timing.cc (3297:f0855ab36ff5) timing.cc (3310:21adbb41a37e)
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/utility.hh"
33#include "cpu/exetrace.hh"
34#include "cpu/simple/timing.hh"
35#include "mem/packet_impl.hh"
36#include "sim/builder.hh"
37#include "sim/system.hh"
38
39using namespace std;
40using namespace TheISA;
41
42Port *
43TimingSimpleCPU::getPort(const std::string &if_name, int idx)
44{
45 if (if_name == "dcache_port")
46 return &dcachePort;
47 else if (if_name == "icache_port")
48 return &icachePort;
49 else
50 panic("No Such Port\n");
51}
52
53void
54TimingSimpleCPU::init()
55{
56 BaseCPU::init();
57#if FULL_SYSTEM
58 for (int i = 0; i < threadContexts.size(); ++i) {
59 ThreadContext *tc = threadContexts[i];
60
61 // initialize CPU, including PC
62 TheISA::initCPU(tc, tc->readCpuId());
63 }
64#endif
65}
66
67Tick
68TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
69{
70 panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
71 return curTick;
72}
73
74void
75TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
76{
77 //No internal storage to update, jusst return
78 return;
79}
80
81void
82TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
83{
84 if (status == RangeChange)
85 return;
86
87 panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
88}
89
90
91void
92TimingSimpleCPU::CpuPort::TickEvent::schedule(Packet *_pkt, Tick t)
93{
94 pkt = _pkt;
95 Event::schedule(t);
96}
97
98TimingSimpleCPU::TimingSimpleCPU(Params *p)
99 : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock),
100 cpu_id(p->cpu_id)
101{
102 _status = Idle;
103 ifetch_pkt = dcache_pkt = NULL;
104 drainEvent = NULL;
105 fetchEvent = NULL;
106 previousTick = 0;
107 changeState(SimObject::Running);
108}
109
110
111TimingSimpleCPU::~TimingSimpleCPU()
112{
113}
114
115void
116TimingSimpleCPU::serialize(ostream &os)
117{
118 SimObject::State so_state = SimObject::getState();
119 SERIALIZE_ENUM(so_state);
120 BaseSimpleCPU::serialize(os);
121}
122
123void
124TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
125{
126 SimObject::State so_state;
127 UNSERIALIZE_ENUM(so_state);
128 BaseSimpleCPU::unserialize(cp, section);
129}
130
131unsigned int
132TimingSimpleCPU::drain(Event *drain_event)
133{
134 // TimingSimpleCPU is ready to drain if it's not waiting for
135 // an access to complete.
136 if (status() == Idle || status() == Running || status() == SwitchedOut) {
137 changeState(SimObject::Drained);
138 return 0;
139 } else {
140 changeState(SimObject::Draining);
141 drainEvent = drain_event;
142 return 1;
143 }
144}
145
146void
147TimingSimpleCPU::resume()
148{
149 if (_status != SwitchedOut && _status != Idle) {
150 assert(system->getMemoryMode() == System::Timing);
151
152 // Delete the old event if it existed.
153 if (fetchEvent) {
154 if (fetchEvent->scheduled())
155 fetchEvent->deschedule();
156
157 delete fetchEvent;
158 }
159
160 fetchEvent =
161 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
162 fetchEvent->schedule(curTick);
163 }
164
165 changeState(SimObject::Running);
166 previousTick = curTick;
167}
168
169void
170TimingSimpleCPU::switchOut()
171{
172 assert(status() == Running || status() == Idle);
173 _status = SwitchedOut;
174 numCycles += curTick - previousTick;
175
176 // If we've been scheduled to resume but are then told to switch out,
177 // we'll need to cancel it.
178 if (fetchEvent && fetchEvent->scheduled())
179 fetchEvent->deschedule();
180}
181
182
183void
184TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
185{
186 BaseCPU::takeOverFrom(oldCPU);
187
188 // if any of this CPU's ThreadContexts are active, mark the CPU as
189 // running and schedule its tick event.
190 for (int i = 0; i < threadContexts.size(); ++i) {
191 ThreadContext *tc = threadContexts[i];
192 if (tc->status() == ThreadContext::Active && _status != Running) {
193 _status = Running;
194 break;
195 }
196 }
197
198 if (_status != Running) {
199 _status = Idle;
200 }
201
202 Port *peer;
203 if (icachePort.getPeer() == NULL) {
204 peer = oldCPU->getPort("icache_port")->getPeer();
205 icachePort.setPeer(peer);
206 } else {
207 peer = icachePort.getPeer();
208 }
209 peer->setPeer(&icachePort);
210
211 if (dcachePort.getPeer() == NULL) {
212 peer = oldCPU->getPort("dcache_port")->getPeer();
213 dcachePort.setPeer(peer);
214 } else {
215 peer = dcachePort.getPeer();
216 }
217 peer->setPeer(&dcachePort);
218}
219
220
221void
222TimingSimpleCPU::activateContext(int thread_num, int delay)
223{
224 assert(thread_num == 0);
225 assert(thread);
226
227 assert(_status == Idle);
228
229 notIdleFraction++;
230 _status = Running;
231 // kick things off by initiating the fetch of the next instruction
232 fetchEvent =
233 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
234 fetchEvent->schedule(curTick + cycles(delay));
235}
236
237
238void
239TimingSimpleCPU::suspendContext(int thread_num)
240{
241 assert(thread_num == 0);
242 assert(thread);
243
244 assert(_status == Running);
245
246 // just change status to Idle... if status != Running,
247 // completeInst() will not initiate fetch of next instruction.
248
249 notIdleFraction--;
250 _status = Idle;
251}
252
253
254template <class T>
255Fault
256TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
257{
258 Request *req =
259 new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
260 cpu_id, /* thread ID */ 0);
261
262 if (traceData) {
263 traceData->setAddr(req->getVaddr());
264 }
265
266 // translate to physical address
267 Fault fault = thread->translateDataReadReq(req);
268
269 // Now do the access.
270 if (fault == NoFault) {
271 Packet *pkt =
272 new Packet(req, Packet::ReadReq, Packet::Broadcast);
273 pkt->dataDynamic<T>(new T);
274
275 if (!dcachePort.sendTiming(pkt)) {
276 _status = DcacheRetry;
277 dcache_pkt = pkt;
278 } else {
279 _status = DcacheWaitResponse;
280 // memory system takes ownership of packet
281 dcache_pkt = NULL;
282 }
283 }
284
285 // This will need a new way to tell if it has a dcache attached.
286 if (req->isUncacheable())
287 recordEvent("Uncached Read");
288
289 return fault;
290}
291
292#ifndef DOXYGEN_SHOULD_SKIP_THIS
293
294template
295Fault
296TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
297
298template
299Fault
300TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
301
302template
303Fault
304TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
305
306template
307Fault
308TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
309
310#endif //DOXYGEN_SHOULD_SKIP_THIS
311
312template<>
313Fault
314TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
315{
316 return read(addr, *(uint64_t*)&data, flags);
317}
318
319template<>
320Fault
321TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
322{
323 return read(addr, *(uint32_t*)&data, flags);
324}
325
326
327template<>
328Fault
329TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
330{
331 return read(addr, (uint32_t&)data, flags);
332}
333
334
335template <class T>
336Fault
337TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
338{
339 Request *req =
340 new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
341 cpu_id, /* thread ID */ 0);
342
343 // translate to physical address
344 Fault fault = thread->translateDataWriteReq(req);
345
346 // Now do the access.
347 if (fault == NoFault) {
348 assert(dcache_pkt == NULL);
349 dcache_pkt = new Packet(req, Packet::WriteReq, Packet::Broadcast);
350 dcache_pkt->allocate();
351 dcache_pkt->set(data);
352
353 bool do_access = true; // flag to suppress cache access
354
355 if (req->isLocked()) {
356 do_access = TheISA::handleLockedWrite(thread, req);
357 }
358
359 if (do_access) {
360 if (!dcachePort.sendTiming(dcache_pkt)) {
361 _status = DcacheRetry;
362 } else {
363 _status = DcacheWaitResponse;
364 // memory system takes ownership of packet
365 dcache_pkt = NULL;
366 }
367 }
368 }
369
370 // This will need a new way to tell if it's hooked up to a cache or not.
371 if (req->isUncacheable())
372 recordEvent("Uncached Write");
373
374 // If the write needs to have a fault on the access, consider calling
375 // changeStatus() and changing it to "bad addr write" or something.
376 return fault;
377}
378
379
380#ifndef DOXYGEN_SHOULD_SKIP_THIS
381template
382Fault
383TimingSimpleCPU::write(uint64_t data, Addr addr,
384 unsigned flags, uint64_t *res);
385
386template
387Fault
388TimingSimpleCPU::write(uint32_t data, Addr addr,
389 unsigned flags, uint64_t *res);
390
391template
392Fault
393TimingSimpleCPU::write(uint16_t data, Addr addr,
394 unsigned flags, uint64_t *res);
395
396template
397Fault
398TimingSimpleCPU::write(uint8_t data, Addr addr,
399 unsigned flags, uint64_t *res);
400
401#endif //DOXYGEN_SHOULD_SKIP_THIS
402
403template<>
404Fault
405TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
406{
407 return write(*(uint64_t*)&data, addr, flags, res);
408}
409
410template<>
411Fault
412TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
413{
414 return write(*(uint32_t*)&data, addr, flags, res);
415}
416
417
418template<>
419Fault
420TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
421{
422 return write((uint32_t)data, addr, flags, res);
423}
424
425
426void
427TimingSimpleCPU::fetch()
428{
429 checkForInterrupts();
430
431 Request *ifetch_req = new Request();
432 ifetch_req->setThreadContext(cpu_id, /* thread ID */ 0);
433 Fault fault = setupFetchRequest(ifetch_req);
434
435 ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
436 ifetch_pkt->dataStatic(&inst);
437
438 if (fault == NoFault) {
439 if (!icachePort.sendTiming(ifetch_pkt)) {
440 // Need to wait for retry
441 _status = IcacheRetry;
442 } else {
443 // Need to wait for cache to respond
444 _status = IcacheWaitResponse;
445 // ownership of packet transferred to memory system
446 ifetch_pkt = NULL;
447 }
448 } else {
449 // fetch fault: advance directly to next instruction (fault handler)
450 advanceInst(fault);
451 }
452
453 numCycles += curTick - previousTick;
454 previousTick = curTick;
455}
456
457
458void
459TimingSimpleCPU::advanceInst(Fault fault)
460{
461 advancePC(fault);
462
463 if (_status == Running) {
464 // kick off fetch of next instruction... callback from icache
465 // response will cause that instruction to be executed,
466 // keeping the CPU running.
467 fetch();
468 }
469}
470
471
472void
473TimingSimpleCPU::completeIfetch(Packet *pkt)
474{
475 // received a response from the icache: execute the received
476 // instruction
477 assert(pkt->result == Packet::Success);
478 assert(_status == IcacheWaitResponse);
479
480 _status = Running;
481
482 delete pkt->req;
483 delete pkt;
484
485 numCycles += curTick - previousTick;
486 previousTick = curTick;
487
488 if (getState() == SimObject::Draining) {
489 completeDrain();
490 return;
491 }
492
493 preExecute();
494 if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
495 // load or store: just send to dcache
496 Fault fault = curStaticInst->initiateAcc(this, traceData);
497 if (_status != Running) {
498 // instruction will complete in dcache response callback
499 assert(_status == DcacheWaitResponse || _status == DcacheRetry);
500 assert(fault == NoFault);
501 } else {
502 if (fault == NoFault) {
503 // early fail on store conditional: complete now
504 assert(dcache_pkt != NULL);
505 fault = curStaticInst->completeAcc(dcache_pkt, this,
506 traceData);
507 delete dcache_pkt->req;
508 delete dcache_pkt;
509 dcache_pkt = NULL;
510 }
511 postExecute();
512 advanceInst(fault);
513 }
514 } else {
515 // non-memory instruction: execute completely now
516 Fault fault = curStaticInst->execute(this, traceData);
517 postExecute();
518 advanceInst(fault);
519 }
520}
521
522void
523TimingSimpleCPU::IcachePort::ITickEvent::process()
524{
525 cpu->completeIfetch(pkt);
526}
527
528bool
529TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
530{
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/utility.hh"
33#include "cpu/exetrace.hh"
34#include "cpu/simple/timing.hh"
35#include "mem/packet_impl.hh"
36#include "sim/builder.hh"
37#include "sim/system.hh"
38
39using namespace std;
40using namespace TheISA;
41
42Port *
43TimingSimpleCPU::getPort(const std::string &if_name, int idx)
44{
45 if (if_name == "dcache_port")
46 return &dcachePort;
47 else if (if_name == "icache_port")
48 return &icachePort;
49 else
50 panic("No Such Port\n");
51}
52
53void
54TimingSimpleCPU::init()
55{
56 BaseCPU::init();
57#if FULL_SYSTEM
58 for (int i = 0; i < threadContexts.size(); ++i) {
59 ThreadContext *tc = threadContexts[i];
60
61 // initialize CPU, including PC
62 TheISA::initCPU(tc, tc->readCpuId());
63 }
64#endif
65}
66
67Tick
68TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
69{
70 panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
71 return curTick;
72}
73
74void
75TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
76{
77 //No internal storage to update, jusst return
78 return;
79}
80
81void
82TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
83{
84 if (status == RangeChange)
85 return;
86
87 panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
88}
89
90
91void
92TimingSimpleCPU::CpuPort::TickEvent::schedule(Packet *_pkt, Tick t)
93{
94 pkt = _pkt;
95 Event::schedule(t);
96}
97
98TimingSimpleCPU::TimingSimpleCPU(Params *p)
99 : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock),
100 cpu_id(p->cpu_id)
101{
102 _status = Idle;
103 ifetch_pkt = dcache_pkt = NULL;
104 drainEvent = NULL;
105 fetchEvent = NULL;
106 previousTick = 0;
107 changeState(SimObject::Running);
108}
109
110
111TimingSimpleCPU::~TimingSimpleCPU()
112{
113}
114
115void
116TimingSimpleCPU::serialize(ostream &os)
117{
118 SimObject::State so_state = SimObject::getState();
119 SERIALIZE_ENUM(so_state);
120 BaseSimpleCPU::serialize(os);
121}
122
123void
124TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
125{
126 SimObject::State so_state;
127 UNSERIALIZE_ENUM(so_state);
128 BaseSimpleCPU::unserialize(cp, section);
129}
130
131unsigned int
132TimingSimpleCPU::drain(Event *drain_event)
133{
134 // TimingSimpleCPU is ready to drain if it's not waiting for
135 // an access to complete.
136 if (status() == Idle || status() == Running || status() == SwitchedOut) {
137 changeState(SimObject::Drained);
138 return 0;
139 } else {
140 changeState(SimObject::Draining);
141 drainEvent = drain_event;
142 return 1;
143 }
144}
145
146void
147TimingSimpleCPU::resume()
148{
149 if (_status != SwitchedOut && _status != Idle) {
150 assert(system->getMemoryMode() == System::Timing);
151
152 // Delete the old event if it existed.
153 if (fetchEvent) {
154 if (fetchEvent->scheduled())
155 fetchEvent->deschedule();
156
157 delete fetchEvent;
158 }
159
160 fetchEvent =
161 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
162 fetchEvent->schedule(curTick);
163 }
164
165 changeState(SimObject::Running);
166 previousTick = curTick;
167}
168
169void
170TimingSimpleCPU::switchOut()
171{
172 assert(status() == Running || status() == Idle);
173 _status = SwitchedOut;
174 numCycles += curTick - previousTick;
175
176 // If we've been scheduled to resume but are then told to switch out,
177 // we'll need to cancel it.
178 if (fetchEvent && fetchEvent->scheduled())
179 fetchEvent->deschedule();
180}
181
182
183void
184TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
185{
186 BaseCPU::takeOverFrom(oldCPU);
187
188 // if any of this CPU's ThreadContexts are active, mark the CPU as
189 // running and schedule its tick event.
190 for (int i = 0; i < threadContexts.size(); ++i) {
191 ThreadContext *tc = threadContexts[i];
192 if (tc->status() == ThreadContext::Active && _status != Running) {
193 _status = Running;
194 break;
195 }
196 }
197
198 if (_status != Running) {
199 _status = Idle;
200 }
201
202 Port *peer;
203 if (icachePort.getPeer() == NULL) {
204 peer = oldCPU->getPort("icache_port")->getPeer();
205 icachePort.setPeer(peer);
206 } else {
207 peer = icachePort.getPeer();
208 }
209 peer->setPeer(&icachePort);
210
211 if (dcachePort.getPeer() == NULL) {
212 peer = oldCPU->getPort("dcache_port")->getPeer();
213 dcachePort.setPeer(peer);
214 } else {
215 peer = dcachePort.getPeer();
216 }
217 peer->setPeer(&dcachePort);
218}
219
220
221void
222TimingSimpleCPU::activateContext(int thread_num, int delay)
223{
224 assert(thread_num == 0);
225 assert(thread);
226
227 assert(_status == Idle);
228
229 notIdleFraction++;
230 _status = Running;
231 // kick things off by initiating the fetch of the next instruction
232 fetchEvent =
233 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
234 fetchEvent->schedule(curTick + cycles(delay));
235}
236
237
238void
239TimingSimpleCPU::suspendContext(int thread_num)
240{
241 assert(thread_num == 0);
242 assert(thread);
243
244 assert(_status == Running);
245
246 // just change status to Idle... if status != Running,
247 // completeInst() will not initiate fetch of next instruction.
248
249 notIdleFraction--;
250 _status = Idle;
251}
252
253
254template <class T>
255Fault
256TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
257{
258 Request *req =
259 new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
260 cpu_id, /* thread ID */ 0);
261
262 if (traceData) {
263 traceData->setAddr(req->getVaddr());
264 }
265
266 // translate to physical address
267 Fault fault = thread->translateDataReadReq(req);
268
269 // Now do the access.
270 if (fault == NoFault) {
271 Packet *pkt =
272 new Packet(req, Packet::ReadReq, Packet::Broadcast);
273 pkt->dataDynamic<T>(new T);
274
275 if (!dcachePort.sendTiming(pkt)) {
276 _status = DcacheRetry;
277 dcache_pkt = pkt;
278 } else {
279 _status = DcacheWaitResponse;
280 // memory system takes ownership of packet
281 dcache_pkt = NULL;
282 }
283 }
284
285 // This will need a new way to tell if it has a dcache attached.
286 if (req->isUncacheable())
287 recordEvent("Uncached Read");
288
289 return fault;
290}
291
292#ifndef DOXYGEN_SHOULD_SKIP_THIS
293
294template
295Fault
296TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
297
298template
299Fault
300TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
301
302template
303Fault
304TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
305
306template
307Fault
308TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
309
310#endif //DOXYGEN_SHOULD_SKIP_THIS
311
312template<>
313Fault
314TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
315{
316 return read(addr, *(uint64_t*)&data, flags);
317}
318
319template<>
320Fault
321TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
322{
323 return read(addr, *(uint32_t*)&data, flags);
324}
325
326
327template<>
328Fault
329TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
330{
331 return read(addr, (uint32_t&)data, flags);
332}
333
334
335template <class T>
336Fault
337TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
338{
339 Request *req =
340 new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
341 cpu_id, /* thread ID */ 0);
342
343 // translate to physical address
344 Fault fault = thread->translateDataWriteReq(req);
345
346 // Now do the access.
347 if (fault == NoFault) {
348 assert(dcache_pkt == NULL);
349 dcache_pkt = new Packet(req, Packet::WriteReq, Packet::Broadcast);
350 dcache_pkt->allocate();
351 dcache_pkt->set(data);
352
353 bool do_access = true; // flag to suppress cache access
354
355 if (req->isLocked()) {
356 do_access = TheISA::handleLockedWrite(thread, req);
357 }
358
359 if (do_access) {
360 if (!dcachePort.sendTiming(dcache_pkt)) {
361 _status = DcacheRetry;
362 } else {
363 _status = DcacheWaitResponse;
364 // memory system takes ownership of packet
365 dcache_pkt = NULL;
366 }
367 }
368 }
369
370 // This will need a new way to tell if it's hooked up to a cache or not.
371 if (req->isUncacheable())
372 recordEvent("Uncached Write");
373
374 // If the write needs to have a fault on the access, consider calling
375 // changeStatus() and changing it to "bad addr write" or something.
376 return fault;
377}
378
379
380#ifndef DOXYGEN_SHOULD_SKIP_THIS
381template
382Fault
383TimingSimpleCPU::write(uint64_t data, Addr addr,
384 unsigned flags, uint64_t *res);
385
386template
387Fault
388TimingSimpleCPU::write(uint32_t data, Addr addr,
389 unsigned flags, uint64_t *res);
390
391template
392Fault
393TimingSimpleCPU::write(uint16_t data, Addr addr,
394 unsigned flags, uint64_t *res);
395
396template
397Fault
398TimingSimpleCPU::write(uint8_t data, Addr addr,
399 unsigned flags, uint64_t *res);
400
401#endif //DOXYGEN_SHOULD_SKIP_THIS
402
403template<>
404Fault
405TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
406{
407 return write(*(uint64_t*)&data, addr, flags, res);
408}
409
410template<>
411Fault
412TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
413{
414 return write(*(uint32_t*)&data, addr, flags, res);
415}
416
417
418template<>
419Fault
420TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
421{
422 return write((uint32_t)data, addr, flags, res);
423}
424
425
426void
427TimingSimpleCPU::fetch()
428{
429 checkForInterrupts();
430
431 Request *ifetch_req = new Request();
432 ifetch_req->setThreadContext(cpu_id, /* thread ID */ 0);
433 Fault fault = setupFetchRequest(ifetch_req);
434
435 ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
436 ifetch_pkt->dataStatic(&inst);
437
438 if (fault == NoFault) {
439 if (!icachePort.sendTiming(ifetch_pkt)) {
440 // Need to wait for retry
441 _status = IcacheRetry;
442 } else {
443 // Need to wait for cache to respond
444 _status = IcacheWaitResponse;
445 // ownership of packet transferred to memory system
446 ifetch_pkt = NULL;
447 }
448 } else {
449 // fetch fault: advance directly to next instruction (fault handler)
450 advanceInst(fault);
451 }
452
453 numCycles += curTick - previousTick;
454 previousTick = curTick;
455}
456
457
458void
459TimingSimpleCPU::advanceInst(Fault fault)
460{
461 advancePC(fault);
462
463 if (_status == Running) {
464 // kick off fetch of next instruction... callback from icache
465 // response will cause that instruction to be executed,
466 // keeping the CPU running.
467 fetch();
468 }
469}
470
471
472void
473TimingSimpleCPU::completeIfetch(Packet *pkt)
474{
475 // received a response from the icache: execute the received
476 // instruction
477 assert(pkt->result == Packet::Success);
478 assert(_status == IcacheWaitResponse);
479
480 _status = Running;
481
482 delete pkt->req;
483 delete pkt;
484
485 numCycles += curTick - previousTick;
486 previousTick = curTick;
487
488 if (getState() == SimObject::Draining) {
489 completeDrain();
490 return;
491 }
492
493 preExecute();
494 if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
495 // load or store: just send to dcache
496 Fault fault = curStaticInst->initiateAcc(this, traceData);
497 if (_status != Running) {
498 // instruction will complete in dcache response callback
499 assert(_status == DcacheWaitResponse || _status == DcacheRetry);
500 assert(fault == NoFault);
501 } else {
502 if (fault == NoFault) {
503 // early fail on store conditional: complete now
504 assert(dcache_pkt != NULL);
505 fault = curStaticInst->completeAcc(dcache_pkt, this,
506 traceData);
507 delete dcache_pkt->req;
508 delete dcache_pkt;
509 dcache_pkt = NULL;
510 }
511 postExecute();
512 advanceInst(fault);
513 }
514 } else {
515 // non-memory instruction: execute completely now
516 Fault fault = curStaticInst->execute(this, traceData);
517 postExecute();
518 advanceInst(fault);
519 }
520}
521
522void
523TimingSimpleCPU::IcachePort::ITickEvent::process()
524{
525 cpu->completeIfetch(pkt);
526}
527
528bool
529TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
530{
531 // delay processing of returned data until next CPU clock edge
532 Tick time = pkt->req->getTime();
533 while (time < curTick)
534 time += lat;
531 if (pkt->isResponse()) {
532 // delay processing of returned data until next CPU clock edge
533 Tick time = pkt->req->getTime();
534 while (time < curTick)
535 time += lat;
535
536
536 if (time == curTick)
537 cpu->completeIfetch(pkt);
538 else
539 tickEvent.schedule(pkt, time);
537 if (time == curTick)
538 cpu->completeIfetch(pkt);
539 else
540 tickEvent.schedule(pkt, time);
540
541
541 return true;
542 return true;
543 }
544 else {
545 //Snooping a Coherence Request, do nothing
546 return true;
547 }
542}
543
544void
545TimingSimpleCPU::IcachePort::recvRetry()
546{
547 // we shouldn't get a retry unless we have a packet that we're
548 // waiting to transmit
549 assert(cpu->ifetch_pkt != NULL);
550 assert(cpu->_status == IcacheRetry);
551 Packet *tmp = cpu->ifetch_pkt;
552 if (sendTiming(tmp)) {
553 cpu->_status = IcacheWaitResponse;
554 cpu->ifetch_pkt = NULL;
555 }
556}
557
558void
559TimingSimpleCPU::completeDataAccess(Packet *pkt)
560{
561 // received a response from the dcache: complete the load or store
562 // instruction
563 assert(pkt->result == Packet::Success);
564 assert(_status == DcacheWaitResponse);
565 _status = Running;
566
567 numCycles += curTick - previousTick;
568 previousTick = curTick;
569
570 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
571
572 if (pkt->isRead() && pkt->req->isLocked()) {
573 TheISA::handleLockedRead(thread, pkt->req);
574 }
575
576 delete pkt->req;
577 delete pkt;
578
579 postExecute();
580
581 if (getState() == SimObject::Draining) {
582 advancePC(fault);
583 completeDrain();
584
585 return;
586 }
587
588 advanceInst(fault);
589}
590
591
592void
593TimingSimpleCPU::completeDrain()
594{
595 DPRINTF(Config, "Done draining\n");
596 changeState(SimObject::Drained);
597 drainEvent->process();
598}
599
600bool
601TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
602{
548}
549
550void
551TimingSimpleCPU::IcachePort::recvRetry()
552{
553 // we shouldn't get a retry unless we have a packet that we're
554 // waiting to transmit
555 assert(cpu->ifetch_pkt != NULL);
556 assert(cpu->_status == IcacheRetry);
557 Packet *tmp = cpu->ifetch_pkt;
558 if (sendTiming(tmp)) {
559 cpu->_status = IcacheWaitResponse;
560 cpu->ifetch_pkt = NULL;
561 }
562}
563
564void
565TimingSimpleCPU::completeDataAccess(Packet *pkt)
566{
567 // received a response from the dcache: complete the load or store
568 // instruction
569 assert(pkt->result == Packet::Success);
570 assert(_status == DcacheWaitResponse);
571 _status = Running;
572
573 numCycles += curTick - previousTick;
574 previousTick = curTick;
575
576 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
577
578 if (pkt->isRead() && pkt->req->isLocked()) {
579 TheISA::handleLockedRead(thread, pkt->req);
580 }
581
582 delete pkt->req;
583 delete pkt;
584
585 postExecute();
586
587 if (getState() == SimObject::Draining) {
588 advancePC(fault);
589 completeDrain();
590
591 return;
592 }
593
594 advanceInst(fault);
595}
596
597
598void
599TimingSimpleCPU::completeDrain()
600{
601 DPRINTF(Config, "Done draining\n");
602 changeState(SimObject::Drained);
603 drainEvent->process();
604}
605
606bool
607TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
608{
603 // delay processing of returned data until next CPU clock edge
604 Tick time = pkt->req->getTime();
605 while (time < curTick)
606 time += lat;
609 if (pkt->isResponse()) {
610 // delay processing of returned data until next CPU clock edge
611 Tick time = pkt->req->getTime();
612 while (time < curTick)
613 time += lat;
607
614
608 if (time == curTick)
609 cpu->completeDataAccess(pkt);
610 else
611 tickEvent.schedule(pkt, time);
615 if (time == curTick)
616 cpu->completeDataAccess(pkt);
617 else
618 tickEvent.schedule(pkt, time);
612
619
613 return true;
620 return true;
621 }
622 else {
623 //Snooping a coherence req, do nothing
624 return true;
625 }
614}
615
616void
617TimingSimpleCPU::DcachePort::DTickEvent::process()
618{
619 cpu->completeDataAccess(pkt);
620}
621
622void
623TimingSimpleCPU::DcachePort::recvRetry()
624{
625 // we shouldn't get a retry unless we have a packet that we're
626 // waiting to transmit
627 assert(cpu->dcache_pkt != NULL);
628 assert(cpu->_status == DcacheRetry);
629 Packet *tmp = cpu->dcache_pkt;
630 if (sendTiming(tmp)) {
631 cpu->_status = DcacheWaitResponse;
632 // memory system takes ownership of packet
633 cpu->dcache_pkt = NULL;
634 }
635}
636
637
638////////////////////////////////////////////////////////////////////////
639//
640// TimingSimpleCPU Simulation Object
641//
642BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
643
644 Param<Counter> max_insts_any_thread;
645 Param<Counter> max_insts_all_threads;
646 Param<Counter> max_loads_any_thread;
647 Param<Counter> max_loads_all_threads;
648 Param<Tick> progress_interval;
649 SimObjectParam<MemObject *> mem;
650 SimObjectParam<System *> system;
651 Param<int> cpu_id;
652
653#if FULL_SYSTEM
654 SimObjectParam<AlphaITB *> itb;
655 SimObjectParam<AlphaDTB *> dtb;
656 Param<Tick> profile;
657#else
658 SimObjectParam<Process *> workload;
659#endif // FULL_SYSTEM
660
661 Param<int> clock;
662
663 Param<bool> defer_registration;
664 Param<int> width;
665 Param<bool> function_trace;
666 Param<Tick> function_trace_start;
667 Param<bool> simulate_stalls;
668
669END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
670
671BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
672
673 INIT_PARAM(max_insts_any_thread,
674 "terminate when any thread reaches this inst count"),
675 INIT_PARAM(max_insts_all_threads,
676 "terminate when all threads have reached this inst count"),
677 INIT_PARAM(max_loads_any_thread,
678 "terminate when any thread reaches this load count"),
679 INIT_PARAM(max_loads_all_threads,
680 "terminate when all threads have reached this load count"),
681 INIT_PARAM(progress_interval, "Progress interval"),
682 INIT_PARAM(mem, "memory"),
683 INIT_PARAM(system, "system object"),
684 INIT_PARAM(cpu_id, "processor ID"),
685
686#if FULL_SYSTEM
687 INIT_PARAM(itb, "Instruction TLB"),
688 INIT_PARAM(dtb, "Data TLB"),
689 INIT_PARAM(profile, ""),
690#else
691 INIT_PARAM(workload, "processes to run"),
692#endif // FULL_SYSTEM
693
694 INIT_PARAM(clock, "clock speed"),
695 INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
696 INIT_PARAM(width, "cpu width"),
697 INIT_PARAM(function_trace, "Enable function trace"),
698 INIT_PARAM(function_trace_start, "Cycle to start function trace"),
699 INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
700
701END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
702
703
704CREATE_SIM_OBJECT(TimingSimpleCPU)
705{
706 TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
707 params->name = getInstanceName();
708 params->numberOfThreads = 1;
709 params->max_insts_any_thread = max_insts_any_thread;
710 params->max_insts_all_threads = max_insts_all_threads;
711 params->max_loads_any_thread = max_loads_any_thread;
712 params->max_loads_all_threads = max_loads_all_threads;
713 params->progress_interval = progress_interval;
714 params->deferRegistration = defer_registration;
715 params->clock = clock;
716 params->functionTrace = function_trace;
717 params->functionTraceStart = function_trace_start;
718 params->mem = mem;
719 params->system = system;
720 params->cpu_id = cpu_id;
721
722#if FULL_SYSTEM
723 params->itb = itb;
724 params->dtb = dtb;
725 params->profile = profile;
726#else
727 params->process = workload;
728#endif
729
730 TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
731 return cpu;
732}
733
734REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
735
626}
627
628void
629TimingSimpleCPU::DcachePort::DTickEvent::process()
630{
631 cpu->completeDataAccess(pkt);
632}
633
634void
635TimingSimpleCPU::DcachePort::recvRetry()
636{
637 // we shouldn't get a retry unless we have a packet that we're
638 // waiting to transmit
639 assert(cpu->dcache_pkt != NULL);
640 assert(cpu->_status == DcacheRetry);
641 Packet *tmp = cpu->dcache_pkt;
642 if (sendTiming(tmp)) {
643 cpu->_status = DcacheWaitResponse;
644 // memory system takes ownership of packet
645 cpu->dcache_pkt = NULL;
646 }
647}
648
649
650////////////////////////////////////////////////////////////////////////
651//
652// TimingSimpleCPU Simulation Object
653//
654BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
655
656 Param<Counter> max_insts_any_thread;
657 Param<Counter> max_insts_all_threads;
658 Param<Counter> max_loads_any_thread;
659 Param<Counter> max_loads_all_threads;
660 Param<Tick> progress_interval;
661 SimObjectParam<MemObject *> mem;
662 SimObjectParam<System *> system;
663 Param<int> cpu_id;
664
665#if FULL_SYSTEM
666 SimObjectParam<AlphaITB *> itb;
667 SimObjectParam<AlphaDTB *> dtb;
668 Param<Tick> profile;
669#else
670 SimObjectParam<Process *> workload;
671#endif // FULL_SYSTEM
672
673 Param<int> clock;
674
675 Param<bool> defer_registration;
676 Param<int> width;
677 Param<bool> function_trace;
678 Param<Tick> function_trace_start;
679 Param<bool> simulate_stalls;
680
681END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
682
683BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
684
685 INIT_PARAM(max_insts_any_thread,
686 "terminate when any thread reaches this inst count"),
687 INIT_PARAM(max_insts_all_threads,
688 "terminate when all threads have reached this inst count"),
689 INIT_PARAM(max_loads_any_thread,
690 "terminate when any thread reaches this load count"),
691 INIT_PARAM(max_loads_all_threads,
692 "terminate when all threads have reached this load count"),
693 INIT_PARAM(progress_interval, "Progress interval"),
694 INIT_PARAM(mem, "memory"),
695 INIT_PARAM(system, "system object"),
696 INIT_PARAM(cpu_id, "processor ID"),
697
698#if FULL_SYSTEM
699 INIT_PARAM(itb, "Instruction TLB"),
700 INIT_PARAM(dtb, "Data TLB"),
701 INIT_PARAM(profile, ""),
702#else
703 INIT_PARAM(workload, "processes to run"),
704#endif // FULL_SYSTEM
705
706 INIT_PARAM(clock, "clock speed"),
707 INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
708 INIT_PARAM(width, "cpu width"),
709 INIT_PARAM(function_trace, "Enable function trace"),
710 INIT_PARAM(function_trace_start, "Cycle to start function trace"),
711 INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
712
713END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
714
715
716CREATE_SIM_OBJECT(TimingSimpleCPU)
717{
718 TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
719 params->name = getInstanceName();
720 params->numberOfThreads = 1;
721 params->max_insts_any_thread = max_insts_any_thread;
722 params->max_insts_all_threads = max_insts_all_threads;
723 params->max_loads_any_thread = max_loads_any_thread;
724 params->max_loads_all_threads = max_loads_all_threads;
725 params->progress_interval = progress_interval;
726 params->deferRegistration = defer_registration;
727 params->clock = clock;
728 params->functionTrace = function_trace;
729 params->functionTraceStart = function_trace_start;
730 params->mem = mem;
731 params->system = system;
732 params->cpu_id = cpu_id;
733
734#if FULL_SYSTEM
735 params->itb = itb;
736 params->dtb = dtb;
737 params->profile = profile;
738#else
739 params->process = workload;
740#endif
741
742 TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
743 return cpu;
744}
745
746REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
747