timing.cc (5169:bfd18d401251) timing.cc (5177:4307a768e10e)
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/timing.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "params/TimingSimpleCPU.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45Port *
46TimingSimpleCPU::getPort(const std::string &if_name, int idx)
47{
48 if (if_name == "dcache_port")
49 return &dcachePort;
50 else if (if_name == "icache_port")
51 return &icachePort;
52 else
53 panic("No Such Port\n");
54}
55
56void
57TimingSimpleCPU::init()
58{
59 BaseCPU::init();
60#if FULL_SYSTEM
61 for (int i = 0; i < threadContexts.size(); ++i) {
62 ThreadContext *tc = threadContexts[i];
63
64 // initialize CPU, including PC
65 TheISA::initCPU(tc, tc->readCpuId());
66 }
67#endif
68}
69
70Tick
71TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
72{
73 panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
74 return curTick;
75}
76
77void
78TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
79{
80 //No internal storage to update, jusst return
81 return;
82}
83
84void
85TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
86{
87 if (status == RangeChange) {
88 if (!snoopRangeSent) {
89 snoopRangeSent = true;
90 sendStatusChange(Port::RangeChange);
91 }
92 return;
93 }
94
95 panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
96}
97
98
99void
100TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
101{
102 pkt = _pkt;
103 Event::schedule(t);
104}
105
106TimingSimpleCPU::TimingSimpleCPU(Params *p)
107 : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock)
108{
109 _status = Idle;
110
111 icachePort.snoopRangeSent = false;
112 dcachePort.snoopRangeSent = false;
113
114 ifetch_pkt = dcache_pkt = NULL;
115 drainEvent = NULL;
116 fetchEvent = NULL;
117 previousTick = 0;
118 changeState(SimObject::Running);
119}
120
121
122TimingSimpleCPU::~TimingSimpleCPU()
123{
124}
125
126void
127TimingSimpleCPU::serialize(ostream &os)
128{
129 SimObject::State so_state = SimObject::getState();
130 SERIALIZE_ENUM(so_state);
131 BaseSimpleCPU::serialize(os);
132}
133
134void
135TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
136{
137 SimObject::State so_state;
138 UNSERIALIZE_ENUM(so_state);
139 BaseSimpleCPU::unserialize(cp, section);
140}
141
142unsigned int
143TimingSimpleCPU::drain(Event *drain_event)
144{
145 // TimingSimpleCPU is ready to drain if it's not waiting for
146 // an access to complete.
147 if (status() == Idle || status() == Running || status() == SwitchedOut) {
148 changeState(SimObject::Drained);
149 return 0;
150 } else {
151 changeState(SimObject::Draining);
152 drainEvent = drain_event;
153 return 1;
154 }
155}
156
157void
158TimingSimpleCPU::resume()
159{
160 if (_status != SwitchedOut && _status != Idle) {
161 assert(system->getMemoryMode() == Enums::timing);
162
163 // Delete the old event if it existed.
164 if (fetchEvent) {
165 if (fetchEvent->scheduled())
166 fetchEvent->deschedule();
167
168 delete fetchEvent;
169 }
170
171 fetchEvent = new FetchEvent(this, nextCycle());
172 }
173
174 changeState(SimObject::Running);
175}
176
177void
178TimingSimpleCPU::switchOut()
179{
180 assert(status() == Running || status() == Idle);
181 _status = SwitchedOut;
182 numCycles += tickToCycles(curTick - previousTick);
183
184 // If we've been scheduled to resume but are then told to switch out,
185 // we'll need to cancel it.
186 if (fetchEvent && fetchEvent->scheduled())
187 fetchEvent->deschedule();
188}
189
190
191void
192TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
193{
194 BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
195
196 // if any of this CPU's ThreadContexts are active, mark the CPU as
197 // running and schedule its tick event.
198 for (int i = 0; i < threadContexts.size(); ++i) {
199 ThreadContext *tc = threadContexts[i];
200 if (tc->status() == ThreadContext::Active && _status != Running) {
201 _status = Running;
202 break;
203 }
204 }
205
206 if (_status != Running) {
207 _status = Idle;
208 }
209 assert(threadContexts.size() == 1);
210 cpuId = tc->readCpuId();
211 previousTick = curTick;
212}
213
214
215void
216TimingSimpleCPU::activateContext(int thread_num, int delay)
217{
218 assert(thread_num == 0);
219 assert(thread);
220
221 assert(_status == Idle);
222
223 notIdleFraction++;
224 _status = Running;
225
226 // kick things off by initiating the fetch of the next instruction
227 fetchEvent = new FetchEvent(this, nextCycle(curTick + ticks(delay)));
228}
229
230
231void
232TimingSimpleCPU::suspendContext(int thread_num)
233{
234 assert(thread_num == 0);
235 assert(thread);
236
237 assert(_status == Running);
238
239 // just change status to Idle... if status != Running,
240 // completeInst() will not initiate fetch of next instruction.
241
242 notIdleFraction--;
243 _status = Idle;
244}
245
246
247template <class T>
248Fault
249TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
250{
251 Request *req =
252 new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
253 cpuId, /* thread ID */ 0);
254
255 if (traceData) {
256 traceData->setAddr(req->getVaddr());
257 }
258
259 // translate to physical address
260 Fault fault = thread->translateDataReadReq(req);
261
262 // Now do the access.
263 if (fault == NoFault) {
264 PacketPtr pkt =
265 new Packet(req,
266 (req->isLocked() ?
267 MemCmd::LoadLockedReq : MemCmd::ReadReq),
268 Packet::Broadcast);
269 pkt->dataDynamic<T>(new T);
270
271 if (req->isMmapedIpr()) {
272 Tick delay;
273 delay = TheISA::handleIprRead(thread->getTC(), pkt);
274 new IprEvent(pkt, this, nextCycle(curTick + delay));
275 _status = DcacheWaitResponse;
276 dcache_pkt = NULL;
277 } else if (!dcachePort.sendTiming(pkt)) {
278 _status = DcacheRetry;
279 dcache_pkt = pkt;
280 } else {
281 _status = DcacheWaitResponse;
282 // memory system takes ownership of packet
283 dcache_pkt = NULL;
284 }
285
286 // This will need a new way to tell if it has a dcache attached.
287 if (req->isUncacheable())
288 recordEvent("Uncached Read");
289 } else {
290 delete req;
291 }
292
293 return fault;
294}
295
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/timing.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "params/TimingSimpleCPU.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45Port *
46TimingSimpleCPU::getPort(const std::string &if_name, int idx)
47{
48 if (if_name == "dcache_port")
49 return &dcachePort;
50 else if (if_name == "icache_port")
51 return &icachePort;
52 else
53 panic("No Such Port\n");
54}
55
56void
57TimingSimpleCPU::init()
58{
59 BaseCPU::init();
60#if FULL_SYSTEM
61 for (int i = 0; i < threadContexts.size(); ++i) {
62 ThreadContext *tc = threadContexts[i];
63
64 // initialize CPU, including PC
65 TheISA::initCPU(tc, tc->readCpuId());
66 }
67#endif
68}
69
70Tick
71TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
72{
73 panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
74 return curTick;
75}
76
77void
78TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
79{
80 //No internal storage to update, jusst return
81 return;
82}
83
84void
85TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
86{
87 if (status == RangeChange) {
88 if (!snoopRangeSent) {
89 snoopRangeSent = true;
90 sendStatusChange(Port::RangeChange);
91 }
92 return;
93 }
94
95 panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
96}
97
98
99void
100TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
101{
102 pkt = _pkt;
103 Event::schedule(t);
104}
105
106TimingSimpleCPU::TimingSimpleCPU(Params *p)
107 : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock)
108{
109 _status = Idle;
110
111 icachePort.snoopRangeSent = false;
112 dcachePort.snoopRangeSent = false;
113
114 ifetch_pkt = dcache_pkt = NULL;
115 drainEvent = NULL;
116 fetchEvent = NULL;
117 previousTick = 0;
118 changeState(SimObject::Running);
119}
120
121
122TimingSimpleCPU::~TimingSimpleCPU()
123{
124}
125
126void
127TimingSimpleCPU::serialize(ostream &os)
128{
129 SimObject::State so_state = SimObject::getState();
130 SERIALIZE_ENUM(so_state);
131 BaseSimpleCPU::serialize(os);
132}
133
134void
135TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
136{
137 SimObject::State so_state;
138 UNSERIALIZE_ENUM(so_state);
139 BaseSimpleCPU::unserialize(cp, section);
140}
141
142unsigned int
143TimingSimpleCPU::drain(Event *drain_event)
144{
145 // TimingSimpleCPU is ready to drain if it's not waiting for
146 // an access to complete.
147 if (status() == Idle || status() == Running || status() == SwitchedOut) {
148 changeState(SimObject::Drained);
149 return 0;
150 } else {
151 changeState(SimObject::Draining);
152 drainEvent = drain_event;
153 return 1;
154 }
155}
156
157void
158TimingSimpleCPU::resume()
159{
160 if (_status != SwitchedOut && _status != Idle) {
161 assert(system->getMemoryMode() == Enums::timing);
162
163 // Delete the old event if it existed.
164 if (fetchEvent) {
165 if (fetchEvent->scheduled())
166 fetchEvent->deschedule();
167
168 delete fetchEvent;
169 }
170
171 fetchEvent = new FetchEvent(this, nextCycle());
172 }
173
174 changeState(SimObject::Running);
175}
176
177void
178TimingSimpleCPU::switchOut()
179{
180 assert(status() == Running || status() == Idle);
181 _status = SwitchedOut;
182 numCycles += tickToCycles(curTick - previousTick);
183
184 // If we've been scheduled to resume but are then told to switch out,
185 // we'll need to cancel it.
186 if (fetchEvent && fetchEvent->scheduled())
187 fetchEvent->deschedule();
188}
189
190
191void
192TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
193{
194 BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
195
196 // if any of this CPU's ThreadContexts are active, mark the CPU as
197 // running and schedule its tick event.
198 for (int i = 0; i < threadContexts.size(); ++i) {
199 ThreadContext *tc = threadContexts[i];
200 if (tc->status() == ThreadContext::Active && _status != Running) {
201 _status = Running;
202 break;
203 }
204 }
205
206 if (_status != Running) {
207 _status = Idle;
208 }
209 assert(threadContexts.size() == 1);
210 cpuId = tc->readCpuId();
211 previousTick = curTick;
212}
213
214
215void
216TimingSimpleCPU::activateContext(int thread_num, int delay)
217{
218 assert(thread_num == 0);
219 assert(thread);
220
221 assert(_status == Idle);
222
223 notIdleFraction++;
224 _status = Running;
225
226 // kick things off by initiating the fetch of the next instruction
227 fetchEvent = new FetchEvent(this, nextCycle(curTick + ticks(delay)));
228}
229
230
231void
232TimingSimpleCPU::suspendContext(int thread_num)
233{
234 assert(thread_num == 0);
235 assert(thread);
236
237 assert(_status == Running);
238
239 // just change status to Idle... if status != Running,
240 // completeInst() will not initiate fetch of next instruction.
241
242 notIdleFraction--;
243 _status = Idle;
244}
245
246
247template <class T>
248Fault
249TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
250{
251 Request *req =
252 new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
253 cpuId, /* thread ID */ 0);
254
255 if (traceData) {
256 traceData->setAddr(req->getVaddr());
257 }
258
259 // translate to physical address
260 Fault fault = thread->translateDataReadReq(req);
261
262 // Now do the access.
263 if (fault == NoFault) {
264 PacketPtr pkt =
265 new Packet(req,
266 (req->isLocked() ?
267 MemCmd::LoadLockedReq : MemCmd::ReadReq),
268 Packet::Broadcast);
269 pkt->dataDynamic<T>(new T);
270
271 if (req->isMmapedIpr()) {
272 Tick delay;
273 delay = TheISA::handleIprRead(thread->getTC(), pkt);
274 new IprEvent(pkt, this, nextCycle(curTick + delay));
275 _status = DcacheWaitResponse;
276 dcache_pkt = NULL;
277 } else if (!dcachePort.sendTiming(pkt)) {
278 _status = DcacheRetry;
279 dcache_pkt = pkt;
280 } else {
281 _status = DcacheWaitResponse;
282 // memory system takes ownership of packet
283 dcache_pkt = NULL;
284 }
285
286 // This will need a new way to tell if it has a dcache attached.
287 if (req->isUncacheable())
288 recordEvent("Uncached Read");
289 } else {
290 delete req;
291 }
292
293 return fault;
294}
295
296Fault
297TimingSimpleCPU::translateDataReadAddr(Addr vaddr, Addr &paddr,
298 int size, unsigned flags)
299{
300 Request *req =
301 new Request(0, vaddr, size, flags, thread->readPC(), cpuId, 0);
302
303 if (traceData) {
304 traceData->setAddr(vaddr);
305 }
306
307 Fault fault = thread->translateDataWriteReq(req);
308
309 if (fault == NoFault)
310 paddr = req->getPaddr();
311
312 delete req;
313 return fault;
314}
315
296#ifndef DOXYGEN_SHOULD_SKIP_THIS
297
298template
299Fault
300TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
301
302template
303Fault
304TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
305
306template
307Fault
308TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
309
310template
311Fault
312TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
313
314template
315Fault
316TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
317
318template
319Fault
320TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
321
322#endif //DOXYGEN_SHOULD_SKIP_THIS
323
324template<>
325Fault
326TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
327{
328 return read(addr, *(uint64_t*)&data, flags);
329}
330
331template<>
332Fault
333TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
334{
335 return read(addr, *(uint32_t*)&data, flags);
336}
337
338
339template<>
340Fault
341TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
342{
343 return read(addr, (uint32_t&)data, flags);
344}
345
346
347template <class T>
348Fault
349TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
350{
351 Request *req =
352 new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
353 cpuId, /* thread ID */ 0);
354
355 if (traceData) {
356 traceData->setAddr(req->getVaddr());
357 }
358
359 // translate to physical address
360 Fault fault = thread->translateDataWriteReq(req);
361
362 // Now do the access.
363 if (fault == NoFault) {
364 MemCmd cmd = MemCmd::WriteReq; // default
365 bool do_access = true; // flag to suppress cache access
366
367 if (req->isLocked()) {
368 cmd = MemCmd::StoreCondReq;
369 do_access = TheISA::handleLockedWrite(thread, req);
370 } else if (req->isSwap()) {
371 cmd = MemCmd::SwapReq;
372 if (req->isCondSwap()) {
373 assert(res);
374 req->setExtraData(*res);
375 }
376 }
377
378 // Note: need to allocate dcache_pkt even if do_access is
379 // false, as it's used unconditionally to call completeAcc().
380 assert(dcache_pkt == NULL);
381 dcache_pkt = new Packet(req, cmd, Packet::Broadcast);
382 dcache_pkt->allocate();
383 dcache_pkt->set(data);
384
385 if (do_access) {
386 if (req->isMmapedIpr()) {
387 Tick delay;
388 dcache_pkt->set(htog(data));
389 delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
390 new IprEvent(dcache_pkt, this, nextCycle(curTick + delay));
391 _status = DcacheWaitResponse;
392 dcache_pkt = NULL;
393 } else if (!dcachePort.sendTiming(dcache_pkt)) {
394 _status = DcacheRetry;
395 } else {
396 _status = DcacheWaitResponse;
397 // memory system takes ownership of packet
398 dcache_pkt = NULL;
399 }
400 }
401 // This will need a new way to tell if it's hooked up to a cache or not.
402 if (req->isUncacheable())
403 recordEvent("Uncached Write");
404 } else {
405 delete req;
406 }
407
408
409 // If the write needs to have a fault on the access, consider calling
410 // changeStatus() and changing it to "bad addr write" or something.
411 return fault;
412}
413
316#ifndef DOXYGEN_SHOULD_SKIP_THIS
317
318template
319Fault
320TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
321
322template
323Fault
324TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
325
326template
327Fault
328TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
329
330template
331Fault
332TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
333
334template
335Fault
336TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
337
338template
339Fault
340TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
341
342#endif //DOXYGEN_SHOULD_SKIP_THIS
343
344template<>
345Fault
346TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
347{
348 return read(addr, *(uint64_t*)&data, flags);
349}
350
351template<>
352Fault
353TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
354{
355 return read(addr, *(uint32_t*)&data, flags);
356}
357
358
359template<>
360Fault
361TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
362{
363 return read(addr, (uint32_t&)data, flags);
364}
365
366
367template <class T>
368Fault
369TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
370{
371 Request *req =
372 new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
373 cpuId, /* thread ID */ 0);
374
375 if (traceData) {
376 traceData->setAddr(req->getVaddr());
377 }
378
379 // translate to physical address
380 Fault fault = thread->translateDataWriteReq(req);
381
382 // Now do the access.
383 if (fault == NoFault) {
384 MemCmd cmd = MemCmd::WriteReq; // default
385 bool do_access = true; // flag to suppress cache access
386
387 if (req->isLocked()) {
388 cmd = MemCmd::StoreCondReq;
389 do_access = TheISA::handleLockedWrite(thread, req);
390 } else if (req->isSwap()) {
391 cmd = MemCmd::SwapReq;
392 if (req->isCondSwap()) {
393 assert(res);
394 req->setExtraData(*res);
395 }
396 }
397
398 // Note: need to allocate dcache_pkt even if do_access is
399 // false, as it's used unconditionally to call completeAcc().
400 assert(dcache_pkt == NULL);
401 dcache_pkt = new Packet(req, cmd, Packet::Broadcast);
402 dcache_pkt->allocate();
403 dcache_pkt->set(data);
404
405 if (do_access) {
406 if (req->isMmapedIpr()) {
407 Tick delay;
408 dcache_pkt->set(htog(data));
409 delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
410 new IprEvent(dcache_pkt, this, nextCycle(curTick + delay));
411 _status = DcacheWaitResponse;
412 dcache_pkt = NULL;
413 } else if (!dcachePort.sendTiming(dcache_pkt)) {
414 _status = DcacheRetry;
415 } else {
416 _status = DcacheWaitResponse;
417 // memory system takes ownership of packet
418 dcache_pkt = NULL;
419 }
420 }
421 // This will need a new way to tell if it's hooked up to a cache or not.
422 if (req->isUncacheable())
423 recordEvent("Uncached Write");
424 } else {
425 delete req;
426 }
427
428
429 // If the write needs to have a fault on the access, consider calling
430 // changeStatus() and changing it to "bad addr write" or something.
431 return fault;
432}
433
434Fault
435TimingSimpleCPU::translateDataWriteAddr(Addr vaddr, Addr &paddr,
436 int size, unsigned flags)
437{
438 Request *req =
439 new Request(0, vaddr, size, flags, thread->readPC(), cpuId, 0);
414
440
441 if (traceData) {
442 traceData->setAddr(vaddr);
443 }
444
445 Fault fault = thread->translateDataWriteReq(req);
446
447 if (fault == NoFault)
448 paddr = req->getPaddr();
449
450 delete req;
451 return fault;
452}
453
454
415#ifndef DOXYGEN_SHOULD_SKIP_THIS
416template
417Fault
418TimingSimpleCPU::write(Twin32_t data, Addr addr,
419 unsigned flags, uint64_t *res);
420
421template
422Fault
423TimingSimpleCPU::write(Twin64_t data, Addr addr,
424 unsigned flags, uint64_t *res);
425
426template
427Fault
428TimingSimpleCPU::write(uint64_t data, Addr addr,
429 unsigned flags, uint64_t *res);
430
431template
432Fault
433TimingSimpleCPU::write(uint32_t data, Addr addr,
434 unsigned flags, uint64_t *res);
435
436template
437Fault
438TimingSimpleCPU::write(uint16_t data, Addr addr,
439 unsigned flags, uint64_t *res);
440
441template
442Fault
443TimingSimpleCPU::write(uint8_t data, Addr addr,
444 unsigned flags, uint64_t *res);
445
446#endif //DOXYGEN_SHOULD_SKIP_THIS
447
448template<>
449Fault
450TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
451{
452 return write(*(uint64_t*)&data, addr, flags, res);
453}
454
455template<>
456Fault
457TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
458{
459 return write(*(uint32_t*)&data, addr, flags, res);
460}
461
462
463template<>
464Fault
465TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
466{
467 return write((uint32_t)data, addr, flags, res);
468}
469
470
471void
472TimingSimpleCPU::fetch()
473{
474 if (!curStaticInst || !curStaticInst->isDelayedCommit())
475 checkForInterrupts();
476
477 Request *ifetch_req = new Request();
478 ifetch_req->setThreadContext(cpuId, /* thread ID */ 0);
479 Fault fault = setupFetchRequest(ifetch_req);
480
481 ifetch_pkt = new Packet(ifetch_req, MemCmd::ReadReq, Packet::Broadcast);
482 ifetch_pkt->dataStatic(&inst);
483
484 if (fault == NoFault) {
485 if (!icachePort.sendTiming(ifetch_pkt)) {
486 // Need to wait for retry
487 _status = IcacheRetry;
488 } else {
489 // Need to wait for cache to respond
490 _status = IcacheWaitResponse;
491 // ownership of packet transferred to memory system
492 ifetch_pkt = NULL;
493 }
494 } else {
495 delete ifetch_req;
496 delete ifetch_pkt;
497 // fetch fault: advance directly to next instruction (fault handler)
498 advanceInst(fault);
499 }
500
501 numCycles += tickToCycles(curTick - previousTick);
502 previousTick = curTick;
503}
504
505
506void
507TimingSimpleCPU::advanceInst(Fault fault)
508{
509 advancePC(fault);
510
511 if (_status == Running) {
512 // kick off fetch of next instruction... callback from icache
513 // response will cause that instruction to be executed,
514 // keeping the CPU running.
515 fetch();
516 }
517}
518
519
520void
521TimingSimpleCPU::completeIfetch(PacketPtr pkt)
522{
523 // received a response from the icache: execute the received
524 // instruction
525 assert(!pkt->isError());
526 assert(_status == IcacheWaitResponse);
527
528 _status = Running;
529
530 numCycles += tickToCycles(curTick - previousTick);
531 previousTick = curTick;
532
533 if (getState() == SimObject::Draining) {
534 delete pkt->req;
535 delete pkt;
536
537 completeDrain();
538 return;
539 }
540
541 preExecute();
542 if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
543 // load or store: just send to dcache
544 Fault fault = curStaticInst->initiateAcc(this, traceData);
545 if (_status != Running) {
546 // instruction will complete in dcache response callback
547 assert(_status == DcacheWaitResponse || _status == DcacheRetry);
548 assert(fault == NoFault);
549 } else {
550 if (fault == NoFault) {
551 // early fail on store conditional: complete now
552 assert(dcache_pkt != NULL);
553 fault = curStaticInst->completeAcc(dcache_pkt, this,
554 traceData);
555 delete dcache_pkt->req;
556 delete dcache_pkt;
557 dcache_pkt = NULL;
558
559 // keep an instruction count
560 if (fault == NoFault)
561 countInst();
562 } else if (traceData) {
563 // If there was a fault, we shouldn't trace this instruction.
564 delete traceData;
565 traceData = NULL;
566 }
567
568 postExecute();
569 // @todo remove me after debugging with legion done
570 if (curStaticInst && (!curStaticInst->isMicroop() ||
571 curStaticInst->isFirstMicroop()))
572 instCnt++;
573 advanceInst(fault);
574 }
575 } else {
576 // non-memory instruction: execute completely now
577 Fault fault = curStaticInst->execute(this, traceData);
578
579 // keep an instruction count
580 if (fault == NoFault)
581 countInst();
582 else if (traceData) {
583 // If there was a fault, we shouldn't trace this instruction.
584 delete traceData;
585 traceData = NULL;
586 }
587
588 postExecute();
589 // @todo remove me after debugging with legion done
590 if (curStaticInst && (!curStaticInst->isMicroop() ||
591 curStaticInst->isFirstMicroop()))
592 instCnt++;
593 advanceInst(fault);
594 }
595
596 delete pkt->req;
597 delete pkt;
598}
599
600void
601TimingSimpleCPU::IcachePort::ITickEvent::process()
602{
603 cpu->completeIfetch(pkt);
604}
605
606bool
607TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
608{
609 if (pkt->isResponse() && !pkt->wasNacked()) {
610 // delay processing of returned data until next CPU clock edge
611 Tick next_tick = cpu->nextCycle(curTick);
612
613 if (next_tick == curTick)
614 cpu->completeIfetch(pkt);
615 else
616 tickEvent.schedule(pkt, next_tick);
617
618 return true;
619 }
620 else if (pkt->wasNacked()) {
621 assert(cpu->_status == IcacheWaitResponse);
622 pkt->reinitNacked();
623 if (!sendTiming(pkt)) {
624 cpu->_status = IcacheRetry;
625 cpu->ifetch_pkt = pkt;
626 }
627 }
628 //Snooping a Coherence Request, do nothing
629 return true;
630}
631
632void
633TimingSimpleCPU::IcachePort::recvRetry()
634{
635 // we shouldn't get a retry unless we have a packet that we're
636 // waiting to transmit
637 assert(cpu->ifetch_pkt != NULL);
638 assert(cpu->_status == IcacheRetry);
639 PacketPtr tmp = cpu->ifetch_pkt;
640 if (sendTiming(tmp)) {
641 cpu->_status = IcacheWaitResponse;
642 cpu->ifetch_pkt = NULL;
643 }
644}
645
646void
647TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
648{
649 // received a response from the dcache: complete the load or store
650 // instruction
651 assert(!pkt->isError());
652 assert(_status == DcacheWaitResponse);
653 _status = Running;
654
655 numCycles += tickToCycles(curTick - previousTick);
656 previousTick = curTick;
657
658 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
659
660 // keep an instruction count
661 if (fault == NoFault)
662 countInst();
663 else if (traceData) {
664 // If there was a fault, we shouldn't trace this instruction.
665 delete traceData;
666 traceData = NULL;
667 }
668
669 if (pkt->isRead() && pkt->isLocked()) {
670 TheISA::handleLockedRead(thread, pkt->req);
671 }
672
673 delete pkt->req;
674 delete pkt;
675
676 postExecute();
677
678 if (getState() == SimObject::Draining) {
679 advancePC(fault);
680 completeDrain();
681
682 return;
683 }
684
685 advanceInst(fault);
686}
687
688
689void
690TimingSimpleCPU::completeDrain()
691{
692 DPRINTF(Config, "Done draining\n");
693 changeState(SimObject::Drained);
694 drainEvent->process();
695}
696
697void
698TimingSimpleCPU::DcachePort::setPeer(Port *port)
699{
700 Port::setPeer(port);
701
702#if FULL_SYSTEM
703 // Update the ThreadContext's memory ports (Functional/Virtual
704 // Ports)
705 cpu->tcBase()->connectMemPorts();
706#endif
707}
708
709bool
710TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
711{
712 if (pkt->isResponse() && !pkt->wasNacked()) {
713 // delay processing of returned data until next CPU clock edge
714 Tick next_tick = cpu->nextCycle(curTick);
715
716 if (next_tick == curTick)
717 cpu->completeDataAccess(pkt);
718 else
719 tickEvent.schedule(pkt, next_tick);
720
721 return true;
722 }
723 else if (pkt->wasNacked()) {
724 assert(cpu->_status == DcacheWaitResponse);
725 pkt->reinitNacked();
726 if (!sendTiming(pkt)) {
727 cpu->_status = DcacheRetry;
728 cpu->dcache_pkt = pkt;
729 }
730 }
731 //Snooping a Coherence Request, do nothing
732 return true;
733}
734
735void
736TimingSimpleCPU::DcachePort::DTickEvent::process()
737{
738 cpu->completeDataAccess(pkt);
739}
740
741void
742TimingSimpleCPU::DcachePort::recvRetry()
743{
744 // we shouldn't get a retry unless we have a packet that we're
745 // waiting to transmit
746 assert(cpu->dcache_pkt != NULL);
747 assert(cpu->_status == DcacheRetry);
748 PacketPtr tmp = cpu->dcache_pkt;
749 if (sendTiming(tmp)) {
750 cpu->_status = DcacheWaitResponse;
751 // memory system takes ownership of packet
752 cpu->dcache_pkt = NULL;
753 }
754}
755
756TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu, Tick t)
757 : Event(&mainEventQueue), pkt(_pkt), cpu(_cpu)
758{
759 schedule(t);
760}
761
762void
763TimingSimpleCPU::IprEvent::process()
764{
765 cpu->completeDataAccess(pkt);
766}
767
768const char *
769TimingSimpleCPU::IprEvent::description()
770{
771 return "Timing Simple CPU Delay IPR event";
772}
773
774
775////////////////////////////////////////////////////////////////////////
776//
777// TimingSimpleCPU Simulation Object
778//
779TimingSimpleCPU *
780TimingSimpleCPUParams::create()
781{
782 TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
783 params->name = name;
784 params->numberOfThreads = 1;
785 params->max_insts_any_thread = max_insts_any_thread;
786 params->max_insts_all_threads = max_insts_all_threads;
787 params->max_loads_any_thread = max_loads_any_thread;
788 params->max_loads_all_threads = max_loads_all_threads;
789 params->progress_interval = progress_interval;
790 params->deferRegistration = defer_registration;
791 params->clock = clock;
792 params->phase = phase;
793 params->functionTrace = function_trace;
794 params->functionTraceStart = function_trace_start;
795 params->system = system;
796 params->cpu_id = cpu_id;
797 params->tracer = tracer;
798
799 params->itb = itb;
800 params->dtb = dtb;
801#if FULL_SYSTEM
802 params->profile = profile;
803 params->do_quiesce = do_quiesce;
804 params->do_checkpoint_insts = do_checkpoint_insts;
805 params->do_statistics_insts = do_statistics_insts;
806#else
807 if (workload.size() != 1)
808 panic("only one workload allowed");
809 params->process = workload[0];
810#endif
811
812 TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
813 return cpu;
814}
455#ifndef DOXYGEN_SHOULD_SKIP_THIS
456template
457Fault
458TimingSimpleCPU::write(Twin32_t data, Addr addr,
459 unsigned flags, uint64_t *res);
460
461template
462Fault
463TimingSimpleCPU::write(Twin64_t data, Addr addr,
464 unsigned flags, uint64_t *res);
465
466template
467Fault
468TimingSimpleCPU::write(uint64_t data, Addr addr,
469 unsigned flags, uint64_t *res);
470
471template
472Fault
473TimingSimpleCPU::write(uint32_t data, Addr addr,
474 unsigned flags, uint64_t *res);
475
476template
477Fault
478TimingSimpleCPU::write(uint16_t data, Addr addr,
479 unsigned flags, uint64_t *res);
480
481template
482Fault
483TimingSimpleCPU::write(uint8_t data, Addr addr,
484 unsigned flags, uint64_t *res);
485
486#endif //DOXYGEN_SHOULD_SKIP_THIS
487
488template<>
489Fault
490TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
491{
492 return write(*(uint64_t*)&data, addr, flags, res);
493}
494
495template<>
496Fault
497TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
498{
499 return write(*(uint32_t*)&data, addr, flags, res);
500}
501
502
503template<>
504Fault
505TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
506{
507 return write((uint32_t)data, addr, flags, res);
508}
509
510
511void
512TimingSimpleCPU::fetch()
513{
514 if (!curStaticInst || !curStaticInst->isDelayedCommit())
515 checkForInterrupts();
516
517 Request *ifetch_req = new Request();
518 ifetch_req->setThreadContext(cpuId, /* thread ID */ 0);
519 Fault fault = setupFetchRequest(ifetch_req);
520
521 ifetch_pkt = new Packet(ifetch_req, MemCmd::ReadReq, Packet::Broadcast);
522 ifetch_pkt->dataStatic(&inst);
523
524 if (fault == NoFault) {
525 if (!icachePort.sendTiming(ifetch_pkt)) {
526 // Need to wait for retry
527 _status = IcacheRetry;
528 } else {
529 // Need to wait for cache to respond
530 _status = IcacheWaitResponse;
531 // ownership of packet transferred to memory system
532 ifetch_pkt = NULL;
533 }
534 } else {
535 delete ifetch_req;
536 delete ifetch_pkt;
537 // fetch fault: advance directly to next instruction (fault handler)
538 advanceInst(fault);
539 }
540
541 numCycles += tickToCycles(curTick - previousTick);
542 previousTick = curTick;
543}
544
545
546void
547TimingSimpleCPU::advanceInst(Fault fault)
548{
549 advancePC(fault);
550
551 if (_status == Running) {
552 // kick off fetch of next instruction... callback from icache
553 // response will cause that instruction to be executed,
554 // keeping the CPU running.
555 fetch();
556 }
557}
558
559
560void
561TimingSimpleCPU::completeIfetch(PacketPtr pkt)
562{
563 // received a response from the icache: execute the received
564 // instruction
565 assert(!pkt->isError());
566 assert(_status == IcacheWaitResponse);
567
568 _status = Running;
569
570 numCycles += tickToCycles(curTick - previousTick);
571 previousTick = curTick;
572
573 if (getState() == SimObject::Draining) {
574 delete pkt->req;
575 delete pkt;
576
577 completeDrain();
578 return;
579 }
580
581 preExecute();
582 if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
583 // load or store: just send to dcache
584 Fault fault = curStaticInst->initiateAcc(this, traceData);
585 if (_status != Running) {
586 // instruction will complete in dcache response callback
587 assert(_status == DcacheWaitResponse || _status == DcacheRetry);
588 assert(fault == NoFault);
589 } else {
590 if (fault == NoFault) {
591 // early fail on store conditional: complete now
592 assert(dcache_pkt != NULL);
593 fault = curStaticInst->completeAcc(dcache_pkt, this,
594 traceData);
595 delete dcache_pkt->req;
596 delete dcache_pkt;
597 dcache_pkt = NULL;
598
599 // keep an instruction count
600 if (fault == NoFault)
601 countInst();
602 } else if (traceData) {
603 // If there was a fault, we shouldn't trace this instruction.
604 delete traceData;
605 traceData = NULL;
606 }
607
608 postExecute();
609 // @todo remove me after debugging with legion done
610 if (curStaticInst && (!curStaticInst->isMicroop() ||
611 curStaticInst->isFirstMicroop()))
612 instCnt++;
613 advanceInst(fault);
614 }
615 } else {
616 // non-memory instruction: execute completely now
617 Fault fault = curStaticInst->execute(this, traceData);
618
619 // keep an instruction count
620 if (fault == NoFault)
621 countInst();
622 else if (traceData) {
623 // If there was a fault, we shouldn't trace this instruction.
624 delete traceData;
625 traceData = NULL;
626 }
627
628 postExecute();
629 // @todo remove me after debugging with legion done
630 if (curStaticInst && (!curStaticInst->isMicroop() ||
631 curStaticInst->isFirstMicroop()))
632 instCnt++;
633 advanceInst(fault);
634 }
635
636 delete pkt->req;
637 delete pkt;
638}
639
640void
641TimingSimpleCPU::IcachePort::ITickEvent::process()
642{
643 cpu->completeIfetch(pkt);
644}
645
646bool
647TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
648{
649 if (pkt->isResponse() && !pkt->wasNacked()) {
650 // delay processing of returned data until next CPU clock edge
651 Tick next_tick = cpu->nextCycle(curTick);
652
653 if (next_tick == curTick)
654 cpu->completeIfetch(pkt);
655 else
656 tickEvent.schedule(pkt, next_tick);
657
658 return true;
659 }
660 else if (pkt->wasNacked()) {
661 assert(cpu->_status == IcacheWaitResponse);
662 pkt->reinitNacked();
663 if (!sendTiming(pkt)) {
664 cpu->_status = IcacheRetry;
665 cpu->ifetch_pkt = pkt;
666 }
667 }
668 //Snooping a Coherence Request, do nothing
669 return true;
670}
671
672void
673TimingSimpleCPU::IcachePort::recvRetry()
674{
675 // we shouldn't get a retry unless we have a packet that we're
676 // waiting to transmit
677 assert(cpu->ifetch_pkt != NULL);
678 assert(cpu->_status == IcacheRetry);
679 PacketPtr tmp = cpu->ifetch_pkt;
680 if (sendTiming(tmp)) {
681 cpu->_status = IcacheWaitResponse;
682 cpu->ifetch_pkt = NULL;
683 }
684}
685
686void
687TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
688{
689 // received a response from the dcache: complete the load or store
690 // instruction
691 assert(!pkt->isError());
692 assert(_status == DcacheWaitResponse);
693 _status = Running;
694
695 numCycles += tickToCycles(curTick - previousTick);
696 previousTick = curTick;
697
698 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
699
700 // keep an instruction count
701 if (fault == NoFault)
702 countInst();
703 else if (traceData) {
704 // If there was a fault, we shouldn't trace this instruction.
705 delete traceData;
706 traceData = NULL;
707 }
708
709 if (pkt->isRead() && pkt->isLocked()) {
710 TheISA::handleLockedRead(thread, pkt->req);
711 }
712
713 delete pkt->req;
714 delete pkt;
715
716 postExecute();
717
718 if (getState() == SimObject::Draining) {
719 advancePC(fault);
720 completeDrain();
721
722 return;
723 }
724
725 advanceInst(fault);
726}
727
728
729void
730TimingSimpleCPU::completeDrain()
731{
732 DPRINTF(Config, "Done draining\n");
733 changeState(SimObject::Drained);
734 drainEvent->process();
735}
736
737void
738TimingSimpleCPU::DcachePort::setPeer(Port *port)
739{
740 Port::setPeer(port);
741
742#if FULL_SYSTEM
743 // Update the ThreadContext's memory ports (Functional/Virtual
744 // Ports)
745 cpu->tcBase()->connectMemPorts();
746#endif
747}
748
749bool
750TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
751{
752 if (pkt->isResponse() && !pkt->wasNacked()) {
753 // delay processing of returned data until next CPU clock edge
754 Tick next_tick = cpu->nextCycle(curTick);
755
756 if (next_tick == curTick)
757 cpu->completeDataAccess(pkt);
758 else
759 tickEvent.schedule(pkt, next_tick);
760
761 return true;
762 }
763 else if (pkt->wasNacked()) {
764 assert(cpu->_status == DcacheWaitResponse);
765 pkt->reinitNacked();
766 if (!sendTiming(pkt)) {
767 cpu->_status = DcacheRetry;
768 cpu->dcache_pkt = pkt;
769 }
770 }
771 //Snooping a Coherence Request, do nothing
772 return true;
773}
774
775void
776TimingSimpleCPU::DcachePort::DTickEvent::process()
777{
778 cpu->completeDataAccess(pkt);
779}
780
781void
782TimingSimpleCPU::DcachePort::recvRetry()
783{
784 // we shouldn't get a retry unless we have a packet that we're
785 // waiting to transmit
786 assert(cpu->dcache_pkt != NULL);
787 assert(cpu->_status == DcacheRetry);
788 PacketPtr tmp = cpu->dcache_pkt;
789 if (sendTiming(tmp)) {
790 cpu->_status = DcacheWaitResponse;
791 // memory system takes ownership of packet
792 cpu->dcache_pkt = NULL;
793 }
794}
795
796TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu, Tick t)
797 : Event(&mainEventQueue), pkt(_pkt), cpu(_cpu)
798{
799 schedule(t);
800}
801
802void
803TimingSimpleCPU::IprEvent::process()
804{
805 cpu->completeDataAccess(pkt);
806}
807
808const char *
809TimingSimpleCPU::IprEvent::description()
810{
811 return "Timing Simple CPU Delay IPR event";
812}
813
814
815////////////////////////////////////////////////////////////////////////
816//
817// TimingSimpleCPU Simulation Object
818//
819TimingSimpleCPU *
820TimingSimpleCPUParams::create()
821{
822 TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
823 params->name = name;
824 params->numberOfThreads = 1;
825 params->max_insts_any_thread = max_insts_any_thread;
826 params->max_insts_all_threads = max_insts_all_threads;
827 params->max_loads_any_thread = max_loads_any_thread;
828 params->max_loads_all_threads = max_loads_all_threads;
829 params->progress_interval = progress_interval;
830 params->deferRegistration = defer_registration;
831 params->clock = clock;
832 params->phase = phase;
833 params->functionTrace = function_trace;
834 params->functionTraceStart = function_trace_start;
835 params->system = system;
836 params->cpu_id = cpu_id;
837 params->tracer = tracer;
838
839 params->itb = itb;
840 params->dtb = dtb;
841#if FULL_SYSTEM
842 params->profile = profile;
843 params->do_quiesce = do_quiesce;
844 params->do_checkpoint_insts = do_checkpoint_insts;
845 params->do_statistics_insts = do_statistics_insts;
846#else
847 if (workload.size() != 1)
848 panic("only one workload allowed");
849 params->process = workload[0];
850#endif
851
852 TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
853 return cpu;
854}