");
950 changeState(SimObject::Drained);
951 drainEvent->process();
952}
953
954void
955TimingSimpleCPU::DcachePort::setPeer(Port *port)
956{
957 Port::setPeer(port);
958
959#if FULL_SYSTEM
960 // Update the ThreadContext's memory ports (Functional/Virtual
961 // Ports)
962 cpu->tcBase()->connectMemPorts(cpu->tcBase());
963#endif
964}
965
966bool
967TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
968{
969 if (pkt->isResponse() && !pkt->wasNacked()) {
970 // delay processing of returned data until next CPU clock edge
971 Tick next_tick = cpu->nextCycle(curTick);
972
973 if (next_tick == curTick) {
974 cpu->completeDataAccess(pkt);
975 } else {
976 tickEvent.schedule(pkt, next_tick);
977 }
978
979 return true;
980 }
981 else if (pkt->wasNacked()) {
982 assert(cpu->_status == DcacheWaitResponse);
983 pkt->reinitNacked();
984 if (!sendTiming(pkt)) {
985 cpu->_status = DcacheRetry;
986 cpu->dcache_pkt = pkt;
987 }
988 }
989 //Snooping a Coherence Request, do nothing
990 return true;
991}
992
993void
994TimingSimpleCPU::DcachePort::DTickEvent::process()
995{
996 cpu->completeDataAccess(pkt);
997}
998
999void
1000TimingSimpleCPU::DcachePort::recvRetry()
1001{
1002 // we shouldn't get a retry unless we have a packet that we're
1003 // waiting to transmit
1004 assert(cpu->dcache_pkt != NULL);
1005 assert(cpu->_status == DcacheRetry);
1006 PacketPtr tmp = cpu->dcache_pkt;
1007 if (tmp->senderState) {
1008 // This is a packet from a split access.
1009 SplitFragmentSenderState * send_state =
1010 dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
1011 assert(send_state);
1012 PacketPtr big_pkt = send_state->bigPkt;
1013
1014 SplitMainSenderState * main_send_state =
1015 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
1016 assert(main_send_state);
1017
1018 if (sendTiming(tmp)) {
1019 // If we were able to send without retrying, record that fact
1020 // and try sending the other fragment.
1021 send_state->clearFromParent();
1022 int other_index = main_send_state->getPendingFragment();
1023 if (other_index > 0) {
1024 tmp = main_send_state->fragments[other_index];
1025 cpu->dcache_pkt = tmp;
1026 if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
1027 (big_pkt->isWrite() && cpu->handleWritePacket())) {
1028 main_send_state->fragments[other_index] = NULL;
1029 }
1030 } else {
1031 cpu->_status = DcacheWaitResponse;
1032 // memory system takes ownership of packet
1033 cpu->dcache_pkt = NULL;
1034 }
1035 }
1036 } else if (sendTiming(tmp)) {
1037 cpu->_status = DcacheWaitResponse;
1038 // memory system takes ownership of packet
1039 cpu->dcache_pkt = NULL;
1040 }
1041}
1042
1043TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
1044 Tick t)
1045 : pkt(_pkt), cpu(_cpu)
1046{
1047 cpu->schedule(this, t);
1048}
1049
1050void
1051TimingSimpleCPU::IprEvent::process()
1052{
1053 cpu->completeDataAccess(pkt);
1054}
1055
1056const char *
1057TimingSimpleCPU::IprEvent::description() const
1058{
1059 return "Timing Simple CPU Delay IPR event";
1060}
1061
1062
1063void
1064TimingSimpleCPU::printAddr(Addr a)
1065{
1066 dcachePort.printAddr(a);
1067}
1068
1069
1070////////////////////////////////////////////////////////////////////////
1071//
1072// TimingSimpleCPU Simulation Object
1073//
1074TimingSimpleCPU *
1075TimingSimpleCPUParams::create()
1076{
1077 numThreads = 1;
1078#if !FULL_SYSTEM
1079 if (workload.size() != 1)
1080 panic("only one workload allowed");
1081#endif
1082 return new TimingSimpleCPU(this);
1083}
592 return NoFault;
593}
594
595
596#ifndef DOXYGEN_SHOULD_SKIP_THIS
597template
598Fault
599TimingSimpleCPU::write(Twin32_t data, Addr addr,
600 unsigned flags, uint64_t *res);
601
602template
603Fault
604TimingSimpleCPU::write(Twin64_t data, Addr addr,
605 unsigned flags, uint64_t *res);
606
607template
608Fault
609TimingSimpleCPU::write(uint64_t data, Addr addr,
610 unsigned flags, uint64_t *res);
611
612template
613Fault
614TimingSimpleCPU::write(uint32_t data, Addr addr,
615 unsigned flags, uint64_t *res);
616
617template
618Fault
619TimingSimpleCPU::write(uint16_t data, Addr addr,
620 unsigned flags, uint64_t *res);
621
622template
623Fault
624TimingSimpleCPU::write(uint8_t data, Addr addr,
625 unsigned flags, uint64_t *res);
626
627#endif //DOXYGEN_SHOULD_SKIP_THIS
628
629template<>
630Fault
631TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
632{
633 return write(*(uint64_t*)&data, addr, flags, res);
634}
635
636template<>
637Fault
638TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
639{
640 return write(*(uint32_t*)&data, addr, flags, res);
641}
642
643
644template<>
645Fault
646TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
647{
648 return write((uint32_t)data, addr, flags, res);
649}
650
651
652void
653TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
654{
655 _status = Running;
656
657 if (state->getFault() != NoFault) {
658 if (state->isPrefetch()) {
659 state->setNoFault();
660 }
661 delete state->data;
662 state->deleteReqs();
663 translationFault(state->getFault());
664 } else {
665 if (!state->isSplit) {
666 sendData(state->mainReq, state->data, state->res,
667 state->mode == BaseTLB::Read);
668 } else {
669 sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
670 state->data, state->mode == BaseTLB::Read);
671 }
672 }
673
674 delete state;
675}
676
677
678void
679TimingSimpleCPU::fetch()
680{
681 DPRINTF(SimpleCPU, "Fetch\n");
682
683 if (!curStaticInst || !curStaticInst->isDelayedCommit())
684 checkForInterrupts();
685
686 checkPcEventQueue();
687
688 bool fromRom = isRomMicroPC(thread->readMicroPC());
689
690 if (!fromRom && !curMacroStaticInst) {
691 Request *ifetch_req = new Request();
692 ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
693 setupFetchRequest(ifetch_req);
694 thread->itb->translateTiming(ifetch_req, tc, &fetchTranslation,
695 BaseTLB::Execute);
696 } else {
697 _status = IcacheWaitResponse;
698 completeIfetch(NULL);
699
700 numCycles += tickToCycles(curTick - previousTick);
701 previousTick = curTick;
702 }
703}
704
705
706void
707TimingSimpleCPU::sendFetch(Fault fault, RequestPtr req, ThreadContext *tc)
708{
709 if (fault == NoFault) {
710 ifetch_pkt = new Packet(req, MemCmd::ReadReq, Packet::Broadcast);
711 ifetch_pkt->dataStatic(&inst);
712
713 if (!icachePort.sendTiming(ifetch_pkt)) {
714 // Need to wait for retry
715 _status = IcacheRetry;
716 } else {
717 // Need to wait for cache to respond
718 _status = IcacheWaitResponse;
719 // ownership of packet transferred to memory system
720 ifetch_pkt = NULL;
721 }
722 } else {
723 delete req;
724 // fetch fault: advance directly to next instruction (fault handler)
725 advanceInst(fault);
726 }
727
728 numCycles += tickToCycles(curTick - previousTick);
729 previousTick = curTick;
730}
731
732
733void
734TimingSimpleCPU::advanceInst(Fault fault)
735{
736 if (fault != NoFault || !stayAtPC)
737 advancePC(fault);
738
739 if (_status == Running) {
740 // kick off fetch of next instruction... callback from icache
741 // response will cause that instruction to be executed,
742 // keeping the CPU running.
743 fetch();
744 }
745}
746
747
748void
749TimingSimpleCPU::completeIfetch(PacketPtr pkt)
750{
751 DPRINTF(SimpleCPU, "Complete ICache Fetch\n");
752
753 // received a response from the icache: execute the received
754 // instruction
755
756 assert(!pkt || !pkt->isError());
757 assert(_status == IcacheWaitResponse);
758
759 _status = Running;
760
761 numCycles += tickToCycles(curTick - previousTick);
762 previousTick = curTick;
763
764 if (getState() == SimObject::Draining) {
765 if (pkt) {
766 delete pkt->req;
767 delete pkt;
768 }
769
770 completeDrain();
771 return;
772 }
773
774 preExecute();
775 if (curStaticInst &&
776 curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
777 // load or store: just send to dcache
778 Fault fault = curStaticInst->initiateAcc(this, traceData);
779 if (_status != Running) {
780 // instruction will complete in dcache response callback
781 assert(_status == DcacheWaitResponse ||
782 _status == DcacheRetry || DTBWaitResponse);
783 assert(fault == NoFault);
784 } else {
785 if (fault != NoFault && traceData) {
786 // If there was a fault, we shouldn't trace this instruction.
787 delete traceData;
788 traceData = NULL;
789 }
790
791 postExecute();
792 // @todo remove me after debugging with legion done
793 if (curStaticInst && (!curStaticInst->isMicroop() ||
794 curStaticInst->isFirstMicroop()))
795 instCnt++;
796 advanceInst(fault);
797 }
798 } else if (curStaticInst) {
799 // non-memory instruction: execute completely now
800 Fault fault = curStaticInst->execute(this, traceData);
801
802 // keep an instruction count
803 if (fault == NoFault)
804 countInst();
805 else if (traceData) {
806 // If there was a fault, we shouldn't trace this instruction.
807 delete traceData;
808 traceData = NULL;
809 }
810
811 postExecute();
812 // @todo remove me after debugging with legion done
813 if (curStaticInst && (!curStaticInst->isMicroop() ||
814 curStaticInst->isFirstMicroop()))
815 instCnt++;
816 advanceInst(fault);
817 } else {
818 advanceInst(NoFault);
819 }
820
821 if (pkt) {
822 delete pkt->req;
823 delete pkt;
824 }
825}
826
827void
828TimingSimpleCPU::IcachePort::ITickEvent::process()
829{
830 cpu->completeIfetch(pkt);
831}
832
833bool
834TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
835{
836 if (pkt->isResponse() && !pkt->wasNacked()) {
837 // delay processing of returned data until next CPU clock edge
838 Tick next_tick = cpu->nextCycle(curTick);
839
840 if (next_tick == curTick)
841 cpu->completeIfetch(pkt);
842 else
843 tickEvent.schedule(pkt, next_tick);
844
845 return true;
846 }
847 else if (pkt->wasNacked()) {
848 assert(cpu->_status == IcacheWaitResponse);
849 pkt->reinitNacked();
850 if (!sendTiming(pkt)) {
851 cpu->_status = IcacheRetry;
852 cpu->ifetch_pkt = pkt;
853 }
854 }
855 //Snooping a Coherence Request, do nothing
856 return true;
857}
858
859void
860TimingSimpleCPU::IcachePort::recvRetry()
861{
862 // we shouldn't get a retry unless we have a packet that we're
863 // waiting to transmit
864 assert(cpu->ifetch_pkt != NULL);
865 assert(cpu->_status == IcacheRetry);
866 PacketPtr tmp = cpu->ifetch_pkt;
867 if (sendTiming(tmp)) {
868 cpu->_status = IcacheWaitResponse;
869 cpu->ifetch_pkt = NULL;
870 }
871}
872
873void
874TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
875{
876 // received a response from the dcache: complete the load or store
877 // instruction
878 assert(!pkt->isError());
879
880 numCycles += tickToCycles(curTick - previousTick);
881 previousTick = curTick;
882
883 if (pkt->senderState) {
884 SplitFragmentSenderState * send_state =
885 dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
886 assert(send_state);
887 delete pkt->req;
888 delete pkt;
889 PacketPtr big_pkt = send_state->bigPkt;
890 delete send_state;
891
892 SplitMainSenderState * main_send_state =
893 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
894 assert(main_send_state);
895 // Record the fact that this packet is no longer outstanding.
896 assert(main_send_state->outstanding != 0);
897 main_send_state->outstanding--;
898
899 if (main_send_state->outstanding) {
900 return;
901 } else {
902 delete main_send_state;
903 big_pkt->senderState = NULL;
904 pkt = big_pkt;
905 }
906 }
907
908 assert(_status == DcacheWaitResponse || _status == DTBWaitResponse);
909 _status = Running;
910
911 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
912
913 // keep an instruction count
914 if (fault == NoFault)
915 countInst();
916 else if (traceData) {
917 // If there was a fault, we shouldn't trace this instruction.
918 delete traceData;
919 traceData = NULL;
920 }
921
922 // the locked flag may be cleared on the response packet, so check
923 // pkt->req and not pkt to see if it was a load-locked
924 if (pkt->isRead() && pkt->req->isLLSC()) {
925 TheISA::handleLockedRead(thread, pkt->req);
926 }
927
928 delete pkt->req;
929 delete pkt;
930
931 postExecute();
932
933 if (getState() == SimObject::Draining) {
934 advancePC(fault);
935 completeDrain();
936
937 return;
938 }
939
940 advanceInst(fault);
941}
942
943
944void
945TimingSimpleCPU::completeDrain()
946{
947 DPRINTF(Config, "Done draining\n");
948 changeState(SimObject::Drained);
949 drainEvent->process();
950}
951
952void
953TimingSimpleCPU::DcachePort::setPeer(Port *port)
954{
955 Port::setPeer(port);
956
957#if FULL_SYSTEM
958 // Update the ThreadContext's memory ports (Functional/Virtual
959 // Ports)
960 cpu->tcBase()->connectMemPorts(cpu->tcBase());
961#endif
962}
963
964bool
965TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
966{
967 if (pkt->isResponse() && !pkt->wasNacked()) {
968 // delay processing of returned data until next CPU clock edge
969 Tick next_tick = cpu->nextCycle(curTick);
970
971 if (next_tick == curTick) {
972 cpu->completeDataAccess(pkt);
973 } else {
974 tickEvent.schedule(pkt, next_tick);
975 }
976
977 return true;
978 }
979 else if (pkt->wasNacked()) {
980 assert(cpu->_status == DcacheWaitResponse);
981 pkt->reinitNacked();
982 if (!sendTiming(pkt)) {
983 cpu->_status = DcacheRetry;
984 cpu->dcache_pkt = pkt;
985 }
986 }
987 //Snooping a Coherence Request, do nothing
988 return true;
989}
990
991void
992TimingSimpleCPU::DcachePort::DTickEvent::process()
993{
994 cpu->completeDataAccess(pkt);
995}
996
997void
998TimingSimpleCPU::DcachePort::recvRetry()
999{
1000 // we shouldn't get a retry unless we have a packet that we're
1001 // waiting to transmit
1002 assert(cpu->dcache_pkt != NULL);
1003 assert(cpu->_status == DcacheRetry);
1004 PacketPtr tmp = cpu->dcache_pkt;
1005 if (tmp->senderState) {
1006 // This is a packet from a split access.
1007 SplitFragmentSenderState * send_state =
1008 dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
1009 assert(send_state);
1010 PacketPtr big_pkt = send_state->bigPkt;
1011
1012 SplitMainSenderState * main_send_state =
1013 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
1014 assert(main_send_state);
1015
1016 if (sendTiming(tmp)) {
1017 // If we were able to send without retrying, record that fact
1018 // and try sending the other fragment.
1019 send_state->clearFromParent();
1020 int other_index = main_send_state->getPendingFragment();
1021 if (other_index > 0) {
1022 tmp = main_send_state->fragments[other_index];
1023 cpu->dcache_pkt = tmp;
1024 if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
1025 (big_pkt->isWrite() && cpu->handleWritePacket())) {
1026 main_send_state->fragments[other_index] = NULL;
1027 }
1028 } else {
1029 cpu->_status = DcacheWaitResponse;
1030 // memory system takes ownership of packet
1031 cpu->dcache_pkt = NULL;
1032 }
1033 }
1034 } else if (sendTiming(tmp)) {
1035 cpu->_status = DcacheWaitResponse;
1036 // memory system takes ownership of packet
1037 cpu->dcache_pkt = NULL;
1038 }
1039}
1040
1041TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
1042 Tick t)
1043 : pkt(_pkt), cpu(_cpu)
1044{
1045 cpu->schedule(this, t);
1046}
1047
1048void
1049TimingSimpleCPU::IprEvent::process()
1050{
1051 cpu->completeDataAccess(pkt);
1052}
1053
1054const char *
1055TimingSimpleCPU::IprEvent::description() const
1056{
1057 return "Timing Simple CPU Delay IPR event";
1058}
1059
1060
1061void
1062TimingSimpleCPU::printAddr(Addr a)
1063{
1064 dcachePort.printAddr(a);
1065}
1066
1067
1068////////////////////////////////////////////////////////////////////////
1069//
1070// TimingSimpleCPU Simulation Object
1071//
1072TimingSimpleCPU *
1073TimingSimpleCPUParams::create()
1074{
1075 numThreads = 1;
1076#if !FULL_SYSTEM
1077 if (workload.size() != 1)
1078 panic("only one workload allowed");
1079#endif
1080 return new TimingSimpleCPU(this);
1081}